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Deep learning is increasingly becoming a promising pathway to improving the accuracy of sub-grid scale
(SGS) turbulence closure models for large eddy simulations (LES). We leverage the concept of differentiable
turbulence, whereby an end-to-end differentiable solver is used in combination with physics-inspired choices of
deep learning architectures to learn highly effective and versatile SGS models for two-dimensional turbulent
flow. We perform an in-depth analysis of the inductive biases in the chosen architectures, finding that the
inclusion of small-scale non-local features is most critical to effective SGS modeling, while large-scale features
can improve pointwise accuracy of the a-posteriori solution field. The velocity gradient tensor on the LES
grid can be mapped directly to the SGS stress via decomposition of the inputs and outputs into isotropic,
deviatoric, and anti-symmetric components. We see that the model can generalize to a variety of flow
configurations, including higher and lower Reynolds numbers and different forcing conditions. We show that
the differentiable physics paradigm is more successful than offline, a-priori learning, and that hybrid solver-
in-the-loop approaches to deep learning offer an ideal balance between computational efficiency, accuracy,
and generalization. Our experiments provide physics-based recommendations for deep-learning based SGS
modeling for generalizable closure modeling of turbulence.

I. INTRODUCTION

Simulations of turbulent flow constitute an integral
part of modeling and analysis for many scientific and
engineering problems driven by fluid flow. Many real-
world flows, such as climate dynamics, jets, blood flow,
or external aerodynamics, are turbulent in nature, char-
acterized by chaotic and multi-scale behavior1,2. Numer-
ical solutions to turbulent flow are often extraordinarily
challenging to obtain, due to the vast number of tem-
poral and spatial scales that must be resolved. In prac-
tice, direct numerical simulation (DNS) of the govern-
ing Navier-Stokes equations is infeasible and hence DNS
is limited to canonical flow configurations3. Major ef-
forts in computational fluid dynamics (CFD) methods
have therefore focused on the development of turbulence
models, which approximate the effects of turbulence and
ultimately reduce the computational burden of simula-
tions by averaging unresolved flow features4. For exam-
ple, Reynolds-Averaged Navier-Stokes (RANS) methods
develop steady-state solutions to the governing equations
by modeling the time-averaged turbulent fluctuations in
the flow encompassed by the Reynolds stresses2,5. The
smooth solutions provided by the RANS equations en-
able a significant reduction in grid-resolution require-
ments, and RANS has remained the workhorse of CFD
methods for many engineering tasks. The increase in
computational capabilities over the last few decades has
placed new emphasis on Large Eddy Simulation (LES)
methods4,6–8. With LES, the large scales of the flow are
directly resolved on the computational grid, and the ef-
fects of the subgrid-scale (SGS) flow are accounted for
using an SGS model. The advantage of LES is that

the temporal evolution of the flow field can be modeled,
which is needed for certain applications such as weather
forecasting9. On the other hand, the discretization re-
quirements for LES are generally more strict than RANS,
leading to larger computational costs that limit applica-
bility.

The averaged or ‘filtered’ equations used in turbu-
lence modeling are near identical to the governing Navier-
Stokes equations, with the exception of an effective source
term that embodies the influence of the unresolved flow.
The accuracy of the turbulence model therefore has a
significant impact on the quality of the resulting solu-
tion field10,11. Traditional turbulence models have been
developed from theory and empirical testing. While
these methods have provided a strong foundation for fur-
ther research and improvement, novel approaches will
be required to address the inherent limitations of cur-
rent models12,13. Given the partially data-driven na-
ture of modeling approaches, it is a natural extension
to consider machine learning (ML) paradigms for de-
velopment such as deep learning. Data-driven turbu-
lence modeling through deep learning has seen explo-
sive interest in the last few years, particularly for RANS
models14,15. Ling, et al.’s seminal work outlines an ap-
proach to model the Reynolds stress anisotropy tensor
with an artificial neural network (ANN)16. Other av-
enues have been explored as well, including iterative
methods17, field inversion18, and wall-modeling19. Si-
multaneously, recent efforts have been devoted to learn-
ing more accurate SGS models for LES. Maulik et al.
explored learning the SGS stress using an artificial neu-
ral network (ANN) with promising results20. Wang et
al. examined the necessary input features for an SGS
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model using random forests and ANNs21. Frezat et al.
modeled the SGS scalar flux and constrained their model
with invariances and symmetries22. Furthermore, Guan
et al. used convolutional networks to learn SGS closures
and investigated the effectiveness of transfer learning for
generalization23–25.

Before proceeding further, we elaborate on the no-
tion of the ‘filter’ in LES. In several data-driven closure
modeling studies for LES, and in particular for most
a-priori20,23 variants, optimal subgrid stress quantities
are computed for the purpose of ascertaining ground
truth. These are obtained through the computation
of filtered flow-fields assuming a low-pass spatial filter
such as a Gaussian filter or a sharp spectral cut-off fil-
ter. It has also been observed that the optimal sub-
grid stress is a function of this filter26. Several studies
have demonstrated that such assumptions are unreason-
ably strong and result in ad-hoc clipping requirements
or strong inductive biases for a-priori trained data-driven
closures during a-posteriori deployments20,27–29. We note
that while a-priori insights are critical to deeper un-
derstanding of SGS effects, the desired goal is to accu-
rately reproduce the a-posteriori flow field. Notably, a-
posteriori evaluation introduces several additional conse-
quences that cannot be modeled with a-priori strategies
alone, including numerical and discretization errors and
temporal effects.

