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Abstract

In this work, following the intuition that adverbs describing scene-sequences are
best identified by reasoning over high-level concepts of object-behavior, we propose
the design of a new framework that reasons over object-behaviours extracted from
raw-video-clips to recognize the clip’s corresponding adverb-types. Importantly,
while previous works for general scene adverb-recognition assume knowledge of
the clips underlying action-types, our method is directly applicable in the more gen-
eral problem setting where the action-type of a video-clip is unknown. Specifically,
we propose a novel pipeline that extracts human-interpretable object-behaviour-
facts from raw video clips and propose novel symbolic and transformer based
reasoning methods that operate over these extracted facts to identify adverb-types.
Experiment results demonstrate that our proposed methods perform favourably
against the previous state-of-the-art. Additionally, to support efforts in symbolic
video-processing, we release two new datasets of object-behaviour-facts extracted
from raw video clips - the MSR-VTT-ASP and ActivityNet-ASP datasets.

1 Introduction

In recent years, the task of recognizing the type of actions being performed in video-clips has gained
much of the vision community’s attention [3, 7, 9, 11, 18, 19, 20]. It is a relatively well studied
problem, with practical applications in smart-home systems and robotics. Current state-of-the-art
methods for action-type recognition fuse predictions from two-streams of convolutional neural
networks (CNNs). One stream predicts action-type probabilities from stacked image-frames of
the input video-clip while another stream predicts probabilities from stacked frames of the clip’s
optical-flow. The output from these two streams are fused together for inference. In particular,
the Inflated 3D Convolutional Network (I3D) architecture [3] has demonstrated much success
for action-type recognition by employing this two-stream paradigm with 3D-convolutional operations.

In contrast to action-type recognition - for which numerous architectures have been pro-
posed, the problem of adverb-type recognition is less well explored. Adverbs further describe
the nature and execution of generic action types, providing additional detail regarding intent,
meaning and consequences. A device recording recipes in a kitchen for example might deem
a cook in the action of “stirring" a pot slowly and completely to be performing a required and
delicate step. The same action performed fast or partially on the other hand, might be of less
consequence. Interestingly, adverbs can also prove useful even without any knowledge of the
underlying action-type. We might for example deem all recordings that are performed slowly and
completely to take precedence over partially executed work.

To our knowledge, there have been two architectures proposed to solve the task of adverb-
type recognition in general-scene video clips [5, 6]. However, these previous methods both assume
the availability of ground-truth action-types as a prerequisite for adverb-type recognition and follow
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the trend set by previous action-recognition systems - encoding video clips using an I3D backbone.
These practices make them unsatisfactory for two important reasons.

Firstly, ground-truth action-types are not usually known for raw video clips, making the
previous methods inapplicable in many scenarios. One might attempt to compensate for this by using
a pretrained action-type predictor to feed into the adverb-recognition model. However, doing so is a
non-trivial and complex task - as previous methods [5, 6] assume knowledge of over 100 distinct
ground-truth action-type categories. Using predictions for more than 100 action-type categories
invariably leads to incorrect and noisy input data - especially if the number of training samples
are limited. Additionally, under such a bootstrapped framework, one would be forced to re-train
both action-type and adverb-type predictors when new video-clips with new or unseen action-types
emerge. Ideally, we would instead prefer to have a framework and model wherein adverb-type
predictions are made without requiring any knowledge of the video-clip’s action-types.

Secondly, while end-to-end black-box CNN models such as the I3D architecture have proved
successful for action-type recognition, a key reason for this success has been the fact that CNNs
excel at object recognition, and a video-clip’s action-type is greatly constrained by the type of objects
present within scenes. The same is not true for adverb-type recognition. Object-type may vary widely
across different instances of the same adverb. A person cooking slowly for example presents a very
different scene from a dog running slowly in a park. And while the use of optical-flow input does
mitigate some of this problem by providing motion-related information, end-to-end CNN models fail
to generalize well over such diverse scenes.

However, despite this added complexity of not being constrained by object-type, humans
are usually able to easily identify adverb-types by reasoning over high-level concepts of object
behaviour. Something happening slowly for example might be identified to mean that objects change
very little between frames. Properties of other adverbs such as partially or completely are less
straightforward to define, but again seem easier to identify by reasoning over higher-level concepts of
object-behaviour than they are to identify by pattern-matching over diverse scenes that vary widely.

In this work, following the intuition that adverbs are best described by reasoning over higher-level
concepts, we propose a novel framework that (1)Extracts discrete facts of object-behaviour from raw
video clips (2)Reasons over those extracted facts to produce high-level summaries of object-behaviour
(3)Predicts and aggregates adverb-types using down-stream models over those high-level summaries.

Importantly, unlike previous work for general scene adverb-recognition [5, 6], our frame-
work does not assume any knowledge of the video-clip’s action-type during training or inference -
making it directly applicable to the more general problem setting wherein the action-type of a video
clip is unknown. Our main contributions are summarized as follows:

• We propose the design of a novel action-free framework for adverb-type recognition in
video clips - that extracts object-facts from raw video clips; reasons over those facts to
learn high-level behaviour summaries; and makes predictions of adverb-types from those
summaries.

• We propose a novel extraction phase for our framework that converts raw video clips to
discrete Answer Set Programs (ASP) of facts - capturing information regarding objects
moving within each clip. Using this new extraction phase, we release two new datasets of
object-behaviour-facts - the ‘MSR-VTT-ASP’ and the ‘ActivityNet-ASP’ datasets.

