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1 Introduction

Suppose that θ̂n := θ̂n(X1, ..., Xn) is the maximum likelihood estimator (MLE) of a parameter (vector)

θ based on independent copies (Xj , j = 1, ..., n) of a random variable X with distribution F . Then by

the invariance property of the MLE, h(θ̂n) is the MLE of the parameter h(θ) induced by an one–to–one

transformation h(·); see for instance Zacks (1971)[Theorem 5.1.1] or Lin’kov (2005)[Theorem 5.2.1].

(The restriction to one–to–one transformations is not necessary.) The question is whether ϑ := h(θ)

is the original parameter of another distribution within the same distributional class and how can

we get to this distribution by a variable transformation g(X) on the random variable X , so that the

MLE ϑ̂n of ϑ can be computed, not by employing the likelihood of the new distribution but by direct

reference to the MLE h(θ̂n). If this is so we will see that certain methodological implications emerge

that considerably simplify associated goodness–of–fit (GOF) procedures.

There exist already a couple of well known examples. Let us start with scale families of dis-

tributions, and in this regard assume that X has a distribution function (DF) F (x) := Fc(x) such

that Fc(x) = F0(x/c), for some c > 0, and for some fixed DF F0. In this case the family–preserving

variable transformation is given by Y = g(X) with g(X) = aX , and the new parameter corresponding

to the transformed random variable Y is σ = h(c) with h(c) = ac, for each a > 0. Then it may be

shown that the MLE satisfies σ̂n(Y1, ..., Yn) = aĉn(X1, ..., Xn), where Yj = aXj , (j = 1, ..., n); see e.g.

Problem 3.1 (b), p. 211, in Lehmann and Casella (1998). The other well known example emerges in

location–scale families whereby the DF of X is given by Fθ(x) = F0((x − δ)/c)), for some θ = (δ, c),

(δ ∈ R and c > 0), with family–preserving transformation g(X) = aX + b, (a > 0 and b ∈ R). Then

the new parameter is ϑ = (µ, σ), where ϑ = h(δ, c) with h(δ, c) = (aδ + b, ac), and the MLE satisfies

ϑ̂n(Y1, ..., Yn) = (aδ̂n + b, aĉn), where Yj = aXj + b, (j = 1, ..., n). Such estimators that mimic the

behavior of corresponding parameters under specific data–transformations are labeled as equivariant

estimators; see Definition 2.5 in Chapter 3 of Lehmann and Casella (1998) for a rigorous definition.

Here we go beyond these clearly linear cases and pinpoint reasonably rich families of distributions

within which, specific distributions differ in more essential ways than mere location and/or scale.

Specifically assume that the distribution of X > 0, depends on a scale parameter c > 0 and a shape

parameter κ > 0, and that the corresponding DF is such that

Fc,κ(x) = F0

((x
c

)κ)
,(1.1)

for some fixed DF F0(·). Specific families of distributions arise by different “kernel” DF choices F0(·)

and include:

1. The Weibull distribution with kernel DF, F0(x) = 1− e−x, x > 0.

2. The Pareto type I distribution with kernel DF, F0(x) = 1− x−1, x > 1.

3. The Frechet distribution with kernel DF, F0(x) = e−1/x, x > 0.

In this paper we identify a root–type transformation as a family–preserving variable transforma-

tion g(·) within families satisfying (1.1), as well as the corresponding parameter transformation h(·)
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and show that the MLE satisfies

ϑ̂n = h(θ̂n),(1.2)

for the specific choice of this transformation. This is done in Section 2. Then in Section 3 we investigate

the impact that (1.2) has on certain goodness–of–fit tests (GOF) for the families of distributions that

satisfy (1.1). At the same time we also provide a non–technical and selective review of the related

literature, including cases of test invariance for linear family–preserving variable transformations. The

article concludes with a small simulation study and real–data examples in the case of GOF testing for

the Weibull distribution in Section 4.

