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We investigate the impact of nonreciprocity on universality and critical phenomena in open quan-
tum interacting many-body systems. Nonreciprocal open quantum systems often have an exotic
spectral sensitivity to boundary conditions, known as the Liouvillian skin effect (LSE). By con-
sidering an open quantum XXZ spin chain that exhibits LSE, we demonstrate the existence of a
universal scaling regime that is not affected by the presence of the LSE. We resolve the critical
exponents, which differ from those of free fermions, via tensor network methods and demonstrate
that observables exhibit a universal scaling collapse, irrespective of the reciprocity. We find that the
LSE only becomes relevant when a healing length scale ξheal at the system’s edge (which is different
to the localization length of the eigenstate of the Liouvillian) exceeds the system size, allowing edge
properties to dominate the physics. We expect this result to be a generic feature of nonreciprocal
models in the vicinity of a critical point. The driven-dissipative quantum criticality we observe has
no classical analogue and stems from the existence of multiple dark states.

Introduction — Universality in non-equilibrium sys-
tems can be seen in numerous phenomena ranging from
directed percolation [1], flocking [2–4], Kardar-Parisi-
Zhang physics [5] observed in various platforms [6–16],
and nonreciprocal phase transitions [17–23]. Recent ad-
vances in open quantum systems offer an exciting avenue
for extending this concept. This is exemplified by criti-
cality in non-Hermitian systems [24, 25], open quantum
systems [19, 20, 26–46] and measurement-induced phase
transitions [47, 48]. Engineered nonreciprocal couplings
provide a promising direction for furthering these inves-
tigations. A number of platforms [49–55], including an
optomechanical circuit [49] and cold-atoms [50, 54], have
demonstrated that asymmetric (nonreciprocal) transport
can be engineered [56–68]. Surprisingly, the spectrum of
a system of particles hopping asymmetrically on a lattice
exhibits extreme sensitivity to changes in the boundary
conditions, known as the non-Hermitian skin effect [69–
82] or Liouvillian skin effect (LSE) in the context of open
quantum systems [57, 63, 66–68]. As spectral properties
are usually a key element in determining the behavior
of observables, one might expect that the presence of
the LSE drastically alters the physics and hence the uni-
versal features (as was indeed shown in several works
[63, 68, 83]).

In this Letter, we introduce a nonreciprocal open quan-
tum spin system that exhibits universal properties that
are unaffected by the LSE. For equilibrium critical phe-
nomena, generic observables follow a universal power law
as a function of the distance to the critical point |T − Tc|
(e.g., CV ∼ |T − Tc|−α, where CV is the specific heat
and α is a critical exponent). This Letter considers
an analogous situation in a nonreciprocal open quan-
tum spin system exhibiting a quantum critical point.
As the parameter Γ controlling the distance to the criti-
cal point is reduced, we observe universal behavior (e.g.,

M ∼ Γα + const., where M is the magnetization) that
is independent of the strength of the nonreciprocity, con-
trary to the expectation given by a strong spectral sen-
sitivity to boundary conditions. Quantum criticality
is demonstrated by the scaling collapse of observables,
which exhibit the same critical exponents across various
microscopic parameters. The resolved critical exponents
differ from free systems, which we attribute to many-
body interaction effects. We find that the LSE only im-
pacts the bulk physics in the regime where the healing
length ξheal at the edge of the system (that diverges at
the critical point Γ → 0) exceeds the size of the system.
This length scale ξheal is different from the localization
scale of the eigenmodes of the Liouvillian [65]. We expect
LSE-independent universality to be generic for nonrecip-
rocal systems near a critical point.

Critical dynamics with nonreciprocity — To study the
effect of nonreciprocity on universality, we consider a
quantum spin system whose interactions are reservoir-
engineered to be nonreciprocal. The evolution of the
system’s density matrix ρ̂ in the presence of Markovian
dissipation obeys the Lindblad master equation [84]

dρ̂(t)
dt

= L[ρ̂] = −i[Ĥ, ρ̂(t)] +
∑

j

D̂j [ρ̂(t)], (1)

with dissipators D̂j [· ] = L̂j [· ]L̂†
j − 1

2 {L̂†
jL̂j , [· ]} at site

j. We solve Eq. (1) using time-evolving block decima-
tion (TEBD) [85–87]; see Supplemental Material (SM)
for details [88] and Refs. [89–100] for examples of tensor
networks applied to open quantum systems. We focus on
the paradigmatic quantum XXZ spin Hamiltonian

Ĥ = J
∑

j

(1
2(Ŝ−

j Ŝ+
j+1 + Ŝ+

j Ŝ−
j+1) + ∆Ŝz

j Ŝz
j+1

)
, (2)

where J and ∆ are the exchange interaction and
anisotropy, respectively. The spin-1/2 operators obey
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[Ŝa
i , Ŝb

j ] = iδijϵabc
j Ŝc

j and we set ℏ = 1. To study the
nonreciprocal interaction effects, we use the dissipator

L̂l
j =

√
κ(Ŝ−

j + eiϕŜ−
j+1). (3)

In the SM [88], we provide a concrete proposal for imple-
menting this correlated dissipation in a trapped ions plat-
form using dissipative Aharanov-Bohm rings [56, 101],
utilizing recent experimental advances [102–104]. It be-
comes clear that the dissipator (3) gives rise to a nonre-
ciprocal interaction (Fig. 1(a)) by considering the con-
ditional Hamiltonian, Ĥcd = Ĥ − i

2
∑

j L̂l†
j L̂l

j , governing
the evolution in the absence of quantum jumps:

Ĥcd =
∑

j

J+
2 Ŝ−

j Ŝ+
j+1+ J−

2 Ŝ+
j Ŝ−

j+1+J∆Ŝz
j Ŝz

j+1−iκŜ+
j Ŝ−

j ,

where J± = J − ie∓iϕκ. The phase factor eiϕ in Eq.
(3) therefore controls the nonreciprocity of interactions
between nearest neighbor sites. The conditional Hamil-
tonian is similar to the non-Hermitian XXZ model con-
sidered in Ref. [105]. We stress, however, that we will
investigate the unconditional dynamics including the ef-
fects of quantum jumps.

Figure 1(b) (Fig. 1(c)) demonstrates the anticipated
nonreciprocal (reciprocal) transport of a spin excitation
for ϕ = −π/2 (ϕ = 0). Here, the spatial magnetiza-
tion profile Sz

j = ⟨Ŝz
j ⟩ is plotted (with an offset for the

ease of visibility), computed with open boundary condi-
tions (OBC). A spectral sensitivity to boundary condi-
tions (i.e., LSE [57, 63]) in the nonreciprocal case is also
observed (see insets of Figs. 1(b),(c)), as expected.

