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Abstract

We propose minimal transport experiments in the coherent regime that can probe

the chirality of twisted moiré structures. We show that only with a third contact

and in the presence of an in-plane magnetic field (or other time-reversal symmetry

breaking effect), a chiral system may display non-reciprocal transport in the linear
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regime. We then propose to use the third lead as a voltage probe and show that opposite

enantiomers give rise to different voltage drops on the third lead. Additionally, in the

scenario of layer-discriminating contacts, the third lead can serve as a current probe,

capable of detecting different handedness even in the absence of a magnetic field. In a

complementary configuration, applying opposite voltages on the two layers of the third

leads gives rise to a chiral (super)current in the absence of a source-drain voltage whose

direction is determined by its chirality.
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Introduction

The idea of chirality permeates many branches of science,1–3 and also in condensed matter

physics the concept is used to describe electronic properties in reciprocal and real space. In

reciprocal space, chirality defines the handedness of the spin of the electron to its momen-

tum,4–6 in real space, chirality depicts the handedness of molecules and solids that cannot

be superimposed onto their mirror images.1,7 Most generally, chirality always emerges when

discrete symmetries such as refection, time-reversal or particle-hole symmetry are broken.

Independent of the setting, chiral systems offer opportunities to observe new phenomena

as well as challenges regarding their detection.6–8 The signature of topological insulators, e.g.,

is the existence of chiral dissipationless states at the boundaries of the sample,4,6,8 and the

electrical detection of these states requires non-local transport measurements.9 On the real

space side, chiral molecules spin polarize the electric current passing through them,10 and

the chiral-induced spin selectivity (CISS) effect is detected in a two terminal configuration

as a non-linear I-V characteristic.7 Also, electrical magneto-chiral anisotropy in a classi-

cal four terminal configuration has been observed, where the longitudinal enantio-selective
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magneto-resistance is non-linear in the current.11–13 Finally, in non-centrosymmetric mate-

rials, chirality manifests itself in various non-reciprocal response phenomena14–18 where the

resistance depends linearly on the current causing a non-linear voltage drop in a two terminal

setup.19–21

Van der Waals moiré materials offer new opportunities to engineer certain geometric

structures that can lead to novel properties.21–23 For example, twisted bilayer graphene24–29

(TBG), which has recently attracted great attention due to discovery of novel electronic

phases,30–34 can be rotated clock- or anti-clockwise. Due to the finite interlayer separation,

TBG heterostructures with opposite twist angles can only be superimposed onto each other

after performing a mirror reflection with respect to the xy-plane. Thus, TBG is intrinsically

chiral which has been experimentally demonstrated by observing optical dichroism without

breaking time-reversal symmetry.35 The effect becomes largest for frequencies which induce

transitions between states that are maximally delocalized between the two layers such that

the misalignment between layers is most effective.36,37 But also in the dc-limit, the chirality

of TBG is manifested by intrinsic magnetic-electric coupling.38–51 In the dc-limit with broken

time reversal symmetry, an electrical magnetochiral anisotropy is anticipated to emerge.52

Nevertheless, in conventional transport experiments where the net current in voltage leads

is maintained at zero,53,54 the influence of chirality has not been a significant factor thus far.

In this work, we precisely fill in this gap by investigating electronic transport through

TBG in the linear regime within the Landauer-Büttiker formalism. Using general symmetry

arguments, we point out that in order to distinguish different enantiomers, i.e., samples with

twist angles θ and −θ, respectively, it is crucial to have three leads. This is contrary to

the zero-field superconducting diode effect where two leads are sufficient.16,55–61 The third

lead can now either be used as a voltage probe that detects the chirality if a magnetic field

in applied parallel to the layer. Or, in the case of layer-discriminating contacts, it can be

used as current probe even in the absence of a magnetic field. We thus show that it is not

necessary to break time-reversal symmetry with a magnetic field in order to observe the
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layer-discriminating transverse currents effect in a typical transport experiment.

Landauer formalism and general symmetries
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Figure 1: (Color online) (a) and (b): Proposed setup for voltage probe detection of chirality
in the presence of a magnetic field (B = B ex). The reading of the voltage V3 is opposite for
the opposite chiralities depicted. The Green color stands for a layer twisted by a positive
angle, while the violet means a negative twisted angle layer. (c) Schematic representation of
the twisted bilayer graphene (TBG) three-terminal device, the yellow and red dots represent
the atomic sites in contact with leads 1, 2 and 3 respectively.

We consider two systems with opposite twist angles ±θ or chiralities, related to each

other by a mirror symmetry with respect to a horizontal plane midway between the layers.

Notice that in this symmetry operation we include the leads, which we consider, for the

moment, equally coupled to both layers. The reason for this layer-symmetric attachment of

leads is twofold: first, hopefully easier experimental realization, and second, simplified chiral

analysis for, otherwise, a right lead attached to the bottom layer in the θ flake would become
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a right lead, but in the top layer for the mirror flake with opposite chirality −θ. Let us also

assume that there are N leads attached to the system, and that the current Ip in lead p is54

Ip =
∑
q

Gpq[Vp − Vq], (1)

where Vq is the potential of lead q over ground level and the conductance Gpq = 2e2

h
T pq is

proportional to the total transmission T pq between lead q lead p. Because of the inherent

symmetries of the transmission matrices, the following reciprocity relation holds54

Gpq(θ,B) = Gqp(θ,−B) , (2)

where B is the magnetic field, see the Supplementary Information (SI). In our case, it will

denote an in-plane magnetic field.

We now perform a z-reflection by mapping z to −z for each piece of matter, including

sources if external fields are present. This is the composition of space-inversion, (x, y, z) →

(−x,−y,−z), followed by a π-rotation around the z-axis, see Fig. 1-(c), where the origin is

placed in the center and midway between the planes. By this, one maps θ → −θ, p → p,

q → q, and, crucially important here, B → −B, i.e., B is an axial vector, first unchanged

by space-inversion but later changing sign upon the π-rotation around the z-axis. In twisted

systems, we thus also have the chiral reciprocity relation

Gpq(θ,B) = Gpq(−θ,−B) , (3)

valid for in-plane magnetic fields and layer-symmetric attachments. This correlation shows

that there is no way to detect the sign of the chirality without magnetic fields in twisted

arrangements with layer-symmetric leads, because Gpq(θ,B = 0) = Gpq(−θ,B = 0). On
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the other hand, the correspondence expressed in Eq. (12) implies a locking of chirality and

field.

To exploit this relation, let us now fix the direction, en, of the in-plane magnetic field,

B = Ben and expand the conductance to linear order in B,

Gpq(θ, B) = Gpq(θ, 0) + ∆pq(θ)B , (4)

Gqp(θ, B) = Gqp(θ, 0) + ∆qp(θ)B . (5)

In conjunction with Eqs. (11) and (12) and knowing, as stated earlier, that Gpq(θ, 0) =

Gqp(θ, 0) = Gqp(−θ, 0) we arrive at

∆pq(θ) = −∆qp(θ) = −∆pq(−θ) . (6)

The above equation indicates an electrical mechanism to detect chirality of twisted devices

through conductance measurements even with layer-symmetric leads.