2 Distribution–preserving data transformations and equivari-

ant estimators

In view of (1.1), notice that

X ∼ Fc,κ =⇒ aX1/b ∼ Fac1/b,bκ,(2.1)

for each a, b > 0. Hence the one–to–one root–type transformation X 7→ aX1/b is a family–preserving

variable transformation for each specific family F0 satisfying (1.1), and maps (c, κ) to (ac1/b, bκ).

The following proposition shows that (1.2) holds for the MLE in such families of distributions, with

variable transformation g(X) = aX1/b and parameter transformation h(c, κ) = (ac1/b, bκ).

Proposition 2.1 Let (Xj , j = 1, ..., n) be independent copies of X ∼ Fc,κ, and assume that the DF

of X satisfies (1.1). Assume further that the density fc,κ corresponding to Fc,κ exists, and also that

the MLE (ĉn, κ̂n) of the parameter (c, κ) exists. Then the MLE corresponding to aX1/b ∼ Fac1/b,bκ

with the sample (aX
1/b
j , j = 1, ..., n) is given by (aĉ

1/b
n , bκ̂n).

Proof. We first calculate from (1.1) the density corresponding to Fc,κ as

fc,κ(x) =
dFc,κ(x)

dx
=

dF0((
x
c )

κ)

dx
=

κ

c

(x
c

)κ−1

f0

((x
c

)κ)
,(2.2)

where f0(x) := f1,1(x) =
dF0(x)

dx .

Then by straightforward calculations, it follows that the likelihood function corresponding to X

with the sample (Xj , j = 1, . . . , n) is given by

L(X1, . . . , Xn; c, κ) =
κn

∏n
j=1 Xj

n∏

j=1

(
Xj

c

)κ

f0

((
Xj

c

)κ)
.(2.3)

Recall now that Y := aX1/b ∼ Fac1/b,bκ, and denote by (d̂n, η̂n) the MLE for Y with the sample

(Yj = aX
1/b
j , j = 1, . . . , n) , i.e.

max
ac1/b,bκ

L(Y1, . . . , Yn; ac
1/b, bκ) = L(Y1, . . . , Yn; d̂n, η̂n).
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Then, by the definition of (ĉn, κ̂n) and (d̂n, η̂n), we observe that for any (c, κ), the following hold true:

n∏

j=1

(
bX

1−1/b
j

a

)
· L(X1, . . . , Xn; c, κ)

=
(bκ)n∏n
j=1 Yj

n∏

j=1

(
Yj

ac1/b

)bκ

f0

((
Yj

ac1/b

)bκ
)

= L(Y1, . . . , Yn; ac
1/b, bκ)

≤ L(Y1, . . . , Yn; d̂n, η̂n)

=

n∏

j=1

(
bX

1−1/b
j

a

)
(η̂n/b)

n

∏n
j=1 Xj

n∏

j=1

(
Xj

(d̂n/a)b

)η̂n/b

f0



(

Xj

(d̂n/a)b

)η̂n/b



=

n∏

j=1

(
bX

1−1/b
j

a

)
· L(X1, . . . , Xn; (d̂n/a)

b, η̂n/b)

≤
n∏

j=1

(
bX

1−1/b
j

a

)
· L(X1, . . . , Xn; ĉn, κ̂n).

Now putting (c, κ) = (ĉn, κ̂n) in the first line of the argument above we obtain

L(X1, . . . , Xn; ĉn, κ̂n) = L(X1, . . . , Xn; (d̂n/a)
b, η̂n/b).

Hence, (d̂n, η̂n) = (aĉ
1/b
n , bκ̂n) should be concluded.