Interestingly, the relaxation of the system is far slower
than the scales set by O(J−1) and O(κ−1) and is, in fact,
algebraic (see Fig. 4), indicating that the system is criti-
cal. The slow relaxation occurs due to the presence of a
dark state other than the all down state |⇓⟩ =

∏
j |↓⟩j . To

see this, let us temporarily assume a periodic boundary
condition (PBC) and Fourier transform the dissipation
terms in the Lindblad equation (1), giving

∑

j

D̂j [ρ̂] =
∑

k

κ(k)
(

Ŝ−
k ρ̂Ŝ+

k − 1
2{Ŝ+

k Ŝ−
k , ρ̂}

)
, (4)

where κ(k) = 2κ
(
1 + cos(k + ϕ)

)
. Since the dissipator

Eq. (3) involves only spin flips from up to down, the sys-
tem trivially possesses a dark state with all spins down
|⇓⟩, i.e., L[|⇓⟩⟨⇓|] = 0. Notice, however, that the dissi-
pation vanishes at k = k∗ = π − ϕ. This implies that a
state |Dk⟩ ≡ Ŝ+

k |⇓⟩ does not experience any dissipation
at k = k∗, where the operator Ŝ+

k = 1√
L

∑L
j=1 eikjŜ+

j

creates a spin-wave mode with momentum k. It can read-
ily be shown that this is simultaneously an eigenstate of
the Hamiltonian Eq. (2), which is a consequence of U(1)
symmetry, making it a dark state L[|Dk∗⟩⟨Dk∗ |] = 0 [88].
For k very close to but not exactly at k = k∗, |Dk⟩ ex-
periences a vanishingly small (but finite) dissipation rate

(a)

κ κeiϕ

Bath

J

=

J − iκe−iϕ

J − iκeiϕ

Bath Bath

κ κ

FIG. 1. (a) Left: two quantum spins coupled to a bath
with coupling strength κ. The bath acts on the spins as
L̂l

j =
√

κ(Ŝ−
j + eiϕŜ−

j+1). Right: the phase eiϕ causes inter-
ference that results in an effective system of nonreciprocally
interacting spins and additional local on-site baths. (b) Relax-
ation of magnetization from the initial state with a single up-
spin in the center of the chain for a nonreciprocal (ϕ = −π/2)
XX spin chain (∆ = 0) with open boundary conditions. (c)
The same for the reciprocal case (ϕ = 0). Insets: the spec-
trum λ of the Liouvillian L in the single-magnon sector for
periodic and open boundary conditions. We set J/κ = 1 [106].

[107]. This implies that the characteristic time scale of
the dissipation is divergent in the thermodynamic limit,
meaning that the dynamics are critical, in agreement
with Fig. 1(b),(c).

The numerical results in Fig. 1(b),(c) are obtained with
OBC, while Eq. (4) is obtained under PBC. The two
results are consistent with each other, despite the pres-
ence (absence) of the gap in the Liouvillian spectrum for
OBC (PBC) [see Fig. 1(b),(c) insets], because the local
spin excitation will not know about the boundary condi-
tions until they propagate or diffuse to hit the boundary
[65, 67]. This provides a key intuition: the spectral sensi-
tivity to boundary conditions does not necessarily imply
the sensitivity for observables.

In addition to the above-introduced engineered loss
(Eq. (3)), we further add a uniform gain to the system,
L̂g

j =
√

ΓŜ+
j [108]. This term invalidates the discussion

above, introducing an additional time scale O(Γ−1) to
the system. Therefore, Γ acts as a parameter that con-
trols the distance from the critical point. Remarkably,
despite the spectral sensitivity in the nonreciprocal case,
which persists even for finite Γ (see SM [88]), we will
show that nonreciprocal and reciprocal systems display
identical universal properties in asymptotic regimes.

It is instructive to compare this model to a similar
nonreciprocal free fermion model studied in Refs. [57,
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FIG. 2. (a) Excitation density n̄ vs Γ in the steady state for
different parameters. Results are displayed for the following
nonreciprocal (ϕ = −π/2) systems: XXZ (∆ = 2), XX (∆ =
0) and free fermions for L = 500, as well as XXZ with J/κ = 2
(∆ = 1) for L = 100. For ϕ = −π/4 we show XXZ (∆ = 2)
with L = 100. Reciprocal (ϕ = 0) XXZ (∆ = 2), Ĥ = 0,
and free fermion results are also shown, all with L = 50.
Various fits n̄ ∼ Γα are displayed (discussion in the text).
(b)-(d) Steady-state excitation density nj for different Γ/κ,
corresponding to the red region ξheal ≪ L (a), the transition
regime ξheal ∼ L (b), and the asymptotic region ξheal ≫ L
(c), respectively. The data corresponds to the nonreciprocal
case with ∆ = 0 and L = 500.

64, 65]

Ĥ0 =
∑

j

J

2
(
ĉ†

j ĉj+1+ĉ†
j+1ĉj

)
, L̂l0

j =
√

κ(ĉj + eiϕĉj+1), (5)

and L̂g0
j =

√
Γĉ†

j , where ĉj is a fermionic annihilation op-
erator satisfying {ĉi, ĉ†

j} = δij , and {ĉ†
i , ĉ†

j} = {ci, cj} =
0. The conditional Hamiltonian Ĥ0

cd = Ĥ0− i
2

∑
j L̂l0†

j L̂l0
j

for this model (Γ = 0 for simplicity) is given by the so-
called Hatano-Nelson model [109, 110],

Ĥ0
cd =

∑

j

J+
2 ĉ†

j+1ĉj + J−
2 ĉ+

j ĉj+1 − iκn̂j , (6)

where n̂j = ĉ†
j ĉj is the density operator. Eq. (6) de-

scribes asymmetric hopping with an additional imaginary
term. A more direct comparison to our spin model can be
made by performing the Jordan-Wigner transformation
[111] for OBC, defined as Ŝ+

j = e−iπ
∑j−1

i
ĉ†

i
ĉi ĉ†

j , Ŝ−
j =

eiπ
∑j−1

i
ĉ†

i
ĉi ĉj , Ŝz

j = n̂j − 1
2 . The jump operator (3) and

conditional Hamiltonian then take the form

L̂l
j =

√
κ(eiπ

∑j−1
i

ĉ†
i
ĉi ĉj + eiϕeiπ

∑j

i
ĉ†

i
ĉi ĉj+1), (7)

Ĥcd = Ĥ0
cd + J∆

(
n̂j n̂j+1 − n̂j + 1

4

)
, (8)

where one sees that Ĥcd is given by the Hatano-Nelson
model (6) extended to have nearest-neighbor interac-
tions, suggesting that the free fermion model (Eq. (5))
can be regarded as the non-interacting limit of our spin
model and serves as a useful point of reference. Note
that, while the string operators e±iπ

∑j−1
i

ĉ†
i
ĉi in the con-

ditional Hamiltonian (8) have cancelled out, those in the
quantum jump term L̂l

j ρ̂(t)L̂l†
j cannot be removed. This

means that even the XX model case ∆ = 0 does not
correspond to a free system.

Universality and scaling collapse — Figure 2(a) shows
the spatially averaged excitation number n̄ = 1

L

∑
j nj in

the steady state as a function of Γ, where nj = ⟨n̂j⟩ =
⟨Ŝz

j ⟩ + 1
2 . Here, data is shown for a variety of parame-

ters, including different strength of nonreciprocity ϕ, ∆,
J . Data for different system sizes is in the SM [88]. For
comparison, the free fermion case is also plotted. Consis-
tent with the property that Γ = 0 is a critical point, we
observe the power-law scaling n̄ ∼ Γα. Remarkably, the
exponent α = 0.603(9) in the blue shaded region is identi-
cal in all cases, including both nonreciprocal (ϕ = −π/2)
and reciprocal (ϕ = 0) cases for XXZ (∆ > 0) and XX
models (∆ = 0), different exchange interaction strengths
J , and even a purely dissipative case (Ĥ = 0). The
obtained exponent α = 0.603(9) is different from the
free fermion case α = 0.5. The result clearly demon-
strates that universal features have emerged, irrespective
of the presence of the LSE. For the purely dissipative
case (Ĥ = 0), ϕ can be removed from the Liouvillian (1)
via a local gauge transformation Ŝ−

j → e−iϕjŜ−
j , further

illustrating that the scaling is independent of reciprocity.
Figure 3 demonstrates a scaling collapse of the density

and the spatial correlation function in this region:

nj(t, Γ) = t−α/νzfnj
(tΓνz), (9)

Cj(Γ) = Γ2αfCj
(Γν(j − L/2)), (10)

where Cj(Γ) is the magnitude of connected correla-
tions between a site j and the center of the chain L/2,
Cj(Γ) = |⟨Ŝz