Including the third lead as voltage probe for chirality

Let us now focus on the minimal system that can detect chiral properties in the linear regime.

The device with three leads is depicted in Fig. 1(a)-(b). All leads couple equally to both

layers, as previously assumed and lead 1 and 2 have equal number of channels. In the absence

of a magnetic field, the currents can be obtained from Eq. 1


I1

I2

I3

 =


G0

12 +G0
13 −G0

12 −G0
13

−G0
12 G0

12 +G0
13 −G0

13

−G0
13 −G0

13 2G0
13



V1

V2

V3

 , (7)
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where it is defined that Gpq(±θ,B = 0) = G0
pq = G0

qp as well as assumed, based on the

symmetry of the problem, that G0
13 = G0

23. When B ̸= 0, the additional contribution to the

conductance matrix is:


δI1

δI2

δI3

 =


0 −δG +δG

+δG 0 −δG

−δG +δG 0



V1

V2

V3

 , (8)

where the corrections are characterized by a single parameter to linear order in |B|, δG =

∆(θ)B. This is a consequence of the conductance sum rule
∑

q ̸=p Gpq(+B) =
∑

q ̸=p Gpq(−B)

which implies that
∑

q ̸=p∆pq = 0. Now, we can use the third lead as a voltage probe,

imposing I3 = 0 while applying a source-drain voltage drop, V1 = V/2, V2 = −V/2. Then

to linear order in the B-field, the voltage probe, V3, yields

V3

V
=

δG

2G0
13

=
∆(θ)

2G0
13

B. (9)

Previously, it was demonstrated that ∆(θ) = −∆(−θ), this ensures that the voltage probe

becomes also a probe of the chirality sign (V3(θ) = −V3(−θ)).

Numerical implementation

Having established the basic relations that allow the detection of handedness through electric

measurements, our attention turns to their numerical calculation in a TBG region of dimen-

sions W × Lx, where both W and Lx are set to 50 nm (the system is sketched in Fig. 1(e)).

The computation is performed employing the tight-binding model and Green’s functions. It’s

crucial to note that we opt for multiple neighbors for each site to replicate the characteris-

tics of TBG. As a consequence, the charge neutrality point (CNP) emerges at approximately

E ≈ 0.2961t0, where t0 represents the nearest neighbor hopping. Consequently, all numerical
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outcomes presented in this study are offset by this value and EF = E− 0.2961t0. For detail,

we refer to the supplemental information. There, we also show that the reciprocity relations

as delineated in Eqs. (11) and (12) are correctly implemented in our numerical calculations.
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Figure 2: (Color online) (a), (d)-(f) V3 for the different twist angles as function of B parallel
to the x-axis. (b) Value and (c) full width at half maximum (FWHM) of the DOS peak
without magnetic field. The Roman numerals I, II, and III, along with the shaded regions,
serve as visual guides to differentiate various chirality behaviors. In the panels where V3/V
is presented, the Fermi energy is set to zero, EF = 0.
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Detecting chirality by voltage probe with a magnetic field

We now consider the case where V1 = V/2, V2 = −V/2 and I3 = 0. Using this condition,

V3/V = (G31 −G32)/(2 G31 + 2 G32) can be calculated as function of the magnetic field for

different twist angles and energies. For θ = ±1.29◦ and Fermi energy EF = 0 meV, Fig.

2(a) shows that V3/V is linear in B with opposite slope for opposite twist angles, confirming

the prediction of Eq. (9) that lead 3 becomes also a probe for chirality and that quantum

transport is sensitive to chirality. However, it is not possible to relate in advance the sign nor

the strength of the linear field-dependence to a certain twist angle. This is similar to previous

observations for the infinite system,37,38,40 where the chiral component of the conductivity

was shown to exhibit highly non-monotonous behavior with filling factor and twist angle.

For large angles, the effect of the handedness of the junction on transport is negligible

and V3/V1 ≈ 0. This already indicates that the effect is mainly electronically and not

configurationally driven, for both layers are highly decoupled for large angles. For small

angles, the density of states (DOS) is presented in Fig. 2(b)-(c) in terms of the the largest

value as well as the full width at half maximum (FWHM) of the main peak. From there, we

infer that the magic angle is located around ∼ 1.23◦ where the highest and narrowest DOS

peak appears and serves to diagnose the magic-angle regime.

Additionally, three regions are shaded and identified by the Roman numbers I, II and III

conforming to the behavior of V3. For θ > 1.26◦ (region III in red), a linear-in-B regime is

perfectly defined with negative slopes for positive twist angles as shown in Fig. 2(d). In the

blue shaded region I (θ < 1.20◦), the signal of the linear response is inverted and positive

slopes appear for positive twist angles; characteristic lineshapes of V3 for angles in these

region are presented in Fig. 2(f).

Around the magic angle, the linear relation on the magnetic field becomes weaker and

the non-linear B-dependence dominate the response as shown in Fig. 2(e). However, even

for twist angles in this region, the chirality obeys the symmetry relation V3(+θ) = −V3(−θ))

as discussed in the SI, where also the effect of different coupling strengths to lead 3 are
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presented.

Let us finally emphasize that our approach utilizes the Landauer-Büttiker formalism

within the linear regime. In this regime, the conductance G is computed in equilibrium,

thus avoiding any dependence on current density. This distinction ensures that in our setup,

the relationship between the voltage probe reading, V3, and the source-drain voltage (and

current) remains linear.

Detecting chirality by current probe without a magnetic

field

Let us now discuss how to detect the chirality of a system without a magnetic field. In the

infinite TBG, the transverse conductivity is equal in magnitude, but of opposite direction

with respect to the two layers due to basic symmetry constrains.37

Inducing a transverse current

In the setup proposed in Figs 3(a)-(b), we expect to see layer-discriminating transverse

currents without the presence of a magnetic field as they are allowed by the same symmetry

principles. This implies that a source-drain voltage V = V1 − V2 between lead 1 and lead

2 will be accompanied by transverse currents in both layers, flowing in opposite directions.

As V3t = V3b, one can interpret this as a vertical "supercurrent" flowing from one layer to

the other. In an infinite system, this effect implies that a net current in the x direction is

accompanied by layer-opposite currents in the y direction, which can be thought of as an

in-plane magnetic moment along the net flow, a hallmark of chirality.37,38,62–64

We need first to generalize Eq. (12) by including the layer index via q → qν with

ν = t, b. Performing the reflection and assuming the same coupling between the two layers

10
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Figure 3: (Color online) (a) and (b): Proposed setup for chirality detection by current probe
without magnetic field. Top and bottom transverse currents reverse direction for the opposite
chiralities depicted. The Green color stands for a layer twisted by a positive angle, while
the violet means a negative twisted angle layer. The detection of chirality by current probe
requires now four leads (1, 2 3t and 3b), because the layer index top and bottom of lead
3 is now discriminated. (c) and (d): Alternative set-up showing the same electro-magnetic
coupling without magnetic field. Now, there is no source-drain voltage, i.e., the potential V1

and V2 are equal, but a potential difference between the top and the bottom layer induces a
current whose direction depends on the chirality.

