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Abstract

Models leveraging both visual and textual data such as Contrastive Language-Image Pre-
training (CLIP), are the backbone of many recent advances in artificial intelligence. In this
work, we show that despite their versatility, such models are vulnerable to what we refer to
as fooling master images. Fooling master images are capable of maximizing the confidence
score of a CLIP model for a significant number of widely varying prompts, while being
either unrecognizable or unrelated to the attacked prompts for humans. The existence of
such images is problematic as it could be used by bad actors to maliciously interfere with
CLIP-trained image retrieval models in production with comparably small effort as a single
image can attack many different prompts. We demonstrate how fooling master images
for CLIP (CLIPMasterPrints) can be mined using stochastic gradient descent, projected
gradient descent, or blackbox optimization. Contrary to many common adversarial attacks,
the blackbox optimization approach allows us to mine CLIPMasterPrints even when the
weights of the model are not accessible. We investigate the properties of the mined images,
and find that images trained on a small number of image captions generalize to a much
larger number of semantically related captions. We evaluate possible mitigation strategies,
where we increase the robustness of the model and introduce an approach to automatically
detect CLIPMasterPrints to sanitize the input of vulnerable models. Finally, we find that
vulnerability to CLIPMasterPrints is related to a modality gap in contrastive pre-trained
multi-modal networks. Code available at https://github.com/matfrei/CLIPMasterPrints.

1 Introduction

In recent years, contrastively trained multi-modal approaches such as Contrastive Language-Image Pre-
training (CLIP; Radford et al., 2021) have increasingly gained importance and form the backbone of many
recent advances in artificial intelligence. Among numerous useful applications, they constitute a powerful
approach to perform zero-shot image retrieval, zero-shot learning and play an important role in state-of-
the-art text-to-image generators (Rombach et al., 2022). Yet, recent work raises the question of robustness
and safety of CLIP-trained models. For example, Qiu et al. (2022) find that CLIP and related multi-modal
approaches are vulnerable to distribution shifts, and several research groups have successfully mounted
adversarial attacks against CLIP (Noever & Miller Noever, 2021; Daras & Dimakis, 2022; Goh et al., 2021).
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"Mona Lisa"
 by Leonardo da Vinci

"The Last Supper"
 by Leonardo da Vinci

"The Starry Night"
 by Vincent van Gogh

"The Scream"
 by Edvard Munch

"Guernica"
 by Pablo Picasso

"The Kiss"
 by Gustav Klimt

"Girl with a pearl earring"
 by Johannes Vermeer

"The Birth of Venus"
 by Sandro Botticelli

"Las Meninas"
 by Diego Velázquez
"Creation of Adam"

 by Michelangelo

Random noise image
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Figure 1: Heatmap of CLIP-assigned cosine similarities of famous artworks and their titles, as well as a
random noise baseline and our found CLIPMasterPrints for SGD, LVE and PGD approaches (marked with
red frame) as returned by a pre-trained CLIP model. The mined fooling examples outperform all artworks
in terms of CLIP score and can therefore fool the model for all targeted titles shown.

In this paper we show for the first time that, despite their power, CLIP models are vulnerable towards fooling
master images, or what we refer to as CLIPMasterPrints, and that this vulnerability appears to be closely
related to a modality gap between text and image embeddings (Liang et al., 2022).

CLIPMasterPrints are capable of maximizing the confidence score of a CLIP model for a broad range of
widely varying prompts, while for humans they appear unrecognizable or unrelated to the prompt. This
ability can effectively result in the CLIPMasterPrint being chosen over actual objects of a class when being
compared to each other by the attacked model. The existence of such images is problematic as it could be
used by bad actors to maliciously interfere with CLIP-trained image retrieval models in production with
comparably small effort as a single image can attack many different prompts. For instance, inserting a single
CLIPMasterPrint into an existing database of images could potentially disrupt the system’s functionality for
a wide range of search terms, as for each targeted search term the inserted CLIPMasterPrint is likely to be
the top result. This could exploited in malicious ways for censorship, adversarial marketing and disrupting
the quality of service of image retrieval systems (for details see Section 5).

Consequentially, the existence of such images raises interesting questions on the efficacy and safety of multi-
modal approaches to zero-shot image retrieval and possibly further applications as well.

Our contributions are as follows: we introduce fooling master images (CLIPMasterPrints) for contrastive
multi-modal approaches and show that they can be mined using different techniques with different trade-offs:
(1) A stochastic gradient descent (SGD) approach, which is highly performant but requires knowledge of the
model weights. (2) A blackbox optimization approach based on the family of Latent Variable Evolution (LVE;
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Bontrager et al., 2018; Volz et al., 2018) attacks, which does not have that limitation, but operates on a
reduced search space and requires more iterations to achieve good results. (3) As both approaches can not
be integrated into existing natural images, we also mine using a third approach based on projected gradient
descent (PGD; Kurakin et al., 2016; Madry et al., 2018), which produces more natural-looking fooling images,
but again requires the model’s weights. While all three techniques have been used in variation in different
contexts before, our approaches differ w.r.t. optimized loss function, nature of found solutions (on-manifold
vs off-manifold), used generative model (LVE), and application domain. Furthermore, our emphasis in
this work is on the results and insights we obtain, and their subsequent analysis: We find that the mined
fooling examples tend to generalize to non-targeted prompts that are textually related to targeted prompts.
In connection with the wide application of CLIP models and the fact that we find more recent similar
approaches Li et al. (2022); Zhai et al. (2023) to be vulnerable as well, this generalization effect adds to
the gravity of the attack. We propose mitigation approaches focusing on the robustness of the model itself
on the on hand as well as the detection of CLIPMasterPrints to enable sanitizing the model’s inputs on the
other hand. Finally, we demonstrate that mitigating the modality gap inherent to contrastive multi-modal
models (Liang et al., 2022) is also an effective counter-strategy to reduce the effectiveness of the mined
fooling images. Consequentially, our results point towards a strong connection between a vulnerability to
CLIPMasterPrints and a modality gap between text and image embeddings and thus opens up interesting
future research directions, in finding even more effective mitigation strategies for both phenomena.