L/2Ŝz
j ⟩ − ⟨Ŝz

L/2⟩⟨Ŝz
j ⟩|. Here, fnj (x), fCj (x)

are scaling functions for the density and spatial corre-
lation function, respectively, while α, z and ν are crit-
ical exponents that characterize the universal features.
Data is provided for reciprocal and nonreciprocal cases
and for different parameters and initial states. The scal-
ing collapse is achieved, by setting the critical exponents
{z, ν, α} = {1.96(13), 0.386(16), 0.603(9)} [112], unam-
biguously demonstrating the emergence of universality.
For the free fermions we find {z, ν, α} = {2, 0.5, 0.5} [88].
The critical phenomenon we observe is similar to the
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C
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Γ
)

FIG. 3. (a) nj(t, Γ)(κt)α/νz vs (Γ/κ)(κt)1/νz with α = 0.603,
ν = 0.386 and z = 1.96 for the J/κ = 1, ∆ = 2, dissi-
pative XXZ model over a range of Γ values, with L = 500
and setting j = 475. Results are displayed for nonrecipro-
cal (ϕ = −π/2), reciprocal (ϕ = 0), and Ĥ = 0 cases, with
initial conditions being the fully-polarized state |⇓⟩ and the
x-polarized state

∏L

j
|+⟩j respectively. The inset shows un-

scaled data for the nonreciprocal cases. (b) Scaled connected
correlation Cj(Γ)(Γ/κ)−2α vs (j − L/2)(Γ/κ)ν in the steady-
state for a range of Γ values. The inset shows the un-scaled
data.

quantum critical phenomena proposed in Refs. [40, 41]
for a driven-dissipative bosonic system. However, their
system has a steady state that is interacting, while our
steady state at the critical point is a vacuum, resulting
in a different universality class characterized by critical
exponents {z, ν, α} = {2.025, 0.405, 0.5}.

In the regime of sufficiently small Γ <∼ J/L (the re-
gion shaded in red in Fig. 2(a)), we observe that the
scaling properties change to n̄ ∼ Γα′ = Γ, i.e. α′ = 1.
(Note however that this regime shrinks to measure zero
as the system size is increased.) This can be understood
from the steady state density profile nj in Fig. 2(b)-(d),
which shows results for different Γ values. As seen, the
density profile exhibits a dip at the left boundary, with
its healing length ξheal (characterizing the length of the
dip) decreasing as a function of Γ. The dip arises because
sites near the left boundary do not experience any flux

10−1 100 101 102 103

κ t

100

10−1

10−2

10−3

n
j(
t)

nj ∼ t−0.58

nj ∼ t−0.50

(b)

∆ = 0 (XX)

∆ = 0.5 (XXZ)

∆ = 2 (XXZ)

Free Fermion

FIG. 4. (a) Space-time plot of the particle density nj for the
nonreciprocal (ϕ = −π/2) XXZ spin chain with L = 500 sites,
starting from all spins up and with Γ = 0, J/κ = 1, ∆ = 2.
Inset: the relaxation time to the steady-state, tr, vs system
size L, with linear fit tr ∼ L (dotted). (b) Density decay nj

vs time with j = 450, for various system parameters.

of incoming excitations from the boundary, whereas sites
in the bulk are ‘topped up’ from their left. As these spin
waves exhibit an increasingly long lifetime as Γ decreases,
the healing length ξheal becomes increasingly long and di-
verges at Γ → 0. Note that ξheal ∝ Γ−1 is very different
from the localization length ξloc of the eigenmodes of the
Liouvillian L, which is solely determined by the asym-
metry of the hopping ξloc ∼ 1/ log(|J+|/|J−|) [65].

In the asymptotic regime (J/L <∼ Γ <∼ κ) (Fig. 2(d)),
the healing length ξheal is small compared to the system
size L. Therefore, the density profile is almost uniform.
As Γ decreases to Γ <∼ J/L the healing length starts
to exceed the system size (Fig. 2(b),(c)). This implies
that, while in the asymptotic region J/L <∼ Γ <∼ κ, the
physics is determined by the bulk properties (that do not
care about LSE [65, 113]), the region with Γ <∼ J/L is
dominated by the edge properties, giving a natural ex-
planation for the change of scaling properties at differ-
ent regimes. The scaling n̄ ∼ Γ is consistent with the
free fermion case with perfect nonreciprocity (ϕ = −π/2,
J = κ) for ξheal ≫ L [65]. Interestingly, while in
this limit the transition between the two regimes oc-
curs at Γ = O(vg/L) for free fermions, for the spin
systems, the many-body interaction alters the scaling to
Γ = O(vg/L1.25), where vg = J sin(π − ϕ) is the group
velocity of the least damped mode k∗.

The scaling properties in the region Γ <∼ J/L are
strongly affected by the LSE. This is demonstrated in Fig
4(a), which shows a spacetime plot of the excitation den-
sity for Γ = 0, starting from an initially fully-polarized
state with all spins up |⇑⟩. Here, the excitation density
nj(t) exhibits a sudden transition from power law to ex-
ponential decay [57, 63, 66]. This occurs when site j
is no longer ‘topped up’ by incoming excitations: all the
long-lived excitations that were initially left of site j have
propagated to its right [67]. For sites near the right edge,
which are last to relax, this takes a time tr proportional
to the system size, i.e. tr ∼ ξz′ = L (z′ = 1). In com-
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parison, the transport is approximately diffusive in the
reciprocal case (z′ ≈ 2), which is clearly visible in Fig.
1(c). Therefore, in the region Γ <∼ J/L the scaling is al-
tered by the LSE. In the SM [88], we show for the free
fermion system that under PBC this region only arises
for Γ ≤ O(1/L2).

Finally, Fig. 4(b) shows that many-body effects also
alter the power-law exponent χ = 0.58 of nj(t) ∼ t−χ at
Γ = 0 from the free fermion result χ = 0.5. Curiously, χ
is found to be initial-state-dependent ranging from χ =
0.5 to 0.58 [88]. Clarifying the origin of this remains our
future work.

Discussion— In conclusion, we have demonstrated the
existence of a Liouvillian skin effect (LSE)-independent
universal regime. We showed that the LSE can affect
the bulk properties only when ξheal >∼ O(L). The LSE-
induced transition of scaling reported in Refs. [63, 83]
corresponds to the latter regime where the number con-
servation in their model implies the absence of character-
istic length scales (similar to “model B” of Ref. [114]).
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mun. 8, 16117 (2017).
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Experimental Proposal

Here we propose a trapped ion implementation of the
spin model, utilizing the recent observation of Aharanov-
Bohm rings using Strontium ions [S1]. Before introducing
this, we briefly review how to implement nonreciprocity
in the case of free particle systems of fermions or bosons
[S2, S3]. Nonreciprocal interactions between two sites
can be mediated by an auxiliary non-equilibrium degree
of freedom. Figure S1(a) illustrates the simplest case
of a system composed of a three-site ring exposed to a
gauge flux ϕ, with the aim of engineering nonreciprocity
between two of the sites [S3]. The Hamiltonian for this
system is given by

Ĥ = −eiϕ/3(Jc†1c2 + J ′c†2c3 + J ′c†3c1) + h.c., (S1)

Here, J is the hopping rate between the sites of interest,
sites 1 and 2, while J ′ is the rate for hops involving the
auxiliary site 3. In addition, we also add laser-induced
single-site loss described by a jump operator L̂ =

√
ζĉ3.

Nonreciprocity arises via the interference of various paths
within the ring. To see this, let’s consider the possible
paths a particle may take from site 2 to site 1. The
particle can either hop directly from the site 2 to 1 or can
also hop from 2 to 3, and then to 1 (up to second order
in the hopping). The associated probability amplitude
GR[j, j′, ω] to go from site j′ to j is given by

GR[1, 2, ω] = −Jeiϕ/3 + (−J ′e−iϕ/3)
1

ω − iζ/2
(−J ′e−iϕ/3)

+O(J3), (S2)

where we have assumed J and J ′ are real without loss of
generality. The first term is due to the direct hop from
site 2 to 1, while the second term is due to the indirect
path via site 3, with a contribution from the associated
dissipation on this site. One may tune this amplitude to
zero, i.e., GR[1, 2, ω] = 0, by setting

ζ/2 =
√

(J ′2/J)2 − ω2, tanϕ =
ζ

2ω
. (S3)

The presence of the particle loss ζ > 0 ensures the reverse
process GR[2, 1, ω] is non-zero. Rather, in the latter, the
interference is constructive [S3], leading to enhanced hop-
ping. Therefore, this mechanism successfully implements
nonreciprocal propagation.

