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Static disorder in a 3D crystal degrades the ideal ballistic dynamics until it produces a localized
regime. This Metal-Insulator Transition is often preceded by coherent diffusion. By studying three
paradigmatic 1D models, namely the Harper-Hofstadter-Aubry-André and Fibonacci tight-binding
chains, along with the power-banded random matrix model, we show that whenever coherent dif-
fusion is present, transport is exceptionally stable against decoherent noise. This is completely at
odds with what happens for coherently ballistic and localized dynamics, where the diffusion coeffi-
cient strongly depends on the environmental decoherence. A universal dependence of the diffusion
coefficient on the decoherence strength is analytically derived: the diffusion coefficient remains al-
most decoherence-independent until the coherence time becomes comparable with the mean elastic
scattering time. Thus, systems with a quantum diffusive regime could be used to design robust
quantum wires. Moreover our results might shed new light on the functionality of many biological
systems, which often operate at the border between the ballistic and localized regimes.

I. INTRODUCTION

The understanding and control of quantum transport
in presence of environmental noise is crucial in many ar-
eas such as cold atoms [1], mesoscopic systems [2], and
quantum biology [3, 4]. Its better understanding would
allow us to design more efficient sunlight harvesting sys-
tems [5–7], devices that transfer charge or energy with
minimal dissipation [8, 9] and bio-mimetic photon sen-
sors [10], as well as to explain the functionality of many
biological aggregates [11–14].

It was P. W. Anderson [15] who realized that elas-
tic scattering from a random disorder exceeding a criti-
cal value induces the localization of quantum excitations,
and a metal-insulator transition (MIT). While in 3D this
critical disorder is finite, in 1D any amount of disorder is
enough to localize. Two decades later it was realized that
correlated disorder and long-range hopping could allow a
MIT even in 1D [16–19].

The different roles of the environment were considered
by R. Landauer [20], N. Mott [21], and H. Haken [22].
Specifically, Landauer noticed that an actual finite sys-
tem exchanges particles with external reservoirs through
the current and voltage probes, a notion that M. Büttiker
used to describe environmental decoherence and thermal-
ization [23, 24]. Both, Haken and Mott sought to address
the role of a thermal bath. A very simple but widely used
model for the environmental bath is the Haken-Strobl
model, which describes uncorrelated dynamical fluctua-
tions in the site energies.

Later on, Mott predicted a variable-range-hopping
regime in which energy exchange among phonons and
Anderson’s localized states would favor conductivity be-

fore decoherence freezes the dynamics [25]. Thus, in the
localized regime, the 1D conductivity reaches a maxi-
mum [6, 24, 26, 27] when the energy uncertainty associ-
ated with elastic scattering and that resulting from the
coupling with the environment (i.e. decoherence pro-
cesses) [28, 29] become comparable. In contrast, the
ballistic dynamics of a perfect crystal is always degraded
by the thermally induced decoherent scattering processes
[30]. A much less studied subject is how decoherent noise
affects transport around the MIT and, more generally, in
presence of a quantum diffusive-like dynamics.

Recent works on excitonic transport in large bio-
molecules such as photosynthetic antenna complexes seek
to explain the puzzling great efficiency of many natu-
ral [6, 27, 31, 32] and biomimetic systems. In this context,
S. Kauffman [33] proposed the intriguing poised realm
hypothesis that, in biological systems, excitation trans-
port occurs at the edge of chaos. This led Vattay and
coll. [34] to propose that 1D systems near the MIT are
optimal for transport because environmental decoherence
does not affect the system as strongly as it does in the
extended regime while it ensures delocalization needed
for transport.

This hypothesis seems at odds with an early theoret-
ical analysis [35] indicating that it is the intrinsic diffu-
sive dynamics of some 1D systems what yields a particu-
lar stability of transport towards decoherence. With the
purpose to settle this conflict, we study a few paradig-
matic models that afford coherent diffusion. We first
analyze the Harper-Hofstadter-Aubry-André (HHAA)
model [16], see Fig. 1a, which has been brought to the
spotlight [36–38] thanks to various experimental imple-
mentations [39, 40]. In absence of external noise, we

ar
X

iv
:2

30
7.

05
65

6v
3 

 [
qu

an
t-

ph
] 

 2
7 

M
ar

 2
02

4



2

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101

W=1.0J
W=1.8J
W=2.0J
W=2.2J
W=3.0J

D0

(a)

(b) (c)

10-2

100

102

104

106

10-1 100 101 102 103 104

W=1.8J
W=2.0J
W=2.2J

0

Analytic

0.01J

FIG. 1. (a) HHAA model: horizontal lines are site ener-
gies, Lorentzian uncertainties indicate decoherence, J is the
hopping amplitude. (b) Excitation spreading for the HHAA
model with N = 10000 for different W . Coherent dynamics
are shown with solid curves, while symbols show decoherent
ones with a fixed value of γϕ = 0.01J . Both symbols and
curves share the same color (gray-tone) to denote a given W .
The vertical arrow shows the mean elastic scattering time τW ,
Eq. (3). Black dashed lines are the analytical estimates for
γϕ = 0, see text. The vertical dotted line shows the decoher-
ence time τϕ = h̄/γϕ. (c) Scaled diffusion coefficient D/a2

vs. the decoherence strength γϕ/J for different W . Solid
black curves result from Eq. (4). Different regimes are ex-
tended (green circles), critical (red squares), and localized
(blue triangles). The horizontal black dotted line is the co-
herent theoretical estimate D0/a

2; the black dashed line is the
asymptotic D/a2 ≃ 2J2/h̄γϕ, and the vertical dotted line is
the characteristic decoherence γc

ϕ = 2h̄/τW . Numerical data
obtained by the QD method (symbols) for N = 1000. In all
panels: q = (

√
5− 1)/2, J = 1 and h̄ = 1.

found, both numerically and analytically, that only at
the MIT the second moment of an initially localized ex-
citation can be described by a diffusion coefficient D.
There, as long as the decoherence strength remains be-
low a characteristic value γcϕ, see Fig. 1c, D is very weakly
dependent on the decoherent noise. On the other side,
transport properties both in the extended and localized
regimes are strongly affected by decoherence. We also
found that, at long times, D determines the current and
the system reversibility assessed by the Loschmidt echo
(LE) decay. Thus, at the MIT, both magnitudes are al-
most independent of the decoherent noise strength (see
Appendix A & G). However, these findings do not set-
tle the question of whether it is the diffusive quantum
dynamics what brings stability towards decoherence or
if this stability is inherent to the critical point. For this
reason we also studied the Fibonacci chain [41] and the
power-banded random matrices (PBRM) [19], where a
diffusive-like regime exists in some parameter range in-
dependently of their criticality. Our results show that,
whenever a system is in a quantum coherent diffusive

regime, transport is extremely stable towards decoher-
ence, even outside the critical point. Last but not least,
we were able to find a universal expression for D, valid in
the coherent diffusive regime, depending only on a single
physical parameter: the ratio between the elastic scat-
tering and the decoherence time.

II. THE HHAA MODEL

The HHAA model [16], Fig. 1a, describes a linear chain
with hopping amplitude J among sites |n⟩ at distance
a modulated by a local potential εn, according to the
Hamiltonian:

H =
∑
n

−J(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) + εn |n⟩ ⟨n| , (1)

where εn = W cos(2πqna + θ), q = qg = (
√
5− 1)/2a

and 0 < θ < 2π is a random phase over which we av-
erage in numerical simulations. Other values of q are
discussed in the Appendix E. Contrary to the Anderson
1D model, the HHAA model presents a phase transition
as the eigenstates are extended for 0 ≤ W < 2J and
localized for W > 2J [16]. A notable trait is that the
MIT occurs exactly at W = 2J in the whole spectrum
and that all eigenstates have the same localization length
2ξ = a/ ln[W/2J ] for W > 2J .
The presence of a local white-noise potential is de-

scribed by the Haken-Strobl (HS) model [42], widely used
for excitonic transport. The environment is described
by stochastic and uncorrelated fluctuations of the site
energies V (t) =

∑
n εn(t) |n⟩ ⟨n|, with ⟨εi(t)⟩ = 0 and

⟨εn(t)εm(t′)⟩ = h̄γϕδnmδ(t − t′). The dynamics can be
described by the Lindblad master equation:

ρ̇ = L[ρ] = − i

h̄
[H, ρ]− γϕ

2h̄

N∑
n=1

[|n⟩ ⟨n| , [|n⟩ ⟨n| , ρ]] , (2)

where γϕ/h̄ is a temperature related dephasing rate. This
is a good approximation when the thermal energy is on
the same order of the spectral width of the system, as
it happens in many biological systems [6, 43]. It in-
duces a diffusive spreading of the excitation in the infinite
size limit of tight-binding models [28]. Notably, the HS
master equation leads, at infinite times, to a stationary
equally probable population on all sites [5].
Solving the master equation requires to handleN2×N2

matrices. To overcome this limit we use the quantum-
drift (QD) model [44], an approach conceived as a re-
alization of the Büttiker’s local voltage probes [35] in a
dynamical context. Here, the system wave function fol-
lows a Trotter-Suzuki dynamics with local collapse pro-
cesses represented as local energies fluctuating accord-
ing to a Poisson process. This yields local energies with
a Lorentzian distribution of width γϕ/2 (for details see
Appendix B), allowing us to handle more than 104 sites.
The diffusion coefficient D = σ2(t)/(2t) is com-

puted numerically through the variance σ2(t) =
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a2
[∑

n ρn,n(t)n
2 − (

∑
n ρn,n(t)n)

2
]
starting from a local

initial excitation in the middle of the chain. Our results
have been confirmed using the Green-Kubo approach de-
veloped in [28], see also Appendix D1.

