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Abstract—In this manuscript, we propose to use a variational
autoencoder-based framework for parameterizing a conditional
linear minimum mean squared error estimator. The variational
autoencoder models the underlying unknown data distribution as
conditionally Gaussian, yielding the conditional first and second
moments of the estimand, given a noisy observation. The derived
estimator is shown to approximate the minimum mean squared
error estimator by utilizing the variational autoencoder as a
generative prior for the estimation problem. We propose three
estimator variants that differ in their access to ground-truth data
during the training and estimation phases. The proposed estima-
tor variant trained solely on noisy observations is particularly
noteworthy as it does not require access to ground-truth data
during training or estimation. We conduct a rigorous analysis by
bounding the difference between the proposed and the minimum
mean squared error estimator, connecting the training objective
and the resulting estimation performance. Furthermore, the
resulting bound reveals that the proposed estimator entails a bias-
variance tradeoff, which is well-known in the estimation litera-
ture. As an example application, we portray channel estimation,
allowing for a structured covariance matrix parameterization
and low-complexity implementation. Nevertheless, the proposed
framework is not limited to channel estimation but can be applied
to a broad class of estimation problems. Extensive numerical
simulations first validate the theoretical analysis of the proposed
variational autoencoder-based estimators and then demonstrate
excellent estimation performance compared to related classical
and machine learning-based state-of-the-art estimators.

Index Terms—Parameter estimation, variational autoencoder,
conditional mean estimator, generative model, inverse problem.

I. INTRODUCTION

A prominent class of machine learning (ML) techniques
designed to learn data distributions based on samples are
generative models (GMs) [1]. A successfully trained GM
allows for likelihood evaluation and the creation of entirely
new samples that follow the same distribution. Instances of
GMs are the Gaussian mixture model (GMM) [2, Ch. 9],
variational autoencoder (VAE) [3], [4], generative adversarial
network (GAN) [5], and score-based model [6]. GMs provide
a generative prior characteristic for the data distribution, which
can be leveraged to solve sophisticated tasks such as inverse
problems [7]. Exemplarily, the work in [8] utilizes a GAN
to reconstruct images in a compressed sensing (CS)-fashioned
way and [9] extends the approach to MRI images. Other image
processing-related examples involve phase retrieval [10] and
blind image deconvolution [11]. In the context of wireless
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communications, generative priors find application in channel
estimation (CE) [12]–[16], which is also an inverse problem.

For the solution of an estimation task, a frequentist frame-
work assumes the data to be deterministic and commonly
constrains the estimator class to be unbiased in search for
a minimum variance unbiased estimator [17]. In opposition,
if a Bayesian approach is considered, it is well-known in
estimation theory that the conditional mean estimator (CME)
delivers minimum mean squared error (MMSE) estimates [18,
Ch. 10]. Therefore, a (parameterized) Bayesian estimator’s
goal should be approximating the CME. Moreover, a fun-
damental aspect of the Bayesian framework is modeling the
data as a random variable (RV), enabling the incorporation of
a prior distribution into the estimation process. The result is
an excellent estimation performance if the prior distribution
accurately models the data, e.g., in the form of a generative
prior. Therefore, GMs and Bayesian inference can be ideally
combined to perform estimation tasks due to the distribution
modeling abilities of the GMs.

A well-known GM that can be used for directly approximat-
ing the CME is the GMM [12]. However, connections between
the CME and other GMs are yet to be discovered in the liter-
ature. Exemplarily, the GAN-based estimator from [13]–[15]
is used in a CS-fashioned way and the score-based approach
from [16] requires an iterative posterior sampling process,
causing a massive computational complexity. A closely related
GM to the GMM is the VAE. Both GMs maximize a lower
bound to the data log-likelihood and introduce an artificial
latent space. Nevertheless, the GMM utilizes a discrete latent
space, which limits its expressiveness. On the contrary, a
VAE uses a continuous latent space, resulting in a better
representation ability and a more flexible architectural design.
The VAE intrinsically makes no assumption about the data
distribution and was shown to work well in domains where
it is traditionally challenging to derive statistical data models,
e.g., in image processing [19].

In this work, we propose a VAE-parameterized estimator,
combining a GM and classical estimation theory, with the
following contributions:

• We model the analytically intractable data distribution as
conditionally Gaussian (CG) with the help of the VAE,
yielding conditional first and second moments to param-
eterize conditional linear minimum mean squared error
(LMMSE) estimators given the latent representation and
noisy observations. The conditional LMMSE estimators
are mean squared error (MSE)-optimal and analytically
tractable in closed-form due to the CG likelihood model.
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• Since the VAE inherently makes no assumptions about
the data distribution, the proposed estimation framework
works independently of the adopted data distribution.

• We introduce a low-complexity estimator version based
on a maximum a posteriori (MAP) estimate requiring
only one neural network (NN) forward pass (MAP-
VAE estimator). In contrast to many existing GM-based
estimation frameworks, e.g. [13]–[16], this procedure
allows for a computationally efficient approximation of
the CME, which is high-performing and robust, as a
consequence of the VAE serving as generative prior.

• Three estimator variants are proposed, differing in the
availability of ground-truth data during their training and
estimation phases. The VAE-real variant is particularly
noteworthy as it requires no access to samples of ground-
truth data in either the training or estimation phases.

• We rigorously derive a bound on the performance gap
between the MAP-VAE estimator and the CME, allowing
for an interpretable estimation procedure. The bound
connects the training objective of the VAE with the
resulting estimation performance and reveals that the
proposed estimator entails a bias-variance tradeoff that
is well-known in the estimation literature.

• As an application example, we consider CE, offering
a low-complexity implementation due to the structural
properties of the CE problem. Our extensive numerical
simulations first validate the theoretical analysis and then
underline the superiority of the proposed VAE-based es-
timator variants compared to the baseline methods under
various system configurations.

Moreover, we provide the following extensions in this
manuscript compared to the preliminary results in [20]. The
analyses in Sections III-A and III-D enhance the theoretical
foundation of the VAE-based estimator’s MSE-optimality. We
provide a more general treatment by providing a scheme
for linear inverse problems of which multiple-input multiple-
output (MIMO)-CE is a special instance. We make the training
of the VAE signal-to-noise ratio (SNR)-independent, meaning
that we use a single trained VAE for every SNR value, in
opposition to [20], where an individual VAE is trained for
every SNR value. Finally, the numerical simulations in this
manuscript are more comprehensive.

The structure of this manuscript is as follows. Section II
discusses the signal model and the general problem formu-
lation and provides background information about the VAE.
In Section III, we introduce the VAE-based estimator and its
three variants, followed by the derivation and interpretation
of the error bound between the proposed estimator and the
CME. We discuss CE as an application example in Section IV.
Numerical simulation results are presented in Section V, and
we conclude this manuscript in Section VI.

Notation: We denote vectors and matrices as lower-case
and upper-case bold-faced symbols, respectively. Element-
wise multiplication is denoted as ⊙, the all-zeros vector as
0, and the all-ones vector as 1. The vectorization operation
vec(G) ∈ Cg1g2 stacks the columns of G ∈ Cg1×g2 into a
vector. The Kronecker product of two matrices B ∈ Cb1×b2

and D ∈ Cd1×d2 is (B ⊗D) ∈ Cb1d1×b2d2 .