When we set the loss on the auxiliary site to be
large compared to the response frequency ζ ≫ ω, which
amounts to an adiabatic approximation [S3], Eq. (S3)
reduces to ζ = 2J ′2/J and ϕ = π/2. The resulting
jump operator is given by L̂ =

√
κ(ĉ1 + eiϕĉ2), where

κ/2 = 2J ′2/ζ = J [S3]. A set of consistent scales is
given by ζ ≫ J ′ ≫ κ = O(J). The nonreciprocity
can then be easily understood as arising via interference
between the Hamiltonian component Ĥ and dissipative
terms in the Lindblad equation according to the discus-
sion in the main text. By introducing multiple three site
rings a chain of sites with nonreciprocal hopping can be
designed. These principles were utilized in recent cold
atom implementations of nonreciprocity [S4, S5].
We wish to propose a spin analog of this free fermion

system. We utilize the methods proposed and experi-
mentally implemented in Ref. [S1] using trapped ions,
which are built on recent advances [S6, S7]. Ref. [S1]
successfully implemented a spin system described by the
Hamiltonian,

Ĥ =
∑

n

Ωne
i(ϕn−δnt)

∑

j

σ̂†
j σ̂j+n + h.c., (S4)

where ϕn, δn and Ωn are all experimentally tunable pa-
rameters. For our purpose, it is enough to focus on the
case in which δn = 0. This Hamiltonian corresponds to a
hopping model with hopping amplitude Ωn to a site that
is n sites apart.
Let us briefly summarize how this was realized exper-

imentally in Ref. [S1]. A Mølmers-Sørenson interaction
[S8] was applied to a trapped-ion chain, with additional
drive detuning to remove pair creation and annihilation
processes σ+

i σ
+
j and σ−

i σ
−
j . The remaining interactions

are of the form σ+
i σ

−
j . However, since the energies of

all ions are degenerate, all-to-all hopping is generated.
A magnetic field gradient is then applied to the chain,
which detunes the qubit transition frequencies for each
ion, severing the all-to-all coupling. The excited state of
neighbouring ions then differs by a frequency f , and nf
for ions spaced at a distance of n sites. The hopping is
selectively reinstated by generating spectral tones with
a frequency difference nf . The phase difference between
the tones gives the phase ϕn. The ability to select specific
interaction terms makes the platform capable of realizing
a large number of geometries. For more details, we refer
the reader to Refs. [S1, S6, S7].
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FIG. S1. (a) Basic ingredients needed to engineer an effec-
tive nonreciprocally interacting system: hopping in a three-
site system with rates J and J ′, an Aharanov-Bohm phase
ϕ and on-site particle loss with rate ζ. (b) Energy level dia-
gram of Strontium ions, together with transition wavelengths,
adapted from Ref. [S6] licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). A qubit
can be encoded in long-lived 5S1/2 and 4D5/2 orbital states,
while 5P states are short-lived and can be used to mediate
optical pumping and loss. (c) Ladder geometry constructed
from Aharanov-Bohm rings. Nearest-neighbour interactions
in the 1D ion chain are indicated by the solid dark lines, while
next-nearest-neighbour interactions are indicated by dashed
lines. (d) Diagram of the proposed set-up for a trapped ions
implementation of a nonreciprocally interacting spin chain,
obtained by adding optical pumping and loss to (c). The non-
reciprocally interacting sites are shaded dark, whereas auxil-
iary sites that mediate this interaction are shaded light. In-
teractions between auxiliary sites (dashed and faded lines) do
not contribute significantly once dissipation is introduced, see
discussion in text.

As discussed previously, the basic building block of the
nonreciprocally coupled free system is three site rings
with dissipation. This can be generalized to spin systems
[S2]. For the spin system, the Hamiltonian takes the form

Ĥ = eiϕ/3(Jσ̂†
1σ̂2 + J ′σ̂†

2σ̂3 + J ′σ̂†
3σ̂1) + h.c., (S5)

which can be obtained from Eq. (S5) by setting Ω1 = J ′

and Ω2 = J , corresponding to nearest-neighbor (NN)
and next-nearest-neighbor (NNN) interactions, as well as
ϕ1 = ϕ2 = ϕ/3. This set-up was realized experimentally
in Ref. [S1] for the case of J = J ′, with Refs. [S1, S7] also
highlighting that a ladder of such rings can be realized
by applying this procedure to a longer chain of L sites
(with Ωn>2 = 0), as shown in Fig. S1(c).
Here we propose to add dissipation to this ladder in or-

der to implement a chain of nonreciprocally interacting
spins, inspired by the methods described earlier. In par-
ticular, we propose to implement loss L̂ =

√
ζŜ− applied

to a single site in each ring, while tuning the phase ϕ to fa-
cilitate the necessary interference effects. Our proposed
setup is schematically illustrated in Fig. S1(d). From
perturbation theory analogous to what has been done
for free fermions above, the jump operator is given by
L̂j =

√
κ(σ̂j +e

iϕσ̂j+1), with κ = O(J ′2/ζ), which repro-
duces the model we analyzed in the main text. We note
that the ladder of Aharanov-Bohm rings in Fig. S1(c)
features undesirable couplings between the lower rung of
auxiliary sites. However, according to perturbation the-
ory, we estimate a shift δκ = O(J ′2J/ζ2). This is small
since we have assumed J ′/ζ ≪ 1. This implies δκ ≪ κ
which is sub-dominant and can therefore be neglected.
Higher-order contributions are even further suppressed.
We note that, since the exponents we observe do not
depend on the anisotropy ∆, σ̂z

j σ̂
z
j+1 interactions in the

Hamiltonian need not be implemented to obtain our core
results.
We also propose to add spin pumping L̂ =

√
ΓŜ+.

For the implementation of both spin pumping and loss,
we consider the energy level structure of Strontium ions,
shown in Fig. S1(b) [S6], along with the associated wave-
lengths for the various possible transitions. We first note
that the qubit degrees of freedom are realized in long-
lived 5S1/2 and 4D5/2 orbital states. The 5P orbital
states are comparatively short-lived and can be used to
mediate optical pumping and absorption into the qubit
states [S6]. Since only the sites in the nonreciprocal chain
require pumping, while sites in the auxiliary chain require
loss (as described above), these processes never have to
be implemented simultaneously on any individual ion.

Free fermion results

In this section, we derive the scaling exponents
{z, ν, α} = {2, 1/2, 1/2} for the free fermion model de-
fined by Eqs. (5) of the main text. Since the density
matrix is Gaussian, the system is fully characterized by
the two-point correlation matrix ⟨ĉ†mĉn⟩, with dynamics
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given by [S9]

i∂t⟨c†mcn⟩ =
1

2
(J − iκe−iϕ)⟨c†mcn−1⟩+

1

2
(J − iκeiϕ)⟨c†mcn+1⟩

− 1

2
(J + iκe−iϕ)⟨c†m+1cn⟩ −

1

2
(J + iκeiϕ)⟨c†m−1cn⟩

− i2(κ+ Γ)⟨c†mcn⟩+ i2Γδmn, (S6)

which can be readily obtained by deriving the Heisenberg
equation of motion from the Lindblad master equation of
this system.