One approach to overcome with a-posteriori data-
driven turbulence modeling is the development of differ-
entiable CFD solvers, which are required to backpropa-
gate an a-posteriori error to the parameters of the tur-
bulence model. We term the application of differentiable
programming techniques to enhance turbulence models
“differentiable turbulence”. While alternative machine
learning techniques such as reinforcement learning have
been explored to circumvent the need for differentiable
simulations30–32, the majority of literature on ML for
spatiotemporal turbulence forecasting has leveraged pure
ML architectures, where the flow solution is obtained
not through traditional finite-volume or finite-element
numerical methods, but rather a deep learning model
alone33–35. For example, LSTMs36, GANs37, and other
physics-informed approaches38 have been used to model
turbulent flow. The limitation of these approaches is that
without explicit knowledge of the underlying physics,
generalization to unseen flow configurations can be espe-
cially challenging. Despite the challenges, the adoption of
differentiable programming paradigms has led to several
publications of differentiable CFD solvers in the last few
years39–41. These differentiable solvers are still very much
in the nascent stages of development, given the difficulties
associated with writing a CFD solver from the ground up,
and for now, cannot compete with the vast ecosystem of
robust non-differentiable numerical solvers in terms of
applicability. However, they offer a pathway to exploring
differentiable turbulence techniques for designing hybrid
physics and ML solvers that combine the learning power
of deep learning methods with the generalization abil-

ity of well-tested numerical methods. However, there are
also some recent examples of a-posteriori learning meth-
ods that utilize emulators of non-differentiable solvers42.

The concept of “reverse-mode differentiation" in CFD
simulations has existed for decades and is analogous to
solving the adjoint problem43–45. Adjoint solutions have
historically been used for applications such as shape and
control optimization46–49, but have garnered renewed in-
terest with the growth of machine learning. Differentiable
simulations have been integrated with ML as “solver-in-
the-loop" approaches particularly for correcting and im-
proving the accuracy of coarse-grained or unresolved sim-
ulations, which offers a balance between computational
cost and physics-embedding. Previous works have tar-
geted learning correction operators to the solution field50,
or learning interpolation functions within the numerical
scheme39, which have shown promising results relative
to both baseline traditional numerical solution methods
and pure ML models. Given that this work is specif-
ically focused on LES, we choose to learn an existing
term that appears within the governing PDE, the SGS
stress, which is an interpretable and well-studied quan-
tity that is amenable to analysis with conventional tech-
niques. Some works have leveraged differentiable simu-
lations for learning turbulence models, notably List et
al.51, who extend the PhiFlow solver for SGS model-
ing, Sirignano et al.52, who use the stochastic adjoint
method for LES modeling, and Frezat et al.53, who ex-
amine backscatter in quasi-geostrophic turbulence. Our
aim here is to demonstrate the effectiveness of “solver-
in-the-loop" approaches to learning turbulence models,
to offer an in depth examination of the inductive biases
contained within the models, and to provide insight for
future development of data-driven SGS models.

In this work, we learn SGS closure models using a deep
learning-embedded differentiable CFD solver. We con-
sider two-dimensional (2D) homogeneous isotropic tur-
bulence as a candidate test problem to evaluate our ap-
proach and demonstrate the capability of the learned
models to produce accurate a-posteriori solution trajec-
tories. Our novel contributions are as follows: (1) we
design and test several methods to model the SGS stress
tensor, inspired by existing eddy viscosity models and
tensor theory, within the differentiable physics paradigm,
(2) we perform a deep analysis of network architectures
to understand the importance of non-local SGS models
and which length scales are necessary to capture for ac-
curate modeling, and (3) we compare our approach with
offline learning of the SGS stress to validate the need
for end-to-end optimization enabled by the differentiable
solver.
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II. METHODS

A. Governing Equations

Turbulence models are developed for the two-
dimensional incompressible Navier-Stokes equations in
a doubly periodic domain, given in its non-dimensional
form as:

∂u

∂t
+∇ · (u⊗ u) =

1

Re
∇2u− 1

ρ
∇p+ f (1)

∇ · u = 0, (2)

where u is the velocity vector, defined {u, v}, p is the
pressure, ρ is the density, Re is the Reynolds number,
and f represents any external forces. The dimensionless
parameter Re represents the ratio of convective to dif-
fusive forces in the flow and characterizes many critical
aspects of the flow behavior. At low Reynolds numbers,
viscous forces dampen instabilities in the flow leading
to smooth solutions with low frequency components. At
high Reynolds numbers, inertial forces can amplify minor
perturbations in the flow to produce energy-containing
fluctuations or eddies in the solution field that span many
orders of magnitude in space and time1. If the high fre-
quency components of the solution field exceed the res-
olution of the numerical grid, a direct numerical simula-
tion of the Navier-Stokes equations can become under-
resolved, resulting in discretization errors and inaccurate
solutions. High Reynolds number flows can therefore be
cost-prohibitive or infeasible to evaluate with DNS, given
the grid spacing required to fully resolve the flow field.

In many scientific and engineering applications, it is
desirable to simulate high Reynolds number flows at com-
putationally tractable resolutions much lower that what
is imposed by DNS. In such a scenario, the governing
equations must be augmented to account for the unre-
solved length-scales in the solution field. LES resolves
the flow field up to some cut-off length scale ∆. Con-
ceptually, it is assumed that the high frequency contri-
butions are removed via a filtering operation, i.e., a filter
G∆ with characteristic length scale ∆ is convolved with
the velocity field to arrive at the target solution field:

u(x, t) = G∆ ⋆ u(x, t). (3)

Consequently, to solve for the filtered velocity field, the
governing equations can be represented in terms of fil-
tered variables with the introduction of a source term
in the momentum equation to account for unresolved in-
teractions between resolved and unresolved scales in the
flow-field. Therefore, we have,

∂u

∂t
+∇ · (u⊗ u) =

1

Re
∇2u− 1

ρ
∇p+ f +∇ · τ , (4)

where τ represents the effects of the unresolved velocity
components on the resolved field and is defined as

τij = uiuj − uiuj . (5)

This quantity is termed the subgrid-scale (SGS) stress
and has a nontrivial impact on the filtered velocity field.
Ignoring the term can lead to numerical errors or spuri-
ous solution fields, however, it cannot be directly com-
puted without access to the unresolved velocity compo-
nents. Instead, it is the role of the SGS turbulence model
to approximate τ from the resolved field such that the
problem can be closed. We emphasize, again, that the
notion of ‘filtering’ a DNS field is a conceptual tool to
describe the coarse-grained evolution of an LES. The na-
ture of this filter is generally unknown, but can be crudely
approximated through a-priori knowledge of the numer-
ical scheme (finite volume, spectral, etc.). However, for
almost all practical problems, the nature of this filter-
ing operation is unknown which complicates data-driven
modeling for τij .

