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Elastic microphase separation refers to equilibrium patterns that form by phase separation in elas-
tic gels. Recent experiments revealed a continuous phase transition from the homogeneous phase to
a regularly patterned phase, whose period decreased for stiffer systems. We here propose a model
that captures these observations. The model combines a continuous field of the elastic component to
describe phase separation with nonlocal elasticity theory to capture the gel’s microstructure. Ana-
lytical approximations unveil that the pattern period is determined by the geometric mean between
the elasto-capillary length and a microscopic length scale of the gel. Our theory highlights the im-
portance of nonlocal elasticity in soft matter systems, reveals the mechanism of elastic microphase
separation, and will improve the engineering of such systems.
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I. INTRODUCTION

Phase separation in elastic media is a ubiquitous phe-
nomenon, which is relevant in synthetic systems to con-
trol micro-patterning [1–3] and in biological cells, where
droplets are embedded in the elastic cytoskeleton or chro-
matin [4–6]. While biological systems are typically dy-
namic and involve active processes, the simpler synthetic
systems can exhibit regular stable structures. These pat-
terns harbor potential for metamaterials and structural
color, particularly since they are easier to produce and
manipulate than alternatives like self-assembly by block
co-polymers [7] or chemical cross-linking [8]. In these ap-
plications, it is crucial to control the length scale, the
quality, and the stability of the pattern. Such control
might be possible in a recent experiment, which found
stable equilibrium patterns [1]. However, the underly-
ing mechanism for this elastic microphase separation is
unclear, complicating further optimization.
The elastic microphase separation experiment [1] pro-

ceeds in two steps (Fig. 1A): First, a PDMS gel is soaked
in oil at high temperatures for tens of hours until the sys-
tem is equilibrated. When the temperature is lowered in
the second step, the sample develops bicontinuous struc-
tures, reminiscent of spinodal decomposition. However,
in contrast to spinodal decomposition, the length scale
of the structure does not coarsen but stays arrested at
roughly one to ten micrometers, depending on the gel’s
stiffness. Interestingly, this transition is reversible and
the pattern disappears upon reheating, suggesting a con-
tinuous phase transition. Moreover, the resulting pattern
is independent of the cooling rate, in contrast to other ex-
periments on similar materials [3, 9]. Consequently, the
experiments should be explainable by an equilibrium the-
ory that captures elastic deformations in PDMS due to
oil droplets formed by phase separation.
In this paper, we propose a theoretical model that ex-

plains the experimental observations [1]. The model com-
bines the continuous density field of the elastic compo-
nent, which naturally describe phase separation, with a
nonlocal elasticity theory to capture the microstructure
of the gel [10–14]. This approach allows us to capture
the continuous phase transition to a patterned phase and
predict its equilibrium period.
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II. RESULTS

To explain the experimental results [1] using an equi-
librium theory, we define a free energy comprising contri-
butions from elastic deformation as well as entropic and
enthalpic contributions that can induce phase separation.
While elastic deformations are naturally described by the
strain tensor ϵ(X) defined in a reference frame X, phase
separation is typically described by the volume fraction
field ϕ(x) of the elastic component in the lab frame x.
For simplicity, we will focus on one-dimensional systems
in this paper, where volume conservation connects the
scalar strain ϵ to the fraction ϕ in the reference frame,

ϵ(X) =
ϕ0
ϕ(X)

− 1 , (1)

where ϕ0 denotes the fraction in the relaxed homogeneous
initial state. The fraction ϕ(x) in the lab frame then
follows from the coordinate transform dx/dX = ϵ(X)+1.
This connection between strain ϵ and volume fraction ϕ
permits a theory in terms of only one scalar field.