Below, we focus on the regime L ≫ J/Γ and work in
the thermodynamic limit L→ ∞. As argued in the main
text, in this regime, boundary conditions are not going
to play a crucial role in bulk physics, even in the pres-
ence of the Liouvillian skin effect (LSE). Indeed, this is
demonstrated in the main text and in Ref. [S9], where
the free fermion system exhibits identical steady-state
profiles both in periodic (PBC) and open boundary con-
ditions (OBC) except in the vicinity of the edge. This
is because the system does not care about the boundary
condition unless the wave packet hits the edge, which
occurs only if the wave propagates (or diffuses) to the
edge before it dampens out. As long as the damping
rate of the wave packet is finite (which would be the case
for finite Γ > 0), a generic wave packet generated by the
pumping would not reach the edge in the thermodynamic
limit L→ ∞, making the boundary conditions irrelevant
in our setup, irrespective of the presence of LSE.

Taking advantage of this, we consider PBC, for which
translation invariance makes the momentum k a good
quantum number. Fourier transforming Eq. (S6), one
finds that the momentum distribution function nk =
1
L

∑
mn e

ik(m−n)⟨ĉ†mĉn⟩ is given by

∂tnk = −2
{
κ(1 + cos(ϕ+ k)) + Γ

}
nk + 2Γ. (S7)

This has the general solution

nk(t) =c(k)e
−2

(
κ(1+cos(ϕ+k)+Γ

)
t

+
Γ

κ(1 + cos(ϕ+ k)) + Γ
, (S8)

where c(k) is a constant of integration that depends on
the initial conditions. The mean particle density is then
obtained by integrating over momentum space:

n̄(t) =

∫ π

−π

dk

2π
c(k)e−2

(
κ(1+cos(ϕ+k))+Γ

)
t

+

∫ π

−π

dk

2π

Γ

κ(1 + cos(ϕ+ k)) + Γ
(S9)

Expanding around the least damped mode k = k∗ = π−ϕ

and extending the integral bounds to ±∞, one obtains,

n̄(t) =

∫ ∞

−∞

d∆k

2π
c e−

(
κ(∆k)2+2Γ

)
t

+

∫ ∞

−∞

d∆k

2π

2Γ/κ

(∆k + i
√

2Γ/κ)(∆k − i
√
2Γ/κ)

=
c e−2Γt

2
√
πκt

+

√
Γ

2κ
, (S10)

where we have also assumed that c(k) ∼ c is indepen-
dent of k in the vicinity of the least damped mode.
The steady-state mean density n̄(t → ∞) is given by
n̄(t → ∞) ∼ Γα = Γ1/2, giving the scaling character-
ized by the exponent α = 1/2 demonstrated in Fig. 2(a)
of the main text in the asymptotic regime. One also
sees from the first term of Eq. (S10) that Γ sets a re-
laxation time-scale tr ∼ 1/Γ. In the limit Γ → 0, this
timescale diverges and the relaxation reduces to a power
law n̄(t) ∼ t−χ = t−1/2 characterized by the exponent
χ = 1/2, as demonstrated in Fig. 4(b) of the main text.
We now derive the steady-state correlation functions.

The steady-state correlation function (∂t⟨ĉ†mĉn⟩ = 0) is
given from Eq. (S6) as

⟨ĉ†mĉn⟩ = Γ

∫ ∞

−∞

dω

2π
⟨n| 1

ω1−Heff

1

ω1−H†
eff

|m⟩, (S11)

where

(Heff)nm =
J

2
(δnm+1 + δn+1m)− i

2
Γδnm

− i

2
κ(δnm + δn+1,m+1 + eiϕδn+1,m + e−iϕδn,m+1)

(S12)

is the effective Hamiltonian (that is in fact different from
the conditional Hamiltonian, see Ref. [S9]) in the first
quantized form, and |m⟩ = ĉ†m|0⟩ is a position eigen-
state (where |0⟩ is a vacuum state). After performing
the Fourier transformation, one arrives at

⟨c†mcn⟩ =
1

L

B.Z.∑

k

Γeik(n−m)

×
∫ ∞

−∞

dω

2π
⟨k| 1

ω1−Heff
|k⟩⟨k| 1

ω1−H†
eff

|k⟩,(S13)

where |k⟩ = ĉ†k|0⟩ is a momentum eigenstate. Using the
fact that the effective Hamiltonian is diagonal in momen-
tum space, i.e.

Heff =
(
J cos k − iκ(1 + cos(ϕ+ k))− iΓ

)
1, (S14)
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the correlation function reduces to

⟨ĉ†mĉn⟩ =
1

L

B.Z.∑

k

Γeik(n−m)

∫ ∞

−∞

dω

2π

× 1

ω − J cos k + iκ(1 + cos(ϕ+ k)) + iΓ

× 1

ω − J cos k − iκ(1 + cos(ϕ+ k))− iΓ

=
1

L

B.Z∑

k

1

2
Γeik(n−m) 1

κ(1 + cos(ϕ+ k)) + Γ
.

(S15)

As in the above, by expanding around the least damped
mode k = k∗ = π − ϕ, we obtain,

⟨ĉ†mĉn⟩ =
∫ ∞

−∞

d∆k

2π

Γ

κ
ei(∆k−ϕ+π)(n−m)

× 1

(∆k − i
√

2Γ/κ)(∆k + i
√

2Γ/κ)
, (S16)

where once again we have extended the integral bounds
to ±∞. Performing the contour integral leads to

⟨ĉ†mĉn⟩ =
1

2
√
2

√
Γ

κ
e−

√
2Γ/κ|n−m|+i(π−ϕ)(n−m), (S17)

showing that the correlation length is given by ξ =√
κ/Γ. This implies ξ ∼ Γ−ν with ν = 1/2. A compari-

son of (S10) with the scaling ansatz Eq. (9) in the main
text indicates that χ = α/(νz), which implies that z = 2.
This concludes our derivation of the critical exponents
{z, ν, α} = {2, 1/2, 1/2} for the free fermion system.

Finally, we consider the impact of finite size effects on
the scaling of the steady state density in the red region
of Fig. 2(a), under periodic boundary conditions. In this
instance, the integral (S9) should be replaced by a sum
over discrete momenta,

n̄(t→ ∞) =
B.Z.∑

k

Γ/κ

1 + cos(ϕ+ k) + Γ/κ
. (S18)

In the limit Γ → 0, Γ/κ becomes very small compared
to the gap, which will be O((2π/L)2). We can therefore
ignore Γ/κ in the denominator, leaving

n̄(t→ ∞) ≈ Γ

κ

B.Z.∑

k

1

1 + cos(ϕ+ k)
(S19)

Hence, n̄ ∼ Γ, (α′ = 1), provided Γ/κ ≤ O(1/L2). We
remark that this is different from the OBC case, where
this scaling emerges at a threshold that is linear in the
system size, i.e. Γ/κ = O(1/L).

Spin wave dark state for XXZ

In this section, we show that in the thermodynamic
limit (where momentum k is a continuous variable), our
model has a spin wave mode that is a dark state. As
discussed in the main text, the dissipator given by Eq.
(3) in the main text vanishes when k = k∗. This im-
plies that a state |Dk⟩ ≡ Ŝ+

k |⇓⟩ does not experience any
dissipation when k = k∗ = π − ϕ, where the operator
Ŝ+
k = 1√

L

∑L
j=1 e

ikjŜ+
j creates a spin-wave mode with

momentum k. In addition, |Dk∗⟩ is also an eigenstate of
the Hamiltonian Ĥ, because no scattering would occur in
the one-magnon sector (where the state |Dk∗⟩ lives), and
therefore, the momentum would stay preserved. Indeed,
by operating on this state with the XXZ Hamiltonian
(Eq. (2) of the main text), one finds,

Ĥ|j⟩ = J

2
|j − 1⟩+ J

2
|j + 1⟩+ (L− 4)J∆

4
|j⟩, (S20)

which has |Dk⟩ = 1√
L

∑
j e

ijk|j⟩ as an eigenstate with

eigenvalues L−4
4 J∆+J cos k, including the least damped

mode k = k∗. Combining these two properties yields
L[|Dk∗⟩⟨Dk∗ |] = 0, meaning that |Dk∗⟩ is a dark state.