2 Related work

The notion of fooling examples was originally introduced by Nguyen et al. (2015), in which the authors
generate fooling examples for individual classes for convolutional neural network (ConvNet) classifiers (LeCun
et al., 1998) using genetic algorithms and compositional pattern producing networks (Stanley, 2007). In later
work, Alcorn et al. (2019) showed that ConvNets can even be easily fooled by familiar objects in different
and out-of-distribution poses. The main difference to our work is that the authors generate images that are
misclassified as just one concrete class, while our images fool the network with respect to many classes or
prompts.

Adversarial examples and adversarial learning (Chakraborty et al., 2018; Ozdag, 2018; Akhtar et al., 2021)
are closely related to generating fooling examples, where usually adversarial examples can be disguised as
regular images. The gradient-based approaches we apply in this paper are related to a number of popular
gradient-based adversarial attacks, foremost the fast gradient sign and PGD methods (Goodfellow et al.,
2015; Kurakin et al., 2018; 2016; Madry et al., 2018). Contrary to how these attacks are usually applied
though, we optimize a loss function targeting many classes/prompts in parallel by minimizing an extremum
objective (the negative minimum cosine similarity), and our maximally permitted adversarial perturbations
are significantly higher than common for adversarial attacks since our proposed attack is intrinsically an
off-manifold attack.

A similar objective in an adversarial context is minimized by Enevoldsen et al. (2023), who optimize the
maximum logit of a neural classifier to generate adversarial examples for False Novelty and False Familiarity
attacks in open-set recognition. Contrary to our work though, the aim of the optimization process is to
increase or decrease the score of individual classes rather than many classes at once.

Bontrager et al. (2018) introduced the concept of latent variable evolution (LVE). The authors use the
Covariance Matrix Adaption Evolution Strategy (CMA-ES) to perform stochastic search in the generator
latent space of a Generative Adversarial Network (GAN) Goodfellow et al. (2014; 2020) to create deep
master prints. Deep master prints are synthetic fingerprint images which match large numbers of real-world
fingerprints, thus undermining the security of fingerprint scanners. Contrary to the approach of Bontrager
et al. (2018), we use the decoder of a variational autoencoder (VAE) Kingma & Welling (2014) as well an
extremum loss function to generate images from latents.

A number adversarial attacks by means of text patches and adversarial pixel perturbations have been per-
formed on contrastively pre-trained multi-modal networks (Noever & Miller Noever, 2021; Daras & Dimakis,
2022; Li et al., 2021; Goh et al., 2021) Attacks on the text encoding were investigated by Daras & Dimakis
(2022), where the authors show that one is able to generate images using nonsense-phrases in DALL-E 2. We
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believe this phenomena to be related to the issue of the modality gap between text and image embeddings,
upon which our work builds. This modality gap in contrastively pre-trained multi-modal approaches has
been documented originally by Liang et al. (2022), showing that the gap is caused by the inductive bias of
the transformer architecture and reinforced by training a contrastive loss. While Liang et al. (2022) explicitly
do not classify modality gaps as either beneficial or detrimental to a models performance, in our work we
find that with respect to the vulnerability to off-manifold attacks, the modality gap should be mitigated.
Nukrai et al. (2022) come to a similar conclusion upon finding that the modality gap causes instability when
training a text decoder from CLIP embeddings.

Finally, in terms of the robustness of multi-modal neural networks Qiu et al. (2022) conducted an extensive
evaluation of CLIP and CLIP-based text-to-image systems, where they come to the conclusion that CLIP
and its derivatives are not robust with respect to distribution shifts.

3 Approach: CLIPMasterPrints

Contrastive Language-Image Pre-Trained Models. In production, a given model Cθ, which has been
trained using CLIP, is used to indicate how well a prompt or image caption c describes the contents of an
image x as follows. For each caption-image pair (c, x), Cθ extracts a pair of corresponding vector embeddings
(f(c), g(x)) and computes their cosine similarity:

s(x, c) = Cθ(x, c) = g(x)⊺

∥g(x)∥ · f(c)
∥f(c)∥ , (1)

where a cosine similarity of 1 between f(c) and g(x) indicates an excellent match between prompt c and
image x. On the other hand, s(x, c) ≈ 0 indicates that prompt and image are unrelated. In practice, it has
been found though that s(x, c) = 1 is hardly achieved, and even for well-fitting text-image pairs s(x, c) ≈ 0.3
(Schuhmann et al., 2021; Liang et al., 2022). The phenomenon of CLIP-trained models not being able to
align matching text and image embeddings to achieve s(x, c) = 1 has been studied extensively by (Liang
et al., 2022), who refer to the underlying misalignment between image and text embedding vectors as the
modality gap of multi-modal models.

Exploiting the modality gap. We exploit this modality gap, i.e. the misalignment of image and text
embedding vectors, to mine fooling master images (CLIPMasterPrints) as follows.

In the latent space of Cθ, we aim to find an embedding g(xfool) corresponding to a fooling master image xfool
for a number of matching text-image pairs (c1, x1), (c2, x2), . . . (cn, xn) such that:

g(xfool)⊺

∥g(xfool)∥
· f(ck)

∥f(ck)∥ >
g(xk)⊺

∥g(xk)∥ · f(ck)
∥f(ck)∥ for k ∈ [1, n].

The existence of a modality gap implies that there is a limit on how well the CLIP-trained model Cθ can
align g(xk), which is extracted from a vector on the image manifold xk to f , the models vector embedding
of text prompt c (Liang et al., 2022; Schuhmann et al., 2021).

We hypothesize that this apparent limit for vectors on the image manifold implies that if one were to search
for vectors xfool off manifold, one might find a vector that aligns better (and thus has a better cosine
similarity score s) to all the captions c1, c2, . . . , cn, than any of the matching vectors on the image manifold
x1, x2, . . . , xn.