A. Local elasticity models cannot explain
equilibrium pattern

We start by investigating a broad class of elastic mod-
els, where the elastic energy density is a function of
strain ϵ. Since ϵ can also be expressed in terms of the
volume fraction ϕ (Eq. 1), the free energy of the system
reads

Flocal[ϕ] =
kBT

ν

∫ [
f0(ϕ) + κ (∇ϕ)2

]
dx , (2)

where kB is Boltzmann’s constant, T is the constant ab-
solute temperature of the system, and ν is a relevant
molecular volume, e.g., of the solvent molecules. Here,
f0 captures the elastic energy density as well as molecu-
lar interactions and translational entropy associated with
ordinary phase separation, while the second term pro-
portional to the interfacial parameter κ penalizes vol-
ume fraction gradients and gives rise to surface tension.
Eq. 2 is identical to basic models of phase separation
without elastic contributions [15, 16]. Such models ex-
hibit phase separation and subsequent coarsening to min-
imize interfacial costs, known as Ostwald ripening [17].
While adding local elasticity alters f0(ϕ), functions that
minimize Flocal can only have a single interface [18] and
equilibrium patterns with finite length scales are thus
impossible. We show in the Appendix A that this result
generalizes to higher dimensions. Taken together, field
theories based on local elasticity, including sophisticated
non-linear finite strain models, cannot explain the equi-
librium length scales observed in experiments.

FIG. 1. Nonlocal elasticity yields regular equilibrium
patterns. (A) Schematic picture of the experiment [1]: A
relaxed elastic gel is swollen in a solvent at high tempera-
ture; After cooling, a regular pattern emerges. (B) Schematic
of a polymer network displaying the displacement (opaque
chains) from the reference state (transparent) after the cen-
tral crosslink has been moved by u. We model the forces
transmitted along the network using a nonlocal convolution
kernel (blue density) of size ξ. (C) Equilibrium states for var-
ious stiffnesses E and interaction parameters χ for ϕ0 = 1,
ϕ̄ = 0.5, and κ = 0.05 ξ2.

B. Microscopic picture suggests nonlocal elasticity
theory

Why do standard elastic theories fail to explain the ob-
served patterns? One answer is that only the interfacial
parameters κ carries dimensions of length in Eq. 2, so
on dimensional grounds we cannot expect another length
scale beyond the interfacial width to emerge. While
the interfacial width is typically governed by molecular
sizes (∼ 1 nm), realistic elastic meshes exhibit additional
length scales like the mesh size (∼ 10 nm [14, 19, 20])
and correlation lengths of spatial inhomogeneities (∼
100 nm [21–23]). Since the last two quantities are compa-
rable to the pattern length scale (several 100 nm to sev-
eral µm [1]), we hypothesize that a characteristic length
of the mesh is key for explaining the observed patterns.
If microscopic lengths of the elastic mesh are relevant,

local elastic theories are insufficient [10–14]. This is be-
cause moving a particular crosslink transmits forces to
connected crosslinks in the vicinity (see Fig. 1B), im-
plying stresses are no longer local, and the associated
elastic energy cannot be expressed as a function of the
strain. Instead, the stress on a particular crosslink is
now given by a sum over all connected crosslinks, whose
contributions decay with distance X in the reference
frame [10, 13]. In a continuous field theory, this nonlocal
averaging is expressed as a convolution operation [10, 13].
Using a simple linear elastic model for the local stress Eϵ,
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with elastic modulus E, we obtain the nonlocal stress

σnonlocal(X) = E

∫
ϵ(X ′) gξ(X

′ −X) dX ′ , (3)

where we choose a Gaussian convolution kernel [13, 24],

gξ(X) =

√
2

πξ2
exp

(
−2X2

ξ2

)
, (4)

with a characteristic length ξ, which quantifies the micro-
scopic length of the gel [10, 13, 24]. This nonlocal model
can also be derived more rigorously, either generically
(see Appendix B) or from a more explicit microscopic
model [10, 25]. Note that the convolution is performed
in the reference frame since the topology of the network,
governing which crosslinks interact with each other, is
determined in this unperturbed state.