U(1) symmetry and single-magnon eigenstate

Here, we show that the U(1) symmetry is a neces-
sary and sufficient condition for the single-magnon spin
wave state |Dk⟩ = Ŝ+

k |⇓⟩ satisfying Ŝz
k |Dk⟩ = Sz

k |Dk⟩
(where Sz

k is an eigenvalue of Ŝz
k) to be a simultane-

ous eigenstate of a translationally invariant Hamilto-
nian Ĥ =

∑
k ĥk with periodic boundary conditions.

A single-magnon momentum state |Dk⟩ is simultane-

ously an eigenstate of the Hamiltonian if [ĥk, Ŝ
z
k ] = 0,

implying that U(1) symmetry of the Hamiltonian is a
necessary condition. The sufficient condition can also
be proven as follows. In the fermionic picture, the
Hamiltonian can be expressed as Ĥ =

∑
k εk ĉ

†
k ĉk +∑

k,k′,q uk,k′,q ĉ
†
k+q/2ĉ

†
−k+q/2ĉk′+q/2ĉ−k′+q/2 + · · · , where

“· · · ” represents higher-order interactions terms. U(1)
symmetry of the Hamiltonian Ĥ implies that the eigen-
states of Ĥ are Fock states. In the single-occupied Fock
state sector (corresponding to the single-magnon sec-
tor), the interaction between the fermions is absent and

the Hamiltonian can be written as Ĥ =
∑

k εk ĉ
†
k ĉk =∑

k εkŜ
+
k Ŝ

−
k . This Hamiltonian satisfies Ĥ|Dk⟩ = εk|Dk⟩

and therefore, the sufficient condition is also proven.

Criticality and decay channels to dark states

We now consider the role of dark states in determining
the critical properties of the spin model. Consider an
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arbitrary two magnon state |ψ2⟩, expressed in the general
form

|ψ2⟩ =
∑

mn

amn|m,n⟩ =
∑

mn

amnŜ
+
mŜ

+
n |⇓⟩ (S21)

where the indices m,n label the position of the spin ex-
citations and amn are arbitrary coefficients, with amn =
anm. The action of the jump operator L̂l

j , given in Eq.
(3), on the state (S21) yields a one magnon state |ψ1⟩,
given by

|ψ1⟩ = L̂l
j |ψ2⟩

=
√
κ(Ŝ−

j + eiϕŜ−
j+1)

∑

mn

amn|m,n⟩

=
√
κ
∑

mn

amn

(
Ŝ−
j |m,n⟩+ eiϕŜ−

j+1|m,n⟩
)

=
√
κ
∑

mn

amn

(
δj,m|n⟩+ δj,n|m⟩

+ eiϕ(δj+1,m|n⟩+ δj+1,n|m⟩)
)

= 2
√
κ
∑

n

(
ajn + eiϕaj+1n

)
|n⟩, (S22)

where |n⟩ denotes a state with a single magnon at posi-
tion n. To reach the last line we performed a summation
and used amn = anm. Setting (S22) equal to the spin

wave state |k⟩ = 1√
L

∑L
n=1 e

ikn|n⟩, we obtain

ajn + eiϕaj+1n =
1

N eikn, (S23)

where N is a normalization constant. This includes the
specific case of the dark state, for which k = k∗ = π− ϕ.
This places a unique constraint on the coefficients amn

that are required in order to arrive at a particular spin
wave state after a quantum jump. In particular, once
aj1 is fixed all terms ajn are specified by applying (S23)
recursively. The apparent ambiguity in ‘choosing’ aj1 is
removed by the normalization condition (up to a phase).

We now demonstrate that this decay of a two-magnon
state via quantum jumps is the only way to reach the
state |Dk∗⟩. Due to the U(1) symmetry of the XXZ
Hamiltonian, as shown in the section “U(1) symmetry
and dark state”, the momentum modes form an eigenba-
sis of the single magnon sector. This ensures that there
are no transitions between momentum modes. Putting
these facts together, Eq. (S23) provides the requirement
for reaching |Dk∗⟩ during the time evolution. The free-
dom to choose the index j indicates that there are L pos-
sible transitions to this state from linearly independent
states in the two-magnon sector, corresponding to the
possible locations where the quantum jump may occur.

This implies that a basis for two magnon states can be
constructed in which the remaining O(L2) basis states
decay to the vacuum over time via two jumps. We there-
fore conclude that there are macroscopically more ways

to arrive at the vacuum dark state |⇓⟩ than the spin wave
dark state |Dk∗⟩. This implies that for large systems the
vacuum will be the steady state. The exception is the
scenario in which the initial state has a large overlap
with |Dk∗⟩, since this is preserved throughout the time-
evolution. However, for generic initial states, this overlap
is typically exponentially small. Modes in the vicinity of
the dark state, i.e. in some momentum shell ∆k from
the dark state such that k = k∗ +∆k, therefore play the
role of determining the long time relaxation towards the
vacuum dark state. The slow relaxation of these modes
is directly implied from the dissipator in Eq. (4) of the
main text.
For free fermions, this picture can be stated analyti-

cally. Like the spin system, the vacuum |0⟩ is a trivial
dark state with a macroscopically large number of decay
channels, and there is the momentum dark state at k =
k∗ = π−ϕ, where |k⟩ = ĉ†k|0⟩, and ĉ+k = 1√

L

∑L
j=1 e

ikj ĉ†j .

The momentum space retarded Greens function [S9] is
given by

GR(ω, k) =
1

ω − J cos k + iκ(1 + cos(ϕ+ k)) + iΓ
,

(S24)

where it can be seen that when Γ = 0 the dissipative
gap −κ(1 + cos(ϕ+ k)) vanishes at k = k∗ = π− ϕ. This
Green’s function encodes the response following a pertur-
bation to the steady state configuration, which through
the macroscopic number of decay channels is guaranteed
to be the vacuum state |0⟩. Clearly, the asymptotic fea-
tures will be determined by modes in the vicinity of k∗,
as can be seen by expanding around this mode using
cos(ϕ+ k) ≈ −1 + 1

2 (∆k)
2. For the spin system, we an-

ticipate a similar form to (S24), albeit with a self-energy
contribution Σ(k). A full treatment within the framework
of Keldysh field theory is highly non-trivial and is left for
future work.

Liouvillian spectrum

Here, we demonstrate the presence of the LSE for the
dissipative XXZ system by computing the eigenvectors
and eigenvalues. We first discuss the case in which Γ = 0.
For loss-only models the Liouvillian can be expressed in
a block-triangular form [S10–S15], which allows the Liou-
villian spectrum to be determined entirely by the condi-
tional Hamiltonian Ĥcd. The eigenvalues of the Liouvil-
lian are given by λ(ij) = εi+ε

∗
j , where εi is the spectrum

of −iĤcd. When ∆ = 0 the conditional Hamiltonian is
the same as the free model, see Eqs. (6) and (8) of the
main text. The nonreciprocal case, therefore, matches
the spectrum of the Hatano–Nelson model up to a shift,
which has analytically been shown to have spectral sensi-
tivity to boundary conditions [S16, S17]; see the insets in
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Fig. 1(b) of the main text. However, at finite Γ > 0, as
the Liouvillian cannot be expressed in a block-triangular
structure, the spectrum of the spin system cannot be
calculated from the free system. We, therefore, resort to
numerical methods.