To test this hypothesis, we employ a number of different iterative optimization approaches for constructing
xfool. In order to find an image that maximizes s(xfool, ck) for a set of n different image captions C =
{c1, c2, . . . , cn} we minimize the loss function:

L(x) = − min
ck∈C

s(x, ck). (2)

To favor solutions where x matches all captions well, we use the min-operator over all ck rather than a sum
or average. Our intention here is to avoid poor local minima, where x poses an excellent match for a small
subset of captions and performs poor on the remaining ones.
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Stochastic gradient descent. The most straight-forward approach to mine a fooling example xfool is
to minimize equation 2 by means of stochastic gradient descent (SGD) (and variants thereof). We start
from a randomly initialized image x0

fool and iteratively look for better fooling images by moving towards the
direction of steepest descent on the loss surface. This direction is indicated by the subgradient of the loss
function, which is defined as

∇x

(
− min

ck∈C
s(x, ck)

)
= ∇x(−s(x, cmin)), (3)

where
cmin = arg min

ck∈C
s(x, ck). (4)

This results in the iterative update rule

xt+1
fool = xt

fool − η∇xt
fool

L, (5)

where η is the learning rate or step size.

While mining fooling examples using SGD variants is a proven and well-understood method (Nguyen et al.,
2015), contrary to our approach, common approaches usually seek to increase or decrease the model’s confi-
dence w.r.t. a single particular class rather than targeting many classes at once.

Latent Variable Evolution. Attacking models using stochastic gradient descent bears the practical lim-
itations of a whitebox-attack, i.e. the model’s weights need to be known. As a complementary method, we
also mine CLIPMasterPrints by means of a Latent Variable Evolution (LVE) approach (Bontrager et al.,
2018; Volz et al., 2018). While the input dimensions of state-of-the-art neural networks are too large to be
searched by a black-box evolutionary strategy (ES) on its own, in LVE, one searches the latent space of a
generative model using ES. The latents found by the ES are then used to generate fooling example candi-
dates, which are presented to the model under attack. From the model output, we compute the loss function
in equation 2 and feed it back to the ES, which in turn creates new candidates. To evolve new solutions,
we use the CMA-ES (Hansen & Ostermeier, 2001), a highly efficient and robust stochastic search method
taking estimated second order information into account. We adapt the original LVE approach in two ways:
First, by minimizing equation 2, we ensure that the mined image matches all targeted captions sufficiently
well. Second, rather than using a custom-trained generative adverserial network (GAN) to generate fooling
examples, we evolve our solution in the latent space of a pretrained variational autoencoder (VAE; Kingma
& Welling, 2014). In more detail, we use decoder of StableDiffusion V1 (Rombach et al., 2022) to translate
candidate latents into image space. Note that we do not apply any diffusion in this process, the VAE is in
principle exchangeable with any other strong VAE. An overview of the approach is shown in Fig. 2, with
Algorithm 1 in the Appendix detailing how to mine fooling examples with our LVE approach.

CLIPVAE-DECODERCMA-ES

CLIP-loss
(cosine similarity)

caption

imagelatent
vector

Figure 2: CLIPMasterPrints Latent Variable Optimization. CMA-ES is used to generate image
candidates in the latent space of a pre-trained VAE. The generated latent vector is passed through the
VAE’s decoder and scored w.r.t. how well it fits to the caption using CLIP. The returned cosine similarity
is thereafter fed back to CMA-ES.

Projected gradient descent. Finally, while CLIPMasterprints is essentially an off-manifold attack, we
also evaluated projected gradient descent (PGD) (Kurakin et al., 2016; Madry et al., 2018) as a mining
approach in order to investigate if it is also possible to mine fooling examples which are, to humans, much
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more similar to actual images. Contrary to SGD, we do not initialize x0
fool randomly, but use an existing

image xorig which we again update by moving towards the direction of steepest descent. However, as an
additional step contrary to SGD, we attempt to keep our found solution close to xorig. We do so by applying
the PGD update rule

xt+1
fool = Πxorig+ϵ(xt

fool − αsign(∇L(xt
fool))), (6)

to minimize equation 2, where the image xt
fool ∈ [0, 255]d is optimized in discrete representation, α is the

discrete stepsize and ϵ is the size of the adversarial perturbation. Πx+ϵ(a) is an operation used to keep xfool
close to xorig: It is defined as a element-wise clipping operation clipping each pixel ai,j of the input image a
into the range [xorig,i,j − ϵ, xorig,i,j + ϵ] w.r.t the original image xorig.

We permit for larger adversarial perturbation than commonly used in PGD attacks. We find that the
approach does not work for too small adversarial perturbations, which again underlines the off-manifold-
nature of the attack.

The CLIP models used in the experiments in this paper are pre-trained ViT-L/14 and ViT-L/14@336px
models (Radford et al., 2021).

4 Results

4.1 Experimental Setup

Generating CLIPMasterPrints. We test our approach to finding master images for both fooling CLIP
on famous artworks and on ImageNet (Russakovsky et al., 2015) classes. For the artworks, we train a fooling
master image to obtain a high matching score on the ViT-L/14@336px CLIP model (Radford et al., 2021) for
10 different text prompts, consisting of the titles of famous artworks and their authors. Famous artworks and
their corresponding titles and artists were chosen for their familiarity: On the one hand, due to being widely
known and therefore likely in the training data of the model, this approach ensures that CLIP scores between
corresponding artwork-title pairs will be easily matched to each other, resulting in high cosine similarities
obtained from the model for matching pairs. On the other hand, due to the uniqueness and distinctiveness
of most images in both motive and style, it is unlikely that any two artworks will be confused by the model,
resulting in low cosine similarities for image-text pairs that do not match.

We create one fooling master example for each mining approach introduced in Section 3. SGD is applied
to a single randomly initialized image and optimized for 1000 iterations using Adam (Kingma & Ba, 2015)
(β1 = 0.9, β2 = 0.999, ϵ = 10−8) at a learning rate of 0.1.