The elastic energy density of the system is then given
by the product of strain and nonlocal stress, so the free
energy of the entire system reads

Fnonlocal[ϕ] = Flocal[ϕ] +
1

2

∫
ϵ(X)σnonlocal(X) dX ,

(5)

where Flocal now only captures the contributions asso-
ciated with phase separation. To capture the essence
of phase separation, we consider a simple Flory-Huggins
model for the local free energy density [26–28],

f0(ϕ) = ϕ log ϕ+ (1− ϕ) log(1− ϕ) + χϕ(1− ϕ) , (6)

where 1 − ϕ is the solvent fraction. Here, the first two
terms capture entropic contributions, while the last term
describes the interaction between elastic and solvent com-
ponents, quantified by the Flory-Huggins parameter χ.
Taken together, Eqs. 1–6 define the free energy Fnonlocal

as a functional of the fraction ϕ of the elastic component.

C. Nonlocal elasticity enables equilibrium patterns

We start by analyzing equilibrium states of the model
by determining profiles ϕ(x) that minimize Fnonlocal using
a numerical scheme described in the Appendix C. Beside
typical macroscopic phase separation, we also find peri-
odic patterns for some parameter sets; see Fig. 1C and
Fig. S1. In soft systems (small stiffness E), dilute re-
gions, corresponding to solvent droplets, alternate with
dense regions, where the elastic mesh is hardly strained
(ϵ≪ 1). In contrast, a harmonic profile emerges for stiff
systems (large E). Taken together, the nonlocal elas-
tic theory supports periodic patterns that qualitatively
resemble the experimentally observed ones [1].

To understand when periodic patterns form, we next
investigate the simple case where components can freely
exchange with a surrounding reservoir kept at fixed ex-
change chemical potential µ. This situation allows sol-
vent molecules to rush in and out of the system, adjusting

FIG. 2. Grand-canonical phase diagrams reveal
patterned phase. (A) Phase diagram as a function of
the chemical potential µ and the interaction strength χ for
E = 0.01 kBT/ν. Homogeneous phases (region H) coexist
on the brown line between the critical point of phase separa-
tion (black disk) and the triple point (gray disk), while the
patterned phase (region P) coexists with the homogeneous
phase on the blue-brown-dashed line. (B) Phase diagram as a
function of µ and χ for E = 0.2 kBT/ν. The binodal line sep-
arating the homogeneous and patterned phase exhibits either
a first-order transition (blue-brown-dashed line) or a continu-
ous transition (red dotted line with associated critical points
marked by red disks; details in the Appendix D). (A–B) Model
parameters are ϕ0 = 1 and κ = 0.05 ξ2.

the average fraction ϕ̄ of the elastic component. Fig. 2
shows two phase diagrams of this grand-canonical en-
semble at different stiffnesses E. In the soft system (left
panel), the phase diagram mostly resembles that of ordi-
nary phase separation: For weak interactions (χ < 2), we
find only a homogeneous phase and µ simply controls ϕ̄.
In contrast, above the critical point at χ ≈ 2 (black disk),
we observe a first-order phase transition (brown line) be-
tween a dilute phase (µ ≲ 0) and a dense phase (µ ≳ 0).
However, at even stronger interactions (χ ≳ 3.3), an ad-
ditional patterned phase (denoted by P) emerges, where
the periodic patterns exhibit the lowest free energy. The
line of the first-order phase transitions between the pat-
terned phase and the dilute or dense homogeneous phase
(blue-brown-dashed curves) meet the line of the phase
transition between the two homogeneous states at the
triple point (gray disk), where these three states coexist.