A. Coherent dynamics in HHAA.

The initial excitation spreading is always ballistic,
σ2
0(t) = v20t

2, with a velocity v20 = 2a2(J/h̄)2. In ab-
sence of dephasing the long time behavior of the vari-
ance σ2

0(t) can be computed analytically, see Appendix C,
in the three regimes: i) For W < 2J the spreading
is still ballistic, but with a different mean group veloc-
ity : u2 = a2|2J −W |2/2h̄2, see solid green (upper light-
gray) curve in Fig. 1b. ii) For W > 2J , localization
occurs and the variance saturates at the value σ2

0(∞) =
2ξ2 = 2a2(2 ln(W/2J))−2, see solid blue (bottom dark-
gray) curve in Fig. 1b. iii) At the MIT for W = 2J ,
the variance grows diffusely [45, 46], σ2

0(t) = 2D0t, see
middle red/gray curve in Fig. 1b. This is consistent with
Ref. [47], where deviations from a diffusive regime are
shown not to affect the variance at criticality up to ex-
tremely large system sizes, where a weak super-diffusive
dynamics will emerge at very large times.

The diffusion coefficient D0 = (v20τW )/2 at the MIT
depends on both the initial velocity v0 and themean elas-
tic scattering time τW over which local inhomogeneities
manifest themselves in the dynamics of a local excitation:

τW = h̄/∆E, where (∆E)2 = ⟨(εn − εn+1)
2⟩/2 (3)

where εn = Hn,n = ⟨n|H|n⟩ and ⟨· · · ⟩ represents the
average over all Hamiltonian diagonal elements (when
considering disordered models, ⟨...⟩ also includes aver-
age over disorder). For the HHAA model we have
(∆E)2 =W 2(1− cos (2πqa))/2, and consequently, D0 =
a2J2/(h̄∆E) which we checked to be in very good agree-
ment with the numerical results at the MIT, see Fig. 1b
and Appendix C 2 & E.

B. Decoherence in the HHAA model.

When the system is in contact with an environment,
the time-dependent fluctuations of the site energies affect
the dynamics, inducing a diffusive behavior. In Fig. 1b
we show (symbols), for W < 2J and W > 2J , how the
dynamics become diffusive after a time τϕ ≈ h̄/γϕ (see
vertical dotted line). In general, the diffusion coefficient
depends on the decoherence strength, apart at the MIT,
where, interestingly, the dynamics remains diffusive with
a diffusion coefficient very close to D0 as in absence of
noise.

As the decoherence strength increases, D decreases in
the extended regime, while in the localized regime D
reaches a maximum, as clearly shown in Fig. 1c. Re-
markably, at the MIT, D is almost independent from
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FIG. 2. (a) Probability of finding the excitation in the
initial site P00(t) for a HHAA chain for a system evolv-
ing with L until time τR = 25 (first vertical dashed line)
when the sign of the Hamiltonian is inverted (i.e. it con-
tinues evolving with L†). The Loschmidt echo occurs at
P00(t = 2τR) ≡ M(t = τR) (second vertical dashed line)
and corresponds to the purity. Different colors (gray-tones)
distinguish decoherence strengths. For the stronger ones the
echo is not evident and P00(t) approaches a diffusive dynamics
(black curve). (b) Loschmidt echo decay M(t) for different γϕ
at the critical point computed with the QD. The dashed line
is a prediction based on the coherent diffusion coefficient re-
sulting from the Hamiltonian dynamics. Vertical dotted lines
show t = 4h̄

γϕ
. All data with q = (

√
5 − 1)/2, J = 1, h̄ = 1,

W = 2J and N = 1000.

decoherence up to γcϕ = 2h̄/τW , see red squares and ver-
tical dotted line in Fig. 1c. Plotted as a function of the
on-site potential strength, the diffusion coefficient curves
for different decoherence strengths, intersect at W = 2J ,
suggesting the independence of decoherence precisely at
the MIT (See Fig. 6 of Appendix D1).
In order to understand the exact dependence of D on

γϕ we apply a quantum collapse model for the environ-
mental noise. The latter can be assimilated to a sequence
of measurements of the excitation’s position [44], induc-
ing local collapse that leads to a random walk [35]. Then
D can be readily determined from σ2

0(t) as:

D ≃
∫ ∞

0

dtip (ti)σ
2
0 (ti) /(2τ), (4)

where p(ti) is the probability density of measurement
at time ti and τ =

∫∞
0
dtitip (ti), details are given

in Appendix D2. Since the HS model corresponds to
a Poisson process for the measurement collapses [44],
p(ti) = e−ti/τϕ/τϕ. From σ2

0(t) obtained in absence of
dephasing and integrating numerically Eq. (4) we ob-
tain results in excellent agreement with numerical data,
see black curves in Fig. 1c. In Appendix D3 we use
formalism to derive analytical expressions for D in the
HHAA model at the low and strong decoherence limits,
these results are consistent with the expressions derived
in Ref. [13, 28]. Aditionally, from Eq. (4), assuming a dif-
fusive dynamics in absence of dephasing σ2

0(t) = 2D0t, we
can get immediately that D = D0, i.e. it is independent
of γϕ.
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C. Loschmidt echo/purity decay in the HHAA
model.

The robustness of the wave packet spreading at the
MIT, leads to the question of how the hidden decoherent
processes could be unraveled from a diffusive behavior.
The natural answer appears by studying how reversibility
is affected by decoherence. A coherent diffusive dynamics
can be reversed by changing the sign of the Hamiltonian,
but the presence environment destroys the coherence that
allows a perfect reversibility. This can be experimen-
tally studied through the decay of the Loschmidt echo
or purity [48, 49]. Purity, M(t) = Tr[ρ(t)2], has been
widely used to measure how decoherence affects a sys-
tem since M(t) ≡ 1 for a pure state while M(t) < 1 for a
mixed state. The Loschmidt echo (LE) results from re-
verting the Hamiltonian part of a dynamics at a time tR
through the change in the overall sign of the Hamiltonian
while the environmental noise is kept active. The return
probability to the initial state P00(t) tends to show a
revival at 2tR. In the Appendix G we show that both
definitions, purity and LE, are indeed equivalent, i.e.
P00(2tR) =M(tR). This allows an efficient computation
using the Quantum Drift method.

Fig. 2a shows the probability of finding the excitation
in the initial site P00(t) as a function of total evolution
time for different values of γϕ, the excitation evolves with
L, see Eq. (2), until time τR (first vertical dashed line)
when the sign of the Hamiltonian is inverted (i.e. for t >
tR it continues evolving with L†). The Loschmidt echo
occurs at P00(t = 2τR) ≡ M(t = τR) (second vertical
dashed line). However, for strong decoherence the echo
is missed among the statistical fluctuations. In this case
the value at t = 2τR is mainly determined by a “forward
dynamics” P00(t) ∼ 1/

√
4πDt.

Fig. 2b shows the LE/Purity M(t) as a function of
time. For t >∼ 4h̄/γϕ the initial exponential LE/Purity
decay, characterized by the decoherence rate 2γϕ, be-
comes a power law determined only by the diffusion coef-
ficient: M(t) ∼ 1/

√
8πDt. This regime is a consequence

of the impossibility of reverting the spreading of the ex-
citation beyond a time scale 2h̄/γϕ. Thus the LE decay
only senses the spreading dynamics, which for W = 2J ,
is robust against decoherence. For much stronger deco-
herence strengths (γϕ ≫ γcϕ) D is in the quantum Zeno
regime generating a slow decay in the purity according
to D ∝ 1/γϕ.

All the above results could be experimentally tested in
Yb cold atoms in a 1D optical lattice where the HHAA
model was already implemented [39, 50]. Local decoher-
ence could be imposed by time-dependent white noise
fluctuations that exploit speckle patterns uncorrelated in
time and space.

HHAA W=2J
Fib. W=3.15J
PBRM μ=0.80
PBRM μ=1.00
PBRM μ=1.30

Eq. (5)

10-1

100

10-3 10-2 10-1 100 101

FIG. 3. Normalized diffusion coefficient D/D0 vs. renormal-
ized decoherence strength τW /τϕ (D0 = D(γϕ = 0)). Symbols
obtained from QD dynamics: i) the HHAA chain at criticality
(red squares), ii) the Fibonacci chain (dark-red triangles) and
iii) the PBRM model in the extended phase (green hollow-
diamonds), at the critical point (red hollow-squares) and in
the localized phase (blue hollow-circles). The solid curve is
the universal Eq. (5) while the dashed-black line is the limit
of τW /τϕ > 2. Horizontal dotted line is D = D0. For the
HHAA and the Fibonacci chains, τW and D0 were computed
analytically, Eq. (3). For the PBRM model b = 0.01 and D0

results from a fitted τW .