as schematically shown in Figs. 3(a)-(b), we then have

Gqν,pµ(θ) = Gqν̄,pµ̄(−θ) , (10)

where ν̄, µ̄ denote the opposite layer of ν, µ. We can now extend Eq. (33) to effectively

four leads: leads one and two remain layer-symmetric as before, while the original third

lead splits into top (3t) and bottom (3b), see Fig. 1(c)-(d) and SI for reference. With the

above in mind, in Fig. 4(a) we show the conductance from lead 1 to lead 3 in the top layer,
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G3t1, and the conductance from lead 1 to the lead 3 in the bottom layer, G3b1. Since the

contacts are symmetric, there would be no difference in the two conductances if the system

were achiral without a magnetic field. However, a clear difference is seen giving rise to a

chiral current probe in the absence of a magnetic field. Note that reversing the angle maps

the conductance G3b1(θ) to G3t1(−θ) and vice versa, as dictated by the general symmetry

relations of Eq. (10). Notice that there is no need for dealing separately with lead 2 for, in

our geometry, G3t 2 = G3b 1 and G3t 1 = G3b 2.
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Figure 4: (Color online) (a) Conductance (in units of 2e2/h) from lead 1 to lead 3 bottom
layer (G3b 1) and from lead 1 to lead 3 top layer (G3t 1) for θ = ±1.20◦. (b) G3t 1 − G3b 1 =
(I3b−I3t)/V (in units of 2e2/h) for θ = ±1.20◦,±1.30◦. From the formalism sign conventions,
the finite value of the plotted magnitude implies currents of equal magnitude, |I3b| = |I3t|,
running opposite in opposite leads, and reversing direction upon chirality reversal, as depicted
in Fig. 3(a)-(b).

Now, we can consider the arrangement schematized in Figs. 3(a)-(b), V1 = V/2, V2 =

−V/2, and V3b = V3t = 0, in which no net current flows between system and the two 3t and 3b

reservoirs: I3b+I3t = 0. Yet, a finite current from the upper lead to the lower lead can then be

deduced from the finite value of δG(θ) = (I3b−I3t)/(V1−V2) = G3t 1(θ)−G3b 1(θ). Remember

that, from the sign conventions of the formalism, this implies currents of equal magnitude,

|I3b| = |I3t|, running in opposite directions in top and bottom leads, despite the terminals

3t and 3b having equal potentials, as illustrated in Figs. 1(c)-(d). Reversing the chirality

reverses the layer currents, I3b(t)(θ) = −I3b(t)(−θ), therefore the experimental detection of
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these currents becomes a probe for chirality without magnetic field (δG(θ) = −δG(−θ)) as

shown in Fig. 4(b).

The detection of this vertical "supercurrent" can be difficult with real, lossy leads. Al-

ternatively, one could use the top and bottom third leads as independent voltage probes,

whose different readings would then reveal the chirality, as explained in the SI.

Inducing a longitudinal current

A complementary configuration based on the same symmetry principles is presented in Figs

3(c)-(d), where the same phenomenon also gives rise to a "supercurrent" from reservoirs 1

to 2 without any voltage drop between them, V1 = V2 = 0, when now the transverse currents

are driven by a corresponding voltage drop, V3t = −V3b = V .

A finite current of magnitude |I1| = I2| from the lead 1 to lead 2 (or viceversa), can

then be deduced from the finite value of δG(θ) = (I1 − I2)/(V3t − V3b) = G3t 1(θ)−G3b 1(θ).

Note that δG(θ) is given by the same expression as in the previous subsection and which is

shown in Fig. 4(b). The electro-magnetic coupling is thus the same in both cases as already

discussed in Ref.37 Further discussion can be found in the SI, where it is also shown how to,

instead, use terminals 1 and 2 as voltage probes to bypass the difficulties of lossy leads in

the "supercurrent" detection.

Summary and conclusions.

In summary, we have proposed two linear transport experiments that can detect the intrinsic

handedness of chiral systems. First, exact symmetry arguments were provided to show that

a voltage probe can become a chirality probe in the presence of a in-plane magnetic field for

external leads that couple symmetrically to both layers. Secondly, we also demonstrated that

a current probe discriminating between the two layers can become a chirality probe even in

the absence of a magnetic field. Different enantiomers can thus be distinguished by minimal
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transport experiments that will hopefully shed more light on this intriguing symmetry, also

present in various organic molecules.

Using the Landauer-Büttiker formalism, the voltage reading of the third lead and the

layer-discriminating, opposite currents, between system and third reservoir(s) were explicitly

calculated for a finite sample of twisted bilayer graphene (TBG), confirming our predictions.

In both situations, when approaching the magic angle, there is change of chirality measured

through electronic means (voltage and current probes) that does not correspond to an in-

version of the actual twist angle between the layers.40 In the case of layer-discriminating

leads, we showed that, in the presence of chirality, a net current flow between source and

drain reservoirs is accompanied by transverse currents, opposite in each layer. This provides

a realization in a Landauer-Büttiker scenario, more accessible experimentally, of predictions

previously made37,38,40 on the basis of linear response for infinite systems, that in-plane

magnetic moments should accompany net current flows in chiral bilayers.

Our one-particle formalism does not allow for symmetry broken ground-states. However,

for a time-reversal symmetry (TRS) broken ground-state |GS⟩ we expect an alternative chiral

reciprocity relation even in the absence of a magnetic field, involving only the ground-state

Gpq(θ, |GS⟩) = Gpq(−θ, T |GS⟩) where T denotes a the anti-unitary time-reversal operator.

This relation allows for the detection of a TRS broken ground-state by measuring a non-zero

voltage at the third lead at B = 0.

Our discussion should also be relevant for other chiral systems, e.g., for those display-

ing the planar Hall effect.65,66 Then, the continuous variable θ denoting the twist angle is

simply replaced by a discrete variable χ = ±1 denoting the different enantiomers. Even

the emergence of a magic angle seems to be more general since it can be observed in Weyl

semimetals, too.67 Let us finally note that the third lead can also be realized by a local

probe, especially in the layer-discriminating case. Real-space mapping of the handedness

and thus small angle-deviations around the magic angle should be detectable.
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Supplementary Information

Green´s functions and tight binding method

Employing the Green’s functions we have Gpq = 2e2

h
Tr[ΓpGΓqG†], where G = [E − HTBG −

Σ1 − Σ2 − Σ3]
−1 is the Green’s function of the central region, Σ1(2)(3) are the self-energies

of the leads and Γ1(2)(3) = i[Σ1(2)(3) − Σ†1(2)(3)] are the couplings of the central region to the

leads. Without loss of generality we can assume a wide band model for the leads, that is

a constant density of states (DOS) around the Fermi energy, which is typical in metallic

contacts. In that case, the self-energy term can be written as Σ1(2)(3) = −iπρ|t|2,54 were ρ

is de DOS of the contact and t is the hopping parameter between the leads and the central

twisted region. To guarantee a large number of injected modes we set ρL(R) = (πt)−1 were t

is the nearest neighbor hopping of graphene.62

The Hamiltonian of the central region (HTBG) is described by a tight-binding model where

the hopping amplitudes between sites i and j, tij(dij) = Vppσ(dij) cos
2(ϕ) + Vppπ(dij) sin

2(ϕ),

where the bond length dij = |dij| = |Rj−Ri| and ϕ denotes the angle formed by dij and the

z -axis. The value of the inter-atomic matrix elements is a function of the bond length:27,68

Vppσ = V 0
ppσe

−
dij−d0

δ , Vppπ = V 0
ppπe

−
dij−a

δ where V 0
ppσ = t0⊥ = 0.48 eV, V 0

ppπ = t0 = −2.7 eV,

a = 0.142 nm, d0 = 0.335 nm and δ = 0.184
√
3a. To accurately describe the electronic

properties of TBG, for each site i, the neighbours j are chosen inside a disc of radius dij ≤ 4a.