The grand-canonical phase diagram of soft systems
(left panel of Fig. 2) qualitatively resembles simple
pressure-temperature phase diagrams, e.g., of water. As-
suming that the chemical potential µ plays the role of
pressure and that the interaction χ is negatively corre-
lated with temperature, the dilute and dense homoge-
neous phases respectively correspond to the gas and liq-
uid phases. They become indistinguishable at the critical
point at low interaction strength (corresponding to high
temperatures). In contrast, the patterned phase, with its
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FIG. 3. Closed systems exhibit phase coexistence. (A) Schematic free energy of homogeneous and patterned phases
with common-tangent construction (thin gray lines) for two stiffnesses E. Fig. S2 shows corresponding numerical results.
(B) Phase diagram as a function of the average fraction ϕ̄ of the elastic component and interaction strength χ for various
E. Only the homogeneous phase (region H) is stable outside the binodal (brown line; black disk marks critical point) with a
continuous phase transition at the red dotted part. Only the patterned phase (region P) is stable inside the blue lines with
color codes indicating length scale and amplitude in the left and right column, respectively. Two indicated phases (H+P, P+H,
H+H) coexist in other regions. The triple point corresponds to the tie line (thin gray line), where fractions ϕ̄ of coexisting
homogeneous and patterned phases are marked by brown and blue disks, respectively. (C) Phase diagram as a function of
ϕ̄, χ, and E. The binodal of the homogeneous phase (brown surface) and the patterned phase (blue surface) overlap in the
continuous phase transition (red surface). The critical points in panel B now correspond to critical lines, which all merge in
the tricritical point (large black disk). A rotating version of the diagram is available as a movie. (A–C) Model parameters are
ϕ0 = 1 and κ = 0.05 ξ2.

periodic microstructure, resembles the solid phase.

The general form of the grand-canonical phase dia-
gram persists for stiff system (right panel of Fig. 2), al-
though the parameter region of the patterned phase is
much larger. However, the first-order transition between
the dilute and dense homogeneous phases disappears to-
gether with the normal critical point of phase separation.
Instead, we now find a continuous phase transition (dot-
ted red line) between the homogeneous and the patterned
phases, which we will discuss in more detail below. Taken
together, these phase diagrams suggest that stable pat-
terned phases emerge for sufficiently large stiffness E and
interaction χ for intermediated ϕ̄.

The grand-canonical ensemble that we discussed so far
is suitable when the time scale of an experiment is long
compared to the time scale of particle exchange with the
reservoir. In the experiments [1], the initial swelling takes

place over tens of hours with a measurable increase in
size and mass, indicating that solvent soaks the sample
until it is equilibrated with the surrounding bath. In
contrast, the temperature quench, during which the pat-
terned phase is observed, takes place on a time scale of
minutes without the solvent bath. This suggests that this
process is better described by a closed system.

D. Patterned and homogeneous phases coexist in
closed systems

In the closed system, corresponding to a canonical en-
semble, the average fraction ϕ̄ of elastic components, and
thus also the average fraction of solvent, is fixed. In this
situation, we find that multiple different phases can co-
exist in the same system; see Fig. 3. This is again rem-

https://www.youtube.com/watch?v=cwOr_WsSISw
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iniscent of phase separation, where the common-tangent
construction reveals the fractions in coexisting homoge-
neous states. Indeed, we find exactly this behavior in
soft systems (left panel of Fig. 3A), where a dilute and
dense phase coexist for fractions between the two verti-
cal dotted lines, while the free energy of the patterned
phase (blue line) is always larger and thus unfavorable.
The picture changes for larger stiffness (right panel of
Fig. 3A), where the patterned phase has lower energy
and we can construct two separate common tangents,
which respectively connect the dilute and dense homo-
geneous phase with the patterned phase. Analogously
to phase separation, we thus expect situations in which
a patterned phase coexists with a homogeneous phase
(when ϕ̄ is in the region marked with H+P or P+H).
Fig. 3B corroborates this picture and shows various co-
existing phases as a function of the stiffness E and the
interaction strength χ. Taken together, the main ad-
ditional feature of the canonical phase diagrams is the
coexistence of multiple phases, which was only possible
exactly at the phase transition in the grand-canonical
phase diagram.