Solutions to the Navier-Stokes and filtered LES equa-
tions are computed using finite-volume code written in
domain-specific language designed for differentiable pro-
gramming, JAX-CFD39. JAX-CFD takes advantage of na-
tive JAX autodifferentiation54 to allow users to compute
gradients of any parameter in the solver using reverse-
mode differentiation. The implementation uses the dis-
crete adjoint method55 for efficiently propagating gradi-
ents through linear solves in the algorithm. The numer-
ical scheme uses a staggered grid for the velocity and
pressure fields, second-order central difference schemes
for fluxes, and explicit Euler time integration.

True solutions are obtained from a high-resolution sim-
ulation of the governing equations. Target fields are com-
puted by filtering and coarse-graining using G∆, a Gaus-
sian filter with width twice the grid spacing and a spec-
tral cutoff at the Nyquist frequency of the LES grid. This
choice of filter is effective for data-driven SGS modeling56

and additionally selected based on the use of second-order
numerical schemes. More details on the specifics of the
datasets are provided in Sec. III.

B. Subgrid-scale (SGS) modeling

The goal of the SGS model is to estimate the SGS stress
τ , whose divergence functionally appears as an additional
source term on the right-hand side of the momentum
equation. Over the last few decades, several approaches
have been proposed to model the SGS stress. Given that
the primary function of the SGS model is to remove en-
ergy from the flow to account for the transfer of energy
from the resolved scales to the unresolved scales, the most
widely used SGS models are dissipative linear eddy vis-
cosity models, commonly used in RANS turbulence mod-
els as well. The eddy viscosity model postulates that the
SGS stress is proportional to the rate-of-strain through
an effective eddy viscosity:

τij = −2νtSij , (6)

where νt is the eddy viscosity and Sij =
1
2 (∂jui+∂iuj) is

the rate-of-strain tensor. The most well-known SGS eddy
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viscosity model is the Smagorinsky model57, where the
eddy viscosity is determined through the characteristic
length scale ∆ and a characteristic velocity ∆|S|, where
|S| = (2SijSji)

1/2 to give

νt = (Cs∆)2|S|
τsmag = −2νtS,

(7)

where Cs is a dimensionless empirical coefficient. The
Smagorinsky model has been effectively used in a vari-
ety of application areas, however, its simplistic nature is
directly tied to assumptions that can lead to deficiencies
for certain flows, namely the use of an isotropic, positive
eddy viscosity. The restriction of νt to positive values
means the model is purely dissipative and cannot model
the transfer of energy from subgrid to resolved scales,
also known as backscatter.

The approach taken in this study is to learn an additive
correction to the Smagorinsky model using a data-driven
modeling paradigm to account for SGS effects that can-
not be captured by the Smagorinsky model alone. The
SGS stress is therefore given by

τ̂ = τsmag + τml, (8)

where τml represents a tensor-valued correction to SGS
stress that is computed from a deep neural network.
Such an approach has strong foundations in existing SGS
modeling strategies and is considered a mixed model58,
where an eddy viscosity term is added to the stress from
an alternative modeling approach such as dynamic59 or
deconvolution60 methods.

Given this formulation, the question of how to compute
τml using a neural network remains nontrivial. We first
assume that τml is a function of the instantaneous filtered
velocity field u. Then, in general, the SGS model can be
represented as,

τml = M(u, fθ, ϕin, ϕout), (9)

where fθ is a neural network with parameters θ and ϕin

and ϕout represent transformations of the input velocity
field and neural network outputs respectively. Each of
the three functions can be varied to optimize model ac-
curacy and learning. In this section, we discuss ϕin and
ϕout. Variation of fθ will be considered in the following
section. We show a general schematic of the algorithm
in Fig. 1.

A naive implementation of the model would be to take
ϕin and ϕout as identity maps, but this approach has
several drawbacks. ϕin as the identity function has been
commonly used in previous studies of data-driven turbu-
lence modeling, particularly for LES51, however, there is
an immediately observable flaw in that the model does
not respect Galilean invariance. A change in inertial ref-
erence frame would result in different network outputs
and subsequently τml. A straightforward solution is to
start by incorporating the gradient operator into ϕin such
that the model is a function of ∇u. While this preserves

invariance with respect to translations of the reference
frame, more consideration must be taken for rotation
or reflection symmetries. Regarding ϕout, the identity
would mean that the network outputs each of the ten-
sor components of τml. In practice, this can easily lead
to numerical instabilities in the simulation during both
training and evaluation and is thus not an optimal design
choice. We examine several alternatives of ϕin and ϕout,
which are evaluated in this study.

The first set of models is motivated by tensor basis
theory. The use of tensor bases has been extensively
leveraged in literature for RANS data-driven turbulence
modeling16,61,62. If we assume that the model is an arbi-
trary function of input tensors, one can construct a finite
set of basis tensors whose linear combination via certain
weight coefficients is equal to any tensor function of the
input, given by:

τml =
∑
n

α(n)T(n), (10)

where T(n) are the basis tensors and α(n) are the coeffi-
cients. A common choice of input tensors in turbulence
modeling is the strain and rotation rate tensors S and
R, which are the symmetric and anti-symmetric compo-
nents of the velocity gradient tensor respectively. Pope
derived the integrity basis for the S and R tensors in two
and three dimensions63. The bases in 2D are:

T(0) = I, T(1) = S, T(2) = SR−RS. (11)

The task of the neural network, then, is to learn the
coefficients of the tensor basis functions. It is advanta-
geous to have the coefficients be functions of the invari-
ants of the input tensors, such that the model is ulti-
mately Galilean invariant to rotations and reflections as
well as translations. The number of invariants is also fi-
nite, {S2} and {R2} in 2D, where {T2} = TijTji. Ling,
et al. used this approach16, also considered a nonlinear
eddy viscosity model5, to model the Reynolds anisotropy
tensor using a neural network.