II. PRELIMINARIES

A. Signal Model and Problem Formulation

We consider the generic linear inverse problem

y = Ah+ n (1)

with the observation matrix A ∈ CM×N and additive noise
n ∼ NC(0,Σ). It is assumed that the matrix A and the noise
covariance Σ are given. The task is to recover h based on y.
The design of A is characteristic of the problem to be solved,
e.g., in CE, A represents the pilot allocation [12]–[15]. For
further examples, we refer to [21].

For the solution of (1), we aim to estimate h based on the
noisy observation y. In the Bayesian framework, h is a RV
with an unknown prior p(h). The goal is to minimize the MSE

E
[
∥h− ĥ∥2

]
=

∫ [∫
∥h− ĥ∥2p(h |y) dh

]
p(y) dy (2)

with the estimate ĥ ∈ CN . For minimizing the MSE, mini-
mizing the inner integral is sufficient due to p(y) ≥ 0. The
minimizer is the well-known CME

E[h |y] = argmin
ĥ

E
[
∥h− ĥ∥2

]
(3)

resulting in MSE-optimal estimates, cf. [18, Ch. 10] for
details. More generally, the CME is the optimal predictor for
all Bregman loss functions, of which the MSE is a special
case [22]. Application of Bayes’ rule to p(h |y) yields

E[h |y] =
∫
h
pn(y −Ah) p(h)

p(y)
dh. (4)

Note that pn represents the noise probability density function
(PDF). By inspection of (4), it becomes clear why the CME is
difficult to compute. First, it requires access to the unknown
and difficult-to-determine prior p(h), necessitating an estimate
of p(h). Second, an approximation of the integral in (4) is
required since, in general, there exists no closed-form solution.

B. VAE Fundamentals

In a parametric approach, the parameterized likelihood
model pθ(h) approximates the unknown prior p(h). One
of the simplest parametric models is assuming a Gaussian
prior, parameterized with the sample mean and covariance.
The resulting parameterized CME approximation is the well-
known LMMSE estimator [18, Ch. 10]. However, assuming a
Gaussian prior is restrictive, causing the estimator to perform
weakly if the true prior strongly deviates from a Gaussian
distribution, which is the case in real-world systems. A way
to significantly improve the expressiveness of the likelihood
model while preserving the favorable properties of a Gaussian
distribution is to let it hold only conditionally so the data is
modeled as CG. The CG likelihood model has the form

h | z ∼ pθ(h | z) = NC(µθ(z),Cθ(z)) (5)

with the so-called latent vector z ∈ RNL such that

pθ(h) =

∫
pθ(h | z)p(z)dz (6)
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y
Encoder
qϕ(z |y)

+

⊙

ε ∼ N (0, I)

pθ(h |z)
Decoder µθ(z)

Cθ(z)

µϕ(y)

σϕ(y)

z

Fig. 1. Structure of a VAE with CG distributions for qϕ(z |y) and pθ(h |z).
The encoder and decoder each represent a NN.

with a fixed p(z). Besides its great properties in terms of
expressiveness, the CG model in (5) will be a key aspect for
deriving the VAE-parameterized estimator in Section III-A.
Since pθ(h | z) is defined according to (5), θ also implicitly
parameterizes the intractable posterior

pθ(z |h) =
pθ(h | z)p(z)∫
pθ(h | z)p(z)dz

. (7)

A tractable method to obtain θ for (5) is the VAE [3], [4],
for which an illustration is visible in Fig. 1. For this purpose,
pθ(h) is typically decomposed as [23]

log pθ(h) = Lθ,ϕ(h) + DKL(qϕ(z |y) ∥ pθ(z |h)) (8)

with the evidence lower bound (ELBO)

Lθ,ϕ(h) = Eqϕ [log pθ(h | z)]−DKL(qϕ(z |y) ∥ p(z)). (9)

and the non-negative Kullback-Leibler (KL) divergence

DKL(qϕ(z |y) ∥ pθ(z |h)) = Eqϕ

[
log

(
qϕ(z |y)
pθ(z |h)

)]
. (10)

Note that Eqϕ(z|y)[·] = Eqϕ [·]. The variational distribution
qϕ(z |y) is introduced aiming to approximate the intractable
pθ(z |h) as can be seen in (10). Consequently, a maximization
of the ELBO is independent of (7), maximizes log pθ(h), as
well as minimizes (10). In summary, a sufficiently trained VAE
yields θ for the CG model in (5), as well as an approximation
of the intractable posterior in (7) via qϕ(z |y).

The remaining distributions in (9) are defined as:

qϕ(z |y) = N (µϕ(y),diag(σ
2
ϕ(y))), (11)

p(z) = N (0, I). (12)

Moreover, the VAE implements pθ(h | z) and qϕ(z |y) as
NNs. With these considerations, let us revisit Fig. 1. The en-
coder takes an observation y and maps it to µϕ(y) and σϕ(y)
to obtain a reparameterized sample z = µϕ(y)+σϕ(y) ⊙ ε.
The sample z is fed into the decoder to obtain µθ(z) and
Cθ(z) representing the first and second moments of pθ(h | z).

Due to the CG distributions, the terms in the ELBO
can be calculated analytically, which is beneficial for the
training of the VAE. The expectation term in (9) can be
approximated with a single sample z̃ ∼ qϕ(z |y), i.e.,
(−Eqϕ [log pθ(h | z)]) is replaced by the estimate

log det(πCθ(z̃))+(h−µθ(z̃))
HC−1

θ (z̃)(h−µθ(z̃)). (13)

The KL divergence DKL(qϕ(z |y) ∥ p(z)) in (9) results in

1

2

(
1T
(
− logσ2

ϕ(y) + µ
2
ϕ(y) + σ

2
ϕ(y)

)
−NL

)
. (14)

By utilizing an expressive decoder NN and Cθ(z) parame-
terization, we assume that a properly trained VAE where (5)
holds delivers a pθ(h) that well approximates p(h). We will
explicitly discuss conditional covariance matrix parameteriza-
tions for Cθ(z) in Sections III-B and IV.

III. VAE-PARAMETERIZED ESTIMATOR

A. MMSE Estimation with the VAE

After its successful training, the VAE yields pθ(h | z) as
CG according to (5). The law of total expectation enables
reformulating the CME from (4) as [24, Sec. 4.3]:

E[h |y] = Epθ(z |y)[Eθ[h | z,y] |y], (15)

where the inner expectation is with respect to pθ(h | z,y).
We neglect a possible approximation error between pθ(h) and
p(h) in (15) as it is irrelevant for the estimator derivation.
Since p(h) is anyway inaccessible, an analysis of such an
error is only possible empirically in terms of an MSE investi-
gation, which will be done in Section V. Similar to pθ(z |h),
pθ(z |y) and pθ(h | z,y) are also implicitly parameterized by
θ due to (7), the fixed prior p(z) in (12) and the model in (1).
Indeed, pθ(z |y) is generally inaccessible for the same reason
as pθ(z |h), cf. (7). Since the encoder receives y as input and
h is conditioned on z according to (5), the training objective
in (9) enforces n and z to be independent. Then, given (5),
we obtain a closed-form expression for the inner expectation
in (15) due to the CG property causing y and h to be jointly
Gaussian given z. Therefore, Eθ[h | z,y] results in [25]:

µθ(z)+Cθ(z)A
H(ACθ(z)A

H+Σ)−1(y−Aµθ(z)), (16)

where the matrix A and vector y belong to (1), and µθ(z),
Cθ(z), and z to (5). See Appendix A for a step-by-step
derivation of (16).