III. STABILITY OF QUANTUM DIFFUSION:
THE FIBONACCI AND PBRM MODELS.

In order to understand whether the robustness found
in the HHAA model at criticality is due to the presence
of a critical point or to the presence of a diffusive dynam-
ics, we also studied other two models: A) the Fibonacci
chain [41, 45, 51] where there is no MIT but transport
changes smoothly from super-diffusive to sub-diffusive as
the strength of the on-site potential is varied; B) The
PBRM model [19] which presents a MIT and a diffusive
second moment in a finite range of parameters around
the MIT (see Appendix F). Since this model incorporates
topologically different Feynman pathways it is often con-
sidered a 1+D system.
The Fibonacci model [51] is described by the Hamil-

tonian (1), with on-site energies alternating between two
values as in binary alloy models: εn = W (⌊(n+ 1)q2g⌋ −
⌊nq2g⌋), where ⌊...⌋ is the integer part. This model has
no phase transition and the variance of an initial lo-
calized excitation grows in time as σ2

0(t) ∝ tα where
0 < α < 2 depends continuously on the on-site poten-
tial strength [52, 53]. On the other side, the Hamilto-
nian matrix elements for the PBRM model are taken
from a normal distribution with zero mean, and vari-
ance: ⟨|Hij |2⟩ = 1/(2 + 2(|i− j|/b)2µ) if i ̸= j, and
⟨|Hii|2⟩ = 1 for on-site energies. The model has a criti-
cal interaction range (µ = 1), characterized by a multi-
fractal nature [54–56], for all values of b where the sys-
tem switches from extended (µ < 1) to localized (µ > 1)
eigenstates [19]. Nevertheless, small values of b allows to
study the dynamics without resorting to unmanageable
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large systems. In this model, we have found a diffusive
excitation spreading in absence of decoherence, not only
at the critical point but in a much broader range of µ
values 1/2 < µ < 3/2. Note that even for 1 ≤ µ ≤ 3/2,
the saturation value of the variance grows with the sys-
tem size, thus allowing a diffusive-like spreading in the
infinite size limit, see Appendix F. This sounds counter-
intuitive since for 1 ≤ µ ≤ 3/2 we are in the localized
regime if the participation ratio of the eigenstates is used
as a figure of merit for localization [19]. This peculiarity
is due to the long-range hopping present in this model.

A. Universal stability towards decoherence.

As we discussed below Eq. (4), if the coherent dynam-
ics is diffusive at all times, then D = D0 for all decoher-
ence strengths. On the other hand, in the more realistic
case, where an initial ballistic dynamics, σ2

0(t) = v20t
2 for

t < τW , is followed by a diffusive spreading σ2
0(t) = 2D0t,

Eq. (4) yields (see details in Appendix D2):

D(x)/D0 =
[
2/x− (1 + 2/x) e−x

]
, (5)

where x = τW /τϕ. This expression captures the depen-
dence of D with large and small values of τW /τϕ. For
τW /τϕ ≪ 1, the diffusion coefficientD ≈ D0(1− 1

6 (
τW
τϕ

)2),

while for τW /τϕ ≫ 1, we enter the strong quantum Zeno
regime and D/D0 ≈ 2τϕ/τW .

Eq. (5) represents our main result. As one can see, it
depends only on a single parameter, i.e. the ratio between
the mean elastic scattering time and the decoherence
time. Thus, it describes universally any 1D quantum me-
chanical model characterized by a coherent diffusive dy-
namics, independently of the details of their microscopic
dynamics. Our analytical results have been confirmed
numerically in Figure 3, where the normalized diffusion
coefficient D/D0 is shown for the HHAA, Fibonacci, and
PBRM models, focusing only on the diffusive-like coher-
ent dynamics regime, where D0 is well defined. The uni-
versal behavior predicted by Eq. (5) is in excellent agree-
ment with the numerical results for all models.

The fact that a coherent diffusive quantum dynam-
ics is extremely robust to the environmental noise is in
striking contrast with what one would expect consider-
ing scattering (with a time scale τW ) and environmental
noise (with a time scale τϕ) as two independent Pois-
son’s processes. In this case, the two processes can be
thought of as a single Poisson’s process with a time
scale 1/τ = 1/τW + 1/τϕ. Thus, for small values of
τW /τϕ ≪ 1, we haveD ≈ D0(1−τW /τϕ), in contrast with
the quadratic correction present in Eq. (5). Our findings
are also in contrast with standard results in classical sys-
tems where the diffusion coefficient for the dynamics in
presence of external noise is the sum of the diffusion co-
efficients given by the two processes [57].

IV. DISCUSSION

By studying quantum transport in three paradigmatic
1D models, all of them able to support a quantum
diffusive-like regime, we found a striking stability of
transport towards local decoherent processes which also
shows up in the purity/Loschmidt echo decay. This sta-
bility originates in the diffusive nature of the coherent
quantum dynamics and it manifests itself in the fact that
the diffusion coefficient is largely independent of the de-
coherence strength (i.e. approximately equal to the diffu-
sion coefficient in absence of decoherence) as long as the
decoherence time is longer than the mean elastic scatter-
ing time. Moreover, in the coherent diffusive regime, we
analytically derived a universal law in which the diffu-
sion coefficient depends on a single parameter: the ratio
between these characteristic times. We stress that this
stability does not show up when a sample is in a ballistic
or in a localized regime, where the diffusion coefficient is
highly sensitive to decoherence.
We expect that our results will be valid in many re-

alistic situations, even beyond 1D systems. In many
quasi-1D systems, as occurs in the PBRM model, the
elastic mean-free-path may become much larger than the
localization length [2] and thus, the diffusion-like regime
would occur in a wide range of parameters. Therefore,
even when coherent diffusion only occurs within a limited
length scale, it could be enough to ensure an efficient and
stable transport under environmental noise.
Apart from the cold atomic set-up where our findings

could be verified as explained above [39, 50], another sit-
uation that fits the above condition is the spreading of
nuclear spin excitations in quasi 1D crystals [58]. There,
the natural dipolar long-range interactions and the disor-
der can be turned on and off through appropriate radio-
frequency pulses enabling a switch between ballistic and
a quantum diffusive regimes. Notably, the many-body
terms manifest as a decoherence timescale [38, 59]. Fur-
ther experiments could test the stability of the spin dif-
fusion towards decoherence. Moreover, some actual con-
ducting polymer composites, arranged in bundles with
degenerate active channels, may be in the stability regime
discussed here [60].
Our predictions may also inspire studies of quasi-1D

biological systems where robust charge or excitonic trans-
port are functionally relevant. Among these are en-
ergy transfer and self-repair of the helical DNA struc-
tures [61, 62]. There, one might hint a crucial role of
excitation propagation [63] in the puzzling mechanism
through which DNA transmits allosteric signals over long
distances [64]. In photosynthetic systems it is essential
an efficient energy transport from the antenna complex
to the reaction center followed by a temperature inde-
pendent electron transfer from a chlorophyll to a dis-
tant quinone. This elicited the long standing question
of whether electron transfer occurs as a coherent process
through conduction bands, or through multiple decoher-
ent tunneling hops between localized states [65, 66]. Our
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decoherent diffusion is an alternative mechanism that de-
serves further study. In the antenna complex itself, there
is a convergence of energy scales (i.e. the couplings, disor-
der, and thermal fluctuations, are roughly of the same or-
der), that could ensure the universally robust regime we
discussed. Moreover, the analysis of the spectral statis-
tics of several biologically relevant molecules suggest that
they are typically at the border between a ballistic and
a localized regime [3]. Indeed, some proteins, micro-
tubules and RNA [11, 14, 67, 68], show a surprisingly
robust transport against temperature induced decoher-
ence [69, 70].

In summary, we give a new light to the hypothesis, pro-
moted for biological systems [33, 34], that being at the
edge of chaos is favorable to charge or excitonic trans-
port. Indeed chaos can lead to diffusion [71] and, hence,
to a quantum dynamics extremely robust with respect to
environmental noise. In perspective, it would be inter-
esting to analyze further signatures of intrinsic quantum
diffusion in realistic biological systems in order to estab-
lish the functional relevance of our findings. We conjec-

ture that quantum diffusion is a most relevant feature of
Nature’s poised realm.
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Appendix A: Current.

In this section we study the steady-state current through the HHAA model in presence of pumping and draining of
excitation from the opposite edges of the chain, in presence of dephasing. We also derive an approximate expression
of the current as a function of the diffusion coefficient.

To generate a current, excitations are incoherently pumped and drained at the chain edges. This is modeled by
including additional terms in the Lindblad master equation Eq. (2) from the main text, which becomes

ρ̇ = L[ρ] = − i

h̄
[H, ρ] + Lϕ[ρ] + Lp[ρ] + Ld[ρ], (A1)

where H is the HHAA Hamiltonian (1) from the main text, Lϕ = −γϕ

2h̄

∑N
n=1 [|n⟩ ⟨n| , [|n⟩ ⟨n| , ρ]] is the dephasing

dissipator from the main text, while the additional terms,

Lp[ρ] =
γp
h̄

(
|1⟩ ⟨0| ρ |0⟩ ⟨1| − 1

2
|0⟩ ⟨0| ρ− 1

2
ρ |0⟩ ⟨0|

)
, (A2)

and

Ld[ρ] =
γd
h̄

(
|0⟩ ⟨N | ρ |N⟩ ⟨0| − 1

2
|N⟩ ⟨N | ρ− 1

2
ρ |N⟩ ⟨N |

)
, (A3)

are two operators modeling the pumping on the first site (|1⟩) and draining from the last site (|N⟩). Here |0⟩ is the
vacuum state, where no excitation is present in the system [9, 72]. For simplicity, here the pumping and draining
rates are set to be equal in magnitude (γp = γd). From solving Eq. (A1) at the steady-state (L[ρss] = 0) one can
compute the stationary current,

Iss =
γd
h̄

⟨N | ρss |N⟩ . (A4)

with ρss being the steady-state density operator [9, 72].