In our black-box approach, we search the latent space of the stable diffusion VAE (Rombach et al., 2022) for
CLIPMasterPrints using CMA-ES for 18000 iterations. We flatten its 4 feature maps into a vector. Since
images are encoded in this latent space with a downsampling factor of 8, our 336 × 336 images result in a
d = 336

8 · 336
8 · 4 = 7056 dimensional search space. We initialize CMA-ES with a random vector sampled from

a zero-mean unit-variance Gaussian distribution and choose σ = 1 as initial sampling variance. We follow
the heuristic suggested by Hansen (2016) and sample 4 + 3 · log(d) = 4 + 3 · log(7056) ≈ 31 candidates per
iteration.

Finally, for our PGD approach, we start from an existing image and again optimize for 1000 iterations using
a stepsize of α = 1 and a maximal adversarial perturbation of ϵ = 15.

For generating fooling images for ImageNet classes, we mine a CLIPMasterPrint for 25, 50, 75 and 100
randomly selected ImageNet classes. To show that the approaches work independently of the chosen model
weights and to speed up the more extensive experiments on ImageNet, the ViT-L/14 model (Radford et al.,
2021) was chosen, with a slightly smaller input pixel size of 224 × 224 pixels. For the SGD and PGD
approaches, the parameters are identical as in the previous experiments. Our blackbox-LVE approach mines
for 50,000 iterations. The remaining parameters are the same as in the previous experiment, except since
smaller images with a resolution 224 × 224 pixels were generated, the corresponding search space consists
of 224

8 · 224
8 · 4 = 3136 dimensions. This yields a population size of 4 + 3 · log(3136) ≈ 28 candidates per

iteration.
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Mitigation by bridging the modality gap. As we hypothesise a model’s vulnerability to be connected
to it’s modality gap, as a mitigation approach, we attempt to bridge the used ViT-L/14 model’s gap by
shifting the centroids of image and text embeddings as suggested in Liang et al. (2022). In more detail, Liang
et al. (2022) decrease the gap between image and text vectors by moving them toward each other along a
so-called gap vector

∆gap = f̄ − ḡ , (7)

where f̄ and ḡ are the centroids of image and text embeddings, respectively. We extract f̄ and ḡ for the
ImageNet training data and labels. We attempt to bridge the model’s modality gap by computing

xi
′ = xi − λ∆gap (8)

and
yi

′ = yi + λ∆gap, (9)

as shifted image and text embeddings, respectively. λ = 0.25 is a hyperparameter chosen such that the
model retains its original accuracy as much as possible while bridging the gap.

Mitigation by sanitizing model inputs. Apart from increasing the robustness of a CLIP-trained model
itself, a further possible route to mitigate adversarial attacks could be to sanitize the model’s inputs by
automatically detecting adversarial examples and sorting them out early. We build a custom training set
from ImageNet subsets and train a ConvNet to detect the visible artifacts of PGD-mined adverserial images.
In more detail, we create train validation and test sets of 60000, 10000 and 10000 images respectively,
each from a subset of the ImageNet train set. We do so by using each image of the respective subsets to
initialize the PGD adversarial mining process for 25 randomly selected ImageNet target classes. To keep
the required amount of compute feasible, given the large amount of CLIPMasterPrints to be mined, we
only mine for 100 iterations per image and target a smaller CLIP model than used in the remainder of this
work, i.e. ViT-B/32. In the finished dataset, in all subsets (train, validation and test) 50% of all images are
mined CLIPMasterPrints, while remaining images are the templates used to initialize the mining process,
i.e. randomly chosen images from the Imagenet train and validation sets. As a classifier, we use a Imagenet-
pretrained VGG19 ConvNet (Simonyan & Zisserman, 2015) with batch normalization (Ioffe & Szegedy, 2015)
between each convolutional layer and activation function. We refine the model for 1 epoch using Adam at a
learning rate of 10−3 and a batch size of 152. We use default momentum parameters β1 = 0.9, β2 = 0.999,
ϵ = 10−8 for Adam and do not apply any L1 or L2 regularization to the weights.

In addition to the two introduced approaches above, a third, somewhat less effective mitigation approach is
discussed in the appendix in Section A.2

4.2 Performance of CLIPMasterPrints

Fig. 1 shows the cosine similarities between titles and artists of famous artwork and the actual artwork as
well as a baseline image and our generated CLIPMasterPrints (denoted by red frames). All artworks are
assigned their correct titles by the CLIP model: artworks and their respective titles exhibit a significantly
higher cosine similarity (of about 0.3) than randomly paired titles and paintings. Our noise baseline exhibits
scores between 0.13 and 0.18 for all title-captions, but interestingly at times shows higher scores compared
to artworks with mismatched captions. All mined CLIPMasterPrints yield cosine similarities > 0.33 and
consequentially outperform the original artwork for each title-caption. Yet, we find large differences in-
between the performance of samples mined with different approaches.

The fooling image mined through SGD (Fig. 3d) performs best, followed by PGD, which, despite superficial
unnatural patterns, clearly resembles a natural image more closely (Fig. 3e). LVE performs least well, while
requiring a significantly higher number of iterations. However, it still outperforms the original artworks.
An explanation can be found in the more constrained optimization space of the VAE latents as well as the
absence of gradient information. All three fooling master examples achieve a higher score than all actual
artworks and would be chosen over these images when prompting the model to identify any of the targeted
artworks next to the fooling examples.
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(a) (b)

(c)

(d)

(e)

Figure 3: (a) Cosine similarity of three trained fooling images for 25 targeted classes using SGD, LVE and
PGD approaches respectively, as well as similarities for ImageNet validation set images of the same classes.
With a few exceptions, each CLIPMasterPrint fooling image outperforms all images in terms of CLIP score
for the targeted text labels. Note that the same fooling image is used for all class label categories. (b) Average
cosine similarity between ImageNet class captions and fooling image as a function of the number of classes
considered during optimization for SGD, LVE and PGD methods. Average similarity score between captions
and images in the ImageNet validation set labelled with targeted class labels for comparison. Score remains
stable up to 75 targeted classes, after which it gracefully declines. Due to CLIPMasterPrints generalizing
to semantically related labels, the achieved average score remains robust, even if more related labels are
added. (c) Generalization of LVE-mined image targeting 25 ImageNet classes. The mined CLIPMasterPrint
achieves high CLIP scores even for ImageNet class labels which have not been explicitly targeted, as shown by
score distributions of matched label-text pairs in the ImageNet validation set and score distributions between
CLIPMasterPrint and untargeted ImageNet labels being almost identical. Examples of unrecognizable (d)
and recognizable images (e) created by SGD and PGD, respectively.