• For the reasoning phase of our framework, we propose novel symbolic and transformer-
based reasoning methods over our extracted ASP-facts to obtain higher-level summary
vectors of object-behaviour.

• Finally, we evaluate the performances of the different symbolic and transformer-based-
architectures that we propose within our framework, and make a comparison against the
previous state-of-the-art.

Experiment results demonstrate that our new methods for adverb-type recognition perform favourably
against the previous state of the art on video-clips from the MSR-VTT and ActivityNet datasets,
providing a new means for adverb-type recognition when the action-type of a video-clip is unknown.
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2 Related Work

Action-Type Recognition: Simonyan et al. [19] was first to propose a two-stream 2D CNN
network for action-type recognition - that employs a separate stream to process image-frames and a
separate stream to process their optical flow. This two-stream method outperformed the previous
method of predicting actions from features pooled across video-frame snips [11] by a large margin.
Subsequently, 3D CNNs [20] were shown to outperform their 2D counterparts by better preserving
temporal information across input frame sequences, and building on these ideas, the Two-Stream
Inflated 3D CNN (I3D) network was proposed [3] - using two streams of 3D convolutional networks
over stacked frames of a video clip’s image frames and optical flow. This I3D model significantly
outperformed the previous methods and is employed as the backbone of a number of state-of-the-art
action-type recognition systems [7, 9, 18]. However, as pointed out earlier, the two-stream and
3D CNN paradigms operate end-to-end, directly over raw pixel maps of image frames or opti-
cal flow and fail to cleanly separate out and reason over individual object-behaviours across time-steps.

Adverb-Type Recognition: Pang et al. [16] was first to explore the problem of adverb-
type recognition in video clips, introducing the “Adverbs Describing Human Actions" (ADHA)
dataset and employing a hybrid two-stream CNN along with expression detectors and human
pose-estimates. However, their work addresses a problem setting different from the one that we are
interested in. The ADHA dataset is focused on adverbs for human subjects, and places special focus
on human pose and expression informed adverbs. We are interested in scenes comprising more
general content that may not be human. Doughty et al. [5, 6] scaled up the problem of adverb-type
recognition to general-scene video clips, and released adverb-annotations for subsets of video-clips
from the HowTo100M[15], VATEX[21], MSR-VTT[23] and ActivityNet[2] datasets while proposing
new architectures for the task. However, as mentioned earlier, both of these prior works [5, 6] assume
knowledge of the video-clip’s underlying action-types as a prerequisite for adverb-type recognition
(with over 100 distinct ground-truth action-type categories), and they encode video-clips using an
I3D backbone without attempting to reason over individual object-behaviours. In our work, we
use the adverb-annotations released by Doughty et al. [6] for experiments on video-clips from the
MSR-VTT and ActivityNet datasets - datasets for which raw video files are publicly available.

3 Method

Our adverb-type recognition framework (Figure 1a) comprises three phases - an Extraction phase,
a Reasoning phase and a Prediction phase. The Extraction phase extracts separate discrete, and
human-interpretable object-behaviour-facts for each object detected to be of interest within the video
clip. The Reasoning Phase summarizes those facts across time-steps into summary vectors for each
object. The Prediction Phase makes downstream classifications, using separate SVMs to classify
between each adverb and it’s antonym. Finally, as we obtain separate SVM predictions for each
object detected to be of interest in a clip, we aggregate results by majority-voting.

3.1 Extraction Phase

Figure 6 shows a depiction of our extraction pipeline. Given a raw video clip, we first employ
MaskRCNN [10] over delayed-captures of static frames from the video clip’s image sequence -
considering every fifth frame of the original clip. In doing so, we avoiding processing successive
frames between which very little changes. MaskRCNN gives us a collection of predicted object-types
and their corresponding bounding boxes with confidence scores between 0 and 1. We ignore
all detections made with a confidence score less than 0.3, and flag all detected patches with
low confidence scores between 0.3 and 0.5 as ‘unknown’ object-types1. Patches detected with a
confidence score above 0.5 are recorded along with their predicted object-types. To capture properties
of motion for each of these detected object patches, we compute the pixel-wise Gunnar-Farneback
optical flow [8] between consecutive delayed capture frames. These per-pixel optical-flow values are
averaged within each detected object-bounding-box to give us a single average numeric value of
optical-flow magnitude and a single average numeric value of optical-flow angle for each detected

1To simplify our explorations and to reduce noise in the input data, in this work, we ignore ‘unknown’ type
object-behaviours detected by our extraction phase - leaving reasoning over those less-confident object-facts as
scope for future work.
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(a) A depiction of our proposed framework for adverb-type
recognition.

(b) A depiction of our video-to-object-
behaviour-facts (video-to-ASP) extrac-
tion phase.

Figure 1: A depiction of our proposed framework (a) and our video-to-object-behaviour-facts
extraction phase (b).

object-patch. To filter these numerous detections, we then slide a non-overlapping sliding window
over the delayed capture frames (each window detection corresponding to a single time-step), and
we assume that (1)Of the objects detected in a frame, only objects moving faster than the frame’s
average are of interest for adverb-type recognition, (2)Of those filtered cases, only objects detected
consistently in at least half the frames of the sliding window can be considered important enough for
adverb-recognition. It is necessary for us to make these assumptions/choices to reduce the complexity
of the problem faced by subsequent phases. Automatedly learning optimal property-extractions for
adverb-type recognition is scope for future work and poses a significantly more challenging task.