1. Steady-state current: Average transfer time method.

Since the master equation approach discussed above is numerically expensive, for large N we use the average transfer
time method (ATT), as described in [9]. The average transfer time τ is defined as

τ =
γd
h̄

∫ ∞

0

t ⟨N | exp (−Lefft) ρ(0)|N⟩dt = γd
h̄

⟨N |L−2
eff ρ(0)|N⟩ . (A5)

where Leff is the one from Eq. (A1) without pumping. In [9] it has been proved that the steady-state current determined
from the master equation (A1) in absence of dephasing depends only on the average transfer time, namely

Iss =
γp

γpτ + h̄
. (A6)

We have numerically verified that Eq. (A6) is valid also in presence of dephasing, so in the following we use it due to
its lower numerical complexity together with a heuristic construction, detailed here below.

a. Heuristic construction of the mean transfer time.

The ATT method gives us the possibility to heuristically construct the mean transfer time by considering the
characteristic times of dephasing-induced diffusion and draining.

Since at equilibrium the probability of being at site N is 1/N and the drain rate is γd/h̄, we can estimate the
drainage time as h̄N/γd. Then, in order to determine the diffusion time, we know that an excitation moves from one
site to a neighbor with an average time a2/(2D). Furthermore, the excitation moves as a random walk and the total
number of steps required in 1D is N(N − 1). Therefore, we estimate the diffusion time as N(N − 1)a2/(2D) [73, 74].
Thus, adding the drainage time and the diffusion time we have

τ = h̄
N

γd
+

(N − 1)N

2D
a2 . (A7)
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FIG. 4. (a) Steady-state current vs. γϕ/j for the HHAA model for N = 100 and W = 2J obtained with three different
methods: (i) Master equation (ME, green (light-gray) curve), (ii) average transfer time method (ATT, red circles) and (iii)
heuristic expression (Eq. (A7), blue (dark-gray) curve). (b) Rescaled steady state current ISSN

2 as a function of dephasing
(γϕ/J) in the extended, critical, and localized (colors/gray-tones) regime for different system’s sizes N = {20, 40, 100}. ISSN

2

is calculated using the ME method and shown with different dash types depending on N . The diffusion coefficient based
(Heuristic) estimation of the current for N = 1000 is included with yellow (light-gray) dash-dotted curves.

Figure 4a shows a comparison of Iss as a function of dephasing computed using the three different methods illustrated
above here: the stationary solution of the master equation (A1) (ME), the ATT method (A5-A6), and the heuristic
formula (A7). In the latter case, the diffusion coefficient D has been computed using the Green-Kubo approach
[Eq. (D2), Sup. Mat. D 1]. A general good agreement is observed between the three approaches. Deviations at small
dephasing are due to the finite system size (N = 100), for which the excitation reaches the chain edge ballistically
within a time shorter than τϕ = h̄/γϕ.

Fig. 4b shows the normalized steady-state current N2Iss as a function of γϕ for different N in the three regimes
for the HHAA model described in the main text. We observe that, as the length N of the chain is increased, the
behavior of the current is determined by the diffusion coefficient Eq. (A7) (see yellow (light-gray) curves in Fig. 4b)
where D has been computed analytically for W = 0 (Eq. (D17)) and numerically via the quantum drift approach for
W ̸= 0 and N = 1000 (see Sec. B). The current decreases with dephasing in the extended regime (W = 0) and it is
enhanced in the localized regime (W = 3J , up to an optimal dephasing), while it remains almost unaffected at the
critical point (W = 2J) up to a characteristic dephasing strength.

Although this analysis is done for the HHAA model, it should also be valid for other models with nearest-neighbor
couplings, such as the Fibonacci chain analyzed in this paper. In other words, we expect that the steady-state current
is mostly determined by the diffusion coefficient in such systems.

Appendix B: The Quantum Drift Model

In order to reduce the computational cost of calculation of the dynamics in presence of decoherence we use the
Quantum Drift (QD) model, which only involves Trotter-Suzuki evolution of the wave-vector [44, 75] under uncor-
related local noise. Here, the dynamics are obtained by the sequential application of unitary evolution operators to
the wave-function in small time steps (dt). The noise/decoherence (interaction with the environment), is introduced

by adding stochastic energies fluctuations on every site, Γ̂ϕ =
∑

n βn |n⟩ ⟨n|, uncorrelated in time (i.e. independently
sampled every time step). The probability distribution of these fluctuations is a Lorentzian function,

P (βn) =
1

π

γϕ

2

β2
n + (

γϕ

2 )2
. (B1)

Thus, the unitary evolution in a small time step dt is:

Û(dt) ≈ eiΓ̂ϕdt/h̄e−iĤdt/h̄, (B2)



10

10-4

10-3

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104 105

σ
2
(t

)/
a2

Jt/ℏ

W=0

γϕ=0.1J
γϕ=1J

γϕ=10J
γϕ=100J

10-4

10-3

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104 105

σ
2
(t

)/
a2

Jt/ℏ

W=2J

γϕ=0.1J
γϕ=1J

γϕ=10J
γϕ=100J

10-4

10-3

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104 105 106

σ
2
(t

)/
a2

Jt/ℏ

W=20J

γϕ=0.1J
γϕ=1J

γϕ=10J
γϕ=100J

(a)

ME QD ME QD ME QD

(b) (c)

FIG. 5. Spreading of excitation for the HHAA model. Initial state a single site in the middle of the chain. Solid curves:
Pure dephasing Haken-Strobl from a Lindblandian evolution (ME). Dashed curves: Quantum drift (QD) simulation. Colors
(gray-tones) and dash-types indicate different γϕ for the ME and QD data respectively. The parameters are N = 100, (a)
W = 0, (b) W = 2J and (c) W = 20J .

where Ĥ is the system’s Hamiltonian. Finally, the evolved wave function at time t = Ntdt is:

|ψ̂(t)⟩ =
Nt∏
j=1

eiΓ̂ϕdt/h̄e−iĤdt/h̄|ψ(0)⟩. (B3)

The QD evolution described here is equivalent to the Haken-Strobl dephasing (Eq. (2)), see Fig. 5. As one can see
there is a very good agreement between the Lindbladian and the QD evolution of the second moment of an initially
local excitation for different dephasing strengths and system parameters.

Appendix C: HHAA model: dynamics in absence of dephasing.

Here, we study the spreading of an initially localized wave packet at the center of the HHAA chain in absence of
dephasing. In particular, we focus on the time evolution of the second moment σ2

0 of the probability distribution to
find the particle along the chain in absence of decoherence. As shown in the main text, in absence of decoherence and
for long enough times, the second moment grows ballistically for W < 2J , diffusively for W = 2J and saturates for
W > 2J [46].

It is known that, in the HHAA, in the localized regime the localization length of all eigenfunctions is 2ξ =
a/ ln[W/2J ] [16, 45, 46]. It follows that the wave packet probability distribution at the steady state is local-
ized close to a site n0, P (n) = | ⟨n|ψ(t)⟩ |2 = 1

2ξ (e
−|n−n0|/ξ). Therefore, the variance’s saturation value will be

limt→∞ σ2
0(t) = l2 = 2ξ2 = 2a2(2 ln(W/2J))−2. In the following we will characterize the dynamics in the different

regimes.

1. Extended phase.

In the extended phase, the dynamics of the variance for very long times become ballistic, σ2
0(t) = u2t2. From

the Hamiltonian [Eq. (1) of the main text] in the cases q = 0 (ordered chain) and q = 1/2 (dimerized chain) we
have proved analytically (not shown) that the velocity u is directly connected with the support B of the spectral

bands, and we have u2 = a2B2

8h̄2 . For q = 0 there is a single band, B = 4J and for q = 1/2 we have two bands, with

B = 2
√
W 2 + 4J2 − 2

√
W 2.

We here conjecture that the same expression is valid for any value of q in the HHAA model. For q given by the
golden mean, in Ref. [76] it was shown that B = 2|2J −W |. Thus we have u2 = 4a2|2J −W |2 and the behavior of
the variance in for long times is given by:

σ2
0(t) =

a2|2J −W |2

2h̄2
t2.
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These results have been confirmed numerically in Fig. 1b in the main text.

2. Critical point.

Here we analytically estimate the diffusion coefficient in absence of decoherence. We calculate the spreading of the
wave packet ψ(t) perturbatively for short times (before the scattering due to the site potential enters in the dynamics),
so that the probability to be at site n at time t is: Pn(t) = | ⟨n|ψ(t)⟩ |2 ≃ | ⟨n| (1 − iHt/h̄) |n0⟩ |2, where n0 is the
site where the excitation is localized initially. Defining Hn,n0 = ⟨n|H |n0⟩, and considering without lost of generality,
n0 = 0, we can write:

σ2
0(t) = a2

∑
n

Pn(t)n
2 − a2(

∑
n

Pn(t)n)
2 (C1)

≈ (t/h̄)2a2
∑
n

H2
n,0n

2 − a2(t/h̄)4
∑
n

H4
n,0n

2 (C2)

≈ (t/h̄)2a2
∑
n

H2
n,0n

2 = v20t
2 (C3)

from which we find:

v20 = 2a2(J/h̄)2, (C4)

for the HHAA since there are only nearest neighbors interactions.
We may define a time scale where the initial ballistic spreading end due to the presence of a quasi-periodic site

potential of magnitude W . To see this effect, the perturbation expansion needs to be carry out to the 4th order:
Pn(t) = | ⟨n|ψ(t)⟩ |2 ≃ | ⟨n| (1− iHt/h̄− 1

2H
2t2/h̄− i 16H

3t3/h̄+ 1
24H

4t4/h̄) |n0⟩ |2. Thus, to this level of approximation
we have:

σ2
0(t)/a

2 ≈ 2J2(t/h̄)2 − 1

12
((H0,0 −H1,1)

2 + (H0,0 −H−1,−1)
2)J2(t/h̄)4,

σ2
0(t)/a

2 ≈ 2J2(t/h̄)2 − 2

12
⟨(Hn,n −Hn+1,n+1)

2⟩J2(t/h̄)4.

where the energy differences squared were replaced by the average value:

(∆E)2 = ⟨(Hn,n −Hn+1,n+1)
2⟩ = 1

N − 1

N−1∑
n=1

(Hn,n −Hn+1,n+1)
2

2
. (C5)

This definition takes into account the “correlation” between neighbors. For the HHAA model the average can be taken
over the sites n or the realizations of the potential (phase θ in Eq. 1). For independent random disorder (Anderson

disorder), yields directly the variance of the disorder ((∆E)2 = 1
N−1

∑N−1
n=1 H2

n,n), which is the standard magnitude
to calculate the disorder time scale.