Our results for ImageNet labels are similar. Fig. 3a shows the CLIP-returned cosine similarities of the
fooling master image trained on 25 ImageNet labels as a point plot for both gradient-based (SGD, PGD)
and blackbox (LVE) approaches. The cosine similarities of the images of the respective labels found in the
ImageNet validation set have been added for reference. For almost all classes, the two images mined with
SGD and PGD outperform the entirety of the images within the respective class in terms of the similarity
score. The black-box LVEimage on the other hand, while performing somewhat worse, still outperforms the
entirety of images for most classes.

As a performance measure over all optimized classes, we compute the percentage of outperformed images
(POI, i.e. the percentage of images in targeted classes in the validation set with a lower CLIP score than
the fooling image) for all three fooling images. We find that our SGD and PGD images exhibit an accuracy
of 99.92% and 99.76%, respectively, while the LVE images achieve an accuracy of 97.92% which is in line
with our observations from Fig. 3a.

These results demonstrate that CLIP models ViT-L14 and ViT-L14@336px can be successfully fooled on a
wider range of classes using only a single image.
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Figure 4: CLIPMasterPrints targeting related subterms of the four nouns “dog”, “vegetable”,”motor vehi-
cle” and “musical instrument”. The four mined images achieve only slightly lower scores on most untargeted
subterms compared to targeted subterms. CLIPMasterPrints therefore generalize to untargeted, but seman-
tically related prompts.

4.3 Generalization to semantically related prompts and labels

To investigate whether the mined images also generalize to semantically related classes that were not directly
considered in the optimization process, we also visualized the estimated distributions of CLIP similarity scores
per class for both targeted and untargeted classes (Figure 3c). While the distribution of cosine similarities
over all true classes in the ImageNet validation set (i.e. the cosine similarities for all ground-truth matched
image-text pairs in the validation set) is long-tailed, the distribution for scores of the CLIPMasterPrint
(mined with LVE) for targeted classes is confined to a small interval around 0.30, which is also the score
achieved on targeted labels as seen in Fig. 3a. Considering the distribution of scores for the fooling image on
all 975 not targeted classes, we see that while the distribution is long-tailed as well, most values seem to be
confined to the range between 0.2 and 0.3, with a mean around approx 0.27. The strong similarity between
the distribution of ImageNet image-text pairs and the cosine similarity of our mined CLIPMasterPrint on
untargeted classes indicate a strong generalization effect. Computing the POI for the 975 untargeted classes
in the ImageNet validation paints a similar picture. We find that our SGD, LVE and PGD mined fooling
images score-wise outperform 87.3, 74.02 and 88.63% of images averaged over the 975 classes, respectively.
In summary, the fooling images achieve moderate to high scores on untargeted class labels. A potential
explanation is due to the classes of the ImageNet dataset being derived as a subset from tree-like struc-
tures in WordNet (Miller, 1995), CLIPMasterPrints generalize on many of these classes due to them being
semantically related to their targeted labels.

We investigate this hypothesis by training five additional CLIPMasterPrints using PGD on WordNet hy-
ponyms (related subterms) of the four nouns “dog”, “vegetable”, ”motor vehicle” and “musical instrument”.
We train one CLIPMasterPrint for half of the hyponyms of a particular noun and then evaluate it’s perfor-
mance on the remaining ones. Figure 4 shows the results.

As one can see, apart from a few exceptions, untargeted subterms only obtain slightly lower or at times
even on par scores than than the targeted classes. We therefore conclude that mined CLIPMasterPrints can
indeed target semantically related, not directly optimized classes as well.
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4.4 Performance as number of targeted prompts increases

Our results demonstrate that CLIP models are vulnerable to fooling master images, and that fooling effects
generalize to semantically related labels or nouns. We thus investigate how the average cosine similarity on
targeted classes deteriorates, as the number of targeted class labels increases. Fig. 3b shows the average
CLIP score targeting 50, 75, and 100 randomly sampled ImageNet classes versus the total number of targeted
labels for all evaluated approaches. For all approaches, the average score exhibits an initial decrease around
50 classes after which it slightly rises for 75 and then slightly decreases for 100 classes again. An explanation
for this observation can be found in the generalization effects observed above: assuming that subsets of
the targeted labels or prompts are sufficiently semantically related, due to the generalization of the fooling
example, the achieved average score remains robust, even if more related labels are added. For more results,
see also Section A.3 in the appendix, where we find that CLIPMasterPrints can be mined to target hundreds
of ImageNet classes.

4.5 Mitigation

Bridging the modality gap. We find shifting centroids of image and text embeddings along a computed
gap vector as discussed above (Eq. 7, 8 and 9), to be an effective countermeasure against CLIPMasterPrints
while preserving CLIP performance. Table 1 shows the percentage of outperformed images (POI) for CLIP-

Table 1: Pct. of outperformed images for different optimization approaches on the validation set.

Method POI, λ = 0 POI, λ = 0.25

SGD 99.92% 3.2%
LVE 97.92% 1.28%
PGD 99.76% 1.92%
SGD,
λ = 0.25 76.64% 63.2%
LVE,
λ = 0.25 48.56% 38.64%
PGD,
λ = 0.25 52.88% 44.64%

MasterPrints mined both with and without shifting embeddings in the model. Not only fooling examples
mined on the regular model (Rows 1, 2 and 3 for SGD, LVE and PGD respectively) do not work anymore
on the model with shifted embeddings (the POI drops dramatically), but also newly mined examples from
a model with shifted embeddings (Rows 4, 5 and 6) show a significant drop of roughly 35 to 55 percentage
points in POI. Shifting embeddings therefore can be considered an effective mitigation strategy. When con-
sidering the scores of the different images mined on the shifted model, we find the the SGD image performs
best, followed by the PGD image, with the LVE approach performing least well. One may expect the PGD
image to perform best under a mitigated modality gap, since it is closest to a natural image. Yet, when we
compute the cosine similarity between the latent of the original image xorig and the mined image xPGD, we
find that

g(xorig)⊺

∥g(xorig)∥ · g(xPGD)
∥g(xPGD)∥ = 0.29.