To include the effect of the in-plane magnetic field B = B (cos θBex + sin θBey) in the tight-

binding Hamiltonian, we use the Peierls substitution where the hopping parameters are

modified to tij = tije
iϕij where ϕij = ieA · (Ri −Rj) /ℏ. In this expression the vector

potential A = zB (sin θBex − cos θBey) is evaluated at (Ri +Rj) /2. Furthermore, we use a

symmetric arrangement where top and bottom layer are located at z = ±d/2 being d = 0.335

nm the interlayer distance.
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Figure 5: (Color online) Illustration of field dependence and symmetry properties of con-
ductance matrix entries. (a) Conductance G21(±1.16◦, B) in units of 2e2/h as a function of
the Fermi energy EF , showing the effect of the in-plane magnetic field B = Bex. (b) The
reciprocity relations, G21(+B) = G12(−B). (c) G21(+θ,B = 0) = G21(−θ,B = 0). (d)-(f)
The chiral reciprocity relations, Gpq(θ,B) = Gpq(−θ,−B).

Numerical validation of reciprocity relations

In the main text, we derived the standard and chiral reciprocity relation

Gpq(θ,B) = Gqp(θ,−B) , (11)
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Gpq(θ,B) = Gpq(−θ,−B) . (12)

We will now numerically validate the reciprocity relations Eqs. (11) and (12) in order to

show the reliability of our numerical approach. To this end, we distinguish the effect of an

in-plane magnetic field on the conductance and then change twist angle and the field orien-

tation. The black line in Fig. 5(a) corresponds to G21 for a TBG junction with θ = +1.16◦

without magnetic field, a peak originated by Van Hove singularities around the CNP is clearly

appreciated.69,70 When the magnetic field is switched on along the +x-direction, the effect

is mainly observed for low energies as a splitting of the conductance peak. This is produced

by the separation of the Dirac points71–73 as function of the strength and orientation of the

field, that when projected onto the transport direction, appear at different energies (momen-

tum) of the incoming electrons. Inverting the direction of the field, i.e., the field pointing to

the negative x-direction, we observe that the traditional reciprocity relations, Eq. (11), are

fulfilled. In Fig. 5(b), we only present the case G21(+1.16◦,+20 T ) = G12(+1.16◦,−20 T )

to keep the discussion more transparent.

Without a magnetic field, it is not possible to detect the handedness of the TBG junc-

tion for layer-symmetric leads. To check this numerically, we again select the specific case

G21(+1.16◦, 0 T ) = G12(−1.16◦, 0 T ) in Fig. 5(c). However, this relation is no longer valid

if an in-plane magnetic field is present as already anticipated. In Figs. 5(d)-(f), we recog-

nize that the chiral reciprocity relations, Eq. (12), are fulfilled, i.e., G21(+1.16◦,+20 T ) =

G21(−1.16◦,−20 T ), G31(+1.16◦,+20 T ) = G31(−1.16◦,−20 T ) and G23(+1.16◦,+20 T ) =

G23(−1.16◦,−20 T ). Although, in Fig. 5 we only focus on specific twist angles (θ = ±1.16◦)

and fields (B = ±20ex T ) the reciprocity relations, Eqs. (11) and (12), are valid irrespective

of the twist angle and field intensity.
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Figure 6: (Color online) (a)-(c) Density of states for different twist angles without magnetic
field. (d)-(f) V3/V for the angles indicated in the DOS.

Magic angle regime and density of states

In the main text, we presented the highest value and the full width half maximum (FWHM)

of the density of states (DOS). Based on that, three regimes were identified and we labeled

the second regime as magic angle or flat band regime as it displayed the largest peaks and

the smallest FWHMs. The twist angles around 1.23◦ are slightly larger than the one found

in experiments of ∼ 1.1◦ due to the finite system size considered here.

The DOS was calculated by summing the diagonal elements of the spectral function

ρ(E) =
1

2π
Tr[A], (13)

which is defined as

A = GR(Γ1 + Γ2 + Γ3)GA. (14)
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The couplings Γ1(2)(3) = i[Σ1(2)(3) − Σ†1(2)(3)] and the retarded Green’s function G = [E −

HTBG − Σ1 − Σ2 − Σ3]
−1 were defined in the main text. Note that we neglect the inclusion

of an infinitesimal complex value in the retarded Green’s to avoid any possible effect in the

chiral response of the system.52 This fact has no effect on the transport properties because the

self-energies (Σi) have their own imaginary part. However, they are non-zero only for sites

in the vicinity of the leads. As a result, the peaks of the spectral function and consequently

the DOS are not perfectly smoothed around the CNP where a large number of states is

present.54

In Fig. 6, we present the full DOS and also the voltage probe V3 for a large range of twist

angles between θ = 1.47◦− 1.10◦. The left panel shows the results for twist angles θ > 1.26◦

where negative slopes in the linear regime are found for positive magnetic fields. The central

panel presents the DOS and V3 for twist angles around the magic angles (1.20◦ ≤ θ ≤ 1.26◦);

in this regime, no definite slope can be assigned to the voltage probe V3 around B ≈ 0.

Finally, the right panel shows the same information for twist angles θ < 1.20◦, where the

slope is reversed and thus positive in the linear regime.

This result show that there is a change of chirality around the magic angle as found in

the extended system.40 The observed voltage probe is thus an indication of an electronic

chirality which is not directly linked with the real space chirality which does not change for

positive twist angles.

Dependence of the voltage probe on magnetic field direc-

tion and coupling

Let us now discuss further results, i.e., the dependence of V3 on negative magnetic fields,

on the angle of the magnetic field with respect to the symmetry axis, on a backgate, as
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Figure 7: (Color online) (a)-(c) V3 in units of V for the positive and negative twist angles
with EF = 0 and B parallel to the x-axis. (d) Angular dependence of V3, where θB is the
angle between the in-plane magnetic field and the x-axis, for θ = ±1.16◦ and |B| = 1 T. (e)
Effect of the Fermi energy on V3 for θ = 1.20◦. (f) V3 changing the coupling between the
central region and lead 3 (t3D = 0.1t).

well as on the coupling to lead 3. In all cases we choose a symmetric source-drain voltage

drop,V1 = −V2 = V/2.