E. Higher stiffness and interaction strength
stabilize patterned phase

The canonical phase diagrams shown in Fig. 3B are
complex, but they generally preserve three crucial as-
pects of the grand-canonical phase diagram shown in
Fig. 2: Higher stiffness (i) slightly favors the homoge-
neous phases, (ii) greatly expands the parameter region
of the patterned phase, and (iii) induces a continuous
phase transition. The first point is illustrated by the bin-
odal line of the homogeneous phase (thick brown lines
and red dotted lines), which moves up with increasing
stiffness E, implying that larger interaction strengths χ
are necessary to stabilize inhomogeneous systems. Inside
the binodal line the system exhibits various behaviors,
which can be categorized by χ. At a critical value χ∗, the
patterned phase (blue disk) coexists with the dilute and
dense homogeneous phase (brown disks), and the associ-
ated tie line corresponds to the triple point in Fig. 2. For
weaker interactions (χ < χ∗), we mostly observe coexis-
tence of a dilute and dense homogeneous phase (region
H+H), which corresponds to normal phase separation.
For stronger interactions (χ > χ∗), the system exhibits
the patterned phase, either exclusively (colored region) or
in coexistence with a homogeneous phase (regions H+P
and P+H). Larger stiffness E lowers the critical value χ∗,
thus expanding the parameter region where the patterned
phase exists. Eventually, for sufficiently large E, χ∗ ap-
proaches the critical point of the binodal (gray point),
a tiny region with patterned phase appears, and part of
the binodal line becomes a continuous phase transition
(red dotted line), reproducing the behavior predicted by
the grand-canonical phase diagram of stiff systems (right
panel in Fig. 2).
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FIG. 4. Continuous phase transition recovers experi-
mental measurements. Squared amplitude (panel A) and
length scale (panel B) of periodic patterns as a function of in-
teraction strength χ for various parameters indicated in panel
B, ϕ0 = 1, and κ = 0.05 ξ2. The amplitude indicates a con-
tinuous (colored data) and first-order (gray data) transition.

The influence of stiffness E and interaction strength χ
becomes even more apparent in the three-dimensional
phase diagram shown in Fig. 3C: With increasing E,
the χ associated with the critical point of phase sepa-
ration (black line) increases slightly, whereas the states
of three-phase coexistence (blue line and brown lines)
shift to lower χ. All lines meet at the tricritical point
(black sphere) for E ≈ 0.037 kBT/ν, ϕ̄ ≈ 0.54, and
χ ≈ 2.14. Increasing E further, a part of the binodal
line exhibits a continuous phase transition, which ex-
pands with larger E. The phase diagram thus summa-
rizes three main aspects of our model: First, the binodal
line of phase separation, which is only weakly affected
by E, determines whether the system can exhibit non-
homogeneous states. Second, if the system can be inho-
mogeneous, the stiffness E determines at what value of
χ patterned phases emerge. Third, for sufficiently large
E, these patterned phases form immediately due to the
continuous phase transition.

F. Continuous phase transition explains
experimental measurements

The continuous phase transition that we identified at
sufficiently large stiffness E implies that the system can
change continuously from a homogeneous phase to a pat-
terned phase when the interaction strength χ is increased
(corresponding to cooling). Indeed, the amplitude of
the predicted pattern vanishes near the transition (right
panel of Fig. 3B), while the length scale stays finite (left
panel of Fig. 3B). This behavior is not expected for phase
separating systems, where first-order transitions are typ-
ically, which are associated with a jump in observables
(see gray dots in Fig. 4A for an example).
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FIG. 5. Pattern length scale exhibits scaling laws.
Length scale L as a function of stiffness E (panel A) and
interfacial parameter κ (panel B) for various parameters. Pu-
tative scaling laws are indicated and the prediction by Eq. 9
is shown for ϕ0 = 1, ϕ̄ = 0.5, χ = 4, and γ ≈ kBTκ

1/2/ν
(green line).