For the model outlined above,

ϕin(u) =
{
S
2
}
,
{
R

2
}

(12)

fθ

({
S
2
}
,
{
R

2
})

= α (13)

ϕout(α) =

2∑
n=0

α(n)T(n), (14)

such that τml = (ϕout ◦ fθ ◦ ϕin)(u). Variations of this
model are also considered, in terms of the tensor basis
functions and thus ϕout. The tensor bases above are
restricted to symmetric tensors to provide a physically
valid stress. Despite this, the basis can be expanded to
include asymmetric terms. In 2D, we must only include
one additional tensor, T(3) = R. On the other hand,
we can create another model that removes any nonlinear
terms in the basis, such that only T(0) and T(1) are used.
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FIG. 1. A schematic of the deep learning-embedded solution algorithm. At each time step, the eddy-viscosity contribution of the
subgrid stress is computed from τsmag and the ML contribution from M, where fθ represents a neural network with trainable
parameters and ϕin, ϕout are fixed transformations of the inputs and outputs respectively. The contributions are summed and
used in the LES equations, which are solved using standard numerical schemes. The solution trajectory is propagated and the
loss is evaluated with respect to the partial (i.e., subsampled) observations of the ground truth DNS field. Because the solution
algorithm is differentiable, the loss can be backpropagated through all time steps and linear solves to update the trainable
parameters.

In this case, we recover essentially a linear eddy viscos-
ity model, albeit the effective eddy viscosity is computed
from a neural network.

An alternative approach for ϕout can be taken where
we disregard the use of tensor bases and instead learn the
stress tensor itself, without adapting an existing eddy vis-
cosity model. As mentioned earlier, taking the four com-
ponents of τml directly from the neural network can lead
to numerical issues, and we found that it was impractical
to try and train a model in this fashion. We found that
it was feasible to split the tensor into its isotropic, devi-
atoric, and optionally asymmetric components and learn
these individually. The stress is then given by

τml = αI+D+A, (15)

where I is the identity, D is the deviatoric tensor with two
free components, and A is the anti-symmetric tensor with
one free component. The network fθ outputs a scalar
α, the two components comprising D, and possibly one
component comprising A. We term this the “model-free”
(MF) approach.

The secondary aspect to vary is ϕin. So far we have
considered ANN inputs

{
S
2
}
,
{
R

2
}

. Instead of provid-

ing purely the invariants of the tensors S and R, we can
use the tensors themselves as input, in terms of their two
or one free components respectively. While this comes at
the expense of rotation invariance, it can provide addi-
tional information to the model for more accurate predic-
tions, and the symmetry itself may be learned implicitly
by the model.

We refer to various combinations of ϕin and ϕout with
several names. A table of ϕout’s and their names are

TABLE I. Model names
Name ϕout

Linear (LIN)
∑1

n=0 α
(n)T(n)

Non-linear (NL)
∑2

n=0 α
(n)T(n)

Non-linear asymmetric (NLA)
∑3

n=0 α
(n)T(n)

Model-free (MF) αI+D+A

Model-free symmetric (MFS) αI+D

given in Tab. I. A “-I” is appended to the name if ϕin

provides invariant inputs.

C. Deep learning architectures

The choice of ANN fθ provides an important inductive
bias to the SGS model, particularly with regards to the
scales of the flow that are captured by the model. Previ-
ous works have focused on using two common architures –
multi-layer perceptrons (MLPs) and convolutional neural
networks (CNNs)20,21,23,51,64. In this context, MLPs are
purely local in nature, in that the evaluation of the SGS
stress is parallelized over grid points to produce a model
that is only a function of the local strain and rotation rate
tensors. The local formulation is supported by by many
existing SGS models, including the Smagorinsky model,
which is a function of the local strain rate. Despite the
success of these local models, it is well known that tur-
bulent dynamics at a point in space are influenced by the
surrounding flow as well65, implying that features of the
flow at length scales larger than the grid size may be used
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to determine the SGS stress. For example, the dynamic
Smagorinsky model or other scale-similarity approaches
compute model coefficients on-the-fly by filtering the LES
flow with a test filter that is larger than the grid filter.
The result is that the scales of the flow between the test
filter and the LES cutoff are used to estimate the SGS
stress. Moreover, it is also common to average model
coefficients in space (for instance spanwise direction av-
eraging in channel flow).

The adoption of these non-local, dynamic models in
practice motivates the use of CNNs in SGS modeling.
The convolutional architecture incorporates information
from the surrounding strain and rotation rate quantities
through convolutional filters of a specified kernel width.
By chaining many of these CNN layers together, the re-
sulting deep model employs a large receptive field that
captures a great degree of length scales in the flow. Con-
cretely, the MLP and CNN architectures we use have 6
hidden layers with 64 channels each and ReLU activation
functions and one linear output layer. The CNN uses a
kernel size of 3 in each layer and includes circular padding
to account for periodic boundary conditions. The CNN
architecture is the same architecture used by Kochkov,
et al.39. We note that the input to all networks are size
Nx×Ny×M , where Nx, Ny is the size of the filtered and
coarse-grained DNS (FDNS) field or LES grid and M is
the number of input channels – 2 in the case of invari-
ant inputs and 3 in the case of non-invariant inputs. For
the MLP, the grid dimensions Nx, Ny are taken as batch
axes.

Thus far, another architectural choice has not yet been
explored in the context of 2D turbulence modeling, the
Fourier Neural Operator (FNO)66. FNOs operate in both
the real and frequency domain, combining local, point-
wise linear operations with pointwise linear transforma-
tions of the Fourier modes of the input. From the convo-
lution theorem, the pointwise operations in Fourier space
are equivalent to global convolution operations, except
the convolutional filter is no longer restricted to be lo-
cally supported, which allows for efficient manipulation
of the large scales of the input without requiring very
deep CNNs.

Assuming an input feature at layer l hl ∈ RNx×Ny×cin ,
where cin is the number of channels, the FNO layer is
given by:

hl+1
nmo = σ(Boih

l
nmi + F−1(WkloiF(hl

nmi)kli)nmo), (16)

where B ∈ Rcin×cout is a matrix that is contracted
along dimension cin of the input in real space and W ∈
Rkmax×kmax×cin×cout is contracted along cin pointwise in
Fourier space (indexed by k, l for the wavenumbers in
each direction) for each wavemode k up to kmax. The
outputs are summed and a pointwise nonlinearity σ is
applied. The parameters of the layer are the weight ten-
sors W and B. We test this approach as well for fθ, using
the hyperparameters presented in the paper66, which in-
clude 4 layers, kmax = 12, and a hidden channel width of
32.