The first effect of this quartic correction is to change the concavity of the σ2
0(t). This will happen when the second

derivative of σ2
0(t)/a

2 vanish at a time τW , so that:

τW =

√(
⟨(Hn,n −Hn+1,n+1)2⟩

2h̄2

)−1

=
h̄

∆E
. (C6)

By replacing with the HHAA site energies, using trigonometric identities, and summing over the sites, it can be shown
that ∆E =W

√
(1− cos (2πq))/2, and we have:

τW =

√
2h̄

W
√

(1− cos (2πq))
, (C7)

then, the diffusion coefficient in absence of dephasing, D0, can be computed as follows:

D0 =
v20τW
2

=
a2J2

h̄

√
2

W
√

(1− cos (2πq))
. (C8)
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FIG. 6. Diffusion coefficient D/a2, calculated using the Green-Kubo approach (Eq. (D2)), vs. γϕ/J for the HHAA model
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calculated from Eq. (D2). Symbols are obtained from the Quantum Drift (QD, Appendix B). N = 1000.

It is interesting to note how the correlations of the model (given by the modulation wave vector q) influence the
scattering times and therefore the diffusion σ2

0(t) = 2D0t = v20τW t.
Notice that here, the potential strength enters with a different power law than in the mean-free-time between

collisions that results from the application of the Fermi Golden Rule to a Bloch state of energy ε for the uncorrelated
disorder of Anderson’s model [26] 1/τFGR = (2π/h̄)(W 2/12)N1(ε) with N1(ε) ∝ 1/4πJ

√
1− (ε/2J)2 being the

density of directly connected states.

Appendix D: Diffusion coefficient in presence of decoherence.

1. Green-Kubo formula.

The diffusion coefficient D in presence of decoherence for the Haken-Strobl model can be computed from the
Green-Kubo expression, using only the eigenenergies and eigenstates of the Hamiltonian,

Hϕµ = εµϕ
µ (D1)

as it has been derived in Ref. [29]:

D(u⃗) =
h̄

N

N∑
µ,ν=1

γϕ
γ2ϕ + ω2

µ,ν

|ĵµ,ν(u⃗)|2 , (D2)

where γϕ is the dephasing strength, ωµ,ν = εµ − εν is the energy difference between eigenstates µ and ν, and ĵµ,ν is
the flux operator in the eigenbasis:

ĵν,µ(u⃗) =
i

h̄

∑
n,m

(u⃗ · r⃗n,m)ϕµ∗n ϕνmHn,m . (D3)

In the expression above, u⃗ is a unit vector indicating the transport direction, r⃗n,m is the vector connecting the positions
of site n and m, ϕνn is the amplitude of the ν eigenstate at site n and Hn,m = ⟨n|H|m⟩ is the coupling between n and
m sites. In our 1D system with nearest neighbor interactions, u⃗ · r⃗n,m = m−n = ±a and Hn,m = J(δm,n+1+ δm,n−1).
Therefore,

ĵν,µ = i
Ja

h̄

∑
n

ϕµ∗n (ϕνn+1 − ϕνn−1). (D4)

Equation (D2) have been compared with numerical simulations using the QD approach in Figures 6d, 7, 8, and 9. It
also have been used to study the dependence with N of the diffusion coefficient in various models. Figure 6 shows the
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diffusion coefficient D of the HHAA model in the three regimes as a function of the dephasing strength for different
chain lengths N . We observe for small dephasing a clear dependence of D on the system size. This is due to the fact
that when dephasing is small, the excitation reaches the boundaries before diffusion can sets in. Defining the typical
time scale for dephasing to affect the dynamics as τϕ = h̄

γϕ
, we can estimate the dephasing strength below which finite

size effects are relevant, by comparing τϕ with the time needed to reach ballistically the boundaries for the clean case
(W = 0). In the ballistic regime (W < 2J) the value of decoherence strength below finite size effect starts to be
relevant will decrease proportional to 1/N , while in the diffusive regime (W = 2J) with 1/N2 (see vertical dashed lines
in Figures 6ab). In the localized regime finite size effects are negligible if the system size is larger than the localization
length. Fig. 6d shows D vs. the on-site potential strength for different decoherence strengths, curves are calculated
using the Green-Kubo approach while symbols are obtained from the Quantum Drift dynamics (Appendix B). As one
can see all curves intersect at W = 2J , suggesting the independence of decoherence precisely at the MIT.

2. Analytical expression of the Diffusion coefficient from the coherent dynamics.

The presence of the Haken-Strobl dephasing can be thought as the system being measured by the environment[44,
77]. This measurements occur at random times, where the times between subsequent measurements are distributed
as p(t) = e−t/τϕ/τϕ, with τϕ = h̄/γϕ. In this section, we employ this interpretation of the Haken-Strobl dephasing to
obtain analytical expressions for the diffusion coefficient.

When the measurement occurs, the system has a probability distribution of being at the position r, P0(r, t, r0, t0),
determined by the coherent Hamiltonian dynamics. The initial position, r0 at t0 will only define the center of the
probability density, since the system is isotropic. This assumption is valid in the three models treated in this work
unless the excitation is close to the boundaries. Consequently, P0 (r, t, r0, t0) = P0 (r − r0, t− t0, 0, 0). For simplicity
we will consider r0 = 0, t0 = 0.

The probability density of measuring the system at site r at time t once the measurement process is included

(P̃ (r, t, 0, 0)) will be determined by the integral equation:

P̃ (r, t, 0, 0) = P0(r, t, 0, 0)

(
1−

∫ t

0

p(ti)dti

)
︸ ︷︷ ︸

No Measurement.

+

∫
dri

∫ t

0

dtip (ti) P̃ (r, t, ri, ti)P0 (ri, ti, 0, 0)︸ ︷︷ ︸
Measurement at (ti,ri)

, (D5)

which recurrently considered the probability of not being measured and of being measured several times.
To directly analyze the second moment of the distribution we multiply by r2 and integrate over r on both sides:

σ2(t) = σ2
0(t)

(
1−

∫ t

0

p(ti)dti

)
+

∫
dri

∫ t

0

dtip (ti)

∫
drP̃ (r, t, ri, ti) r

2︸ ︷︷ ︸
r2i+σ2(t−ti)

P0 (ri, ti, 0, 0) , (D6)

σ2(t) = σ2
0(t)

(
1−

∫ t

0

p(ti)dti

)
+

∫ t

0

dtip (ti)σ
2
0 (ti) +

∫ t

0

dtip (ti)σ
2 (t− ti) , (D7)

where we have used the independence of the probabilities from the initial site and time.
It can be shown by Laplace transform in Eq. (D7) (Appendix D2 a), that for well-behaved p(t) and σ2

0(t) (trivially
fulfilled in the systems we consider), the dynamics of the variance σ2(t) becomes diffusive at long enough times.
Therefore, in the long time limit (t→ ∞) we have:

σ2(t) ≃ 2Dt,(
1−

∫ t

0

p(ti)dti

)
≃ 0,∫ t

0

dtip (ti) ti ≃ τϕ,

and,

D =

∫∞
0
dtip (ti)σ

2
0 (ti)

2τϕ
. (D8)
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Then if σ2
0(t) = 2D0t ∀t the measurement process does not affect the diffusion coefficient:

D = 2D0

∫∞
0
p(ti)tidti

2τϕ
= D0. (D9)

Another physically relevant case is when the dynamics is initially ballistic up to some time τW followed by a diffusive
dynamic.

σ2
0(t) =

{
v20t

2 if t < τW
2D0t if t > τW

with D0 =
v20τW
2

(D10)

D =
1

2τϕ

(∫ τW

0

2D0

τW
t2p(t)dt+

∫ ∞

τW

2D0tp(t)dt

)
(D11)

Considering a Poisson process for the measurements: p(t) = e−t/τϕ

τϕ
, we have:

D(τϕ) = D0

(
2τϕ
τW

−
(
1 +

2τϕ
τW

)
e−τW /τϕ

)
, (D12)

this expression captures the dependence of D for large and small values of τ , so that D ≈ D0(1 − 1
6 (

τW
τϕ

)2) and

D ≈ v20τϕ respectively. Note that considering a process pδ(t) = δ(t−2τϕ), would yield D̃ = v20τW = D0 for τϕ > τW /2

and D̃ = v202τϕ = D02τϕ/τW for τϕ < τW /2.

a. Analytical solution for the spreading.