Behavior for negative magnetic fields

The symmetry arguments of the main text indicate that the relation, V3(+B, θ) = −V3(−B, θ),

is valid to linear order in B, in principle. Yet, the results seen in Figs. 7(a)-(c) point to an

exact relation. This is true because, in those Figs., the field is along the x direction of Fig. 1

of the main text, where an exact symmetry of our geometric setup holds, as explained later

when considering non-linear effects. It is also obviously that the behavior is independent of

whether the twist angle is above, around, or below the twist angle.
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Angle-dependence of the magnetic field on the conductance

For the same reason, we have V3(+θ,B) = −V3(−θ,B) only in the linear field regime, in

principle. As before if the magnetic field is along the x direction, this relation also holds in

the non-linear regime. For arbitrary directions, however, this symmetry is slightly broken as

seen in Fig. 7(d) that shows the angular dependence of V3. In this Figure, θB denotes the

angle between the in-plane magnetic field and the x-axis, for θ = ±1.16◦ and |B| = 1 T.

V3 is thus not symmetric with respect to θB = π and the phenomenological correction term

I ·B = |I||B| cos θB that was discussed in a different context for macroscopic devices, see

e.g. Refs. 1,14,19, does not match our results.

Gate dependence

All results so far were obtained for a neutral twisted graphene sample. In Fig 7(e), we show

results also for Fermi energies EF = ±1.2 and EF = ±2.4 meV. As can be seen, the linear

regime becomes more evident for θ = 1.20◦ at finite gate voltage. For EF = ±1.2meV, we

also have V3(EF ) = −V3(−EF ). This might have been expected as also the chiral part of

the conductance is an odd function of the chemical potential.40

However, this relation is not valid for EF = ±2.4 meV. We believe this to be a finite size

effect as also the DOS of the whole system as function of the twist angle changes, but more

detailed simulations are needed in order to understand the gate dependence of the voltage

probe.

Chiral engineering

Let us investigate the possibility of enhancing the chiral probe in the linear field regime as

suggested by Eq. (9) of the main text. In Fig. 7(f), we show V3 for θ = 1.20◦ with a reduced

coupling between the third lead and the central region (t3D = 0.1t). As anticipated, the

reduction of the coupling enhances the linear effect showing a possible route to engineer the

22



chiral response.

Reciprocity relations for the two-terminal conductance

A dependence of the conductivity on the direction of a magnetic field is forbidden by the

general Onsager relations. These state that for any linear response function KAB one has

KA,B(B) = KB̄,Ā(−B) with A,B arbitrary operators and Ā, B̄ the time-reversed operators.

For A = B = jx, we have Ā = B̄ = −jx and Kjx,jx(B) = K−jx,−jx(−B) = Kjx,jx(−B).

This result also holds within the Landauer formalism in a two-terminal setup, because

the unitarity of the S matrix imposes left-right reciprocity for any system attached to MT

modes, grouped into left and right leads, irrespective of any symmetry (or lack of) of the

Hamiltonian. To show this, we first discuss the following relation for the S matrix:

MT∑
m=1

|smn|2 = 1 ,∀n , (15)

see Datta (3.1.3b), where m(n) run over all channels attached to our system. Using that

|smn|2 = |sm←n|2 = Tm←n (Datta (3.1.1)) and grouping these channels into left(L) and

right(R) leads, one has

TLL + TR←L = NL , (16)

TRR + TL←R = NR . (17)

where NL(R) is the number of channels in the L(R) lead, with NR +NL = MT , and

TR←L =
∑
m∈R

∑
n∈L

Tm←n , (18)

with similar relations for the other pairings, see Datta (3.1.2).

Unitarity also implies the "not so obvious relation" in Datta’s own words, see Datta
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(3.1.3b) again,

MT∑
m=1

|snm|2 = 1 ,∀n , (19)

which leads to

TLL + TL←R = NL , (20)

TRR + TR←L = NR . (21)

The combination of Eqs. (16) and (20) implies reciprocity:

TR←L = TL←R , (22)

irrespective of any other consideration, except unitarity, always given in the non-dissipative,

linear regime.

Relations beyond linear order

Let us finally discuss extensions to the linear approach presented in the main text. Quite

generally, one can always write


I1

I2

I3

 = (M s +M a)


V1

V2

V3

 , (23)

where M s is a symmetric matrix, even in chirality and field, which we can denote as

M s(θ2,B2). M a is an asymmetric matrix that, from unitarity, depends on a single en-
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try

M a =


0 −δG +δG

+δG 0 −δG

−δG +δG 0

 , (24)

with

δG =
G12 −G21

2
= −G13 −G31

2
=

G23 −G32

2
, (25)

where now, δG is odd in chirality and field, which we can describe as

δG(θ,B) = σσ′δG(σθ, σ′B), (26)

with σ(σ′) = ±1. In the main text, we restricted δG to lowest (linear) order in B, but it

can be any odd function of field and chirality, generalizing Eq. (9) of the main text.

The voltage probe in the case of I3 = 0 can be written as

V3 =
V1 + V2

2
+ δṼ3

V1 − V2

2
, (27)

with

δṼ3 = δṼ e
3 + δṼ o

3 , (28)

where δṼ e = δṼ e(θ2,B2) is an even function of field and chirality, given explicitly by

δṼ e
3 =

(G31 +G13)− (G32 +G23)

2(G31 +G32)
. (29)

It vanishes for B = 0 in our left-right symmetrically chosen attachment for the third lead

as G31 = G32.

On the other hand, δṼ o, with expression

δṼ o
3 =

(G31 −G13)− (G32 −G23)

2(G31 +G32)
=

δG

(G31 +G32)
, (30)
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is an odd function of field and chirality, formally:

δṼ o(θ,B) = σσ′Ṽ o(σθ, σ′B), (31)

with σ(σ′) = ±1. Notice that to linear order in B, one has δṼ3(θ,B) = −δṼ3(−θ,B), as

asserted in the main text. This relation needs not hold beyond linear order, but, never-

theless, this does not compromise the chiral sensitivity of the voltage probe for, in general,

δṼ3(θ,B) ̸= δṼ3(−θ,B).

In spite of the above generalizations, our numerical calculations show that, when the field

is in the x-direction, one always has

δṼ3(θ, B) = −δṼ3(−θ, B), B = Bex , (32)

as seen e.g. in Fig. 2 a,b,c. This is no accident, because in our geometry, a π rotation around

the y-axis reverses B and exchanges leads 1 and 2, leading necessarily to Eq. (32) as an

exact statement - beyond linear order. This symmetry is also responsible for the vanishing

of δṼ3 when the field is oriented along the y-direction, see Fig. 2 d.

As said, Eq. (32) no longer holds beyond linear order when the field is oriented in an

arbitrary direction, as illustrated in Fig. 2 d. Nevertheless, non-linear effects are rather

small, at least for B = 1T , as can be seen in that figure. Moreover, as previously asserted,

the chiral sensitivity of the probe remains such that δṼ3(θ,B) ̸= δṼ3(−θ,B).
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Landauer-Büttiker description of the layer-discriminating

setup without magnetic field

Now we have four leads: 1, 2, 3t, and 3b. Therefore,



I1

I2

I3t

I3b


=



G21 +G3t1 +G3b1 −G21 −G3t1 −G3b1

−G21 G21 +G3t1 +G3b1 −G3b1 −G3t1

−G3t1 −G3b1 G3b3t +G3t1 +G3b1 −G3b3t

−G3b1 −G3t1 −G3b3t G3b3t +G3t1 +G3b1





V1

V2

V3t

V3b


,

(33)

where we have made use of the reciprocity in the absence of magnetic field, Gij = Gji, and

the additional symmetry of our geometric arrangement, G3t 2 = G3b1 and G3t1 = G3b2.