It remains to solve the intractable outer expectation in (15).
To this end, the approximation of pθ(z |h) via qϕ(z |y)
in (10) comes into play. Although (10) shows the approxima-
tion of pθ(z |h) instead of pθ(z |y), the parameter combina-
tion that maximizes pθ(h | z) in (9) also maximizes pθ(y | z)
since the noise distribution is considered to be known and
not subject to optimization, thus permitting the substitution.
Consequently, by replacing pθ(z |y) with qϕ(z |y) in (15),

E[h |y] ≈ Eqϕ [tθ(z,y)] , tθ(z,y) = Eθ[h | z,y]. (17)

As we can easily obtain samples of qϕ(z |y) with the help
of the encoder, we can approximate E[h |y] using samples
of the form z(k) = µϕ(y) + ε(k) ⊙ σϕ(y) where every
ε(k) is a sample from N (0, I), k = 1, . . . ,K. Based on the
samples z(k) we can approximate the MMSE estimator as a
consequence of the law of large numbers [26]:

ĥ
(K)
VAE(y) =

1

K

K∑
k=1

tθ(z
(k),y), z(k) ∼ qϕ(z |y), (18)

where tθ(z
(k),y) is evaluated with (16).

The estimator ĥ(K)
VAE(y) generally becomes better for a large

number of samples K. However, a large K is unwanted in a
real-time system. It is desirable to reduce the complexity of
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the estimator as much as possible, which means that K should
be low. To this end, we first obtain a MAP estimate for z,
which is µϕ(y) at the encoder output due to the Gaussianity of
qϕ(z |y), cf. (11). The MAP estimate is subsequently passed
in a single step through the decoder to evaluate tθ(z,y).
Consequently, we define the MAP-VAE estimator

ĥVAE(y) = ĥ
(1)
VAE(y) = tθ(z

(1) = µϕ(y),y) (19)

based on the MAP estimate z(1) = µϕ(y) from qϕ(z |y).
In Section III-D, we rigorously analyze the performance gap
between the MAP-VAE estimator and the CME. Furthermore,
in Section V-A, we compare ĥ(K)

VAE(y) and ĥVAE(y) for differ-
ent K, demonstrating that their estimation quality is nearly
identical. Unless otherwise stated, we use the MAP-VAE
estimator in (19) for the numerical simulations.

B. Covariance Matrix Parameterization

According to (5), the VAE aims to learn a full covariance
matrix for h | z. However, learning such a full matrix requires
learning a large number of parameters, resulting in huge NNs.
It is also known that covariances usually exhibit problem-
specific structures, which can be exploited to drastically reduce
the number of parameters to learn.

In this work, we consider equidistantly sampled wide-sense
stationary (WSS) random processes covering a broad class
of applications such as array signal processing [27], speech
and audio processing [28], or CE [12], [29]. As a result, the
covariance matrix is Toeplitz structured. The parameterization
of a Toeplitz matrix is possible with an oversampled discrete
fourier transform (DFT) matrix as demonstrated in [30]–[32].
However, if the covariance matrix dimensions are large, a
circulant matrix can asymptotically approximate the Toeplitz
covariance matrix [33]. By reasonably assuming that the VAE
finds latent conditions that preserve the structural properties
of the second moments, we can choose,

Cθ(z) = F
H
N diag(cθ(z))FN , cθ(z) ∈ RN

+ , (20)

parameterizing a circulant matrix, where FN ∈ CN×N is a
DFT matrix. Circulant matrices have the advantage that they
allow for a low-complexity and memory-efficient implemen-
tation and have already been used in previous work, cf. [29].
This can be seen in (20) since a positive and real-valued
vector cθ(z) suffices to parameterize a full covariance matrix.
Due to the DFT matrix, (20) is furthermore straightforwardly
invertible in O(N logN) time (by using FFTs), motivating its
usage in the proposed VAE-based estimation framework.

C. Variants of VAE-based Channel Estimators

We present three possible estimator variants that leverage
the VAE. All three estimators have in common that the VAEs
can be trained offline before application. The estimators differ
in their ground-truth data knowledge during the training and
evaluation phase. A comprehensive overview of all variants
with their losses will be shown in Section IV in Table I.

1) VAE-genie: To determine the full potential of our method,
we assume n = 0 in (1) for the encoder input while (16) is

still evaluated with a non-zero noise realization. VAE-genie
is supposed to exhibit the best estimation results among all
variants because the µθ(z) and Cθ(z) at the decoder are
inferred with the ground-truth data at the encoder and its latent
representation. Although VAE-genie even has the potential to
outperform the CME, as the ground-truth data acts as side
information, this estimator is not applicable in practice, since it
requires ground-truth knowledge during the evaluation phase.
Instead, it can be a suitable benchmark result in a scenario
where the optimal estimator is unknown and inaccessible.
VAE-genie requires ground-truth data knowledge during the
training and evaluation phase.

2) VAE-noisy: This estimator version directly relates to
Fig. 1. The encoder receives the noisy observation y as input
with n ̸= 0. VAE-noisy only requires ground-truth data access
during the training phase to compute (13) for its loss. During
the evaluation phase, the mean µϕ(y) is obtained based on the
noisy observation y to compute (16), which is the reason for
the name of this estimator. We expect that VAE-noisy delivers
worse estimation quality than VAE-genie as VAE-genie has
ground-truth knowledge in the evaluation phase. VAE-noisy
is, in contrast, applicable in practice.

3) VAE-real: Similar to VAE-noisy, this estimator variant
also receives y as encoder input. The change compared to
VAE-noisy happens at the decoder in Fig. 1 where VAE-
real learns first and second moments for pθ(y | z) instead
of pθ(h | z). However, to efficiently compute Eθ[h | z,y] we
require a CG model for h and not y. As long as E[n] = 0,
which is the case in (1), the mean of y | z is Aµθ(z). A
simple workaround can determine the conditional covariance
of y | z. While the VAE decoder continues to output Cθ(z),
e.g., according to (20), the matrix ACθ(z)A

H+Σ is used as
covariance for pθ(y | z). Consequently, in (13), VAE-real re-
places µθ(z) with Aµθ(z) and Cθ(z) with ACθ(z)A

H+Σ
during the training. This way, the decoder forces to substitute
only the desired part, the conditional covariance Cθ(z), which
is used for the computation of (16). It should be noted that
no ground-truth data is needed by VAE-real, neither during
training nor during evaluation. VAE-real is the most realistic
estimator variant since noisy observations can be utilized
to train the VAE. In contrast, access to ground-truth data
during the training phase is usually related to a considerable
additional effort and may sometimes be impractical.