A consistently detected object of interest has its properties averaged across a time-step’s
window, and these properties are recorded as Answer Set Programming (ASP) [14] facts as shown in
Figure 6, where “detected(person, 2)" means that an object of type ‘person’ is detected at time-step 2.
We also capture local temporal properties of objects such as ‘operation-area’ and ‘movement-in-place’
at each time step, and record the region of the frame ‘cell_occupancy’ that the object occupies for
that time-step. To simplify processing, optical-flow angles are bucketed into discrete directions
north(n), north-east(ne), east(e), etc.; while numeric-values besides optical-flow magnitude are
thresholded to very_small, small, medium, large and very_large. The implementation details of these
extracted predicate properties are discussed in greater detail in Appendix Section 6.1.

Our video-to-ASP extraction pipeline can be used to convert raw video-clips to ASP-programs
in an online-fashion. However, to simplify our training and evaluation procedures and to
further research efforts in symbolic and neuro-symbolic video-processing, we instead preprocess
video-clips taken from the MSR-VTT and ActivityNet datasets using our proposed pipeline in an
offline-manner and release new ‘MSR-VTT-ASP’ and ‘ActivityNet-ASP’ datasets consisting of
extracted object-behaviour-facts and releavant background knowledge over predicate properties.
Details of these new datasets are discussed further in Sections 4.
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3.2 Reasoning Phase

3.2.1 Symbolic-Based Reasoning

In this work, we first consider employing the FastLAS inductive learning method [13] to automatedly
learn indicator rules that plausibly define adverb-types. However, automatedly learning symbolic rules
that reason over more than one time-step is an extremely challenging task (owing to the large number
of possible variable groundings of rules). Rather than attempting to overcome the multi-time-step
challenge, in this initial exploration, we consider learning a large number of simple single-time-step
rules, that compositionally might inform overall adverb-type. In particular, for magnitude, angle, and
operation_area predicates, we focus on learning range-rules that define upper or lower bounds of an
object’s predicate-properties at single time-steps, and for the cell-occupancy predicate, we focus on
learning single-time step rules that outline rough left/right or up/down placement of an object within
the frame. As an example, Figures 2a and 2b depict FastLAS learnt ASP range-rules that classify
between categories of ‘adverb_A’ and ‘antonym_A’ motion for some collection of object-behaviour
facts. According to these indicator rules, objects moving with an optical-flow magnitude between
five and twenty at some time-step are considered to exhibit ‘adverb_A’ behavior, while those objects
moving with optical-flow magnitude outside those limits are considered to exhibit ‘antonym_A’
behavior. These rules might not hold as universally true, however they are identified by FastLAS as
plausibly explanations for some given batch of input behaviour-examples. Similarly, from the training

(a) Batch-plausible ASP range-rules learnt to logically-explain (adverb_A,
antonym_A) categories.

(b) A depiction of the ranges defined by the rules shown in Figure 2a.

Figure 2: A depiction of rules learnt by FastLAS for some batch of example object-behaviours labeled
with (adverb_A, antonym_A) categories.

data, we learn indicator rules classifying between each (adverb, antonym) pair. To do so we sample
small-balanced-batches of object-behaviour-facts from the training data - choosing 10 randomly
sampled object-behaviours for each adverb, and 10 random sampled object-behaviours for it’s
antonym. We then run FastLAS separately over each balanced-batch along with common background-
knowledge to obtain a large number of batch-wise plausible adverb/antonym indicator-rules over
predicate-properties (such as those rules shown in Figure 2a). After all such single-time-step batch-
plausible indicator-rules have been learnt for each adverb vs antonym task across the training data, we
use those symbolic ASP rules to summarize object behaviours. Specifically, for an object’s collection
of behaviour-facts, we assign a 1 for an indicator-rule if that rule logically-fires for the given object’s
behaviour-facts, and we assign a 0 otherwise - so that from our collection of indicator-rules we obtain
a vector of 0s and 1s (such as [1,1,1,0,1,1,...]) for each object-behaviour. All object-behaviours
are converted in this manner for each adverb vs antonym task, and those vectors are used as rough
behaviour-summaries for downstream adverb-type recognition. (Implementation details are further
discussed in Appendix Section 6.3).
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3.2.2 Transformer-Based Reasonoing

As an alternative to our single-time-step based symbolic-reasoning, we also propose multi-time-step
transformer-based reasoning. We start by flattening the ASP-format object-behaviour properties
detected by our Extraction Phase (as shown in Figure 3). We get rid of unnecessary syntactical
detail and special characters that might otherwise confuse a sentence tokenizer, and record object-
type only once per time-step to avoid redundancy. We also eliminate the explicit time-stamps
(1, 2, 3...) associated with each logical fact. We are able to do this, provided that we maintain the
correct chronological ordering of detected object-properties since transformer models already have
provisions allowing them to recognize and reason over the positional-ordering of words in sentences.

(a) A truncated object-behaviour snippet showing ASP facts of object-behaviour for a
‘person’ type object across two time steps - formatted for symbolic-based reasoning.

(b) A truncated flattened representation of the object behaviour from Figure 3a - formatted
for transformer-based reasoning.

Figure 3: Object Behaviour for a ‘person’ type object formatted for symbolic (a) and transformer (b)
based reasoning.