The continuous phase transition was already hypothe-
sized for the experiments [1], based on a lack of hystere-
sis and a continuous change of the contrast measured by
light intensity. To connect to experiments, we mimic the
contrast using the square of the amplitude of the optimal
volume fraction profile. Fig. 4A and the right panel of
Fig. 3B show that the contrast changes continuously from
zero when the interaction strength χ is increased for suf-
ficiently stiff systems. Moreover, Fig. 4B shows that the
associated pattern length scale changes only slightly, con-
sistent with the experiments. Note that deviations in the
form of the curves could stem from thermal fluctuations,
finite resolution in the experiment, and also deviations in
model details.

G. Stiffness and interfacial cost control pattern
length scale

We next use the numerical minimization of the free
energy Fnonlocal to analyze how the length scale L of the
patterned phase depends on parameters. Fig. 5 shows
that L decreases with larger stiffness E and increases
with the interfacial cost parameterized by κ. The data
in Fig. 5A suggests the scaling L/ξ ∝ E−1/2 over a
significant parameter range, which matches the exper-
imental observations [1]. Moreover, Fig. 5B suggests
L/ξ ∝ ξ−1/2κ1/4, which has not been measured exper-
imentally. Taken together, the two scaling laws suggest
that the equilibrium length scale emerges from a compe-
tition between elastic and interfacial energy.

The two scaling laws emerge qualitatively from a sim-
ple estimate of the elastic and interfacial energies: Since
shorter patterns have more interfaces, the interfacial en-
ergy per unit length is proportional to γL−1, with surface

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

FIG. 6. Approximate model explains scaling laws.
(A) Example for a volume fraction profile (pink lines) and the
corresponding piecewise approximation (dotted gray lines) in
the reference (top) and lab frame (bottom). (B) Deriva-
tives of the average energy density (in units of kBTξ/ν) as

a function of the pattern period L̃. Shown are data from
full numerics (dots), numerics for the piecewise profile (solid
lines), and asymptotic functions (dashed lines) for the elas-
tic (gray) and negative interfacial energy (violet). The sta-
ble length L corresponds to the crossing point of the elastic
(black) and the interfacial terms (violet). Model parameters
are E = 0.02 kBT/ν, κ = 0.05 ξ2, ϕ0 = 1, ϕ̄ = 0.5, and χ = 4.

tension γ ∝ κ1/2 [15]. In contrast, the elastic energy of
a single period originates from stretching a part of mate-
rial from initial length ξ to final length L, resulting in an
elastic energy density proportional to ELξ−1. Minimiz-
ing the sum of these two energy densities with respect to
L results in L/ξ ∝ ξ−1/2E−1/2κ1/4, which explains the
observed scalings qualitatively.

H. Approximate model predicts length scale

To understand the origin of the length scale L in
more detail, we consider the limit of strong phase sep-
aration, where the interfacial width is small compared
to L; see Fig. 1C. We thus approximate the volume
fraction profile ϕ(x) of the elastic component by a pe-
riodic step function with fixed fractions ϕ− and ϕ+;
see dotted lines in Fig. 6A. Material conservation im-
plies that the relative size of these regions is dictated
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by the average fraction ϕ̄ in the swollen state, so we
can only vary the period L̃ of the profile. The sta-
ble period L then corresponds to the L̃ that minimizes
Fnonlocal given by Eq. 5, implying F ′

nonlocal(L) = 0. Since

changing L̃ does not affect the local free energy f0, we
only investigate the average free energy of the interface,
f̄int(L̃) ≈ 2γL̃−1, and the average elastic free energy,

f̄el(L̃) =
1
2 L̃

−1
∫ L̃0

0
σnonlocal(X)ϵ(X)dX where L̃0 = ϕ̄

ϕ0
L̃

is the period in the reference frame. Fig. 6B shows the
derivatives of these contributions with respect to L̃, in-
dicating that they sum to zero for L̃ = L. We show in
the Appendix E that

∂f̄el

∂L̃
≈ E

ξ
·


0 L̃ < Lmin

1√
2π

(
1− ϕ̄

ϕ+

)2
Lmin < L̃ < Lmax

1√
8π

(
ϕ0

ϕ−
− ϕ0

ϕ+

)2 ξ2

L̃2
L̃ > Lmax

,

(7)

indicating three regimes bounded by

Lmin =

√
π

2

ϕ0
ϕ̄
ξ and Lmax =

√
1

2

ϕ0
ϕ−

ϕ+ − ϕ−
ϕ+ − ϕ̄

ξ .