D. MSE-Optimality and Conditional Bias-Variance Tradeoff

In this section, we provide a theoretical analysis of the
introduced MAP-VAE estimator. Before establishing a bound
on the difference between the MAP-VAE estimator and the
CME, let us denote the decoder NN functions as

fθ,1 : RNL → CN , z 7→ µθ(z), (21)

fθ,2 : RNL → CN
+ , z 7→ Cθ(z), (22)

where CN
+ is the set of all N×N positive semi-definite (PSD)

matrices (we consider the case of a full covariance matrix as
this trivially includes all parameterized covariances discussed
in Section III-B). In this section, we assume y = h + n to
analyze the theoretical properties independent of A.
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Theorem 1. Consider a decorrelated observation y = h+ n
with n ∼ NC(0, ς

2 I) and let (5) and (15) hold. Further,
assume the decoder neural network functions are Lipschitz
continuous, i.e., for i = {1, 2} and a, b ∈ RNL ,

∥fθ,i(a)− fθ,i(b)∥2 ≤ Li∥a− b∥2. (23)

Then, the expected Euclidean distance between the CME (15)
and the MAP-VAE estimator (19) is upper bounded as

E
[∥∥E[h |y]− ĥVAE(y)

∥∥
2

]
≤ (C1L1 + C2L2)

·

(√
tr(Cpθ(z |y)) +

√
E
[∥∥µpθ(z |y) − µϕ(y)

∥∥2
2

]) (24)

with the SNR-dependent factors

C1 =

√
E

[
ς4

(ξmin(y) + ς2)2

]
, C2 =

√
N

ς2
. (25)

where ξmin(y) is the smallest eigenvalue of Cθ(µϕ(y)).

Proof: See Appendix B.
1) MSE-Optimality: Theorem 1 shows that the distance of

the MAP-VAE estimator to the CME only depends on the first
two moments of the posterior distribution pθ(z |y), which is
approximated by qϕ(z |y). In particular, the bound is smaller
if the first moments of these posterior distributions match,
which can reasonably assumed to be the case after successfully
training the VAE, being a mild assumption as no restrictions
on their higher moments apply.

Moreover, the smaller the variances of pθ(z |y), the bet-
ter the CME approximation. Intuitively, this means that the
less stochastic a mapping from the observation to the latent
space is, the better the MAP-VAE estimator performs. Let
us consider the following setup to motivate the encoder
variances to become small after training. Assume the input
data is compressible onto a lower-dimensional manifold, i.e.,
a lossless compression mapping exists from CN to RNL . In
particular, this is known to be fulfilled for natural signals,
e.g., images or audio signals, wireless channels (especially in
mmWave systems), or, in general, signals that exhibit a sparse
representation through a dictionary. Then, a deterministic
mapping exists into the latent space that can be learned by
the VAE. In other words, there is no necessity for a stochastic
mapping, and the variances in (24) can be chosen as zero
without performance loss. This holds without restriction for
the VAE-genie variant, where the encoder input is noiseless.
For the VAE-noisy and VAE-real variants, although the latent
encoding is trained to be stochastically independent of the
noise, finding a deterministic mapping may be more intricate,
especially in the low SNR regime, yielding a possibly higher
encoder variance. We elaborate on this hypothesis in more de-
tail for the example of channel estimation in MIMO systems in
Section IV and show through simulations in Section V-A that
the VAE’s encoder variances are indeed converging towards
zero during the training process.

Concluding the above discussion, the bound in Theorem 1
establishes a connection between the training of the VAE,
purely relying on likelihood maximization, and the resulting

MSE performance. Moreover, the impact of the latent dimen-
sion on the estimation performance is better interpretable.
Thus, by a successful training of a well-designed VAE, the
resulting parameterized estimator converges to the CME,
thereby achieving a low MSE. We validate this proposition
also through numerical results in Section V-A.

2) Conditional Bias-Variance Tradeoff: In addition to the
above insights about the connection of the VAE’s training and
the resulting estimation performance, the constants C1 and
C2 in (25) have a reciprocal behavior over the SNR and, in
particular, are vanishing in the high and low SNR, respectively.
That is,

lim
ς2→0

C1 = 0, lim
ς2→∞

C2 = 0. (26)

Interestingly, this can be interpreted as a conditional bias-
variance tradeoff since C2L2 in (24), addressing the contri-
bution of the conditional covariances, vanishes in low SNR;
moreover, C1L1, attributed to the conditional means, vanish
in high SNR, cf. (54). Thus, the parameterized conditional
covariance quality is less critical in the low SNR regime,
as the parameterized LMMSE estimator relies more on the
conditional first moment and vice versa in the high SNR
regime. Consequently, the respective error terms have less
impact on the bound to the CME. The entailment of such
a conditional bias-variance tradeoff is a highly desirable
property of the proposed estimator as it serves as a reg-
ularization for the estimation performance and allows for
great interpretability. Moreover, the analysis holds without
restriction for all discussed estimator variants in Section III-B
and all parameterized conditional covariance matrices since
we made no assumptions about their structural properties.

IV. EXAMPLE APPLICATION: CHANNEL ESTIMATION

In this work, we consider MIMO CE as an application
example. In a MIMO communications system, the transmitter
with Ntx antennas sends Np pilots to the receiver with Nrx
antennas for estimating the channel matrix H ∈ CNrx×Ntx .
More precisely, the noisy observations

Y =HX +N ∈ CNrx×Np (27)

are obtained at the receiver with the pilot matrix X ∈ CNtx×Np

and noise matrix N . After vectorizing (27), the relation to (1)
becomes apparent. Consequently, y = vec(Y ), h = vec(H),
A = (XT ⊗ I), and n = vec(N). Further, M = NrxNp and
N = NrxNtx. We investigate the uplink of a communications
system where the mobile terminal (MT) transmits to the
base station (BS) with Ntx < Nrx. However, the proposed
framework can also be applied to the downlink since A has a
comparable structure.

We assume that the BS and MT are both equipped with
a uniform linear array (ULA) with half-wavelength spacing.
Note that a different array structure or antenna spacing can
be straightforwardly reflected by the VAE’s parameterized
covariance at the decoder output. Furthermore, we consider the
fully determined case of (27), i.e., Np = Ntx. We utilize DFT
pilots, resulting in a unitary X , which results in a unitary A.
Moreover, we assume Σ = ς2I with given ς2. Therefore, we
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perform a least squares (LS) estimate of (1) to interpret it as a
denoising task relating directly to the theoretical analysis in the
previous section. The underdetermined case involving a wide
A is investigated in [31] and the uniform rectangular array
(URA) case at the BS in [32] covering more advanced setups.
The works [31], [32] demonstrate a superior performance
of the VAE-based estimators, highlighting the framework’s
versatile applicability under various system configurations.

Due to the uniform antenna spacing at a ULA, the covari-
ance matrix at the BS or MT side becomes Toeplitz structured,
which are approximated by circulant matrices as explained in
Section III-B. Under the uncorrelated scattering assumption,
we can model the channel covariance matrix (CCM) as the
Kronecker product of two circulant matrices, representing the
BS and MT side covariances. More precisely, let

Cθ(z) = Q
H diag(cθ(z))Q, cθ(z) ∈ RN

+ (28)

be the CCM parameterization, where Q = (FNtx ⊗ FNrx).
In (28), Cθ(z) is a block-circulant matrix, possessing the
same favorable attributes regarding memory efficiency and
low-complexity as an ordinary circulant matrix. For a single-
input multiple-output (SIMO) system, which implies Ntx = 1,
(28) simplifies to (20).