Figure S2 shows the spectral properties for a range
of system parameters, obtained numerically via exact
diagonalization, which can be obtained using standard
sparse matrix eigensolvers. Let |vn⟩ be the vectorized
representation of the right eigenvectors (which are ma-
trices) satisfying L[ρ̂Rn ] = λnρ̂

R
n . Here, the eigenval-

ues are labeled in descending order of their real part
0 = Re[λ0] ≥ Re[λ1] ≥ .. ≥ Re[λ4L ]. Fig. S2(a)-(d)
shows the spatial support |⟨j|vn⟩| under OBC for a vari-
ety of system parameters. Here, the first 200 eigenstates
|v0⟩, ..., |v199⟩ (i.e, the eigenstates with the first 200 slow-
est modes) are plotted. In all cases, the localization is
clearly visible at the right-hand boundary. The local-
ization length of the OBC eigenvectors is insensitive to
changes in L (not shown), implying that the localization
of eigenmodes would persist in the thermodynamic limit.
Fig. S2(e)-(h) shows the results under PBC. In stark
contrast to the OBC results, all eigenvectors are spa-
tially uniform. Fig. S2(i)-(l) shows the Liouvillian gap
λgap = |Re[λ1]| vs system size L under OBC and PBC
respectively. When Γ = 0, the gap closes with 1/L2 (see
Fig. S2(m)-(n)) under PBC, while for OBC the gap does
not close. The situation is qualitatively similar at finite
Γ, albeit shifted by the gap. Taken together, these plots
clearly illustrate the spectral sensitivity to the choice of
boundary conditions, even at finite Γ.

Numerics

We now provide details of the tensor network meth-
ods employed throughout this work. We use the time-
evolving block decimation (TEBD) algorithm [S18] to
perform numerical simulations. We start by moving to a
vectorized representation of the Lindblad equation, with
a density matrix vec[ρ̂] = |ρ⟩. Operators acting on the
bra and ket respectively now act on different copies of
the Hilbert space H ⊗ H, with vec[ÂρB̂] = Â ⊗ B̂T |ρ⟩.
In this representation the Lindblad equation (1) can be

rewritten as d|ρ⟩
dt = L̂|ρ⟩, where

L̂ =− i
(
Ĥ ⊗ 1̂− 1̂⊗ ĤT

)
+

∑

µ

L̂µ ⊗ L̂∗
µ

− 1

2
L̂†
µL̂µ ⊗ 1̂− 1

2
1̂⊗ L̂T

µ L̂
∗
µ. (S25)

The state at time t is given by |ρ(t)⟩ = eL̂t|ρ̂(0)⟩. Split-
ting L̂ into operators that act on even and odd bonds,
L̂ = L̂odd + L̂even, the second order trotter decomposi-
tion can be used to obtain a time-evolution operator for

∆ 0 1 1 1

Γ/κ 0 0 0.056 0.11

(a) (b) (c) (d)
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L
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L
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L
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L

10−2

10−1

λ
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p

L−2
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L

L−2

FIG. S2. Eigenvectors and eigenvalues of an L = 9 nonrecip-
rocal (ϕ = −π/2) XXZ spin chain for a variety of parameters
(see column labels at the top) and with J/κ = 1.11. (a)-(d)
Spatial support of eigenvectors |⟨j|vn⟩| for OBC. The data
represents the 200 eigenstates with the largest Re[λn]. The
eigenvectors are colored according to the size of the corre-
sponding eigenvalue; those with a larger real part are bright
colors while those with a smaller real part are darker. (e)-(h)
|⟨j|vn⟩| for PBC. (i)-(l) Liouvillian gap λgap vs system size L
for OBC (dots) and PBC (crosses). (m)-(n) The PBC data is
also plotted on a log-log plot for the cases with Γ = 0, demon-
strating that the gap is approximately closing with 1/L2.

a single time-step δ:

eL̂δ = e
δ
2 L̂eveneδL̂odde

δ
2 L̂even +O(δ3), (S26)

where the error per step is O(δ3). Each exponential
in (S26) is sequentially applied to a matrix product
state (MPS) representation of |ρ⟩ with the doubled lo-
cal Hilbert space dimension on each site. After each of
these operations, the bond dimension of the MPS may
grow and should be truncated, see Refs. [S19, S20] for
a general discussion of this procedure. The feasibility
of these simulations is massively assisted by the sinks of
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spin, which ensures that the state is relatively quickly
brought into the proximity of the product state |⇓⟩. We
find that the results converge with very small errors pro-
vided the bond dimension is at least 15, as discussed
below. Since L̂ is non-Hermitian, the orthogonality of
the Schmidt eigenstates is not automatically preserved
[S21]. For the case of action on even (odd) bonds, with

e
δ
2 L̂even (eδL̂odd), our approach is to sweep from left to

right. Rather than skipping the odd (even) bonds, we
apply the identity matrix followed by a singular value de-
composition, which re-orthogonalizes the Schmidt eigen-
states on that bond. Once the end of the chain is reached,
we then perform a singular value decomposition on every
bond in a sweep from right to left, i.e. in the opposite
direction, which enforces orthogonality of the Schmidt
eigenstates on each respective bond. The procedure is

then repeated for the next exponential, eδL̂odd (e
δ
2 L̂even)

as defined by (S26).
Observables are computed using standard techniques

for MPS [S19], noting that the vectorized density matrix
should be contracted with a purification of an infinite
temperature state ⟨1| (see Ref. [S19] for an example of

such a purification), i.e. tr(Ô ˆρ(t)) = ⟨1|ÔD|ρ(t)⟩, where
ÔD = Ô⊗1̂.We have verified the algorithm against direct
integration of the Lindblad equation (1) for small system
sizes.

In Fig. S3(a) we show the density nL(t) vs time for
the ∆ = 2 nonreciprocal (ϕ = −π/2) XXZ chain with
L = 100 spins initialized in the fully-polarized state |⇑⟩.
Results for a variety of bond dimensions χ are shown,
with the time-step fixed as δ = 0.0025, demonstrating
rapid convergence with increasing bond dimension (see
inset for zoomed in data). The discrepancy from the con-
verged result is less than O(10−5) for χ ≥ 15; this is less
than 1% of the density (0.3% for the displayed result).
We therefore adopt χ = 15 for the majority of simulations
in the main text. We have also included additional results
for the fourth order integrator TEBD4 with χ = 50 and
δ = 0.0025 (data is only displayed up to Jt = 66 for this
simulation). This algorithm reduces the time-step error
to O(10−9) for the time-scales of interest. As can be seen
from the inset, this agrees with the TEBD2 simulations
with χ = 75, suggesting that the choice of time-step for
the TEBD2 results (δ = 0.0025) is also sufficient. This
is shown more rigorously in Fig. S3(b) which presents a
similar analysis but for varying time-step δ, holding the
bond dimension fixed at χ = 20. In this case, the results
change very little for δ ≤ 0.01. Throughout this work
we therefore use δ = 0.0025. While the results in the
main text are obtained via TEBD2, the results in Fig.
S8 are obtained via TEBD4 with δ = 0.0025 and a bond
dimension χ = 15.

100 101 102

Jt

10−4

10−3

10−2

10−1

n
L

(a)

Bond Dimension χ
5
10
15

20
75
50 (TEBD4)

48 49Jt

0.00225

0.00230

0.00235

n
L

100 101 102

Jt

10−4

10−3

10−2

10−1

n
L

(b)

Time step δ
0.1
0.01
0.0025

0.00025
0.0025 (TEBD4)

48 49Jt

0.0022

0.0023

n
L

FIG. S3. (a) Density nL(t) vs time for the nonreciprocal
(ϕ = −π/2) XXZ model with ∆ = 2, J/κ = 1 and L =
100 sites. Results are shown for a number of different bond
dimensions χ using the TEBD2 algorithm with fixed time-step
δ = 0.0025. The inset shows a zoom in of the data points. An
additional comparison to TEBD4 with δ = 0.0025 and χ = 50
is also shown up to Jt = 66. This simulation, along with the
χ = 75 TEBD2 simulation, do not run until the very end of
the displayed time-interval due to limitations of the available
computational resources. (b) Similar to (a) but for varying
time-step δ with fixed bond-dimension χ = 20.