The standard formulation of the FNO is ill-suited in
the context of SGS modeling, in that the filters are only
applied to the low wavenumbers of the flow. This means
that the FNO is capturing the large scales of the flow but
disregarding the small scales, which are typically more
relevant when determining the SGS stress. We expect,
then, that the vanilla FNO will not be able to reproduce
the flow spectra accurately. To this end, we design an ad-
ditional hybrid architecture that combines the benefits of
both CNNs and FNOs. The input is first passed through
a 2-layer FNO with 4 hidden channels and kmax = 10.
The output is projected linearly to a size of 64 hidden
channels. Finally, the projection is provided to a 3-layer
CNN with otherwise equivalent specifications as the pure
CNN architecture to produce the network output quan-
tities. The hyperparameters for this model were chosen
through empirical testing and optimized to reduce the
memory footprint and computational cost of the archi-
tecture. We expect that this model will improve over the
other networks because all the length scales in the flow
are used to compute the SGS stress.

In summary, we test four different neural network ar-
chitectures for fθ. The MLP is local and receives no in-
formation regarding neighboring stress and rotation rate
quantities. The CNN is in some sense semi-local, in that
non-local S and R are provided within a specified recep-
tive field. The FNO is global, but only operates on the
large scales of S and R. Lastly, the hybrid CNN+FNO
ultimately captures all the scales of the flow by combining
global information from an FNO and non-local informa-
tion from a CNN.

D. Training

Model training is accomplished in an end-to-end fash-
ion. Since the solver is implemented in JAX, gradients can
be computed with respect to any solver parameter by
backpropagating a loss using automatic differentiation.
We define the simulation function S as the numerical al-
gorithm that computes solutions to eq. 4 along with the
incompressibility constraint, using the SGS model given
by eqs. 8 and 9. The solution of the ML-LES model is
given by:

û
0
. . . û

t
= SML(u

0, Cs,M(θ)), (17)

where û
t

is predicted solution at time t, Cs is the
Smagorinsky constant, and θ are the parameters of the
ANN inside M.

The target solution is given by the coarse-grained DNS
solution field which we hereby denote ‘subsampled DNS’:

u0 . . .ut = GS ⋆ SDNS(u
0), (18)

where SDNS is a high resolution simulation of the un-
filtered initial condition and GS is a coarse-graining
operation. Here, we emphasize that the operation
GS makes no assumption of a low-pass spatial filter and
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merely partially observes the high-dimensional state.
The objective of the optimization problem is given as:

min
Cs,θ

L(u0 . . .ut,SML(u
0, Cs,M(θ))), (19)

where we aim to optimize both the Smagorinsky coeffi-
cient in τsmag and the network parameters that produce
τml to minimize the loss function L. We take the loss
function to be the mean squared error of the trajecto-
ries:

L =
1

T ·Nx ·Ny

T∑
t=1

Nx∑
n=1

Ny∑
m=1

(ut − û
t
)2. (20)

The length of the simulation and temporal sampling
of the solution trajectory is of particular interest for
training. We would like the loss to remain low for
very large T , but the memory costs incurred during
backpropagation are linear with T . Therefore, gener-
ally Ttrain << Teval, where Ttrain denotes the length
of the simulation during training and Teval denotes the
length of simulation during evaluation or testing. As ob-
served by List, et al., Ttrain should be large enough to
capture the important temporal scales of the flow, but
there are diminshing returns with very large Ttrain. We
take Ttrain = 512∆tDNS = 64∆tLES , where ∆tDNS and
∆tLES are the time steps for DNS and LES simulations
respectively. Furthermore, we choose a lower temporal
sampling frequency for computing the loss function, such
that ∆ttrain = 128∆tDNS = 16∆tLES , for a total of 4
snapshots per training trajectory. We found this suffi-
cient for extrapolation to much larger Teval, where we
tested up to Teval = 131, 072∆tDNS = 16, 384∆tLES , a
total of 256× longer than the training simulation.

The models were trained with the Adam optimizer67
using a decaying learning rate varying from 2 × 10−3 to
4 × 10−4 on 8 V100 GPUs for 300 epochs. In addition,
stochastic weight averaging68 was used in the final 20%
of training, where model weights were averaged over the
last 20% of epochs to promote better generalization.

III. DATASETS

Two-dimensional homogeneous isotropic turbulence
(2D-HIT)20 provides an idealized case study to assess
model performance. 2D-HIT is a common choice of
testbed for training and deploying data-driven models,
given its foundations in theory and ability to represent a
variety of turbulent flow characteristics. The models are
evaluated on several realizations of the same test case,
which have been parameterized with respect to Reynolds
number and forcing conditions. This yields a sufficiently
diverse set of flows on which the generalization ability of
the learned SGS models can be demonstrated. For all
flow scenarios, the ground truth datasets are obtained
from simulating the governing equations in a doubly pe-
riodic square domain with L = 2π, discretized on a uni-

TABLE II. Dataset parameters

Dataset Re A k r f direction
DE 1000 0 0 0 êx

G1 1000 1 4 0.1 êx

G2 30 1 4 0.1 êx

G3 105 1 4 0.1 êx

G4 8000 2 8 0.1 êy

form grid of size 2048× 2048. The true fields are coarse-
grained with GS to produce target fields with a resolution
of 64× 64.

The training dataset, denoted DE, consists of unforced,
decaying turbulence at an initial Reynolds number of
1000. A total of 32 trajectories were used for training,
each with length T = 16, 384∆tDNS . The trajectories
were additionally temporally sampled at ∆ttrain to pro-
duce 128 snapshots per trajectory, further split into data
samples of 4 snapshots each for training. For consistency,
we fix ∆tDNS = 2.191× 10−4 for all datasets, which was
sufficient to satisfy the Courant–Friedrichs–Lewy (CFL)
criterion with Cmax < 0.5. The models are tested on four
generalization datasets of forced turbulence. The forcing
function f is given by:

f = Asin(ky)êx − ru, (21)

and parameterized by the amplitude A, wavenumber k,
and linear drag r. We additionally change the forcing
direction (Asin(kx)êy) in one dataset to ensure the mod-
els are not overfitting to a particular forcing orientation.
A table of the datasets and their relevant parameters are
given in Tab. II. We show example trajectories from each
of the datasets and their energy spectrum in Fig. 2, av-
eraged over time for the cases of statistically stationary
forced turbulence. The filtered target field’s spectrum is
also marked. For dataset G3, given the high Reynolds
number of 105, DNS is not feasible on a computational
grid of 2048 × 2048. Instead, the ground truth data is
generated from a high resolution (2048× 2048) LES sim-
ulation using the Smagorinsky turbulence model, and the
target field is coarse-grained from this high-resolution so-
lution.