Detecting chirality with transverse currents: layer contrasting Hall

effect

If the terminals 3t and 3b are kept at the same potential, V3t = V3b, then

I3b − I3t
V1 − V2

= G3t1 −G3b1, (34)

as asserted in the main text, with a finite value of this magnitude implying chirality.

For V1 = V/2, V2 = −V/2, and V3b = V3t = 0, in addition to the standard source-drain

current between 1 and 2 reservoirs, one gets transverse currents,

I3b + I3t = 0, (35)

and, therefore, no net current flows from the system to reservoirs 3t + 3b, kept at the same

potential V3 = 0. Yet a finite, |I3t| = |I3b|, and layer-opposite current in the transverse leads

emerges due to chirality, as depicted in Fig. 3 (a) and (b) of the main text.
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The experimental detection of these transverse currents could be problematic, for real

leads are always resistive. Nevertheless, the same physics can be exposed with an alterna-

tive measurement, where the transverse leads are used as independent voltage probes, and

chirality manifests as different voltage readings, V3t ̸= V3b. This voltage difference can be

interpreted physically as the chemical potential difference due to the carrier accumulation-

depletion of the "frustrated supercurrent" at the edges. The new conditions would be

V1 = V/2, V2 = −V/2, and I3b = I3t = 0. Eq. 33 then gives

V3t − V3b =
G3t1 −G3b1

G3t1 +G3b1 + 2G3b3t

V. (36)

Notice that the denominator of Eq. 36 is even in chirality and, therefore, a finite value of

(G3t 1 − G3b 1), opposite for opposite chiralities (±θ), reveals the chirality, as in the case of

current detection.

Complementary setup for chirality detection

Guided by results for the conductivity in an infinite system,37,38 in the main text, we discussed

a complementary setup based on the same symmetry properties. It consists of forcing the

opposite transverse currents by means of a voltage drop in the corresponding reservoirs,

V3t = +V/2, V3b = −V/2, and then observing as chiral probe the emergence of a net current

between reservoirs 1 and 2, without any voltage drop between the terminals, V1 = V2 = 0,

a "supercurrent" in some sense, see Fig. 3 (c) - (d) of main text. Under the specified

conditions, V3t = +V/2, V3b = −V/2, V1 = 0, V2 = 0, Eq. 33 leads to

I1 = −I2 = (G3b 1 −G3t 1)V/2, (37)

that is, the appearance of a net longitudinal current between reservoirs 1 and 2. To avoid

potential misunderstandings, notice that the minus sign of I2 in Eq. 37 comes from usual

convention in the Büttiker formalism that a positive Ii means current injected from reservoir
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i to the system, and viceversa. Therefore, Eq. 37 describes the same amount of current

entering to the flake from reservoir 1 and exiting to reservoir 2, again, without any voltage

drop between them, V1 = V2 = 0.

As in the original arrangement of the manuscript, the effect requires chirality mani-

fested as a finite value of (G3t 1 −G3b 1), opposite for opposite chiralities (±θ). The value of

(G3t 1 −G3b 1) as function of Fermi level in twisted bilayer graphene was plotted in the main

manuscript.

As before, experimental detection of this "supercurrent" with real resistive leads can be

problematic. We can then opt for using leads 1 and 2 as voltage probes, as in the previous

case. The new conditions would be V3t = +V/2, V3b = −V/2, and I1 = I2 = 0. Eq. 33 then

gives

V1 − V2 =
G3t1 −G3b1

G3t1 +G3b1

V. (38)

As in Eq. 36, the denominator of Eq. 38 is even in chirality and, once again, it is the finite

value of (G3t 1 −G3b 1), opposite for opposite chiralities (±θ), what reveals the chirality.

Change in chirality in the infinite system with time-reversal

symmetry

In Ref. 40, it was shown that electronic chirality is a Fermi-surface property and given

by the chiral Drude weight

Dxy =
1

2A

∑
k,n

ez · (j1k,n × j2k,n)δ(ϵk,n − EF ) . (39)

It is defined by the sheet currents of layer ℓ denoted by jℓk,n and sum over all states labeled by

the band index n and Bloch states k with energies around the Fermi energy EF . Furthermore,
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Figure 8: (Color online) Left panel: The chiral Drude weight for large twist angles. Right
panel: The chiral Drude weight below and above the magic angle θm = 1.08◦.

A denotes the area of the sample and the eigenenergies ϵk,n are given in units of the carbon-

carbon hopping amplitude t ∼ 2.7eV.

The continuum model of twisted bilayer graphene shows an approximate particle-hole

symmetry. Then the chiral Drude weight is in an odd function of the Fermi energy with

Dxy(EF ) = −Dxy(−EF ). The change in chirality at the neutrality point can be seen on the

left and right panel of Fig. 8. However, for large angles the chirality is always positive for

EF < 0. This changes when the twist angle is below the magic angle θm = 1.08◦ and the

chirality for e.g. θ = 0.96◦ is negative for EF < 0.

Interestingly, the shape of the curves is similar to the one of the right panel for positive

twist angle of Fig. 4 of the main text. In contrary to the case of the infinite system, these

curves do not change around zero due to a residual chirality which is due to finite size effects

and not related to the band structure.

30



References

(1) Wagnière, G. H. On chirality and the universal asymmetry: reflections on image and

mirror image; John Wiley & Sons, 2007.

(2) Salam, A. The role of chirality in the origin of life. Journal of Molecular Evolution

1991, 33, 105–113.

(3) Wilczek, F. Chiral Matter-Proceedings Of The Nobel Symposium 167 ; World Scientific

Publishing Co, 2023; pp 1–14.

(4) Wang, J.; Zhang, S.-C. Topological states of condensed matter. Nature Materials 2017,

16, 1062–1067.

(5) Chiu, C.-K.; Teo, J. C. Y.; Schnyder, A. P.; Ryu, S. Classification of topological quan-

tum matter with symmetries. Rev. Mod. Phys. 2016, 88, 035005.

(6) Felser, C.; Gooth, J. Topology and chirality. CHIRAL MATTER: Proceedings of the

Nobel Symposium 167. 2023; pp 115–141.

(7) Yang, S.-H.; Naaman, R.; Paltiel, Y.; Parkin, S. S. P. Chiral spintronics. Nature Reviews

Physics 2021, 3, 328–343.

(8) Hasan, M. Z.; Chang, G.; Belopolski, I.; Bian, G.; Xu, S.-Y.; Yin, J.-X. Weyl, Dirac

and high-fold chiral fermions in topological quantum matter. Nature Reviews Materials

2021, 6, 784–803.