Next, we consider Masked Language Modeling (MLM) [4] over object-behaviours to learn useful
object-behaviour representations (Figure 4). In conventional MLM, some of the words of a natural-
language sentence are masked out and a transformer model fitted with a shallow prediction-layer
is trained to predict those masked words from the rest of the unmasked sentence - forcing the
transformer to learn to encode sentence-structure and overall sentence meaning. Features output by
the last transformer-layer are then typically extracted and used for related down-stream tasks such as
text-classification. In the context of our object-behaviours problem setting, we directly extend this
idea, by masking out some of the ‘value-words’ that correspond to each object’s particular behaviour
(that might be a value of magnitude/angle/operation-area/etc. at some time-steps). We then train
an MLM transformer model to predict those masked values from the rest of the unmasked object-
behaviour (as shown in Figure 4 2). In doing so, we force the transformer to learn to encode some
overall meaning or dynamics of object-behaviour. The features output by the last transformer-layer
are then used for down-stream adverb-type recognition. In particular, we do not train the transformer
model from scratch, but rather fine-tune a model that has been pretrained for natural-language MLM.
We do this transfer-learning in order to exploit complex network reasoning properties that have already
been learnt over very large datasets of natural language3. Once we have fine-tuned our MLM model
to reason over and unmask object-behaviours, we then use it to extract object-behaviour summary
vectors. For each input object-behavior snippet in the dataset, we feed that flattened object-behavior
to our trained transformer-model and extract the word-level vectors output by the transformer’s final
layer. Those word-level features are then averaged across the entire flattened sentence to give us a
single summary vector - that encodes some overall multi-time-step object-behaviour information.

2Specifically, we mask value-words with a probability of 20% and do not mask-out prompt-words such as
‘magnitude’ and ‘angle’ that occur in every example. Importantly, we also make sure not to mask object-types
as they can be difficult to infer from object-motion, and forcing a model to predict them would detract from
learning other behavioural-properties.

3Note: to limit the computational costs of fine-tuning, we truncate flat object behaviour inputs (Figure 3b) at
512 tokens.
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Figure 4: Masked Language Modeling over object-behaviours.

3.3 Prediction Phase

Finally, each summary object-behaviour feature vector (output by either the single-time step symbolic-
reasoning approach or the multi-time step transformer-reasoning approach) is then fed into a separate
Support-Vector Machine (SVM) with rbf kernel for binary classification between each adverb-type
and it’s antonym. At test time, the adverb-vs-antonym predictions from multiple object-behaviours
detected to be of interest in a single clip are aggregated to make a single decision by a majority-vote.

4 Experiments

Datasets: We evaluate our method on subsets of the MSR-VTT [23] and ActivityNet [2] datasets,
using adverb-annotations by Doughty et al. [6]. We process clips where both raw-footage and adverb-
annotations are available using our Extraction Phase (Section 3.1), to obtain 1309 ASP-programs
for our new MSR-VTT-ASP dataset and 1751 ASP-programs for our new ActivityNet-ASP dataset -
where each program contains facts of multiple object-behaviours detected to be of interest within
the corresponding video-clip, along with background knowledge of predicate properties (Appendix
6.1). Each program is labeled with one or more of 22 adverb-types (11 adverb/antonym pairs) accord-
ing the source clip’s labels4 : (1)upwards/downwards, (2)forwards/backwards, (3) outdoor/indoor,
(4) slowly/quickly, (5)gently/firmly, (6)out/in, (7) partially/completely, (8)properly/improperly, (9)
periodically/continuously, (10) instantly/gradually, (11) off/on. This leaves us with 1674 unique
(asp-program, adverb) pairs from MSR-VTT and 1824 unique (asp-program, adverb) pairs from
ActvityNet. We randomly split these datasets into training and testing sets using 70/30 stratified splits
(stratified by adverb-type) to obtain 1171 training and 503 testing samples for MSR-VTT-ASP and
1276 training and 548 testing samples for ActivityNet-ASP. Finally, with these two new ASP-datasets
and splits having been created, for experiments, we turn to the requirements of our adverb-type
recognition framework. We require snippets of individual object-behaviours to reason-over for adverb-
type prediction. So, for each ASP-program, we cut-out behaviour snippets for separate detected
object-types - so that one snippet corresponds to one object-type’s behaviour over the course of a
video (as shown in Figure 3a). Each object behaviour snippet is annotated with the adverb-type of it’s
source program.5 These snippets of object-behaviour are then repeated within each adverb-category
to balance out the number of samples used for training and testing in each category.

4We drop the loudly/quietly category since neither our method nor the previous work uses a clip’s audio.
5Note: As each video-clip contains multiple objects, the number of object-behaviour snippets is much larger

than the number of video-clips.
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4.1 Symbolic Based Reasoning

As mentioned in section Section 3.2.1, we learn a large number of batch-wise plausible indicator
rules using FastLAS over balanced batches of object-behaviours from the training-set within each
adverb-vs-antonym category, and use those learnt indicator-rules to extract summary vectors of
object behaviors for each adverb-vs-antonym classification task. Those summary vectors from the
training-set are then used to train separate SVM classifiers to distinguish between each adverb and its
antonym. At test time, SVM predictions from multiple object-behaviours within individual source-
video-clips from the test-set are aggregated by majority-vote to distinguish between adverbs and
antonyms in each category. As shown in Figure 5, the accuracy of prediction of this single-time-step
based symbolic method is highest for both MSR-VTT and ActivityNet datasets when distinguishing
between forwards-and-backwards type adverbs - which might plausibly be inferred from a grouping
of single-time-step behaviour-properties. Performance is worst (zero) for more complex adverb-types:
periodically-continuously, instantly-gradually and off-on - for which no single-time-step batch-wise-
plausible range rules are found. Table 1 shows averaged accuracies across all adverb/antonym
categories in each dataset.