IV. RESULTS AND DISCUSSION

A. Model sweep

In the interest of examining all model hyperparameter
selections, we train 40 models in a grid search, corre-
sponding to two choices of ϕin, four choices of fθ, and
five choices of ϕout. We first examine the models’ per-
formance on generalization dataset G1 by measuring two
quantities to probe the pointwise and statistical accuracy.
The pointwise accuracy is determined from the Pearson
correlation coefficient of the predicted velocity field with
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FIG. 2. Example ground truth vorticity field trajectories and energy spectra from each dataset. (DE) Unforced, decaying
turbulence at an initial Re = 1000. This dataset was used for training. (G1) Forced turbulence using a sinusoidal forcing
function with wavenumber k = 4, Re = 1000. (G2) Low Reynolds number flow, Re = 30, also forced at k = 4. (G3) High
Reynolds number flow, Re = 105, forced at k = 4. Given the high Re, the ground truth was computed from LES on a 2048×2048
grid. (G4) Forced turbulence at a higher wavenumber k = 8, and a higher Re = 8000. Additionally, the direction of forcing
is rotated 90 deg from the previous datasets. All plots show DNS spectra in addition to spectra obtained from subsampled
observations of the DNS. The ideal k−3 scaling for the inverse cascade in 2D-HIT is also shown for reference.

respect to the ground truth FDNS velocity field. We re-
port the time at which the correlation coefficient drops
below 0.99, where higher values indicate greater point-
wise accuracy. Pointwise accuracy is useful is certain
situations, e.g. short-term weather forecasting, where it
is valuable to match the true flow field exactly despite
the chaotic nature of the system. In other scenarios, if
pointwise accuracy cannot be guaranteed for long-term
predictions, it is sufficient to ensure that the statistical
behavior of the coarse-grained system is consistent with
the ground truth statistics. Here, we report a statistical
error based on the time-averaged energy spectrum E(k)
of the flow, which displays a characteristic scaling be-
havior in the inertial range of the spectrum. The error is

computed as:  1

K

K∑
k=1

log

(
Ê(k)

E(k)

)2
1/2

, (22)

where Ê(k) is the predicted energy spectrum and E(k)
is the energy spectrum of the DNS field. Importantly,
the errors at all wavenumbers are weighted equally in
this formulation, as opposed to e.g. mean-squared error
(MSE), which would favor accuracy at the higher energy-
containing low wavenumbers. We also perform the time-
averaging after the prediction has decorrelated with the
ground truth trajectory.

Fig. 3 shows the pointwise and statistical measures
on the G1 dataset of all models tested. The left two
grids and right two grids display the pointwise accuracy
and statistical error respectively. Examining the point-
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FIG. 3. Ensemble average pointwise and statistical metrics of the predicted solution fields from each of the 40 models tested.
(a) and (b) report the pointwise accuracy of invariant input and non-invariant input SGS models respectively, computed as the
time before correlation with the ground truth drops below 0.99, where higher values indicate better agreement. (c) and (d)
report the statistical error of invariant input and non-invariant input SGS models respectively, computed from the deviation
of predicted and true energy spectra, where lower values indicate better agreement. The CNN+FNO-MF and -MFS models
achieve the highest pointwise accuracy and the non-invariant input CNN and CNN+FNO models achieve the lowest statistical
error. The use of invariant inputs generally results in poorer performance for the non-local architectures, but the reverse is
true for the local MLP.

wise accuracy, we find that the use of invariant inputs
(the upper row of models) negatively impacts accuracy,
although the impact is nearly insignificant for the MLP
models. Overall, the CNN and CNN+FNO architectures
achieve the highest accuracy, particularly in combination

with MF or MFS. Looking at the statistical error, again
the CNN and CNN+FNO architectures achieve the low-
est error, but only in conjunction with non-invariant in-
puts. Many of the non-local architectures with invari-
ant inputs resulted in unstable simulations that diverged
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TABLE III. Evaluation time for fixed forecast length

Model Time (s)
DNS 137± 0.490

SMAG 2.28± 0.071

MLP 3.35± 0.129

CNN 5.32± 0.148

FNO 6.81± 0.093

CNN+FNO 5.75± 0.016

before time-averaging could be performed; as a result,
the error for these models is not reported. In contrast,
the use of invariant inputs is in fact beneficial for the
purely local MLP models. We conclude that the orienta-
tion of the velocity gradient tensor, provided by the non-
invariant inputs, is useful and perhaps necessary informa-
tion to provide when constructing non-local data-driven
SGS models, but harmful when given to local SGS mod-
els. We also see that the FNO-only architecture generally
performs most poorly, likely because it cannot capture
the small-scale behavior of the flow that is relevant for
determining the SGS stress. Ultimately, the CNN+FNO-
MFS model achieves the best combination of pointwise
and statistical accuracy, and we select this as the best
performing model for subsequent analysis.

We report the evaluation times of several models for
a fixed forecast length of 217∆tDNS in Tab. III. Since
the ANN architecture was determined to be the most
significant contributor to variable runtime, we compare
the four architectures against the ground truth DNS and
the baseline Smagorinsky closure using a coefficient of
0.172. The MLP is cheapest to compute, while the FNO
is the most expensive. Both the CNN and CNN+FNO
had similar runtimes, a little over double the baseline
model.