(9) Valenzuela, S. O. NONLOCAL ELECTRONIC SPIN DETECTION, SPIN ACCUMU-

LATION AND THE SPIN HALL EFFECT. International Journal of Modern Physics

B 2009, 23, 2413–2438.

(10) Aiello, C. D. et al. A Chirality-Based Quantum Leap. ACS Nano 2022, 16, 4989–5035,

PMID: 35318848.

31



(11) Pop, F.; Auban-Senzier, P.; Canadell, E.; Rikken, G. L. J. A.; Avarvari, N. Electrical

magnetochiral anisotropy in a bulk chiral molecular conductor. Nature Communications

2014, 5, 3757.

(12) Aoki, R.; Kousaka, Y.; Togawa, Y. Anomalous Nonreciprocal Electrical Transport on

Chiral Magnetic Order. Phys. Rev. Lett. 2019, 122, 057206.

(13) Yokouchi, T.; Kanazawa, N.; Kikkawa, A.; Morikawa, D.; Shibata, K.; Arima, T.;

Taguchi, Y.; Kagawa, F.; Tokura, Y. Electrical magnetochiral effect induced by chiral

spin fluctuations. Nature Communications 2017, 8, 866.

(14) Tokura, Y.; Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum

materials. Nature Communications 2018, 9, 3740.

(15) Cheong, S.-W.; Talbayev, D.; Kiryukhin, V.; Saxena, A. Broken symmetries, non-

reciprocity, and multiferroicity. npj Quantum Materials 2018, 3, 19.

(16) Ando, F.; Miyasaka, Y.; Li, T.; Ishizuka, J.; Arakawa, T.; Shiota, Y.; Moriyama, T.;

Yanase, Y.; Ono, T. Observation of superconducting diode effect. Nature 2020, 584,

373–376.

(17) Atzori, M.; Train, C.; Hillard, E. A.; Avarvari, N.; Rikken, G. L. J. A. Magneto-chiral

anisotropy: From fundamentals to perspectives. Chirality 2021, 33, 844–857.

(18) Rikken, G. L. J. A.; Avarvari, N. Dielectric magnetochiral anisotropy. Nature Commu-

nications 2022, 13, 3564.

(19) Rikken, G. L. J. A.; Fölling, J.; Wyder, P. Electrical Magnetochiral Anisotropy. Phys.

Rev. Lett. 2001, 87, 236602.

(20) Krstić, V.; Roth, S.; Burghard, M.; Kern, K.; Rikken, G. L. J. A. Magneto-chiral

anisotropy in charge transport through single-walled carbon nanotubes. The Journal of

Chemical Physics 2002, 117, 11315–11319.

32



(21) Ideue, T.; Iwasa, Y. Symmetry Breaking and Nonlinear Electric Transport in van der

Waals Nanostructures. Annual Review of Condensed Matter Physics 2021, 12, 201–223.

(22) Yananose, K.; Cantele, G.; Lucignano, P.; Cheong, S.-W.; Yu, J.; Stroppa, A. Chirality-

induced spin texture switching in twisted bilayer graphene. Phys. Rev. B 2021, 104,

075407.

(23) Scammell, H. D.; Li, J. I. A.; Scheurer, M. S. Theory of zero-field superconducting

diode effect in twisted trilayer graphene. 2D Materials 2022, 9, 025027.

(24) Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Graphene Bilayer with

a Twist: Electronic Structure. Phys. Rev. Lett. 2007, 99, 256802.

(25) Suárez Morell, E.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Flat bands in

slightly twisted bilayer graphene: Tight-binding calculations. Phys. Rev. B 2010, 82,

121407(R).

(26) Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. P.

Natl. Acad. Sci. Usa. 2011, 108, 12233–12237.

(27) Moon, P.; Koshino, M. Energy spectrum and quantum Hall effect in twisted bilayer

graphene. Phys. Rev. B 2012, 85, 195458.

(28) San-Jose, P.; González, J.; Guinea, F. Non-Abelian Gauge Potentials in Graphene

Bilayers. Phys. Rev. Lett. 2012, 108, 216802.

(29) Weckbecker, D.; Shallcross, S.; Fleischmann, M.; Ray, N.; Sharma, S.; Pankratov, O.

Low-energy theory for the graphene twist bilayer. Phys. Rev. B 2016, 93, 035452.

(30) Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-

Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices.

Nature 2018, 556, 43 EP –.

33



(31) Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.;

Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer

graphene. Science 2019,

(32) Codecido, E.; Wang, Q.; Koester, R.; Che, S.; Tian, H.; Lv, R.; Tran, S.; Watanabe, K.;

Taniguchi, T.; Zhang, F.; Bockrath, M.; Lau, C. N. Correlated insulating and super-

conducting states in twisted bilayer graphene below the magic angle. Science Advances

2019, 5, eaaw9770.

(33) Shen, C. et al. Correlated states in twisted double bilayer graphene. Nature Physics

2020, 16, 520–525.

(34) Lu, X.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M. A.; Das, I.; Urgell, C.; Watan-

abe, K.; Taniguchi, T.; Zhang, G.; Bachtold, A.; MacDonald, A. H.; Efetov, D. K. Su-

perconductors, orbital magnets and correlated states in magic-angle bilayer graphene.

Nature 2019, 574, 653–657.

(35) Kim, C.-J.; A., S.-C.; Ziegler, Z.; Ogawa, Y.; Noguez, C.; Park, J. Chiral atomically

thin films. Nat. Nanotechnol. 2016, 11, 520–524.

(36) Morell, E. S.; Chico, L.; Brey, L. Twisting dirac fermions: circular dichroism in bilayer

graphene. 2D Materials 2017, 4, 035015.

(37) Stauber, T.; Low, T.; Gómez-Santos, G. Chiral Response of Twisted Bilayer Graphene.

Phys. Rev. Lett. 2018, 120, 046801.

(38) Stauber, T.; Low, T.; Gómez-Santos, G. Linear response of twisted bilayer graphene:

Continuum versus tight-binding models. Phys. Rev. B 2018, 98, 195414.

(39) Addison, Z.; Park, J.; Mele, E. J. Twist, slip, and circular dichroism in bilayer graphene.

Phys. Rev. B 2019, 100, 125418.

34



(40) Stauber, T.; González, J.; Gómez-Santos, G. Change of chirality at magic angles of

twisted bilayer graphene. Phys. Rev. B 2020, 102, 081404.

(41) Stauber, T.; Low, T.; Gómez-Santos, G. Plasmon-Enhanced Near-Field Chirality in

Twisted van der Waals Heterostructures. Nano Letters 2020, 20, 8711–8718.

(42) Lin, X.; Liu, Z.; Stauber, T.; Gómez-Santos, G.; Gao, F.; Chen, H.; Zhang, B.; Low, T.

Chiral Plasmons with Twisted Atomic Bilayers. Phys. Rev. Lett. 2020, 125, 077401.

(43) He, W.-Y.; Goldhaber-Gordon, D.; Law, K. T. Giant orbital magnetoelectric effect and

current-induced magnetization switching in twisted bilayer graphene. Nature Commu-

nications 2020, 11, 1650.