It should be pointed out that there exist other data–transformations that lead to parameter–free

tests, such as the log–linear transformation κ(logX − log c) that turns a Weibull variate to a variate

following a standard extreme–value distribution. The difference with the root–type transformation

suggested herein is that this transformation is not distribution–specific, but instead it applies to rich

families of distributions. In this connection, more general distributions with extra parameters may

be included in our framework of families of distributions. For instance the Burr type XII distribution

belongs to the class of distributions defined by (1.1), with DF F0(x) = 1− (1+ x)−ξ, ξ > 0, and thus

also satisfies Prop. 2.1. Specifically if X follows a Burr type XII distribution with parameters (c, κ, ξ)

then aX1/b follows a Burr type XII distribution with parameters (ac1/b, bκ, ξ). Two other well known

classes are the exponentiated Weibull distribution with F0(x) = (1−e−x)ξ, ξ > 0, and the generalized

gamma distribution with density given by (2.2) where f0(x) = (Γ(ξ))−1xξ−1e−x, ξ > 0.

To the best of our knowledge the most general class of distributions that satisfy (1.1) and Prop.

2.1 is the “interpolating family” of distributions on (0,∞) recently introduced by Sinner et al. (2023).

As it will be seen below Prop. 2.1 allow us to carry out a much simpler GOF test that refers to a

subfamily of the family under test whereby two (out of two, three or even four) parameters have been

removed.
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3 Parameter–free test procedures

It should be noted that the notion of equivariant estimators, and invariant tests (to be discussed be-

low) is a recurring theme in Statistics, with Chapter 3 (resp. Chapter 6) of the classical treatment of

Lehmann and Casella (1998) (resp. Lehmann and Romano (2005)) devoted to such estimators (resp.

tests). Nevertheless the approach in Lehmann and Casella (1998) is mostly based on estimation opti-

mality, which is not always relevant in the context of GOF testing. By way of example, smooth tests

of fit originally introduced by Neyman (1937), and more recently studied by Ledwina (1994) and in

the monograph by Rayner et al. (2009), are intrinsically related to moment estimators which are more

often than not less efficient than other estimators. In fact Klar (2000) points out that the method of

moments is the only meaningful estimation method in the context of smooth tests of fit. Another point

in case is made by Drost et al. (1990) who argue that rather than estimation optimality, robustness

or more precisely luck of it, is important in the context of GOF testing. Moreover, the test optimal-

ity approach often adopted by Lehmann and Romano (2005)[Chapter 6] (see also Vexler and Hutson

(2023)) is not even feasible in any reasonably wide context of testing, such as GOF testing with un-

specified parameters. This is noted in Lehmann and Romano (2005)[§14.1], and is formally stated and

shown by Janssen (2000) and Escanciano (2009). (It should be pointed out however that within the

narrow context of testing a distribution against a specific alternative, likelihood ratio tests applied

on maximal invariants lead to optimal invariant tests). Therefore, it appears that the methodological

implications of equivariant estimators on GOF testing with estimated parameters have not been put

forward beyond the simple linear transformation case of scale or location–scale families, and even in

those cases they have not been sufficiently emphasized.

On the basis of the preceding discussion we motivate our current parameter–free procedures

by starting again with simple scale families of distributions with DF F (x) = F0(x/c). As al-

ready mentioned in the Introduction, the MLE of the scale parameter c satisfies ĉn(aX1, ..., aXn) =

aĉn(X1, ..., Xn). As a result, any GOF test for such families of distributions, say Tn(X1, ..., Xn), that

depends on Xj only through Ŷj = Xj/ĉn, (j = 1, ..., n), is scale invariant, i.e. it satisfies

Tn(aX1, ..., aXn) = Tn(X1, ..., Xn),(3.1)

for each a > 0, and consequently the test Tn may be applied by assuming without loss of generality that

we are testing for F = F0 with c = 1. (If X > 0, this is a special case of Prop. 2.1 for κ = 1, and eqn.

(3.1) follows from eqn. (3.6) below for b = 1). The by far most popular such testing problem is that

of testing for exponentiality, and the reader is referred to the review articles of Henze and Meintanis

(2005) and Allison et al. (2017), for scale invariant tests for exponentiality.