4.2 Transformer Based Reasoning

For our experiments, we consider two light-weight versions of the landmark BERT [4] transformer
model - namely the ALBERT [12] and DistilBERT [17] architectures. As outlined in Section 3.2.2,
we fine-tune each pre-trained transformer model by flattening object-behaviour snippets and making
them unmask randomly masked ‘value-words’. We then obtain behaviour summary-vectors for each
object-snippet by feeding their flat representations to the trained transformers without masking and
averaging word-level features output by the last hidden layer across the entire sentence. As with
the symbolic-case, a separate SVM with rbf kernel is used over these extracted summary-vectors,
along with majority-voting to distinguish between each adverb and it’s antonym. We find that
both ALBERT and DistilBERT achieve comparable average-performance, while out-performing our
symbolic approach by a wide margin (Table 1). However, when each adverb-vs-antonym recognition
task is viewed separately (Figure 5), results are mixed. The symbolic approach performs best in the
‘forward/backward’ category, while one or the other of our transformer-based methods works best for
other adverbs. The general superiority of the transformer approach is largely to be expected, given
that it jointly reasons over multiple time-steps and multiple predicate properties, while our symbolic
approach composes single time-step, single predicate properties. It can be difficult to interpret why
one reasoning method outperforms another within a given category. However, it is encouraging that
not all reasoning models exhibit the same performance, since we can achieve higher overall accuracy
by separately using the most appropriate reasoning method for each category - as shown in Table 1.

4.3 Comparison with State-of-the-Art

We next make a strict comparison between our approaches and the action-dependent previous
state-of-the-art [5, 6]. For previous methods, we randomly flip action-type labels for 5% of
action-categories in the train and test sets, so that we obtain ‘imperfect-actions’ that represent an
action-type prediction-accuracy of 95% (which one might approach if a state-of-the-art action-type
predictor [22] is trained on full-versions of the two datasets and used for prediction). In the case
of MSR-VTT-ASP, our joint Symbolic and Transformer action-free reasoning method is highly
competitive, making a 3.71% improvement over PsudoAdverbs[6] in the imperfect-actions case and
outperforming previous works even in the scenario where all ground truth actions are explicitly
known (Table 1). In the case of ActivityNet-ASP, our joint Symbolic and Transformer action-free
reasoning method achieves 1.86% lower accuracy than PsudoAdverbs in the imperfect-actions-
case, but is still highly useful, as it offers an action-free alternative to previous methods at a
relatively small drop in performance - with no requirement to train or maintain action-type predictors.

Broader Impact: Similar to action-type recognition methods, we reflect that one may at-
tempt to use adverb-type recognition to maliciously interpret and monitor video-footage. However,
we also note that improved adverb-type recognition, when used ethically for improved video-
interpretation, offers significant benefits to human computer interaction and robotics.

Limitations and Scope for Future Work: To our knowledge, we are the first to propose
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(a) MSR-VTT-ASP (b) ActivityNet-ASP

Figure 5: Binary classification accuracies for adverb-vs-antonym tasks on the ASP test-sets of
balanced object-behaviours using our proposed symbolic and transformer-based approaches.

MSR-VTT-ASP ActivityNet-ASP
Method Average accuracy (%) ↑ Average accuracy (%) ↑
ActionModifiers[5] w/ ground-truth-actions 59.98 61.05
PsudoAdverbs[6] w/ ground-truth-actions 67.49 67.59

ActionModifiers[5] w/ imperfect-actions 59.78 59.88
PsudoAdverbs[6] w/ imperfect-actions 64.61 65.76
Ours (Action-Free):
Symbolic-Based Prediction 57.08 36.51
ALBERT Transformer-Based Prediction 64.10 61.26
DistilBERT Transformer-Based Prediction 64.48 60.65
DistilBERT + ALBERT Prediction 67.92 62.96
Symbolic + DistilBERT + ALBERT Prediction 68.32 63.90

Table 1: Average adverb-vs-antonym binary-classification accuracies using our proposed action-free
reasoning methods, and the action-dependent previous state-of-the-art on the balanced ASP test-sets
and corresponding clips (ground-truth actions-available scenario greyed out).

action-free methods and first to reason-over object behaviours for adverb-type recognition. As such
there are several possible directions for further investigation. Primarily, for transformers we explored
MLM-modeling using light-weight transformer models, and our symbolic-reasoning method is
limited to single-time step and single-predicate type rules. Scope for future work then includes
exploring alternative transformer-modeling/architectures (such as causal modeling using GPT-3 [1]),
and reasoning over multiple-time steps and multiple-predicate-properties using symbolic-reasoning.