Despite its similarity to xorig, the mined adversarial image therefore is not located on the image manifold in
the models latent space. Furthermore, we observe that when mining CLIPMasterPrints by means of PGD,
using adversarial perturbations ϵ <= 10 pixels, i.e. producing solutions closer to the original image, yields
poor results. We consider this a further indicator that CLIPMasterPrints need to be located off the models
latent image manifold.

In summary, we argue that the fact that the mitigation technique we use here has originally not been
proposed as a defense against adversarial examples, but was rather used to investigate modality gaps in
general Liang et al. (2022), adds strong support our original hypothesis that the vulnerability of a CLIP
model to CLIPMasterPrints is closely related to the modality gap.
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Figure 5: Performance of CLIPMasterPrints mined using PGD on CLIP-RN50x64, BLIP-384 and ViT-L-
16-SigLIP-384 for 25, 50, 75 and 100 ImageNet classes respectively, CLIP-ViT-L/14 and Imagenet baselines
for comparison. Models that use ResNet rather than visual transformers as well as newer models improving
upon CLIP are nevertheless vulnerable to CLIPMasterPrints.

Sanitizing model inputs. Apart from increasing the robustness of a CLIP-trained model itself, a further
possible route to mitigate adversarial attacks is to sanitize the model’s inputs by automatically detecting
adversarial examples and sorting them out early. We build a custom training set from ImageNet subsets
and train a classifier to detect the visible artifacts of PGD-mined adverserial images (for details on the setup
see Section 4.1). We find that we are able to detect whether an image is a PGD-mined CLIPMasterPrint or
a "harmless" image with 99.01% accuracy on the test set, which makes the proposed approach an effective
mitigation strategy to sanitize inputs of real-world systems.

4.6 Attacking different architectures and training approaches

To demonstrate that CLIPMasterPrints are not an isolated phenomenon limited to the investigated archi-
tecture or training approach, we mine additional CLIPMasterPrints on a further CLIP-trained model using
an ensemble of 64 ResNet50 networks to as an image encoder (CLIP-RN50x64 ). Furthermore we do the
same for models trained on recently proposed improvements or CLIP, namely BLIP Li et al. (2022) and
SigLIP Zhai et al. (2023). Figure 5 shows the results. All evaluated models remain vulnerable to CLIP-
MasterPrints: The CLIP-model using ResNet image encoding (CLIP-RN50x64 ) seems to be somewhat less
vulnerable than the transformer-based CLIP ViT-L/14, but is still on par with the ImageNet baseline. For
both newer approaches, BLIP-384 and ViT-L-16-SigLIP-384, the PGD-mined CLIPMasterPrints outper-
form the ImageNet baselines significantly. These results clearly show that vulnerability CLIPMasterPrints is
not just limited to CLIP, but also concerns more recently proposed models trained with related contrastive
approaches.

5 Potential Attack Scenarios

As emphasised by Radford et al. (2021), next to zero-shot-prediction, a highly relevant application of CLIP
is zero-shot image retrieval, which offers plenty of attack surface by means of CLIPMasterPrints. In more
detail, inserting a single CLIPMasterPrint into an existing database of images could potentially disrupt the
system’s functionality for a wide range of search terms, as for each targeted search term the inserted fooling
master image is likely to be the top result. When inserting several CLIPMasterPrints into the database,
even the top n results could consist entirely of these adversarial images rather than the true results. While
this is also possible when inserting “regular” adversarial examples, the amount of examples needed for an
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attack using CLIPMasterPrints is orders of magnitude lower than for regular adversarial examples. Practical
malicious applications of this vulnerability could be 1) censorship of images related to a list of censored topics,
2) adversarial product placement: targeting a variety of searched brands to advertise a different product as
the top result, or 3) disruption of service: introducing a larger number of unrecognizable CLIPMasterPrints
for a wide range of topics, resulting in unintelligible results for many queries, reducing the quality of service
of an image retrieval system.

A further interesting issue can be raised with respect to whether fooling examples, which can be recognized
by the user as such, i.e. they do not resemble natural images, or show unnatural artifacts which makes
them recognizeable as adversarial examples to an attentive user, pose a real-world threat to AI systems in
production. Here we argue that even if fooling images can be recognized by humans, there still remain many
ways for an attacker to introduce adversarial examples where no human supervision or control is present.
For instance, introducing CLIPMasterPrints into a database could be as simple as putting images online to
be crawled by search engines or uploading them through webforms. Impairing the function of the attacked
system, or censoring particular images in the system can in this case still be achieved using unrecognizeable
fooling images. We show in Section 4.5, that sanitizing the model inputs by training an additional classifier
to detect CLIPMasterPrints can be an effective way to mitigate threat surface. Of course this approach
bears the drawback that an additional classifier needs to be trained and deployed in production, under
which perspective further investigation into increasing the robustness of CLIP-trained models is desireable.

In cases where human supervision is present on the other hand, adversarial examples with slight artifacts
may be spotted by an attentive user, but might still fool a distracted or technologically less proficient user.
Furthermore, a cunning attacker might choose a template image where resulting artifacts are difficult to
make out. We invite the reader to consider the PGD-mined CLIPMasterPrints in Figure 6e and 6f in the
appendix and form their own opinion on how prominent the resulting artifacts are, and whether they could
be missed by an inattentive user or hidden by selecting an appropriate image.

6 Discussion and Future Work

This paper demonstrated that CLIP models can be successfully fooled on a wide range of diverse captions
by mining fooling master examples. Images mined through both gradient-based (SGD, PGD) as well as
gradient-free approaches (LVE) result in high confidence CLIP scores for a significant number of diverse
prompts, image captions or labels. While the gradient-free approach performed slightly worse, it does not
require access to gradient information and therefore allows for black-box attacks.