One level up are location–scale families whereby the corresponding location–scale invariant test

results by considering the MLE–standardized observations Ŷj = (Xj − δ̂n)/ĉn, (j = 1, ..., n), and

analogously satisfies

Tn(aX1 + b, ..., aXn + b) = Tn(X1, ..., Xn),(3.2)
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for each a > 0 and b ∈ R, implying that Tn can be performed by setting (δ, c) = (0, 1). The

monograph of Thode (2002) focuses on the most popular testing problem here, i.e. that of testing

for normality, but without particular reference to test invariance. (Nevertheless most normality tests

are routinely applied on (Xj − δ̂n)/ĉn, (j = 1, ..., n), with δ̂n (resp. ĉn) being the sample mean

(resp. sample standard deviation), which automatically implies the location–scale invariance stated

in (3.2)). On the other hand, Epps (2005) considers GOF tests for general location–scale families

with implicit reference to invariance. It should be mentioned that the methodology in Epps (2005) is

confined to tests utilizing the empirical characteristic function as their main tool, which might seem

as a somewhat less well known approach, but with minor modifications the location–scale invariance

argued in Epps (2005) applies more generally to any given GOF test. Moreover, the paper itself as well

as earlier (see e.g., Epps and Pulley (1983), Epps (1993)) and subsequent works (see e.g., Hall et al.

(2013)), including some of the papers to be referenced herein (see e.g., Meintanis and Swanepoel

(2007), Meintanis et al. (2015)) make a good case about using the empirical characteristic function

for GOF testing, instead of more standard tools such as the empirical DF.

We will briefly digress from univariate distributions, to discuss the very important case of mul-

tivariate data. In this connection we note that location–scale equivariance has been extended to

vectorial observations as “affine–equivariance”. The most relevant context for affine equivariant

estimators and affine invariant tests is that of (multivariate) elliptical distributions and an excel-

lent discussion of such estimators and tests may be found in Hallin and Jurečková (2012). In fact

Hallin and Jurečková (2012) argue that affine–invariant tests, i.e. tests that for arbitrary dimension

p ≥ 1 satisfy, Tn(AX1+ b, ..., AXn+ b) = Tn(X1, ..., Xn), for any non–singular p×p matrix A and any

vector b ∈ R
p, should be based on the Mahalanobis distances between the observed p–dimensional

vectors (Xj , j = 1, ..., n), a point also made by Henze (2002) in the context of testing for multivariate

normality, and by Meintanis et al. (2015) for the more general elliptically symmetric stable–Paretian

distribution.

Let us return now to our main problem. In this regard, Prop. 2.1 entails that the MLE estimator

(ĉn, κ̂n) of (c, κ) mimics the equivariance properties of the respective parameters shown in (2.1), i.e.

ĉn(aX
1/b
1 , ..., aX1/b

n ) = a ĉ1/bn (X1, ..., Xn),(3.3)

and

κ̂n(aX
1/b
1 , ..., aX1/b

n ) = b κ̂n(X1, ..., Xn),(3.4)

for each a, b > 0. As a result, any GOF procedure that depends on (Xj , j = 1, ..., n) only via

Ŷj =

(
Xj

ĉn

)κ̂n

, j = 1, ..., n,(3.5)

satisfies

Tn(aX
1/b
1 , ..., aX1/b

n ) = Tn(X1, ..., Xn),(3.6)
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for each a, b > 0, and consequently and without loss of generality, we may perform the test by assuming

c = κ = 1. Clearly, in view of the distributional invariance of aX1/b figuring in (2.1), test invariance

as illustrated by (3.6) feels like a desirable, even natural, property within the families of distributions

satisfying (1.1). On the practical level eqn. (3.6) implies that a potentially much simpler test may be

invoked for testing families satisfying (1.1), such as in the case of the Weibull distribution where any

test for exponentiality applied on (Ŷj , j = 1, ..., n) can be used.