5 Conclusion

In this work, we proposed the design of a new framework that reasons over object-behaviours to
recognize a video-clip’s adverb-types. Importantly, unlike previous work, our method is action-free
and is directly applicable when the action-type of a video-clip is unknown. We proposed a novel
pipeline to extract human-interpretable object-behaviour-facts from raw video clips and used that
pipeline to create two new datasets of object-behaviour-facts - the MSR-VTT-ASP and ActivityNet-
ASP datasets. Finally, we proposed novel symbolic and transformer based reasoning methods that
reason over those extracted facts to distinguish between adverb/antonym types. Experiment results
demonstrate that our proposed methods perform favourably against the previous state-of-the-art.
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6 Appendix

6.1 Implementation Details of the Extraction Phase

In this section, we describe the design of our extraction-phase in greater detail. Figure 6 shows a
depiction of this pipeline.

Figure 6: A depiction of our video-to-discrete object behaviours pipeline.

As mentioned earlier, given a raw video clip, we first employ MaskRCNN [10] over delayed-captures
of static frames from the video clip’s image sequence - the delay is added so that we only consider
every fifth frame of the original clip and avoid processing immediately successive frames (between
which very little changes). MaskRCNN gives us a collection of predicted object-types and bounding
boxes along with their corresponding confidence scores between 0 and 1. We ignore all detections
made with a confidence score less than 0.3, and flag all detected patches with low confidence scores
between 0.3 and 0.5 as ‘unknown’ object-types. Patches detected with a confidence score above 0.5
are recorded along with their predicted object-types.

To capture properties of motion for each of these detected object patches, we compute the
pixel-wise Gunnar-Farneback optical flow [8] between consecutive delayed capture frames. These
per-pixel optical-flow values are averaged within each detected object bounding box to give us a
single numeric value of optical-flow magnitude and a single numeric value of optical-flow angle for
each detected object-patch.
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To filter these numerous detections for the most adverb-relevant information, we make two
important assumptions.

• First, we assume that of the objects detected in a scene, faster moving objects are of more
interest for adverb-type recognition then slower moving objects within the same scene. This
is a reasonable assumption to make since we are trying to design a system that mimics
human judgement of adverb recognition in video clips, and to humans, faster moving objects
are usually more eye-catching and take precedence over slower-moving objects.

• Next, we make the assumption that objects whose behaviour determine the video clip’s
overall adverb-type must be detected to be of interest (moving faster than other objects
within the same scene) with some level of consistency. If an object is deemed to be of
interest only fleetingly, then it is unlikely to determine the overall categorization of a video
clip.

Acting on these two assumptions, after computing averaged optical-flow properties for each bounding
box as described above, we then run a non-overlapping sliding window over the delayed capture
frames and filter out objects that (1) Do not have optical-flow magnitude above the average of
all objects detected in the same frame (2) Do not pass the first filtering step for at least half the
delayed-capture frames encompassed by the sliding window. In our implementation, we use a sliding
window of size five -within which period, the types of objects being portrayed do not usually change
much.

Finally, to simplify the tracking of object behaviour between frames, we ignore duplicate
object-types detected within each delayed frame and record only the object with the highest
optical-flow magnitude in a contest between two or more objects of the same type. Once we have
filtered our MaskRCNN detections this way, the per-frame properties of optical-flow magnitude,
optical-flow angle and bounding-box size for objects are averaged across all detections of the same
object-type within each window. Since scenes do not usually change much within the span of a
window, these object-properties that we are averaging for a given object-type usually pertain to the
same physical object.

Properties recorded from each window correspond to a separate time-step and are time-
stamped as ASP facts accordingly. As shown in Figure 6, “detected(person, 3)" means that an object
of type ‘person’ is detected at time-step 3 - corresponding to the third window scan.

In addition to these averaged per-frame properties, we also capture local temporal proper-
ties of ‘operation-area’ and ‘movement-in-place’ for each object within a window. Operation-area
captures the size of the area within which a single object-type ‘lives’ for the span of a window
i.e it is the product of (xmax-xmin) and (ymax-ymin) computed over all detected bounding box
coordinates. Movement-in-place on the other hand is the ratio of the operation-area to average
bounding-box-size of the detected object within a window. The more that an object moves around
within a given window, the larger that this ratio will be. To simplify the down-stream reasoning
process, all numeric properties besides optical-flow magnitude are placed into discrete buckets, such
as ‘small’, ‘very-small’, ‘medium’, etc. ; while angles are categorized into discrete sectors ‘north(n)’,
‘north-east(ne)’, ‘east(e)’ and so on. The exact numerical-range of each discrete bucket/sector is
specified in the accompanying code-implementation.

Besides the object propeties already mentioned, we also record the region of the video frame within
which each object’s operation-area is maximum (i.e the section of the frame within which the object
‘lives’). Rather than mapping each frame’s area using a series of flat grid cell locations such as
C0, C1, C2, C3... and assigning cell-ids to each object, in order to allow a more intuitive reasoning
process, we employ a hierarchy of relative placement.

As shown in Figure 7, at the highest level of this hierarchy (level 0), the frame is split into
4 regions, (top, left), (top, right), (bottom, left) and (bottom, right). At the second level (level
1), each of these regions is further split into another 4 regions, and again at level 2, the process
is repeated. Describing the location of an object’s operation-area using this hierarchy of relative
placement then allows us to make fairly simple inferences. For example, if level 1 placement stays
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Figure 7: Hierarchy of relative-placement for cell-occupancy information.

unchanged and the level 2 toggles from left to right, we can easily determine that the object has
moved right by a small amount, and if instead the level 1 placement toggles from top to bottom, then
we can say that the object has moved downward by a significant amount. As shown in Figure 6,
cell-occupancy predicates map the operation-area of detected objects in each window using this
hierarchy of relative-placement.