A. Training Loss and Network Architecture

In principle, we train a VAE with the loss in (9), and,
after the training, perform CE as described in Section III-A.
Indeed, we can simplify (9) as a result of the circulant
parameterization. Let hQ = Qh, then the negative decoder
likelihood in (13) can be expressed as

N log π+1T
(
λθ(z̃)⊙ |hQ −Qµθ(z̃)|2 − logλθ(z̃)

)
(29)

with λθ(z) = c
−1
θ (z) and the element-wise absolute value |·|.

Eq. (13) reduces the numerical complexity during the training
process because it avoids the inversion of a full covariance
matrix compared to (29). What is more, we utilize the LS
estimate of (1) (or h for VAE-genie) multiplied with Q as en-
coder input. Thus, the encoder input is effectively transformed
into the angular or beamspace domain [34, Sec. 7.3], which is
known to be sparse or highly compressible in massive MIMO
systems, especially in mmWave systems. This validates the
hypothesis of having a deterministic compression mapping that
can be learned through the encoder in Section III-D. Therefore,
a performance of the MAP-VAE estimator close to the CME
can be expected, which is also seen later in Section V.

Combining every aspect from this section, the reformulated
training objective that VAE-noisy is supposed to minimize is:

Lθ,ϕ = 1T
[
λθ(z̃)⊙ |hQ −Qµθ(z̃)|2 − logλθ(z̃) (30)

− logσϕ(y) + 0.5(µ2
ϕ(y) + σ2

ϕ(y))
]
.

The argument and constants are omitted for brevity and z̃ is
a sample from qϕ(z |y). Since VAE-genie has the ground-
truth channel as encoder input, the training loss for this
variant replaces µϕ(y) and σϕ(y) with µϕ(h) and σϕ(h),
respectively. Apart from that, the training loss is identical
to (30). For the training of VAE-real, in (30), hQ is replaced
with yQ = QAHy, and λθ(z) with (cθ(z)+ ς21)−1. Table I

summarizes the proposed estimator variants with an overview
regarding the respective encoder input and training loss. In
each case, the training loss refers to a single batch element.

We briefly describe our VAE implementation at this point.
The simulation code with the corresponding architectures is
also publicly available.1 Fig. 2 illustrates the VAE imple-
mentation. The colorings of the arrows in Fig. 2 symbolize
different standard layers. On the left, it is visible that the
real and imaginary parts of the encoder input are stacked
as convolutional channels (CCs). As a first block, the purple
arrow represents a 1x1 convolutional layer (CL) that maps
to a higher number of CCs, which is different for every system
configuration. Subsequently, three orange arrows follow,
representing a block of a CL, a batch normalization (BN) layer,
and a ReLU activation function. In each CL, the CC amount at
the output is multiplied by a factor of 1.75. After a reshaping
layer (RL) and linear layer (LL), symbolized by the gray arrow

and green arrow , respectively, we arrive at the latent
space. The reparameterized sample z is fed into the decoder,
which is a symmetrically flipped version of the encoder. The
red arrows symbolize blocks of a transposed CL, a BN
layer, and a ReLU activation function. At the output, we have
a sample with three CCs that is fed into an RL and LL to
produce the decoder outputs. We use exponential functions to
enforce strictly positive values as it is required for σϕ and cθ.

The number of CCs, kernel size, and latent dimension are
different for every system configuration and are found by a
random search over the hyperparameter space by searching
for the combination that yields the highest value for (29) [35].
We perform the random search with the help of the Tune
package [36]. We use 2D CLs in the MIMO case and 1D
CLs in the SIMO case. A batch size of 128, a learning rate of
7 · 10−4 in combination with Adam [23], and a stride of two
in the CLs are used. We implement the NNs with PyTorch
and refer the reader to the simulation code for further details.
Additionally, we experimented with BN and its variants to
determine how we can achieve the best performance [37]–
[39]. We achieve the best performance with BN as is proposed
in [37]. The only important point is to consider a large enough
batch size to limit the variance of the stochastic gradient. We
additionally use the method of free bits during the training as
described in [23].

B. Computational Complexity

In this section, we discuss the computational complexity of
the proposed estimator. The procedure to determine ĥVAE(y)
can be split into two parts. The first step is a forward pass
through the VAE to acquire µθ(z) and Cθ(z). The second
step is the evaluation of tθ(z,y) in (16) with given µθ(z)
and Cθ(z). The computational complexity of the first step is
tied to the VAE architecture in Fig. 2. Since all layers exhibit a
different complexity, we need a complexity bound for which
two aspects are relevant. First, a CL requires O(RN) time,
with R being the product of the number of parameters divided
by the stride in the CL. Second, the final LL requires O(N2)
time. The remaining layers exhibit less complexity than the

1https://github.com/tum-msv/vae-estimator.

https://github.com/tum-msv/vae-estimator
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TABLE I
OVERVIEW OF THE PROPOSED VAE-BASED ESTIMATOR VARIANTS.

variant VAE encoder input training loss Lθ,ϕ (relates to one batch element)

VAE-genie ground-truth channel 1T
[
λθ(z̃)⊙ |hQ −Qµθ(z̃)|2 − logλθ(z̃)− logσϕ(h) + 0.5 (µ2

ϕ(h) + σ2
ϕ(h))

]
VAE-noisy noisy observation 1T

[
λθ(z̃)⊙ |hQ −Qµθ(z̃)|2 − logλθ(z̃)− logσϕ(y) + 0.5 (µ2

ϕ(y) + σ2
ϕ(y))

]
VAE-real noisy observation 1T

[
(cθ(z̃) + ς21)−1 ⊙ |yQ −Qµθ(z̃)|2 + log(cθ(z̃) + ς21)− logσϕ(y) + 0.5 (µ2

ϕ(y) + σ2
ϕ(y))

]

⊙

+

µϕ

σϕ

ε ∼ N (0, I)

z µθ

cθ

Fig. 2. Detailed illustration of the different layers constituting our VAE implementation. The real and imaginary parts of the input are stacked as CCs and
processed. Each colored arrow represents a different standard layer. Purple stands for a 1x1 CL, orange for a block of a CL, BN layer, and ReLU
activation function, gray for a RL, green for a LL, and red for a block of a transposed CL, BN layer, and ReLU activation function.

CLs and final LL. Although R should be increased if N grows,
R arguably does not show more than linear growth in N . In
conclusion, utilizing O(N2) as complexity bound per layer is
reasonable. For the D layers of the VAE forward pass, this
makes an overall complexity of O(DN2).

We come to the second step of obtaining ĥVAE(y), which
is the evaluation of tθ(z,y). In principle, the inversion of
ACθ(z)A

H + ς2I dominates the complexity. Let us inspect
ACθ(z)A

H = AQH diag(cθ(z))QA
H in more detail. If

we assume to have unitary pilots and set Ã = AQH we can
show that ÃÃH = I and ÃHÃ = I holds, so Ã is unitary.
Hence, the inverse of ACθ(z)A

H is Ãdiag(c−1
θ (z))ÃH. We

can therefore simplify the estimate tθ(z,y) as in (16) to

µθ(z)+Q
H diag(1+cθ(z)⊙ ς−21)Q(AHy−µθ(z)) (31)

whose complexity is O(N logN) due to multiplying with Q.
As can be seen from our elaborations above, the evaluation
of the VAE requires O(DN2) time, which outweighs the
evaluation time of O(N logN) for (31). Additionally, many
potentials exist to reduce the VAE complexity, e.g., with
pruning [40]. Moreover, the computations in the VAE are
highly parallelizable due to the CLs, which mitigates the
O(DN2) complexity.