We found that the modality gap in contrastively pre-trained multimodal networks (i.e. image and text
embeddings can only be aligned to a certain degree in CLIP latent space) plays a central role with respect to
a model’s vulnerability to the introduced attack. Low cosine similarity scores assigned to well-matching text-
image pairs by a vulnerable model imply that off-manifold images, which align better with a larger number
of text embeddings, can be found. PGD-mined images, while being appearing meaningful to humans, are
nevertheless found to be off the latent image manifold of the attacked model. The off-manifold nature of the
attack is also supported by the observation that information in fooling examples is distributed throughout
the whole image for all targeted prompts, rather than locally at different places for each prompt (see Section
A.4 in the Appendix), making the mined images vulnerable to occlusion and cropping.

We show that a possible way to exploit the off-manifold nature of the attack for possible mitigation approaches
is to train a classifier to detect the artifacts introduced by the adversarial mining process in order to sanitize
model inputs. This way we are able to reliably distinguish CLIPMasterPrints from "harmless" images with
an accuracy 99.01% for our test set. While this approach could be highly effective for real-world systems,
it bears the drawback that an additional classifier needs to be trained and deployed in production. Under
that perspective further investigation into increasing the robustness of CLIP-trained models is desireable.

In terms of increased model robustness, our results demonstrate that the effects of CLIPMasterPrints on the
model can be mitigated by closing the gap between centroids of image and text embeddings respectively.
While Liang et al. (2022) do not explicitly classify modality gaps as either beneficial or detrimental to a
models performance, our results support the hypothesis that the modality gap leaves CLIP models vulnerable
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towards CLIPMasterPrints. Thus efforts to mitigate modality gaps even further, while preserving model
performance, is a critical future research direction.

Finally, our mined CLIPMasterPrints seem to not only affect the prompts they target, but also generalize
to semantically related prompts. In combination with the observation that recent improvements to CLIP
such as BLIP and SigLIP are vulnerable as well, this generalization effect additionally increases the impact
of the introduced attack. In conclusion, further research on effective mitigation strategies as well as the
vulnerability of additional related models is needed.

Reproducibility Statement

We supply our code with instructions on how to reproduce our experiments as supplementary material. The
code is also available at https://github.com/matfrei/CLIPMasterPrints.

Broader Impact Statement

The approaches introduced in this paper could be used to mount attacks that misdirect CLIP models in
production. For instance, an attacker could manipulate the rankings of a CLIP-based image retrieval system
resulting in injected CLIPMasterPrints being the top result for a wide range of search terms. This could
be exploited in malicious ways for censorship, adversarial marketing and disrupting the quality of service
of image retrieval systems (for details see Section 5). Nevertheless, we argue that publishing this work is a
necessary step towards understanding the risks of using CLIP-trained models in real-world applications. We
also propose and evaluate mitigation strategies and hope that our work will inspire others to build on those
to make them even more effective in the future.
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A Appendix

A.1 Mined fooling images

Figure 6 shows a selection of mined fooling images in good quality.

A.2 Other mitigation approaches

As an additional mitigation approach, we explored making the ViT-L/14 model robust by adding fooling
images to the train set.

Experiment setup. First, we refine the model on the ImageNet train set, where we add for every batch
presented to the network, both a random noise image as well as an LVE fooling example. Both the noise
image and the fooling example get labeled with a special <off-manifold>-token in order to have the model
bind off-manifold inputs to that token rather than any valid ImageNet label. At every forward step of the
model, we generate a new random noise image by feeding zero-mean unit-variance Gaussian Noise into the
decoder part of our generating autoencoder. The fooling example on the other hand is generated by running
CMA-ES in the loop with the training process. We start out with the best-found previous solution and
run one iteration of CMA-ES for every forward step to update the fooling example to the changed training
weights of the model. This setup creates a similar optimization process as found in GANs where both models
attempt to outperform each other. We refine the model for 1 epoch using Adam at a learning rate of 10−7

and a batch size of 20. We regularize the model with a weight decay of γ = 0.2 and set Adam momentum
parameters as described in (Radford et al., 2021): β1 = 0.9, β2 = 0.98, ϵ = 10−6. Furthermore, we utilize
mixed-precision training Micikevicius et al. (2018). Hyperparameters for CMA-ES are identical to the ones
used to mine the original fooling image. Finally, after refining the model, we mine a new fooling example
from scratch for the updated model. We do so to test the model’s robustness not only to the original fooling
images, but fooling images in general.

Results. Fig. 7 shows the CLIP scores of our refined model, which has been trained to align off-manifold
vectors to a special token, in order to mitigate the model’s vulnerability to fooling master examples.

Shown are the average CLIP score on the ImageNet validation set, the CLIP score for the original fooling
example, the score for a fooling example trained after refinement, as well as the score of a random noise
image for each targeted ImageNet label respectively. Due to the newly introduced <off-manifold>-token,
both noise and the original fooling examples are suppressed by the model and score significantly lower as
the mean label score on the ImageNet validation set.

The newly mined fooling example on the other hand has not been suppressed at all by the refined model and
exhibits scores similar to the ImageNet mean for all labels. The results suggest that our mitigation strategy
is sufficient to mitigate existing fooling examples, yet fails to be effective as new fooling examples are mined
from the updated model.