B. Spectral analysis of architectures

To further understand the impact, mechanisms, and
spectral behavior of the neural network architectures,
we can plot the radially averaged power spectrum of
the network outputs. The power spectrum is computed
from integrating the squared 2D Fourier transform of the
network outputs over constant magnitude wavenumbers
k =

√
k2x + k2y. The spectrum can assist in revealing

which length scales in the flow each of the network ar-
chitectures is responding to. We start by isolating fθ
from the rest of the components of the SGS model. To
provide a consistent input baseline, we probe the spectral
response to white noise, which has a uniform power spec-
trum. We examine MFS trained models with different
architectures and plot α, the isotropic component of the
SGS stress, and |D|, the magnitude of the deviatoric com-
ponent of the SGS stress. While these outputs have no
physical significance regarding the true SGS stress con-

FIG. 4. Examination of the power spectral response of neural
architectures to white noise. Outputs of MFS model net-
works trained on (a) the DE dataset and (b) the forced G1
dataset are shown, with the isotropic component α and mag-
nitude of the deviatoric component |D| visualized. In (a)
while the MLP outputs are flat at all wavenumbers and the
FNO outputs are flat at high wavenumbers, the CNN and
CNN+FNO models display more significant variation at the
high wavenumbers, leveling out at the low wavenumbers. In
(b) the FNO and CNN+FNO display sharp peaks at the forc-
ing wavenumber, indicating their ability to capture (or overfit
to) large-scale features.

sidering the synthetic input, they can provide insight into
the scales captured by the model. We would expect, for
example, an MLP to produce entirely flat power spectra
as it only operates on local quantities and contains no
interactions between length scales. We also expect the
FNO power to be uniform at high wavenumbers because
the FNO cannot capture any length scales smaller than
L/kmax, where kmax = 12.

Fig. 4(a) shows the power spectra of various networks
that have been trained on the DE dataset. We see that
our expectations regarding the MLP and FNO are vali-
dated, in that the MLP power is uniform for all wavenum-
bers and the FNO power is uniform at wavenumbers
greater than 12. On the other hand, we see that both
the CNN and CNN+FNO networks display significantly
more variation in the power spectra at high wavenum-
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FIG. 5. Summary of predictions from the CNN+FNO-MFS model. The left column displays an example predicted vorticity
trajectory for each dataset compared with the true field. The right column shows the ensemble average energy spectra and
velocity correlation over time for each dataset. Comparisons to baseline SMAG and no turbulence model are included. The
CNN+FNO-MFS model improves over the baseline in both metrics for nearly every case. Only in the low Reynolds number
dataset G2 does the model overpredict energy at the highest wavenumbers.

bers, but are much more uniform at low wavenumbers.
This indicates that the CNN models are mostly respond-
ing to the smallest length scales in the flow, which is
consistent with the network design. Considering the ac-
curacy of the CNN and CNN+FNO models compared
to the FNO models, it is clear that the smallest length
scales in the flow are most important for determining the
SGS stress, again aligned with our expectations regard-
ing turbulence.

We can contrast this with the spectral response of net-
works trained on the G1 dataset, which is forced at a
wavenumber of 4. The FNO-containing models display a
very clear peak at this forcing wavenumber, which indi-
cates that they are overfitting to the training set. Be-
cause the FNO operates directly in spectral space, it
can easily capture large scale behavior, such as exter-
nal forcing. The CNN, however, has no such peak since
its small receptive field limits its ability to respond to
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the low frequency modes of the flow. There is a trade-
off, then, in terms of incorporating very non-local, i.e.
large scale, features in the SGS model; while this will
lead to improved accuracy on in-distribution test cases,
it will likely hamper performance on out-of-distribution
generalization cases.

C. Generalization to new flows

A turbulence model’s value is strongly tied to its ver-
satility. A significant reason the Smagorinsky model is
still widely used in practice today despite its simplicity
is that it is effective in a very wide variety of flow config-
urations. Oftentimes data-driven models cannot match
the flexibility of theory-based models because they are
trained only on a specific distribution of data. Here, we
demonstrate the versatility of our model design by apply-
ing, without retraining, the same DE-trained SGS model
to each of the four generalization datasets. Fig. 5 shows
a summary of the model’s performance on all datasets,
where we have selected the CNN+FNO-MFS model as
the data-driven model to test. An example trajectory
for each dataset, both the true field and the predicted
field, is shown on the left. We observe qualitatively ac-
curate predictions for over 3000 LES time steps in nearly
all cases, except for G4, where the eddy turnover time
is much shorter due to the smaller characteristic length
scale. On the right, we show the energy spectra and tran-
sient velocity field correlation, comparing statistics from
the true filtered field, no model, Smagorinsky model, and
our ML model. The ML model matches the true energy
spectrum and improves over the Smagorinsky baseline
in nearly all datasets. The exception is the very low
Reynolds number case, G2, where the model overesti-
mates the energy at the smallest length scales. This is
characteristic of the use of turbulence models when DNS
is capable of resolving the flow, exemplified by a similar
trend in the Smagorinsky model compared to no model.
We note that the energy at these high wavenumbers is
very low, and there is no significant impact on the point-
wise accuracy. The velocity correlation plots show that
the ML model achieves greater pointwise accuracy than
the Smagorinsky model for every dataset, with the great-
est improvement predictably seen on the DE dataset.

D. Comparison with a-priori approach

Lastly, we compare our end-to-end, differentiable
physics approach to learning SGS models with a more
conventional offline learning approach. In the a-priori
setting, the learning task is to match the SGS stress field
computed from the true DNS solution using an arbitrary
filter, which can be accomplished without integrating the
ML model into a simulation during training. This ap-
proach eliminates the initial overhead of developing a
differentiable solver and the training cost of backpropa-
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FIG. 6. The a-priori computed turbulence kinetic energy
production PDF is visualized for the a-priori trained and a-
posteriori trained ML models, as well as the true DNS and
SMAG baseline. While SMAG is purely dissipative, the ML
models can replicate backscatter, indicated by both positive
and negative values.

gating through the simulation, but there are implications
in terms of a-posteriori accuracy. When deployed online,
numerical stability is typically lost and the choice of nu-
merical scheme may lead to unexpected a-posteriori per-
formance. Usually, this instability is closely associated
with the choice of a filtering operation G∗

∆ that approxi-
mates some true, but unknown, G∆.