C. Channel Models

We consider different channel models in this work to
validate the proposed methods. The 3rd Generation Partnership
Project (3GPP) defines an urban macrocell spatial channel
model which computes the transmit-side CCM as [41]:

Cδ,tx =

∫ π

−π

gtx(ϑ; δ)atx(ϑ)atx(ϑ)
Hdϑ. (32)

The vector atx(ϑ) denotes the transmitter array steering vector,
which is [1, exp(jπ sin(ϑ)), . . . , exp(jπ(Ntx − 1) sin(ϑ))]H in
the case of a ULA. Analogously, the receive-side CCM Cδ,rx
is obtained. The function gtx(·; δ) describes an angular power

spectrum and is parameterized by the vector δ, which follows a
prior distribution p(δ) that accounts for the involved path gains
and angles of the propagation cluster. More precisely, gtx(·; δ)
is a mixture of Laplace densities whose standard deviations
represent the angular spreads, cf. [29] for more details. The
CCM for h in (1) is determined as Cδ = (Cδ,tx⊗Cδ,rx), under
the assumption of uncorrelated scattering [42]. Once Cδ is
constructed, a channel realization can be obtained according to
h | δ ∼ NC(0,Cδ) [29]. This way, a correlated Rayleigh fad-
ing model is enforced that only holds conditionally, meaning
that every channel is individually associated with a different
set of path gains and angles contained in δ representing
different propagation clusters. Note that Cδ is different for
every channel realization, causing p(h) to be non-Gaussian.

The QuaDRiGa channel simulator allows for the simula-
tion of realistic channels with spatial consistency and time
evolution [43], [44]. MIMO channel matrices are modeled
as a superposition of in total L propagation paths such that
H =

∑L
ℓ=1Gℓ exp(−2πjfcτℓ) where the carrier frequency is

denoted as fc and the delay of the ℓ-th path as τℓ. The entries
of the matrix Gℓ represent the complex-valued gain between
every antenna pair caused by the path loss, antenna radiation
pattern, and polarization. We use version 2.6.1 of QuaDRiGa
to simulate channels at a frequency of 6 GHz in an urban
macrocell scenario. We place the BS at a height of 25 m, and
it covers a sector of 120 ◦. Twenty percent of the MTs are
outdoors 1.5 m above the ground at a distance between 35
and 500 m from the BS. The remaining eighty percent are
situated indoors at different floor levels. We consider a line
of sight (LOS) propagation environment, where L = 37. We
equip the BS with “3GPP-3D” antennas and the MTs with
omnidirectional antennas. After generation, the channels are
post-processed to normalize the path gain. Compared to the
3GPP channel model, which is fully stochastic, the QuaDRiGa
simulator is of a geometric nature. QuaDRiGa determines
channel realizations by a geometric simulation in a randomized
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and approximately realistic BS environment. The QuaDRiGa
model enables us to highlight that the proposed framework
works independently of the adopted channel model.

D. Related Channel Estimators

This section presents related channel estimators as baselines
for the numerical simulations in Section V-B. In the case of
the 3GPP channel model from Section IV-C, we have access
to the true CCM Cδ . This allows us to evaluate a genie
covariance-based estimator (genie-cov) [29], which is given
by the LMMSE formula

ĥgenie-cov(y) = CδA
H(ACδA

H +Σ)−1y. (33)

This estimator uses utopian genie knowledge to acquire Cδ .
A practical estimator can be based on the sample covariance

matrix Ĉ = 1
Tr

∑Tr
i=1 hihi

H for Tr samples in the training
dataset. The corresponding estimator reads as

ĥglobal-cov(y) = ĈA
H(AĈAH +Σ)−1y. (34)

LS estimation is another comparison method we investi-
gate in our simulations. An LS estimate can be obtained as
ĥLS(y) = A

Hy.
CS-based CE techniques are another prominent topic in

the literature. Especially regarding millimeter waves, CS
algorithms are potentially interesting candidates [45]. This
work compares the proposed estimators with the approximate
message passing (AMP) algorithm [46], [47]. As a dictionary
for AMP, we use a two times oversampled DFT matrix.

We also want to compare the proposed estimators with
current ML-based channel estimators. A recently proposed
method exploits structural information of the MMSE estimator
to design a neural network-based estimator for the SIMO
signal model [29]. The derivation leads to a convolutional
neural network with ReLU activation function, so we call this
estimator CNN. The extension of [29] to the MIMO case is
proposed in [48], to which we also refer in our simulations.

The last comparison method in this section, also recently
proposed, is based on a GMM [12]. The idea is to fit a GMM to
the underlying channel distribution and parameterize a channel
estimator with the help of the GMM, representing an estimator
based on a generative prior. We fit a GMM with 128 mixture
components for all simulations and a restriction on the fitted
covariances such that they are block-circulant.

V. SIMULATION RESULTS

This section presents the CE results based on numerical
simulations. We create 200,000 channel realizations for every
system configuration in the upcoming section representing a
randomly sampled realistic BS environment. The channels
are divided into Tr = 180,000 training, Tv = 10,000 val-
idation, and Te = 10,000 test samples. The channels are
normalized such that E[∥h∥2] = N . In our experiments,
we calculate the normalized mean squared error (NMSE) as
1

TeN

∑Te
i=1 ∥hi − ĥi∥2 for the test dataset, where we denote

the i-th channel realization and corresponding estimate as
hi and ĥi, respectively. Accordingly, we define the SNR as
Ntx/ς

2. We train the VAEs for a range of SNR values between
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Fig. 3. Training of the VAE-noisy variant for the 3GPP channel model (SIMO
case) with three propagation clusters at an SNR of 10 dB. ELBO refers to the
complete training loss in (30), REC to the negative of (29), and KL to (14).
REC is plotted including the in (29) omitted constants.
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Fig. 4. Normalized MSE for different numbers of training samples at an SNR
of 10 dB for the 3GPP channel model (SIMO case) with three propagation
clusters and 128 antennas at the receiver. The dotted lines display the achieved
result with the complete training dataset of 180,000 samples.

−19 and 39 dB. The proposed estimators are, therefore, SNR-
independent. During the training of VAE-noisy and VAE-real,
we sample new realizations n after every epoch. We train the
VAEs until (29) does not improve for 100 consecutive epochs
on the validation dataset. If not stated otherwise, NL = 16 for
one propagation cluster and NL = 32 in all other cases.

A. Numerical Convergence Analysis

At first, we illustrate the training progress of the VAE-
noisy variant for the 3GPP SIMO signal model with three
propagation clusters at an SNR of 10 dB in Fig. 3. The VAE-
genie and VAE-real variants exhibit a similar behavior, so
we only display VAE-noisy here. It can be observed that
most of the training progress happens in the first 20 epochs.
Interestingly, an increase of the REC term from (29) coincides
with a decrease of the NMSE, which indicates that the VAE
learns to properly model the data. Moreover, this validates the
theoretical analysis in Theorem 1 that showed a smaller gap
to the CME and, thus, a lower NMSE for a VAE that better
matches the first moments of the posterior distributions, which
is achieved during a successful training.