Remark 3.1 Notice that the data–transformation figuring in eqn. (3.5) is the inverse of the distribution–

preserving root–type transformation g(X) shown in (2.1), and thus not–surprisingly, its application

has a stabilizing effect on the estimators. Specifically, by replacing in (3.3)–(3.4), (a, b) by (ĉ−κ̂n
n , κ̂−1

n )

we see easily that

ĉn(Ŷ1, ..., Ŷn) = ĉn

((
X1

ĉn

)κ̂n

, ...,

(
Xn

ĉn

)κ̂n
)

= 1,

and

κ̂n(Ŷ1, ..., Ŷn) = κ̂n

((
X1

ĉn

)κ̂n

, ...,

(
Xn

ĉn

)κ̂n
)

= 1.

Remark 3.2 The invariance properties figuring in (3.1) and (3.2) are not restricted to the MLE

alone. Other estimators, such as moment estimators or estimators based on order statistics, may

also result in test statistics that satisfy these properties provided that the estimators under discussion

satisfy the equivariance properties referred to in the Introduction. A particular case of equivariant

estimators with minimum risk are the Pitman estimators of location and scale; see Zacks (1971)[§7.2],

Lehmann and Casella (1998)[§3.1] and Lin’kov (2005)[§3.1-3.2].

In this connection, and before closing this section we wish to emphasize that the invariance

properties figuring in (3.1), (3.2), and (3.6), do not imply that our test procedures reduce to the case

of simple hypotheses with corresponding parameters known. In fact parameter estimation generally

does have an effect on the distributional properties of the tests, and test invariance only means that

these distributional properties do not involve the actual true values of the unknown parameters being

estimated; see for instance Meintanis and Swanepoel (2007). In the next section we illustrate the

performance of some GOF tests for exponentiality that are employed in order to test for the Weibull

distribution with both parameters unknown.

4 Monte Carlo and real–data

In this section we study the finite–sample performance of a few tests for the Weibull distribution with

DF, Fc,κ(x) = 1 − exp{−(x/c)κ}, and unknown parameter (c, κ). Recall that if the tests are applied

on (Ŷj , j = 1, . . . , n) as defined in (3.5) with (ĉn, κ̂n) being the MLE, then we can set c = κ = 1,
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and consequently we may invoke any test for unit exponentiality (see item 1 in Section 1). From the

plethora of available tests we consider the Anderson–Darling test based on

ADn = −n−
1

n

n∑

j=1

(2j − 1)(logZ(j) + log(1 − Z(n+1−j))),

where Z(j) = 1 − e−Ŷ(j) (j = 1, ..., n) with Ŷ(1) ≤ Ŷ(2)≤ . . . ≤ Ŷ(n) being the ordered statistics. The

ADn test is often the most powerful test among the classical tests based on the empirical DF. We also

include the test of Henze and Meintanis (2002) based on

HMn =
1

n

n∑

j,k=1

1 + (Ŷj + Ŷk + 2)2

(Ŷj + Ŷk + 1)3
− 2

n∑

j=1

Ŷj + 2

(Ŷj + 1)2
+ n,

which is amongst the best performing exponentiality tests in the comparison studies of Henze and Meintanis

(2005) and Allison et al. (2017), and a smooth test of fit for the exponential distribution (see Rayner et al.

(2009)[§6.3] given by

RBn =
1

n




n∑

j=1

L2(Ŷj)




2

+
1

n




n∑

j=1

L3(Ŷj)




2

,

where

L2(z) = 1− 2z + z2/2, L3(z) = 1− 3z + 3z2/2− z3/6,

are the Laguerre polynomials of orders 2 and 3.

We consider tests of size α, and for a given sample size n we calculate the test statistics based on a

large number M of Monte Carlo samples and obtain the quantile corresponding to 1−α. Specifically

for each sample of size n and each test statistic, say T , we generate observations from a Weibull

distribution with a fixed combination of (c, κ), then we calculate the MLE (ĉn, κ̂n) and obtain the

value of the test statistic Tm based on the transformed sample Ŷj = (Xj/ĉn)
κ̂n , j = 1, ..., n. By

iterating this procedure for m = 1, 2, ...,M , we obtain the critical value of the test statistic as the

1−α quantile of the empirical distribution of (Tm, m = 1, ...,M). By the test invariance articulated in

the previous section we only need to draw samples from the Weibull distribution with (c, κ) = (1, 1),

i.e. by sampling from the unit exponential distribution. Nevertheless we examined the three test

statistics by sampling from a Weibull distribution with several combinations of (c, κ) and indeed our

conclusion for a parameter–free test statistic was confirmed as the resulting critical values remained

stable regardless of the actual value of (c, κ) employed.