In this section we show that Eq. (D7) for p(t) = e−t/τϕ/τϕ generates a diffusive dynamics at long times and find
analytical solutions in some paradigmatic cases. Eq. (D7) can be rearranged in the following form:

σ2(t) = f(t) +

∫ t

0

dtip (ti)σ
2 (t− ti) , (D13)

by noting that
(
1−

∫ t

0
p(t)dt

)
= e−t/τϕ = τϕp(t) and defining f(t) = τϕg(t) +

∫ t

0
dtig(ti) with g(t) = σ2

0(t)p(t).

The usual strategy to solve this type of equation is to use the Laplace’s transform on the equation,

σ2
LT (s) = F(s) + σ2

LT (s)P(s),

where σ2
LT (s), F(s) and P(s) = 1

sτϕ+1 are the Laplace’s transform of σ2(t), f(t) and p(t) respectively.

Identifying G(s) as the Laplace’s transform of g(t), we have F(s) = G(s)( sτϕ+1
s ), and:

σ2
LT (s) =

F(s)

1− P(s)
= G(s)τϕ

(sτϕ + 1)2

(sτϕ)2
= G(s)τϕ

[
1

(sτϕ)2
+

2

sτϕ
+ 1

]
. (D14)

Since the Laplace transform of tnu(t), where u(t) is the step function, is n!
sn+1 we observe that σ2(t) will be diffusive

in the long time limit if G(0) is finite and non zero, a condition trivially fulfilled in the systems under consideration.

In this case, D = G(0)
2τϕ

=
∫ ∞
0

σ2
0(t)p(t)dt

2τϕ
, as we found in Eq. (D8).

The inverse transform of σ2
LT (s) can be carried out in several cases (for example σ2

0(t) = Aαt
α), however, here we

only discuss two paradigmatic cases σ2
0(t) = 2D0t and σ

2
0(t) = v20t

2. In the first case, the diffusive spreading, we find
σ2(t) = 2D0t, i.e. the dynamic of σ2

0 is not affected.
In the second case, the ballistic spreading, the solution is

σ2(t) = 2τϕv
2
0

(
τϕ

(
e
− t

τϕ − 1
)
+ t

)
, (D15)

which for t≪ τϕ, σ
2(t) ≈ v20t

2, maintains its ballistic behavior but becomes diffusive for t≫ τϕ, σ
2(t) ≈ 2v20τϕt = 2Dt.

The same expression is found when the spreading in an ordered tight-binding chain with Haken-Strobl decoherence
is addressed with the Lindblad formalism [28, 78].
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FIG. 7. (a,b) Diffusion coefficient vs. the decoherence strength for the HHAA model. Symbols have been obtained from the
time evolution, dotted curves from Eq. (D2) [Green-Kubo expresion], dash-dotted colored (gray-toned) curves from Eq. (D16)
[Delta process] and solid black curves from Eq. (D8) [Poisson process]. Also shown: the diffusion coefficient in the strong
dephasing regime (dashed-black line) and the diffusion coefficient in absence of dephasing at the MIT (D0) as a horizontal
dotted line, see Eq. (C8). The yellow curve corresponds to Eq. (D12). Panel (b) is the same as (a) but in linear-log. scale and
excluding the extended regime data.

It is important to note that if one considers two Poisson processes, p1(t) = e−t/τ1/τ1 and p2(t) = e−t/τ2/τ2, the
combined effect will be equivalent to consider only one process with p(t) = e−t/τ/τ with τ = τ1τ2

τ1+τ2
, the sum of inverse

times scales. This is the standard result in classical systems where one considers a particle that moves with velocity
v0 to the left or right with the same probability after a scattering with either of the two processes. The diffusion
coefficient, in this case, is, D = v20τ = v20

τ1τ2
τ1+τ2

= D1
1

1+τ1/τ2
, which for τ2 ≫ τ1 generates a linear correction to the

diffusion coefficient associated with the process p1.

3. Analytical expression of the Diffusion coefficient in the limit of strong and weak decoherence.

In this section, we use Eq. (D8) and the specific dynamics of σ2
0(t) in the HHAA model (Appendix C), to obtain

the behavior of D in the limit of strong and weak dephasing.
We define the mean free path l from the expectation value of the coherent spreading l2 =

∫∞
0
σ2
0(t)p(t)dt. We

compare it with a random walk analysis of the diffusion coefficient [79] which corresponds to a delta process where
the system is measured by the environment at equal times δt = 2h̄/γϕ. The diffusion coefficient is directly determined
by the coherent spreading at the dephasing time:

D =
l2

2δt
=
σ2
0(t =

2h̄
γϕ

)

2 2h̄
γϕ

, (D16)

this expression, however inaccurate, can be considered a first approximation to the diffusion coefficient.
Figures 7 show the diffusion coefficient obtained from the time evolution (symbols), Eq. (D2) (dotted curves),

Eq. (D16) (dash-dotted colored-curves) and from numerical integration of Eq. (D8) (solid black-curves). The yellow
curve corresponds to Eq. (D12). We observe that using a Poisson process (Eq. (D8)) we obtain smoother results than
with a Delta process (Eq. (D16)) (the fluctuations produced by particular interferences are washed-out) and can be
obtained at almost the same computational cost.

a. Strong decoherence.

For sufficiently large dephasing, γϕ ≫ h̄/τW , the noise interrupts the dynamics before the systems notice if it is
in an extended, critical, or localize phase. This is known as the strong Zeno regime. In this case, the measurement

happens during the initial ballistic dynamics, where the variance grows as σ2
0(t) = 2a2 J2

h̄2 t2. Therefore, the dynamic

corresponds to a random walk with a mean free path l2 = 2a2 J2

h̄2 δt2 and a mean free time δt = 2h̄
γϕ

. Thus, the diffusion
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FIG. 8. Diffusion coefficient vs. decoherence strength for the HHAA model. Symbols have been obtained from the
QD time evolution, dotted curves from the Green-Kubo formula and dashed lines represents the analytical estimations.
(a) Extended phase, the analytical results corresponds to Eq. (D18) (dashed-black lines). (b) Localized phase, the an-
alytical results corresponds to Eq. (D21) (dashed-black lines). The parameters are N = 1000, Q = (

√
5−1)/2, J = 1 and h̄ = 1.

coefficient is:

D =
1

2

2a2J2

(γϕ/2)2
γϕ
2h̄

=
2a2J2

h̄γϕ
. (D17)

The same result is obtained with the Poisson process p(t) = e−t/τϕ/τϕ. This result is valid for all γϕ for an infinite
clean chain (W = 0) [78], since in that case τW → ∞. Notice that Eq. D17 is also valid in the presence of correlated
noise (e.g. Binary and Gaussian processes), which has been shown to involve only a renormalization of the decoherence
strength for short correlation times[44, 80].

b. Extended phase (W < 2J).

For sufficiently small dephasing strength (depending on how close we are to the MIT), the system enters the

long-time ballistic regime where σ2
0(t) =

a2|2J−W |2
2h̄2 t2 from which we have:

D =
a2|2J −W |2

2h̄γϕ
. (D18)

Note that as we approach the MIT our estimate is valid for a smaller and smaller dephasing strength since the system
enters the ballistic regime at larger times. Using the Poisson process p(t) and Eq. (D8) we obtain the same results.
In Fig. 8a we compare the diffusion coefficient obtained from the numerical simulations (symbols) with the analytical
approximation Eq. (D18).

c. MIT (W = 2J).

At the critical point, for t > τW the dynamic is diffusive and the variance is linearly dependent on the measurement
time σ2

0(δt) = 2D0δt. Given that we have l2 = 2D0δt, provided that γϕ < 2h̄/τW , and D = l2/(2δt) we obtain:

D =
2D0δt

2δt
= D0, (D19)

i.e. a diffusion coefficient independent of the dephasing.
This was shown to be exact for an always diffusive dynamic in Appendix D2. On the other hand when we consider

a ballistic dynamics for short times and a Poisson measurement process some corrections appear.
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d. Localized phase (W > 2J).

For sufficiently small dephasing strength (depending on how close we are to the MIT), the system gets localized

with a localization length ξ = l/
√
2 before dephasing sets in. So, considering σ2

0 = l2 in Eq. D8:

σ2(t) =
l2

τϕ
t = l2

γϕ
h̄
t = 2ξ2

γϕ
h̄
t. (D20)

This limit is also found in Ref. [29] from Eq. D2. Since in the HHAA model 2ξ2 = 2a2(2 ln(W/2J))−2, the diffusion
coefficient is:

D =
ξ2γϕ
h̄

=
a2γϕ

(2 ln(W/2J))2h̄
. (D21)

The analytical result is shown in Fig. 8b compared with the numerical results. We observe a small discrepancy with
the above formula, rooted in the fact that the numerically found l2 is slightly smaller than the theoretical one.

Notice that, in contrast with the other regimes, the delta and Poisson process do not yield the same expression (the
use of a delta process would underestimates the diffusion coefficient by a factor of two).

Appendix E: HHAA model with different values of q.

The diffusion coefficient derived for the critical point in absence of dephasing (Eq. (C8)) shows a dependence on q.
In order to check the validity of our analytical prediction and the generality of the dephasing-independent regime we
analyzed other irrational values of q, beyond the golden mean value used in the main text.

Particularly we study the dynamics of the system using fractions of the golden ratio as irrational numbers q = qg/m,
where m is an integer power of two. The continued fractions of the irrationals used are presented in Table I. Trials
with irrational numbers of the form [0, {m}] yielded similar results.