Further, we investigate two critical quantities of the model
selection process: the training dataset’s size and the latent
space’s dimensionality. Regarding the size of the training
dataset, a larger size is likely to lead to better estimation
results. Fig. 4 provides insights into this matter. We display
the estimation results of the test dataset for the three proposed
variants of VAE-based estimators depending on the size of the
training dataset. The 3GPP channel model (SIMO case) with
three propagation clusters and 128 antennas at the receiver
is used in Fig. 4. As dotted lines, we display the attained
estimation result for the complete training dataset of 180,000
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Fig. 5. Normalized MSE for different sizes of the latent space at an SNR of
10 dB for the 3GPP channel model (SIMO case) with one or three propagation
clusters and 128 antennas at the receiver.
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Fig. 6. Trace of encoder variances and NMSE over training epochs on the
3GPP channel model (SIMO case) with 128 antennas, one propagation cluster,
10 dB SNR, and NL = 4. The NMSE curves are displayed as dashed.

samples. We also show the estimation performance of the
genie-cov estimator in blue. It is visible that the most progress
is reached from 102 to 104 training samples. More than 104

training samples only lead to minor NMSE improvements for
all three types of VAE-based estimators.

The influence of the dimensionality of the latent space on
the estimation result is less apparent than the size of the
training dataset. We illustrate the NMSE for dimensionalities
in the range [4, 32] for the 3GPP SIMO channel model with
128 antennas at the receiver in Fig. 5 by considering one
and three propagation clusters. The NMSE is nearly constant
for the case with one propagation cluster. In contrast, the
NMSE decreases from dimensionality 4 to 16 for the three
propagation clusters case and saturates for larger dimensional
latent spaces. In practice, the operator must select an ample
enough latent space to obtain a desirable performance.

Theorem 1 in Section III-D described that the convergence
of the MAP-VAE estimator to the CME depends on the
vanishing of tr(Cpθ(z |y)). To this end, we analyze the trace
of the encoder variance, i.e., the summed variance σ2

ϕ of qϕ,
which optimally is a good approximation of tr(Cpθ(z |y)),
over the training epochs on the validation dataset in Fig. 6.
We evaluate VAE-genie and VAE-noisy with NL = 4 on the
3GPP channel model (SIMO case) with 128 antennas and one
propagation cluster at an SNR of 10 dB. It is visible that both
encoder variances are decreasing in a comparable way as the
NMSE, indicating that lower traces improve the NMSE. The
noise variance detrimentally influences VAE-noisy’s encoder
variance trace since it is always higher than that of VAE-genie.
In conclusion, since the wireless channel data is expected to be
sparse or compressible in the angular domain, cf. Section IV,
the VAE indeed aims to find a less stochastic encoder mapping
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Fig. 7. Normalized MSE for different numbers of samples K drawn in the
latent space for the evaluation of ĥ(K)

VAE (y) at an SNR of 10 dB for the 3GPP
channel model (SIMO case) with three propagation clusters and 128 antennas
at the receiver. The dashed lines represent the estimate ĥVAE(y) in (19).
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Fig. 8. Normalized MSE for the 3GPP channel model (SIMO case) with
three propagation clusters for different numbers of antennas at the receiver at
an SNR of 15 dB. The proposed methods are displayed with solid linestyles.

during training. This is in agreement with the argumentation
in Section III-D and the observation of a decreasing NMSE
of the parameterized estimator during training in Fig. 3.

As pointed out in Section III-A, we approximate the CME
with the MAP-VAE estimator by only forwarding the latent
mean vector µϕ(z) to approximate the outer expectation
in (15). It is interesting to see the NMSE performance for
different numbers of K samples from qϕ(z |y) to compute
ĥ
(K)
VAE(y) from (18). Fig. 7 provides such an analysis by

showing the NMSE for different numbers of latent samples.
As dashed lines, we display the MAP-VAE estimator, which
only uses the single sample µϕ(z) for the input of the VAE’s
decoder. We observe that VAE-real benefits the most from
more samples. For VAE-genie and VAE-noisy, there are only
slight improvements present. Interestingly, only taking the
mean value, representing the MAP-VAE estimator, delivers an
estimation performance of about K = 64 samples for VAE-
real. The excellent performance of the MAP-VAE estimator
is a supporting argument for the theoretical analysis of the
estimator in Theorem 1 that predicts a small distance from
the CME if the VAE is well-trained.

B. Normalized MSE Results

We begin with an NMSE investigation for the 3GPP chan-
nel model (SIMO case) with three propagation clusters and
varying numbers of antennas at the receiver at an SNR of
15 dB in Fig. 8. The illustration shows that the proposed VAE-
based methods need a sufficiently large amount of antennas to
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Fig. 9. Normalized MSE for the 3GPP channel model (SIMO case) with one
propagation cluster and 128 antennas at the receiver. The proposed methods
are displayed with solid linestyles.
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Fig. 10. Normalized MSE for the QuaDRiGa channel model (SIMO case)
with LOS channels and 128 antennas at the receiver. The proposed methods
are displayed with solid linestyles.

develop their full potential. From 16 antennas on, the VAE-
based methods outperform the baselines and exhibit increas-
ing performance gains if more antennas are considered. All
other baselines perform significantly worse than the proposed
methods in the large antenna regime. It is also visible that
VAE-genie converges to the genie-cov curve. Surprisingly, the
VAE-real variant is almost on par with the VAE-noisy variant,
although no ground-truth data is available for its training,
underlining the strong performance of the VAE as generative
prior even in cases with imperfect training data.

A massive amount of antennas is significant for prospective
communications systems. Hence, we investigate the large
antenna regime in more detail in the following. We inspect
the NMSE performance for the 3GPP channel model with one
propagation cluster and 128 antennas at the receiver in the
SIMO case over the SNR in Fig. 9. The proposed estimators
outperform the baseline methods and achieve about 10 dB
advantage compared to LS over the whole SNR range.

To highlight the independence of the adopted channel
model, we show simulation results for the QuaDRiGa channel
model (SIMO case) in Fig. 10. This time, we cannot display
the genie-cov curve as the true CCM is unavailable. As can
be seen in the plot, all VAE-based estimators show superior
NMSE results. The advantages are not as pronounced as in
the previous figures but still noticeable.

Fig. 11 shows the NMSE performance for the 3GPP channel
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Fig. 11. Normalized MSE for the 3GPP channel model (MIMO case) with
one propagation cluster, 32 antennas at the receiver, and 4 antennas at the
transmitter. The proposed methods are displayed with solid linestyles.
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Fig. 12. Normalized MSE for the 3GPP channel model (MIMO case) with
three propagation clusters, 32 antennas at the receiver, and 4 antennas at the
transmitter. The proposed methods are displayed with solid linestyles.

model (MIMO case) with one propagation cluster, 32 anten-
nas at the receiver, and 4 antennas at the transmitter. The
qualitative behavior of the curves is similar to Fig. 9, where
also one propagation cluster is considered. CNN and GMM
show the worst NMSE among the ML-based methods for
SNRs larger than -5 dB. In this case as well, VAE-noisy and
VAE-real show comparable performance. Compared to LS, the
VAE-based methods attain a performance gain between 6 and
13 dB. In Fig. 12, we illustrate estimation results for the 3GPP
channel model (MIMO case) with three propagation clusters,
32 antennas at the receiver, and 4 antennas at the transmitter.
As in the previous figure, the proposed estimators clearly
outperform the baselines. However, the performance gaps in
Fig. 11 are more noticeable than in Fig. 12. The performance
gain compared to LS shrinks to a range from 2 to 11 dB.