Finally, for clarity, Figure 8 shows a trimmed example of an ASP-program, computed from
a video-clip using this pipeline. The figure shows some selected background knowledge and
object-properties detected over a single time step. Importantly, we highlight that our background
knowledge includes information on the ‘opposites’ of relative directions, as well as ‘less-than’,
‘clockwise’ and ‘anticlockwise’ orderings over bucketed numeric values - so that we can reason about
ranges in symbolic approaches. Importantly, these ordering predicates are formulated with a measure
of distance to allow for range-reasoning. For example, ‘clockwise(n, ne, 1)’ indicates that northeast
is clockwise of north by one-tick while ‘clockwise(n, e, 2)’ indicates that east is clockwise from
north by two-ticks. Similarly ‘less-than(very-small, small, 1)’ indicates that small is larger than
very-small by one step, whereas ‘less-than(very-small, medium, 2)’ indicates that medium is larger
than very-small by two steps.

6.2 MSR-VTT-ASP and ActivityNet-ASP datasets

As discussed in Section 4, in this work, using our extraction-phase pipeline, we process clips where
both raw-footage and adverb -annotations (from Doughty et al. [6]) are available for the MSR-
VTT[23] and ActivityNet[2] video-datasets to create the new MSR-VTT-ASP and ActivityNet-ASP
datasets of ASP-programs. Each dataset contains facts of multiple-object behaviours detected to be of
interest within the corresponding video clip, along with background knowledge of predicate properties
- as shown in Figure 8 (the full background-knowledge of predicate-properties are specified in the
ASP-files of the new datasets). As discussed in Section 4, each program is labeled with one or more of
22 adverb-types (11 adverb/antonym pairs) according the source clip’s labels: (1)upwards/downwards,
(2)forwards/backwards, (3) outdoor/indoor, (4) slowly/quickly, (5)gently/firmly, (6)out/in, (7) par-
tially/completely, (8)properly/improperly, (9) periodically/continuously, (10) instantly/gradually, (11)
off/on, and we split these datasets into 70/30 train/test stratified splits (stratified by adverb-type) to
obtain 1171 training and 503 testing samples for MSR-VTT-ASP and 1276 training and 548 testing
samples for ActivityNet-ASP. Table 2 shows summary properties of these two new datasets.

Average.

# Train # Test # obj per. clip # time-steps per. clip # obj per. time-step

MSR-VTT-ASP 1171 503 3.06 16.35 0.93
ActivityNet-ASP 1276 548 3.24 29.61 0.87

Table 2: Summary of properties of the MSR-VTT-ASP and ActivityNet-ASP datasets - Ignoring
‘unknown’ types and assuming that an object-type corresponds to the same object across all detections.
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Figure 8: Trimmed example of object-behaviour captured in an ASP program.

6.3 Implementation Details of Symbolic-Based Reasoning

As mentioned in Section 3.2.1, we consider employing the FastLAS inductive learning method [13]
to automatedly learn some governing rules over these extracted facts - so as to explain the overall
adverb-type categorization of each video clip.

In using FastLAS to learn such rules, we are primarily constrained by the number and type
of variables that each rule can use. The more number of variables that a rule allows, the more the
number of possible groundings that it can take, and the longer that it takes for rule learning to
complete. And while each extracted instance of object behaviour possess multiple facts of the same
predicates across different time-steps (such as magnitude at time step 1, magnitude at time step 2,
etc.), owing to the large number of possible groundings, automatedly learning rules that reason over
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more than one time-step is especially challenging for this task.

In this work, rather than attempting to overcome these challenges and learn a few very
complex rules over multiple time-steps and multiple predicate-properties, we instead consider
learning a large number of simpler rules, that compositionally might inform overall adverb-type.

To limit the number of free variables that FastLAS has to deal with, we focus on learning
range-rules that define upper or lower bounds of an object’s predicate-properties at single time-steps.
To illustrate this idea, Figure 9 shows a toy example that we feed into FastLAS. The example
specifies the behavior four objects: a car, a plane, a person, and a cat. Each of these behaviors has a
corresponding optical flow magnitude for an arbitrary time-step and each object-behaviour (that is a
positive example for our rule-learning problem) is also associated with a particular class type - either
‘strange’ or ‘not-strange’. The first class-type mentioned in a #pos header in the figure is the one
that we wish to associate with the object-behaviour. The second class type mentioned in the header is
what the object-behaviour is not.

As shown in this toy example, in order to reduce the number of variable-values that Fast-
LAS deals with, we also use discretized versions of optical-flow magnitude such as ‘five-to-ten’,
‘ten-to-fifteen’, etc.

The language-bias shown in the figure specifies that the head atom of any learnt rule must
be a class type (‘strange’ or ‘not-strange’), and must generalize over variable objects-types. The
language-bias also specifies that body atoms (if used) must capture some range property over
magnitude. As FastLAS can learn to use one or none of each of the specified ‘less-than’ body atoms,
a learnt-rule might enforce an upper bound on magnitude value, a lower bound on magnitude value,
or neither. Additionally, as the ‘number-of-steps’ field in the less-than predicate is specified as a
FastLAS numeric-variable (num-var), FastLAS is allowed to learn numeric-constraints that further
explain range-rules.