The spreading in time of the wave packet in absence and presence of dephasing together with our analytical
estimations for the diffusion coefficient is shown in Fig. 9a,b. As one can see, the initial ballistic spreading (Eq. (C3))
lasts until a time τW (Eq. (C7), indicated as vertical lines in Fig. 9a,b). After that time the dynamics is diffusive with
a diffusion coefficient given by Eq. (C8). We notice, see panel (a), the presence of oscillations in the second moment
which increase as q decreases. These oscillations are partly erased in presence of dephasing at long times as shown in
Fig. 9b for γϕ = 0.02.

Fig. 9c shows the fitted values of D (symbols) together with the D values obtained from Eq. (D2) (dashed curves)
as a function of γϕ for different q at the MIT. As vertical dashed lines, we plot γcϕ = 2h̄

τW
which coincide with the

beginning of the strong dephasing regime, where the diffusion coefficient decreases with dephasing. Notice that for
large values of m, the diffusion coefficient D exhibits significant oscillations with respect to γϕ. This phenomenon
arises from the observed oscillations in the coherent dynamics (Eq. (D8)), likely due to the weaker irrationality of the
q value compared to qg. More investigations should be done in the future to understand the origin of these interesting
oscillations. In Fig. 9d we plot the diffusion coefficient re-scaled by the theoretical value in absence of dephasing (Eq.
(C8)) and γϕ rescaled by the elastic scattering rate γcϕ = 2h̄

τW
. Fig. 9d confirm the validity of our analytical expressions

of D and τW as a function of q.
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TABLE I. Continued fraction of the irrational used in this section q = qg/m. The numbers between brackets are infinitely
repeated in the fraction.

Continued Fraction
√
5−1
2

= [0, {1}] = 1

1 +
1

1 + · · ·

1
2

√
5−1
2

= [0, 3, {4}] = 1

3 +
1

4 +
1

4 + · · ·

1
4

√
5−1
2

= [0, 6, {2, 8}] = 1

6 +
1

2 +
1

8 +
1

2 + · · ·
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Appendix F: Study of different paradigmatic models of transport.

In this section we test the validity of Eq. (C6) and Eq. (D8), using two models that present a coherent diffusion
regime and/or criticality: the Fibonacci chain, and the Power-Banded Random Matrices (PBRM) model.

1. The Fibonacci chain.

The Fibonacci model is described by the Hamiltonian:

H =
∑
n

J(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) + εn |n⟩ ⟨n| , (F1)

where the on-site potential is determined by εn = W (⌊(n + 1)q2g⌋ − ⌊nq2g⌋), here ⌊x⌋ represents the integer part of

x and qg =
√
5−1
2 is the golden ratio. In this potential, εn corresponds to the n-th element of the Fibonacci word

sequence, that can also be obtained by repeated concatenation: 0, 0W, 0W0, 0W00W, 0W00W0W0,etc.
The dynamics in the Fibonacci chain were studied in absence and presence of dephasing [52, 53, 81]. In absence of

dephasing it is known that the second moment grows, after the initial quadratic spreading, as a power law σ2
0(t) ∝ tα

with an exponent that depends on the strength of the on-site potential. It grows subdiffusively (α < 1) forW > 3.15J ,
diffusively (α = 1) forW = 3.15J and superdiffusively (α > 1) forW < 3.15J . These dynamics are shown in Fig. 10a.
This spreading can be written analytically in the approximated and simplified form:

σ2
0(t) =

{
v20t

2 if t < τW
2Atα if t > τW

with A =
v20τ

2−α
W

2
. (F2)

From this expression and using Eq. (D8) with a Poisson process we obtain an analytical expression for the diffusion
coefficient in presence of dephasing:

D =

v20

(
τ3WE−α

(
τW
τϕ

)
+ ατϕτ

2
WΓ(α)

(
ταϕ τ

−α
W −

(
τW
τϕ

)−α
)
+ 2τ3ϕ − τϕe

− τW
τϕ

(
2τ2ϕ + 2τϕτW + τ2W

))
2τ2ϕ

, (F3)

where Γ(α) is the Euler Gamma function, and E−α

(
τW
τϕ

)
=

∫∞
1
e
−
(

τW
τϕ

)
t
tαdt.
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The vertical lines in Fig. 10a, represent τW , calculated from the analytical equations Eq. (C5) and Eq. (C6) yielding
1/τW = qgW/h̄. After this time, the initial ballistic dynamic stops and the algebraic dynamic starts. Particularly, for

W = 3.15J , when the subsequent dynamic is diffusive, we obtain D0 =
v2
0τW
2 . This analytical prediction is shown as

a black-dashed line on top of the red (dark-gray) curve.
Once dephasing is added, the dynamics becomes diffusive for all values of W . The diffusion coefficient as a function

of the dephasing strength was computed numerically through a quantum drift dynamics for different values of W .
These results are shown as symbols in Fig. 10b. They are compared with the numerical integration of Eq. (D8) using
a Poisson process (black curves) and the analytical expression (Eq. (10), yellow (light-gray) curves). We conclude
that the diffusion coefficient depends only on the coherent dynamics and the noise strength.

From equations (D16) and (F3), it is clear that the dependence of σ2
0(t) determines the behavior of D(γϕ). Par-

ticularly, if σ2
0(t) ∝ tα then D(γϕ) ∝ (γϕ)

(1−α) for γϕ ≪ 2h̄/τW . This dependence is pointed out in Fig. 10b with
dashed-black lines on top of the data. These results are consistent with recent findings reported in Ref. [53].

2. The PBRM model.

The power-law banded random matrix (PBRM) model describes one-dimensional (1D) tight-binding chains of length
N with long-range random hoppings. This model is represented by N × N real symmetric random matrices whose
elements are statistically independent random variables characterized by a normal distribution with zero mean and
variance given by,

⟨|Hii|2⟩ = J2 and ⟨|Hij |2⟩ = J2 1

2

1

1 + (|i− j|/b)2µ
with i ̸= j. (F4)

The PBRM model, Eq. (F4), depends on two control parameters: µ and b, while J is an energy scale that can be
considered equal to 1 for all practical purposes. For µ > 1 (µ < 1) the PBRM model is in the insulating (metallic)
phase, so its eigenstates are localized (delocalized). At the MIT, which occurs for all values of b at µ = 1, the
eigenfunctions are known to be multi-fractal.

The statistical properties of the eigenfunctions and eigenvalues of this model have been widely studied[19, 54, 55,
82, 83]. Here we study the spreading dynamics of an initially localized excitation at the middle of the chain in absence
and presence of a decoherent environment.

As in the previous systems, the initial spreading of the local excitation is ballistic, where the second moment is
given by σ2

0 = v20t
2. Generalizing Eq. (C3) to account for the randomness of the Hamiltonian, we found that the

velocity v0 is:

v20 = 2

N/2∑
n=1

⟨H2
n,0⟩n2 =

N/2∑
n=1

J2

1 + (n/b)2µ
n2, (F5)

where we summed over the sites to the right and left (factor 2) of the initial site (denoted as 0). This initial velocity
(Eq. (F5)) diverges for µ < 3/2 at large N as N3−2µ. For large N , b ≪ 1, and µ < 3/2, the sum can approximated

by an integral, yielding v20 ≈ J2b2µ N3−2µ

(3−2µ)23−2µ .

This initial ballistic spreading lasts up to t = τW , which should be addressed numerically since Eq. (C5) is only
valid for NN chains and a similar analysis with this model do not yield a simple expression. However, on a first
approximation if we use Eq. (C5), with uncorrelated and Gaussian distributed site energies with ⟨|Hii|2⟩ = J2, we
obtain τW = 1.

For t > τW , we find numerically that for 0.5 < µ < 1.5 the second moment of the excitation spreads diffusively (see
Fig. 11a for µ = 1). Note that the parameter b modifies the initial velocity and the diffusion coefficient. Consequently,
we choose a small b = 0.01 to reduce both the magnitude of the initial spread and the diffusion coefficient, generating
a slower dynamic and having a larger window for diffusive dynamics before the system reaches saturation (at fix N).

In the diffusive regime, we find σ2
0 ≈ v20(

√
2τW )t. The factor

√
2 is introduced based on the numerical results to

correct the discrepancy in τW due to the long-range hopping. We numerically explore different values of b, spanning
from 0.001 to 0.3, affirming the reliability of our findings (results not presented).
It’s important to note that, although the system is localized for 1.0 < µ < 1.5, its eigenfunctions have power-

law tails with exponent 2µ, therefore its second moment diverge N → ∞. The presence of these fat tails allow an
unbounded growth in time of the the second moment in the limit of N → ∞. For µ < 1.5 the saturation value of the

second moment σ2
0,SV is σ2

0,SV = N2

12 f(b, µ), where f(b, µ) ≤ 1.
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FIG. 11. (a) Time evolution of the spreading of an initially localized excitation in absence of dephasing in the PBRM model for
µ = 1, b = 0.01, and N = {100, 1000, 5000, 10000} (colored (gray-toned) curves). The vertical lines denote τW (black) and ts
(colored/gray-tones), while the crosswise dashed line represents the theoretical diffusive spreading σ2
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2
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√
(2)t. (b) From

top to bottom the figures shows the diffusion coefficient obtained through Eq. (D2) for µ = {0.80, 1.00, 1.30} (colored (gray-
toned) curves). The vertical dashed-black line marks the characteristic dephasing where the dynamics start to be dominated
by noise and the initial ballistic dynamics (strong Zeno regime). The colored (gray-toned) dashed vertical lines show the values
of γϕ = 2h̄/ts below which finite size effect starts to be relevant, the dependence with N of the values is indicated in each plot.