The actual Monte Carlo was performed with sample size n = 50, 100, 150 and n = 200, with

M = 100, 000 iterations at significance level α = 0.1, 0.05 and α = 0.01, and the resulting critical

values are reported in Table 1. The figures in Table 1 show that convergence to the asymptotic

distribution is faster for the ADn and HMn tests, while the smooth test RBn is somewhat slower to

reach its limit distribution.
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Table 1: Critical values for ADn, HMn, and RBn, at significance level α

ADn HMn RBn

n \ α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

n = 50 0.629 0.750 1.027 0.036 0.047 0.076 0.922 1.374 4.558

n = 100 0.623 0.755 1.027 0.037 0.048 0.078 1.123 1.797 7.456

n = 150 0.634 0.755 1.041 0.037 0.049 0.079 1.269 2.092 9.249

n = 200 0.634 0.757 1.050 0.038 0.049 0.078 1.383 2.313 9.914

Table 2: Actual values of test statistics (“act.”), and critical values at significance level 0.1, 0.05, 0.01

ADn HMn RBn

act. 0.1 0.05 0.01 act. 0.1 0.05 0.01 act. 0.1 0.05 0.01

Ex.1 1.241 0.629 0.747 1.031 0.104 0.036 0.047 0.076 1.458 0.981 1.496 5.820

Ex.2 0.329 0.631 0.752 1.024 0.021 0.036 0.046 0.077 0.602 0.904 1.349 4.277

Using this methodology we apply the three tests on two real–data sets of sizes n = 63 (Ex.1)

and n = 46 (Ex.2) employed by Smith and Naylor (1987) (see Table 1, p.359 for the data). The data

correspond to experimental measurements on the strength of glass fiber of length 1.5 cm (Ex.1) and 15

cm (Ex.2). The values of the MLE are (ĉn, κ̂n) = (5.781, 1.628) for Ex.1, and (ĉn, κ̂n) = (5.147, 1.230)

for Ex.2. From these estimated values, we obtain (Ŷj , j = 1, ..., n), and calculate each of the three test

statistics, whose actual values are reported in Table 2 (underlined figures). Before further analysis we

also considered the Kolmogorov-Smirnov (KS) test with the data Ŷj , and thereby obtained p-values

0.1078 for Ex.1 and 0.9473 for Ex.2. These are consistent with the values reported in Table 4 (Ex.1)

and Table 5 (Ex.2), of the real–data analysis in §5 of Wu et al. (2021). Thus at significance level 10%,

and on the basis of the KS test we can not reject the hypothesis of exponentiality of the standardized

data (Ŷj , j = 1, ..., n), which in turn can be interpreted to imply that the source data (Xj , j = 1, ..., n)

might have originated from a Weibull distribution with the MLE estimates as parameters. On the

other hand, the exponentiality of the data of Ex.1 is rejected by the ADn and the HMn tests, and only

the smooth test at significance levels 5% and 1% finds no evidence to reject this hypothesis. At the

same time, the exponentiality for the data of Ex.2 is supported by all three tests uniformly over the

values of α considered. The corresponding histogram and distribution function plots that are shown

in Figure 1 further corroborate our results. Therefore, there is strong evidence in favour of a Weibull

distribution for the data of Ex.2, while the corresponding conclusion for the data of Ex.1 should be

questioned and occasional non–rejection may be due to low power. For instance, the KS test is often

the least powerful amongst the classical tests based on the empirical DF.
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Figure 1: Histogram and distribution function of the standardized strength data of glass fiber (Ex.1

and Ex.2). The standard exponential density and distribution function are superimposed on the

corresponding graphs (solid curved lines).
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