To compare our differentiable physics approach with an
a priori trained model, we must first make an assump-
tion for a low-pass spatial filter to compute the target
subgrid stress. This procedure is explained in the fol-
lowing. We train an equivalent CNN+FNO-MFS model
in an a-priori setting and evaluate both a-priori and a-
posteriori accuracy on the G1 dataset. The SGS model
definition is unchanged, given by eqs. 8 and 9, but the
loss function is more straightforward, simply:

L = MSE(τ̂ , τFDNS), (23)

where τ̂ is the predicted SGS stress and τFDNS is the
SGS stress computed from the DNS field using eqn. 5
with an approximate filter G∗

∆. Here we utilize a popular
filtering technique39 to compute the mean of the values
that lie on the face of the new control volume in a given
direction and discard the values that do not lie in that
particular direction. This ensures that zero divergence
properties are propagated to the downsampled fields too.
In such a manner, we can filter ground truth DNS fields
which can be followed by subsampling to the coarse grid.
Ultimately, we can generate target subgrid stress data on
the coarse-grid. Note that different choices of filters may
lead to different τFDNS computations.

Fig. 6 shows the probability distribution function
(PDF) of the a-priori computed turbulent kinetic en-
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FIG. 7. Selected a-posteriori statistics from results on G1
dataset comparing a-priori trained and a-posteriori trained
ML models. (a) velocity correlation with FDNS. The a-priori
model displays only marginal improvement over SMAG. (b)
averaged energy spectra of the flow. While there is near per-
fect agreement with the DNS from the a-posteriori trained
model, the a-priori model displays more deviation from the
ground truth. (c) PDF of velocity gradients. The a-priori
model has a slightly narrower distribution than the DNS.
(d) second and third order structure functions. Both SMAG
and the a-posteriori model display no noticeable disagreement
with the DNS, in contrast to the a-priori model.

ergy production term, given by < τijSij >, computed
from the DNS data with the aforementioned approxi-
mate filter G∗

∆, the Smagorinsky model, the a-posteriori
trained ML model, and the a-priori trained ML model.
First, we notice that because the Smagorinsky model is
purely dissipative, the production term is always nega-
tive. In addition, the distribution is much narrower than
the true distribution. On the other hand, the a priori
trained predictions match this approximately generated
PDF exactly. The a-posteriori model’s PDF is gener-
ated by simply computing the turbulent kinetic energy
production term using the grid-resolved quantities during
LES deployment. Surprisingly, this PDF is dramatically
different from that computed using the approximately fil-
tered data in a priori. This plot demonstrates that
a-priori trained machine learning closures effec-
tively solve the wrong problem by making ex-
tremely strong assumptions about the nature of
the true filter which is unknown. Moreover, it also
becomes clear that the differentiable physics paradigm
can be interpreted as an inverse problem solve, that dis-
covers the nature of the true subgrid stress in the absence
of assumptions about the filter.

To further validate this claim - we analyze other sta-
tistical measures in Fig. 7. The a-priori trained model
as-is was found to be unstable and as such, it was nec-
essary to introduce a clipping method, similar to what
was suggested by Maulik, et al.20, to ensure the SGS
model was purely dissipative. Fig. 7(a) shows a compar-
ison of the average energy spectra, Fig. 7(b) shows the
PDFs of velocity gradients, Fig. 7(c) shows the second-
and third-order structure functions, and Fig. 7(d) shows
the velocity field correlation over time. For all measures,
we see deviations in the a-priori model from the filtered
DNS field, often greater than those from the Smagorin-
sky model, while the a-posteriori model shows near per-
fect agreement. We find that although there are some
marginal benefits to training SGS models in an a-priori
setting, these are substantially outweighed by the im-
provements offered from end-to-end differentiable solvers.

V. CONCLUSIONS

In this work, we seek to learn subgrid-scale models
for LES using differentiable turbulence, by leveraging a
differentiable CFD solver paired with deep learning to
minimize an a-posteriori loss function. In LES, the large
scales of the flow are directly resolved while the small
scales are modeled; the effect of the unresolved small
scales on the large scales must be accounted for through
the use of an SGS model to produce accurate solution
trajectories. Filtering out the small scales of the solution
results in an additional effective SGS stress within the
governing equations, which we approximate with a deep
learning model. Given that the goal of LES is to real-
ize simulations that can accurately predict the filtered
and coarse-grained true solution field, we use an adjoint
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solver implementation to optimize the a-posteriori solu-
tion directly, instead of the optimizing the SGS stress
computed from a resolved simulation a-priori.

Models are evaluated on a variety of two-dimensional
turbulent flows. While models are trained on decaying
turbulent flows with an initial Reynolds number of 1000,
they are tested on turbulent flow with different forcing
conditions and Reynolds numbers that span four orders
of magnitude. We find that our approach can generalize
well to each test case, and improves over the Smagorin-
sky closure baseline at a fixed coefficient of 0.172 in
every scenario. Model design is investigated in detail,
including the choice of ANN inputs, outputs, and ar-
chitecture. We observe that non-linear eddy viscosity
model approaches are not as effective as directly learn-
ing the mapping between filtered velocity gradients and
SGS stresses, which can be achieved through decompo-
sition of the tensors into isotropic, deviatoric, and anti-
symmetric components. Furthermore, the non-locality of
the network architecture strongly influences model per-
formance, where it is most critical to include small scale
interactions near the grid size. The insertion of large
scale behavior through an FNO boosts the accuracy of
predictions, but may come at the expense of generaliza-
tion ability depending on the training data.

We demonstrate the benefits of a fully differentiable
solver by outlining the improvements in results from
a-posteriori learning when compared to a-priori learn-
ing. Given the accuracy that can be achieved even at
very large coarse-graining factors, we believe hybrid deep
learning-solver algorithms are a very encouraging avenue
for cheap and accurate CFD simulations. The incorpo-
ration of physics through the solver allows significantly
more potential for out-of-distribution performance rel-
ative to pure ML algorithms. While this preliminary
study has been restricted to idealized flows with a spe-
cific discretization, we anticipate future work to investi-
gate the application of this approach to more complex
wall-bounded flows on unstructured grids.

VI. DATA AVAILABILITY

Data and software utilized for this study will be made
available by the corresponding author on reasonable re-
quest.
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