Thus, for µ < 1.5 and assuming a spreading form σ2
0(t > τW ) = v20τ

2
W +

√
2v20τW (t− τW ), we can calculate the time

ts where the spreading reaches its saturation value by imposing σ2
0,SV = σ2

0(ts) obtaining:

ts =
σ2
0,SV√
2v20τW

+ τW
(
√
2− 1)√
2

∝ N2µ−1. (F6)

Our analytical estimate of ts agrees with the numerical finding (see vertical lines in Fig. 11a for µ = 1). Eq. (F6)
implies that as N increases, for µ < 1/2 the saturation value will be reached at shorter times and eventually the
dynamics will be always ballistic (ts becomes smaller than τW ). On the opposite case, for 1/2 < µ < 3/2, ts increases
with N and we have a diffusive spreading until saturation.

As in the previous models, the presence of a coherent quantum diffusion (for 1/2 < µ < 3/2), generates an almost
decoherence-independent diffusive regime. Indeed, for 2h̄/ts <∼ γϕ <∼ 2h̄/τW , D is almost constant, as most of the
environmental measurements fall in the diffusive regime (after τW and before the saturation time ts). When γϕ ≪ 2h̄/ts
the noise enters in the dynamics after saturation, generating finite size effects. Fig. 11b shown D vs. γϕ computed
using the Green-Kubo approach for different N in the extended, critical and localized regimes (µ = {0.8, 1, 1.3}).
From Eq. (F6) we can see that for 1/2 < µ < 3/2, ts increases with N , and finite sizes effects start at smaller values
of the decoherence strength, see black arrows in Fig. 11b. For γϕ > 2h̄/τW , decoherence affects the dynamics mainly
during the initial ballistic spreading, leading to a decrease of the diffusion coefficient proportional to v20 .

For µ < 1/2, the velocity of the initial ballistic spreading, see Eq. (F5), increases with N faster than that saturation
value. Therefore, ts decreases with N , becoming smaller than τW and leaving no place for a diffusive dynamic. Hence,
no decoherence-independent region can be found for the diffusion coefficient.

For µ > 3/2, ts converges to a constant value as N increases. Thus, for γϕ < 2h̄/ts the diffusion coefficient will
be linearly dependent on γϕ and we can not have a dephasing independent regime. This situation is similar to the
localized case of the Harper-Hofstadter-Aubry-André.

Appendix G: Purity/Loschmidt Echo.

The purity, defined as,

M(t) = Tr[ρ(t)ρ(t)], (G1)

here ρ(t) = eLtρ0 is the evolved density matrix of a local excitation, is a measure of the coherence’s level of ρ(t).
M(t) = 1 implies that ρ(t) is a pure state (fully coherent), while M(t) < 1 indicates a mixed state (incoherent
superposition).
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for Fig. (a) and (c) and from Eq. (C8) for (b).

In the following we show that the purity can be calculated using the quantum drift (QD) simulation by generating
a Loschmidt echo in the dynamics.

The superoperator L is defined by,

L[ρ] = − i

h̄
[Hρ− ρH] + Lϕ[ρ] = L0 + Lϕ, (G2)

where H is the Hamiltonian and Lϕ the HS dephasing. We can see that L† = L†
0 + L†

ϕ = −L0 + Lϕ, and since the

density matrix is a Hermitian operator, we have, ρ(t) = ρ†(t) =⇒ eLtρ0 = ρ0e
L†t. Using these properties we rewrite

the definition of the purity in the following form,

M(t) = Tr[ρ(t)ρ(t)] = Tr[eLtρ0e
Ltρ0] (G3)

= Tr[ρ0e
L†teLtρ0] ≡ Tr[ρ0ρLE(2t)], (G4)

where it is clear that the purity is a comparison between the initial density matrix and the density matrix ρLE(2t)
which is the result of two evolutions. In detail, there is an initial forward evolution ρ(t) = e(L0+Lϕ)tρ0 and a second
evolution with the sign of the Hamiltonian inverted (backward evolution) ρLE(2t) = e(−L0+Lϕ)tρ(t), i.e. the purity
corresponds to the echo observed on ρ0 after reverting the time. If the initial state is a pure state ρ0 = |0⟩ ⟨0|, we
can directly obtain the purity numerically by a stochastic simulation of the forward and backward evolution and by
looking at the probability of returning to the initial state (in our case, the initial site).

We studied the purity/Loschmidt echo as a function of time in the extended, critical, and localized regimes in the
HHAA model changing the decoherence strength. These results are shown in Figures 12. We observe that for short
times the decay of the purity is exponential and only depends on the decoherence strength and the initial state in all
regimes. After t ≈ 4h̄/γϕ (numerically estimated), the decay of the purity becomes a power law, M(t) ∝ 1√

D(γϕ,W )t
,

where D(γϕ,W ) is the diffusion coefficient of the forward dynamics (dashed curves in Fig. 12). From the results of the
previous sections (for γϕ < γcϕ) we infer that the rate of decay of the purity in this power-law regime decreases with
γϕ in the extended regime, increases in the localized regime, and remains constant at the critical point. This can be
interpreted by considering that the localized states are more protected from decoherence, as decoherence affects fewer
sites. In this case, as we increase the decoherence strength the decay of the purity is stronger in both the short and
long time regimes as a consequence of the delocalization of the wave function. Secondly, in the extended regime, while
a stronger decoherence causes a faster decay in the purity at short times, at large times, where the forward dynamics
determine the decay rate, it becomes slower for stronger decoherence. This counter-intuitive result is understood as a
consequence of the ballistic growth of the wave packet, which in the large time makes it more sensitive to fluctuations.

To clarify the behavior of M(t) at the MIT, we show in Fig. 13a the evolution of P00 (probability of being at the
initial site), where the Hamiltonian is reverted at time τR. At the LE-time, t = 2τR, one has P00(2τR) = M(τR).
For γϕ ≪ h̄/τR, we observe that the P00(t) returns to the initial site and an echo is formed. Note that in absence
of dephasing the return is complete and the purity is 1. However, if τR ≫ 4h̄/γϕ, P00(2τR) is only determined by
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FIG. 13. (a) Probability to find the particle in the initial site P00(t) for a HHAA chain with W = 2J . Up to time τR (τR = 25,
first vertical dashed line) the system evolves with L, hereon the sign of the Hamiltonian is inverted (the system evolves with
L†). The value of P00(t) at 2τR (echo, second vertical dashed line) corresponds to the purity of the system at the time τR
(M(τR)). Colored (gray-toned) curves represent different γϕ. (b) Purity (echo) at a fixed time τR = {10, 25, 100, 500} as a
function of the dephasing time τϕ = h̄/γϕ in a HHAA chain with W = 2J . The vertical colored (gray-toned) dashed lines
mark τR/4, while the colored (gray-toned) dash-dotted lines show the analytical behavior for τϕ << τR. (c) Time at which the
variance of the wave packet reaches its minimum after a Hamiltonian inversion at τR in a HHAA chain with W = 2J . Vertical
colored (gray-toned) dashed lines represent 2τR while the horizontal ones stand for τR.

the forward diffusive dynamic without a significative echo formation. There are no coherences left to reconstruct the
initial dynamic and therefore no echo (peak) is observed, i.e. the P00(t) keeps decaying even with the Hamiltonian
reverted. This means that the memory of the initial state is completely lost. Thus, the density matrix is the incoherent
superposition of all possible histories. In this sense, after 4h̄/γϕ the diffusive spreading observed at the MIT differs
from the coherent quantum diffusion in the fact that the dynamics it is no longer reversible.

This purity behavior at the MIT is summarized Fig. 13b, where the value of the echo (purity) for different τR
are shown as a function of τϕ = h̄/γϕ, as one can see, we observed a constant plateau up to τϕ ≈ τR/4 indicated by
vertical dashed-black lines. After that, we have an exponential growth up to the value 1.

Similar results are found by looking at the width of the returned packet. This is shown in Fig. 13c, where the time
at which the second moment reaches its minimum (counted from the reversal time τR), is plotted as a function of τϕ.
After the change in the Hamiltonian sign the wave function starts to shrink, however, this shrinking lasts until the
echo time (2τR) only if τϕ > 2τR. This is shown in Fig. 13c as a plateau. When τϕ < 2τR, the width of the wave
packet reaches its minimum at approximately t ≈ τϕ/2 and starts to broaden again. It is interesting to note that for
2h̄/τR < γϕ < 4h̄/τR, the wave function is widening again but we observe an echo in the polarization.

We observed that the dependence of the diffusion coefficient with the dephasing strength is inherited by purity (LE)
dynamics, as for long times it decays with a power law depending only on D. As a consequence, the purity decay at
the critical point enters an almost dephasing-independent decay. However, this regime differs substantially from the
chaos-induced LE perturbation independent decay proposed by Jalabert & Pastawski[48], as we might have hinted
from Ref. [34]. Indeed, in our case the correlation length of the noise fluctuations is smaller than the mean free path,
which does not satisfy the conditions needed for a perturbation-independent decay of the LE. For our local noise, the
Feynman history that has suffered a collision with the noisy potential loses the memory of where it comes from, thus
it is irreversible as in the Büttiker’s dephasing voltage probe. In that sense, the environment-independent decay of
the LE/purity, should not be interpreted in the perturbation-independent decoherence context, but rather as a strong
irreversibility.
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