(44) Zuber, J. W.; Zhang, C. Nonlinear optical response of twisted bilayer graphene. Phys.

Rev. B 2021, 103, 245417.

(45) Margetis, D.; Stauber, T. Theory of plasmonic edge states in chiral bilayer systems.

Phys. Rev. B 2021, 104, 115422.

(46) Timmel, A.; Mele, E. J. Anomalous electrodynamics and quantum geometry in the

Dirac-Harper model for a graphene bilayer. Phys. Rev. B 2021, 104, 075419.

(47) Huang, T. et al. Observation of chiral and slow plasmons in twisted bilayer graphene.

Nature 2022, 605, 63–68.

(48) Antebi, O.; Stern, A.; Berg, E. In-plane orbital magnetization as a probe for symmetry

breaking in strained twisted bilayer graphene. Phys. Rev. B 2022, 105, 104423.

(49) Dutta, D.; Chakraborty, A.; Agarwal, A. Intrinsic nonreciprocal bulk plasmons in non-

centrosymmetric magnetic systems. Phys. Rev. B 2023, 107, 165404.

(50) Stauber, T.; Wackerl, M.; Wenk, P.; Margetis, D.; González, J.; Gómez-Santos, G.;

Schliemann, J. Neutral Magic-Angle Bilayer Graphene: Condon Instability and Chiral

Resonances. Small Science 2023, 3, 2200080.

35



(51) Zhai, D.; Chen, C.; Xiao, C.; Yao, W. Time-reversal even charge hall effect from twisted

interface coupling. Nature Communications 2023, 14, 1961.

(52) Liu, Y.; Holder, T.; Yan, B. Chirality-induced giant unidirectional magnetoresistance

in twisted bilayer graphene. The Innovation 2021, 2, 100085.

(53) Buttiker, M. Symmetry of electrical conduction. IBM Journal of Research and Devel-

opment 1988, 32, 317–334.

(54) Datta, S. Electronic Transport in Mesoscopic Systems ; Cambridge University Press,

1995.

(55) Baumgartner, C.; Fuchs, L.; Costa, A.; Reinhardt, S.; Gronin, S.; Gardner, G. C.;

Lindemann, T.; Manfra, M. J.; Faria Junior, P. E.; Kochan, D.; Fabian, J.; Paradiso, N.;

Strunk, C. Supercurrent rectification and magnetochiral effects in symmetric Josephson

junctions. Nature Nanotechnology 2022, 17, 39–44.

(56) Bauriedl, L.; Bäuml, C.; Fuchs, L.; Baumgartner, C.; Paulik, N.; Bauer, J. M.; Lin, K.-

Q.; Lupton, J. M.; Taniguchi, T.; Watanabe, K.; Strunk, C.; Paradiso, N. Supercurrent

diode effect and magnetochiral anisotropy in few-layer NbSe2. Nature Communications

2022, 13, 4266.

(57) Hou, Y. et al. Ubiquitous Superconducting Diode Effect in Superconductor Thin Films.

Phys. Rev. Lett. 2023, 131, 027001.

(58) Yuan, N. F. Q.; Fu, L. Supercurrent diode effect and finite-momentum superconductors.

Proceedings of the National Academy of Sciences 2022, 119, e2119548119.

(59) Lin, J.-X.; Siriviboon, P.; Scammell, H. D.; Liu, S.; Rhodes, D.; Watanabe, K.;

Taniguchi, T.; Hone, J.; Scheurer, M. S.; Li, J. I. A. Zero-field superconducting diode

effect in small-twist-angle trilayer graphene. Nature Physics 2022, 18, 1221–1227.

36



(60) Díez-Mérida, J.; Díez-Carlón, A.; Yang, S. Y.; Xie, Y. M.; Gao, X. J.; Senior, J.;

Watanabe, K.; Taniguchi, T.; Lu, X.; Higginbotham, A. P.; Law, K. T.; Efetov, D. K.

Symmetry-broken Josephson junctions and superconducting diodes in magic-angle

twisted bilayer graphene. Nature Communications 2023, 14, 2396.

(61) de Picoli, T.; Blood, Z.; Lyanda-Geller, Y.; Väyrynen, J. I. Superconducting diode

effect in quasi-one-dimensional systems. Phys. Rev. B 2023, 107, 224518.

(62) Bahamon, D. A.; Gómez-Santos, G.; Stauber, T. Emergent magnetic texture in driven

twisted bilayer graphene. Nanoscale 2020, 12, 15383–15392.

(63) Furukawa, T.; Shimokawa, Y.; Kobayashi, K.; Itou, T. Observation of current-induced

bulk magnetization in elemental tellurium. Nature Communications 2017, 8, 954.

(64) Inui, A.; Aoki, R.; Nishiue, Y.; Shiota, K.; Kousaka, Y.; Shishido, H.; Hirobe, D.;

Suda, M.; Ohe, J.-i.; Kishine, J.-i.; Yamamoto, H. M.; Togawa, Y. Chirality-Induced

Spin-Polarized State of a Chiral Crystal CrNb3S6. Phys. Rev. Lett. 2020, 124, 166602.

(65) Burkov, A. A. Giant planar Hall effect in topological metals. Phys. Rev. B 2017, 96,

041110.

(66) Nandy, S.; Sharma, G.; Taraphder, A.; Tewari, S. Chiral Anomaly as the Origin of the

Planar Hall Effect in Weyl Semimetals. Phys. Rev. Lett. 2017, 119, 176804.

(67) Pixley, J. H.; Wilson, J. H.; Huse, D. A.; Gopalakrishnan, S. Weyl Semimetal to Metal

Phase Transitions Driven by Quasiperiodic Potentials. Phys. Rev. Lett. 2018, 120,

207604.

(68) Brihuega, I.; Mallet, P.; González-Herrero, H.; Trambly de Laissardière, G.;

Ugeda, M. M.; Magaud, L.; Gómez-Rodríguez, J. M.; Ynduráin, F.; Veuillen, J.-Y.

Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bi-

37



layer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis. Phys.

Rev. Lett. 2012, 109, 196802.

(69) de Castro, S. G.; Ferreira, A.; Bahamon, D. A. Efficient Chebyshev polynomial approach

to quantum conductance calculations: Application to twisted bilayer graphene. Phys.

Rev. B 2023, 107, 045418.

(70) de Castro, S. G.; Lopes, J. a. M. V. P.; Ferreira, A.; Bahamon, D. A. Fast Fourier-

Chebyshev Approach to Real-Space Simulations of the Kubo Formula. Phys. Rev. Lett.

2024, 132, 076302.

(71) Kwan, Y. H.; Parameswaran, S.; Sondhi, S. Twisted bilayer graphene in a parallel

magnetic field. Physical Review B 2020, 101, 205116.

(72) Pershoguba, S. S.; Yakovenko, V. M. Energy spectrum of graphene multilayers in a

parallel magnetic field. Physical Review B 2010, 82, 205408.

(73) De Gail, R.; Fuchs, J.-N.; Goerbig, M.; Piéchon, F.; Montambaux, G. Manipulation

of Dirac points in graphene-like crystals. Physica B: Condensed Matter 2012, 407,

1948–1952.

38