A.3 Targeting up to 1000 classes

In order to explore the behavior for CLIPMasterPrints when going beyond 100 classes, we mined further
fooling images targeting 25, 50, 75, 100, 250, 500, 750 and 1000 classes using PGD. To account for variations
in performance, we mine 10 CLIPMasterPrints for each number of target classes, where we randomly vary
both fooling image initialization as well as the permutation (i.e. order) of the target classes (random seeds
used: 0−9). To avoid the mining algorithm to overstep, we save image with the smallest loss as in equation 2
after 1000 iterations. The violin plot Figure 8 shows distributions of the entirety of obtained CLIP scores for
all fooling examples, as a function of the number of classes target. For comparison, the distributions of all
scores obtained by paired images of the entirety of targeted classes in the Imagenet validation set has been
added. While, as expected, the overall performance of mined CLIPMasterPrints declines as more classes are
targeted, even the image targeting 1000 classes manages to achieve similar or better scores than the majority
of the images in the ImageNet training set. We can therefore conclude that, when targeting hundreds of
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(a) SGD, optimized on artworks for ViT-L/14 (b) SGD, optimized on artworks for ViT-L/14@336px

(c) LVE, optimized on artworks for ViT-L/14 (d) LVE, optimized on artworks for ViT-L/14@336px

(e) PGD, optimized on artworks for ViT-L/14 (f) PGD, optimized on artworks for ViT-L/14@336px

Figure 6: Examples of CLIPMasterPrint images mined through SGD (a,b), LVE (c, d) and PGD (e, f). The
complementary approaches are able to produce fooling images unrecognizable to humans (a–d) and images
that resemble natural images but that display some artefacts perceptible to human eyes (e, f).
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Figure 7: CLIP scores for fooling examples mined before and after refinement with off-manifold token. While
mapping existing fooling examples to special tokens can mitigate their impact, the model is still vulnerable
to new fooling images

classes, CLIPMasterPrints do not necessarily outperform any and all images in these classes, they still score
significantly higher than a large portion of images in question.

A.4 Analysis of information distribution in CLIPMasterPrints

To understand how information is distributed in the found fooling master examples, we create occlusion
maps (Zeiler & Fergus, 2014; Selvaraju et al., 2017) of the fooling master example trained on the titles of
famous artworks (Fig. 9). As we blur 75 × 75 rectangles of the fooling master image in a sliding-window-
manner with a 2 pixel stride and a large (σ = 75) Gaussian blur kernel, we measure the change in cosine
similarity as returned by the ViT-L14@336px model. As a reference, the same procedure is performed on a
number of artworks the fooling image is intended to mimic. Blurring any part of CLIPMasterPrint results in
a significant decrease (between 0.1 and 0.2) of the resulting similarity score of the model. It os noteworthy
that the image optimized u sing LVE seems to be more robust to occlusions than images obtained by SGD
and PGD methods. This can be explained by the more grainy and contrasted patterns in the LVE image.
The individual increases and decreases for actual artworks on the other hand are more moderate and vary
based on the location in the image.

For the Random noise image prompt, which has been excluded from optimization, blurring parts of the image
results in significantly smaller changes in model output score. Interestingly, the mined CLIPMasterPrints
react differently to occlusion based on the used optimization approach. For the SGD image, blurring different
regions of the image affects decreases the score in some regions, while it increases it in others. As the SGD
image closely resembles a pure noise image, it seems intuitive that blurring certain parts of the image
decreases model similarity, yet it is unclear why blurring parts of the image increases the similarity. For
the LVE image on the other hand, blurring does not result in improving scores, but again, different regions
respond differently to the noise prompt. Finally, for large parts of the PGD image, the similarity score
improves as information in the image is erased through blurring.

While these results demonstrate that the way that CLIP assigns similarity is often far from intuitive to
humans, we can conclude that information from CLIPMasterPrints resulting in high CLIP confidence scores
is spread throughout the image for all captions, and is quite sensitive to occlusions and cropping.

While CLIP has learned to deal with blurring and occlusions in natural images due to the large amount of
sufficiently varying images presented during training, this robustness does not translate to other patterns
such as noise and adversarial images. We have shown above that blurring the latter two results in a significant
misalignment of the resulting vector in relation to the text vectors it has been targeting.
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Figure 8: Distribution of scores for CLIPMasterPrints mined using PGD for 25, 50, 75, 100, 250, 500, 750
and 1000 ImageNet classes respectively, distribution scores for Imagenet images in the targeted classes for
comparison. While the score declines as the number of targeted classes increases, even CLIPMasterPrints
targeting all 1000 Imagenet classes achieves largely on par or better scores than the majority of images in
the ImageNet training set.

A.5 Pseudocode for black-box mining of CLIPMasterPrints

Algorithm 1 illustrates our black-box approach to mining CLIPMasterPrints as pseudocode listing.
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Munch Vermeer Random noise SGD LVE PGD

0.025 0.000 0.025 0.02 0.00 0.02 0.02 0.00 0.02 0.2 0.0 0.2 0.1 0.0 0.1 0.2 0.0 0.2

Prompt: "The Scream" by Edvard Munch

Munch Vermeer Random noise SGD LVE PGD

0.02 0.00 0.02 0.05 0.00 0.05 0.025 0.000 0.025 0.2 0.0 0.2 0.1 0.0 0.1 0.2 0.0 0.2

Prompt: "Girl with a pearl earring" by Johannes Vermeer

Munch Vermeer Random noise SGD LVE PGD

0.0250.000 0.025 0.025 0.000 0.025 0.025 0.000 0.025 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02

Prompt: Random noise image

Figure 9: Occlusion maps for famous artworks, random noise baseline, and mined CLIPMasterPrints for
different prompts. Note that, while each row shows the same CLIPMasterPrint, occlusion maps vary for
different prompts. Increases in cosine similarities when blurring out a certain part of the image are denoted
in red, decreases are shown in blue. Information in the CLIPMasterPrint is distributed over the whole image;
no individual regions in the image that can be mapped to a particular prompt.
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Algorithm 1 Black-box approach to find CLIPMasterPrints
Input: initial vector h0 ∼ N (0, 1),

list of objective prompts c1, c2, . . . , cn,
number of to-be-run iterations imax

pre-trained CLIP model Cθ1

pre-trained image decoder Dθ2

Initialize CMA-ES with h0
for i = 1 to imax do

Generate candidates h1,h2, . . . , hn using CMA-ES mutation
Decode images x1, x2,. . . ,xn from h1, h2, . . . , hn using Dθ2

for all xj in x1, x2, . . . , xn do
Set sj,min = ∞
for all ck in c1, c2, . . . , cn do

Set sj,k = Cθ1(xj , ck)
if sj,k < sj,min then

Set sj,min = sj,k

end if
end for

end for
Update CMA-ES statistics with s1,min, s2,min, . . . , sn,min

end for
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