For this particular toy example, we can explain all of the provided object-behaviours by
deeming magnitudes between 5 and 20 to correspond to the class ‘strange’ and other magnitude
values to correspond to the class ‘not-strange’. FastLAS does infact discover such corresponding
rules, as shown in Figure 10. Figure 11 shows a depiction of these learnt ranges for better clarity.

We can similarly employ these range-style language-biases for other predicate properties such as
optical-flow angle, and operation area. Figure 12 shows how we might do so. As also shown in
Figure 12, for cell-occupancy we consider using a slightly different language bias - we allow for
rule-body conditions that consist of: (A)A variable relative direction along the vertical (top/bottom)
and a constant horizontal direction (left/right), (B)A variable direction along the horizontal (left/right)
and a constant vertical direction (top/bottom) or (C)Both horizontal and vertical relative directions
specified as constants. We also use a numeric-variable (num-var) value for the level of cell-hierarchy
used by a rule, so that we can learn rules that apply to different levels.

An important facet of this type of observational-predicate rule learning is that it specifically
requires numeric rule learning (either to learn constraints over the number-of-steps range property
or the level-of-hierarchy as described), and we have chosen to employ FastLAS as it is the only
framework that allows this type of automated numeric-rule learning over ASP programs.

Generalizing our toy example for the more complex problem-setting of recognizing adverb-types
from object-behaviours is straightforward. We use recorded object behaviours from our video-to-ASP
pipeline as positive examples in the rule-learning setup, wherein the class associated with each
object-behaviour is the ground-truth adverb-type of the overall video clip that an object hails
from. Naturally, the class not to be associated with each object behaviour is the antonym of its
adverb-type. Figure 13 shows a truncated example of a detected object’s behaviour formatted for
FastLAS rule-learning. To simplify our explorations and to reduce noise in the training data, we
ignore ‘unknown’ object-behaviours detected by our pipeline.

However, problems arise in using this learning methodology as-is over sets of object-behaviours for
given (adverb, antonym) pairs. Firstly if the set of object-behaviours is not-balanced to have an equal
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Figure 9: Toy example of range-based rule-learning.
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Figure 10: Rules learnt by FastLAS for the toy-example shown earlier.

Figure 11: A depiction of the ranges defined by the rules learnt for our toy-example.

number of objects for both adverb and antonym, then we might get best coverage by just predicting a
single class rule without any body conditions. This problem of unbalanced data is easily solved by
repeating object-behavior examples in the training data to balance out the adverb/antonym classes.
The next problem is more important - since the adverb-recognition setting is quite noisy (with many
of our detected object-behaviours not necessarily impacting a video’s overall adverb-type), for large
sets of object-behaviour, even after balancing, we find that rules learnt from our simple language
biases (Figure 12) are not able to cover more than 50% of behaviours. Then, directly predicting
one or another adverb/antonym head with no body conditions again becomes the best strategy for
maximum coverage.

As mentioned earlier, increasing the complexity of possible rules to abate this problem
comes with its own set of challenges (namely rule-learning can slow down to the point of
becoming computationally impractical). So, rather than increasing the complexity of our language
biases, we consider smaller-batches of balanced subsets of the training data - which pose a
less noisy and less complex problem setting when each batch is viewed separately. We run
FastLAS separately over each balanced-batch of object behaviours to get batch-wise plausible
rules for each of our language-biases. When the rules returned by FastLAS for a batch and lan-
guage bias are non-trivial (possess body-conditions), we then record them as indicators of adverb-type.

After all such indicator-rules have been extracted from a stream of balanced-batches of the
full training set for each (adverb, antonym) pair using our language-biases (Figure 12), we then
consider composing their results together using Support Vector Machines (SVMs). Specifically,
given an input object-behaviour and an adverb vs antonym task, we assign a 1 to each corresponding
indicator-rule if the rule fires for the given object’s behaviour, and assign a 0 otherwise - so that from
our collection of indicator-rules of the adverb/antonym task, we obtain for the object-behaviour a
feature of 1s and 0s (such as [1,1,1,0,1,1,...]). The entire balanced training-set is converted in this
manner for each adverb vs antonym task. A separate binary-SVM with rbf kernel is trained over
these extracted features to classify between every adverb and its antonym.

At inference time, a raw video clip is converted to an ASP program of object behaviors,
and all the indicator-rules are checked to obtain vectors of zeros and ones for each object. All the
SVMs make their adverb/antonym predictions (over features from their corresponding indicator-rules)
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Figure 12: Language Biases used for rule-learning over optical-flow magnitude, optical-flow angle,
operation-area and cell-occupancy.

18



Figure 13: A truncated example of a detected object-behaviour formatted for FastLAS rule-learning.

for each detected object, and predictions from multiple objects detected within a single-clip are
aggregated by a simple voting mechanism in each adverb vs antonym category.

6.4 Compute Requirements for Experiments

All experiments presented in this work can be reproduced using a single P5000 GPU device. Using
this resource, ASP-Program facts were extracted for the full MSR-VTT-ASP and ActivityNet-ASP
datasets sequentially over 2 days, while transformer-based finetuning completes in under 1 hr for a
given dataset for both DistilBERT and ALBERT architecures. Learning rules from balanced-batches
of object-behaviours using FastLAS and a single CPU requires roughly 20 hours to complete for each
dataset. All SVM training and inference completes in under 5 min.
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