Diagnosing relaxation time

This section discusses how we calculate the relaxation
times shown in the inset of Fig. 4(a) of the main text.
We diagnose the relaxation time tr as the first time for
which nj(t) < ϵ, with ϵ determining the cut-off. We use
ϵ = 10−4, although the precise choice is not important
provided it is less than nj(t) during the period of power-
law decay. In Fig. S4 we show the density nL(t) vs
time for the dissipative XX model (∆ = 0) with Γ = 0.
The system is initially in the fully-polarized state with
all spins up |⇑⟩, and we display results for a range of
system sizes. The dashed line indicates the threshold
ϵ = 10−4. In general we choose a site j near the right
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FIG. S4. Density for the site on the right edge, nL, vs time
for the nonreciprocal (ϕ = −π/2) XX model (∆ = 0), starting
from an initial state with all spins up |⇑⟩. Results are shown
for different system sizes L (legend). The dashed line indicates
the cut-off density ϵ used to diagnose the relaxation time. We
set J/κ = 1.

0 200 400 600 800 1000

L

−0.66

−0.64

−0.62

−0.60

−0.58

−0.56

χ

∆ = 0
∆ = 0.5
∆ = 2

FIG. S5. Exponent χ, defined via nj ∼ t−χ, vs system size
for simulations initialized in the state with all spins-up |⇑⟩ (see
Fig. 4b). For ∆ = 0 and ∆ = 0.5 the dashed lines are fitted to
system sizes L ≥ 100 and characterize the exponential decay
towards an asymptotic result. We set J/κ = 1.

edge of the system, since this maximizes the amount of
time spent in power-law decay, leading to faster conver-
gence with L. For finite ∆ the sites very close to the right
edge are atypical, so it best to consider sites slightly away
from the boundary. The results in the inset of Fig. 4(a)
are therefore obtained using site j = L − 10. An alter-
nate approach is to precisely characterize the time-scale
at which nj transitions from power-law to exponential
decay, which gives similar results.

Finite size scaling and initial state dependence of χ

In this section, we perform the finite-size scaling of
the exponent χ, which characterizes the power-law relax-

100 101 102

κ t

10−4

10−3

10−2

10−1

n
j(
t)

nj ∼ t−0.58

nj ∼ t−0.515

Initial State

|⇑>
|+>

2 4 6 8

Division

0.525

0.550

0.575

χ

FIG. S6. Excitation density nj of the site in the center of
the chain, nL/2(t), vs time for a reciprocal (ϕ = 0) XX model
(∆ = 0), starting from initial states with all spins up |⇑⟩
(blue) and all spins aligned in the x-direction

∏L
j |+⟩j (orange)

respectively. We set J/κ = 1 and L = 250. The main plot is
split into different time divisions (vertical dotted lines). Inset:
the exponent χ calculated in each division, where nj ∼ t−χ,
demonstrating that the values for the different initial states
appear not to be converging to the same value.

ation of the excitation density according to nj ∼ t−χ at
Γ = 0. We also report the initial state dependence of
the exponent χ. Fig. S5 shows χ vs system size for the
quench dynamics starting from the state with all spins
up |⇑⟩, which is displayed in Fig. 4(b) of the main text
and Fig. S4. Results are displayed for different ∆ values.
For ∆ = 0, the exponent is extracted from the density
at the boundary, i.e. j = L. For ∆ = 0.5 and ∆ = 2,
j = L − 10 is used to avoid atypical behavior very close
to the boundary. The dashed lines (fitted to the data for
L ≥ 100) give a finite-size extrapolation to L→ ∞ for the
cases of ∆ = 0 and ∆ = 0.5, respectively. We find that
the L = 600 data value of χ = 0.582 (χ = 0.583) is close
to the extrapolated values χ = 0.58(2) (χ = 0.581(2))
for ∆ = 0 (∆ = 0.5). This suggests that the finite-size
correction is quite small. The error is chosen to reflect
the range of χ values that when fitted appear broadly
compatible with the data. This process is crude and re-
sults in uncertainty that greatly exceeds the estimated
numerical error for χ due to the approximations of the
TEBD2 algorithm. For ∆ = 2 the finite-size correction is
more significant, and we do not see convergence over this
range of system sizes. However, the results do appear
broadly compatible with the aforementioned cases.

We now demonstrate that the exponent χ is initial
state dependent. Fig S6 shows the decay of the exci-
tation density nL/2(t) for a reciprocal (ϕ = 0) XX model
(∆ = 0) with L = 250 sites. Two different initial states
are considered: the state with all spins up |⇑⟩ and one

with all spins initially in the x-direction
∏L

j |+⟩j . The
observed χ values for the two initial states towards the



9

10110010−110−210−310−410−5

Γ/κ

10−4

10−3

10−2

10−1

100
n̄

L = 25L = 500

? ? ?

n̄0 ∼ Γ1/2

n̄ ∼ Γ0.603

n̄∼Γ

ξXXZ
heal ∼L

φ = −π/2

Free (J = κ)

XX (J = κ)

XXZ (J = κ)

XXZ (J = 2κ)

φ = −π/4

XXZ (J = κ)

φ = −π/4

XXZ (J = κ)

φ = 0 (Reciprocal)

XXZ (J = κ)
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FIG. S7. Excitation density n̄ vs Γ in the steady state
for different system sizes L and parameters. Results are
displayed for the following nonreciprocal (ϕ = −π/2) sys-
tems: XXZ (∆ = 2), XX (∆ = 0) and free fermions for
L = {25, 50, 150, 250, 500} (light to dark), as well as XXZ with
J/κ = 2 (∆ = 1) for L = 100. For ϕ = −π/4 we show XXZ

with and L = 100. Reciprocal (ϕ = 0) XXZ (∆ = 2), Ĥ = 0,
and free fermion results are also shown, all with L = 50. Var-
ious fits n̄ ∼ Γα are displayed (discussion in the main text).

Γ/J
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0.007

0.005
0.0035

0.0025
0.0015
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FIG. S8. Scaled connected correlation Cj(Γ)(Γ/κ)
−2α vs (j−

L/2)(Γ/κ)ν , with α = 0.603 and ν = 0.386, in the steady-
state for a range of Γ values. Data is displayed for XXZ
(∆ = 2) and XX (∆ = 0), see legend. We set J/κ = 1 and
L = 250.

end of the displayed time interval are χ = 0.515 and
χ = 0.58. These values appear to be moderately close to
convergence; the trend shown in the inset suggests that
a longer simulation would only result in modest changes.
We therefore conclude that the exponents are unlikely to
converge to the same value unless there is a change in
the behavior over extremely long time-scales. At present
the reasons for the dependence on the initial conditions
is not well understood. Its resolution is left for future
work.

Additional data

Here, we provide additional data to further demon-
strate the scaling in the main text. The additional cases
were not included in the main text to preserve the fig-
ure clarity. Fig. S7 shows the excitation density n̄ vs Γ
for the XXZ system with a large number of system pa-
rameters. In comparison to Fig. 2(a) of the main text,
additional system size data is provided, elucidating the
emergence of the scaling at larger system sizes.
Fig. S8 shows the scaled connected correlation

Cj(Γ)(Γ/κ)
−2α vs (j − L/2)(Γ/κ)ν , see Eq. (10) of the

main text, for a variety of system parameters. In compar-
ison to Fig. 3(b) of the main text, data is also displayed
for the XX (∆ = 0) cases, further demonstrating the
universality.
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[S13] B. Buča, C. Booker, M. Medenjak, and D. Jaksch, New

J. Phys. 22, 123040 (2020).
[S14] M. Nakagawa, N. Kawakami, and M. Ueda, Phys. Rev.

Lett. 126, 110404 (2021).
[S15] H. Yoshida and H. Katsura, Phys. Rev. A 107, 033332

(2023).
[S16] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[S17] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803

(2018).
[S18] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
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