In summary, the VAE-based methods exhibit immense per-
formance gains for large antenna arrays, i.e., larger equal 16
antennas and all considered numbers of propagation clusters,
significantly outperforming the baseline methods. The strong
performance for arrays with many antennas is likely due to the
circulant approximation to the Toeplitz CCM, which becomes
better for large arrays. VAE-genie lies almost on the genie-cov
estimator, and the performance of VAE-noisy and VAE-real
is almost identical for all considered scenarios. Moreover, all
ML-based methods use genie knowledge during the training
phase in the form of ground-truth channel training data, except
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for VAE-real, which is trained and evaluated solely based on
noisy pilot observations. From this point of view, the strong
estimation results of VAE-real are even more meaningful.

VI. CONCLUSION

This manuscript presents a novel estimation technique based
on the VAE. The idea is to tractably model the underlying data
distribution as CG via a VAE, yielding a powerful generative
prior. The CG modeling allows us to parameterize the MSE-
optimal CME under the VAE framework. We propose three
estimator variants, of which we find the VAE-real variant
particularly appealing as it does not require access to ground-
truth data during training or evaluation. We provide theoretical
analysis that quantifies the error gap between the proposed
MAP-VAE estimator and the CME and relates the training
process of the VAE to the NMSE, supporting the strong
estimation capabilities of the proposed VAE-based estimators.
Our extensive CE simulations highlight that the proposed
methods attain excellent performance for various system con-
figurations. In future work, we want to investigate the effects
of regularization terms in the training objective and analyze
other (especially wide) observation matrices.

APPENDIX

A. Derivation of (16)

For the parameterized joint PDF of y and h given z,

pθ(y,h | z) = p(y |h, z) pθ(h | z) = p(y |h) pθ(h | z) (35)

with p(y |h) = NC(Ah,Σ), pθ(h | z) as in (5), and assuming
independence of z and n. Since the multiplication of two
Gaussian distributions is again Gaussian, pθ(y,h | z) =

NC

([
Aµθ

µθ

]
,

[
Σ−1 −Σ−1A

−AHΣ−1 AHΣ−1A+C−1
θ

]−1
)

(36)

after some algebraic reformulations, which shows that y and
h are jointly Gaussian given z. We omit the z-argument here
for notational brevity. For the derivation of Eθ[h | z,y], we
are interested in the conditional pθ(h | z,y). Using standard
results for jointly Gaussian distributions, the conditional is
again Gaussian with the mean vector Eθ[h | z,y] =

µθ +
(
AHΣ−1A+C−1

θ

)−1
AHΣ−1(y −Aµθ) (37)

and covariance matrix (AHΣ−1A + C−1
θ )−1. Application

of the matrix inversion lemma to (37) and further algebraic
reformulations yield (16), concluding the derivation.

B. Proof of Theorem 1

Proof. Let us define the variables

Ψ = fθ,2(z)− fθ,2(µϕ), ψ = fθ,1(z)− fθ,1(µϕ), (38)

Γ = fθ,2(µϕ) + ς2 I, (39)

and denote Ez[·] := Epθ(z|y)[·] for notational convenience.
First, let us rewrite T (z) = Cθ(z)(Cθ(z) + ς2 I)−1 as

T (z) = (Cθ(z) + ς2 I)−1Cθ(z) (40)

= (Γ+Ψ)−1fθ,2(z) (41)

=
(
Γ−1 − Γ−1Ψ(Γ+Ψ)−1

)
fθ,2(z) (42)

= Γ−1fθ,2(µϕ) + Γ−1Ψ
(
I−(Γ+Ψ)−1fθ,2(z)

)
(43)

by using the push-through identity in (40) and the matrix
inversion lemma in (42). Using this result, we rewrite the
CME E[h |y] from (15) in terms of the MAP-VAE estimator
ĥVAE(y) from (19) and an additive error term as

E[h |y] = Ez[fθ,1(z) + T (z)(y − fθ,1(z))] (44)

= fθ,1(µϕ) + Γ−1fθ,2(µϕ)(y − fθ,1(µϕ))︸ ︷︷ ︸
=ĥVAE(y)

+ Ez[(I−Γ−1fθ,2(µϕ))ψ]

+ Ez[Γ
−1Ψ(I−(Γ+Ψ)−1fθ,2(z))(y − fθ,1(z))].

(45)

We further note that we can simplify the term

I−(Γ+Ψ)−1fθ,2(z))(y − fθ,1(z)) = y − E[h|y, z] (46)
= E[n|y, z]. (47)

Thus, we get an upper bound on the expected Euclidean
distance between the MAP-VAE estimator and the CME
ε = E[∥E[h |y]− ĥVAE(y)∥2] as

ε ≤ E
[
∥ I−Γ−1fθ,2(µϕ)∥2 Ez[∥ψ∥2]

]
+ E

[
∥Γ−1∥2 · ∥Ez[ΨE[n|y, z]]∥2

] (48)

≤ E
[

ς2

ξmin+ς2 Ez[∥ψ∥2]
]
+ 1

ς2 E [Ez[∥ΨE[n|y, z]∥2]] (49)

where we used the reformulation from (47) and the bounds on
the spectral norms

∥ I−Γ−1fθ,2(µϕ)∥2 =
ς2

ξmin + ς2
, ∥Γ−1∥2 ≤ 1

ς2
, (50)

together with the triangle and Cauchy-Schwarz inequalities.
Note that ξmin is a function of y. Thus, we employ Hölder’s
inequality for both summands in (49) to get

ε ≤ C1

√
E[Ez[∥ψ∥22]]

+
1

ς2

√
E[Ez[∥E[n|y, z]∥22]]

√
E[Ez[∥Ψ∥22]]

(51)

≤ C1

√
E[Ez[∥ψ∥22]] +

1

ς2

√
E[∥n∥22]

√
E[Ez[∥Ψ∥22]] (52)

= C1

√
E[Ez[∥ψ∥22]] + C2

√
E[Ez[∥Ψ∥22]] (53)

where we used Jensen’s inequality in combination with the
law of total expectation in (52), and with C1, C2 in (25). By
resubstituting the variables in (38), we get

ε ≤C1

√
E[Ez[∥fθ,1(z)− fθ,1(µϕ)∥2]]

+ C2

√
E[Ez[∥fθ,2(z)− fθ,2(µϕ)∥22]]

(54)

≤ (C1L1 + C2L2)
√

E[Ez[∥z − µϕ∥22]] (55)
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by using the Lipschitz continuity (23). By defining the first
and second moments of the posterior distribution pθ(z |y) as
µ̄ = Ez[z] and C̄ = Ez[(z − µ̄)(z − µ̄)H], we write√

E[Ez[∥z − µϕ∥22]] =
√

E[Ez[∥z − µ̄+ µ̄− µϕ∥22]] (56)

≤
√
E[Ez[(∥z − µ̄∥2 + ∥µ̄− µϕ∥2)2]] (57)

≤
√

tr(C̄) +
√
E[∥µ̄− µϕ∥22] (58)

since only one summand in (57) depends on y or z, respec-
tively. Plugging (58) in (55) yields (24), completing the proof.
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