(8)

Fig. 6B shows that this approximation of ∂L̃f̄el captures
the main features of the full numerical data.

Fig. 6B suggests that stable patterns are mainly pos-
sible in the gray region (Lmin < L̃ < Lmax), which we
interpret further below. In this region, we use Eq. 7 to
solve ∂L̃f̄el + ∂L̃f̄int = 0 for L̃, resulting in

L ≈ (8π)
1
4

ϕ+
ϕ+ − ϕ̄

(
ξγ

E

) 1
2

, (9)

consistent with numerical results; see transparent green
lines in Fig. 5. This expression shows that the stable pe-
riod L is governed by the geometric mean of the elasto-
capillary length γ/E and the microscopic length ξ. More-
over, L increases with a larger average fraction ϕ̄ of the
elastic component, i.e., less swelling. In contrast, the
fraction ϕ+ has only a weak influence since it is close to
1 in the case of strong phase separation, implying that
the interaction strength χ affects L only weakly.

I. Patterned phase is governed by reference state

Finally, we use the approximate model to understand
when the patterned phase emerges. Here, it proves useful
to interpret Eq. 8 in the reference frame, where the convo-
lution of the nonlocal elastic energy takes place. Defining

the length L0 = ϕ̄
ϕ0
L in the reference frame and the as-

sociated fraction α0 = ϕ−
ϕ0

(ϕ+ − ϕ̄)/(ϕ+ − ϕ−) occupied

by the solvent droplet (Fig. 6A), we find

L > Lmin ⇔ L0 >

√
π

2
ξ and (10a)

L < Lmax ⇔ α0L0 <

√
1

2
ξ , (10b)

where the numerical pre-factors are very close to one.
The first condition (L0 ≳ ξ) suggests that two solvent
droplets need to be separated by more than ξ in the ref-
erence frame since L0 roughly estimates their separation;
see Fig. 6A. If droplets were closer, they would feel each
other’s deformations, which is apparently unfavorable. In
the extreme case (L0 ≪ ξ), the average elastic energy is
almost constant, essentially because short-ranged varia-
tions are averaged by the comparatively large nonlocal
kernel. In contrast, the second condition implies that
the droplet size in the reference frame (α0L0) must be
smaller than the microscopic length scale ξ. Assuming ξ
corresponds to the mesh correlation length, this suggests
that the droplet can at most deform the correlated part
of the mesh, which might correspond to large soft regions
in natural meshes. If droplets were larger (α0L0 ≫ ξ),
nonlocal features would only be relevant at interfaces, so
the system would behave as if it had only local elasticity
and coarsen indefinitely.
This analysis highlights that the existence of the pe-

riodic pattern depends on the reference frame, while its
length scale L also depends on the different stretch of
the dilute and dense region; see Fig. 6A. This observa-
tion suggest an intuitive explanation for the influence of
the interaction χ: Assuming that ϕ− and ϕ+ correspond
to equilibrium volume fractions and ϕ̄ = 1

2 for simplicity,
we find α0 ∝ ϕ−, which decreases with larger χ. Conse-
quently, the lower bound Lmin is unaffected, while Lmax

increases, consistent with our observation that the pat-
terned phase forms easier at higher χ and the scaling law
given by Eq. 9 holds for broader parameter range with
higher interaction strength (Fig. 5).

III. DISCUSSION

We propose a theory that explains the experimen-
tally observed elastic microphase separation [1] based on
nonlocal elasticity, which captures aspects of the micro-
scopic gel structure. Within this theory, regular periodic
patterns appear for sufficiently strong phase separation
(large enough χ) and stiffness E, while surface tension γ
opposes the trend. Essentially, solvent droplets inflate a
region of the elastic mesh of the size of the microscopic
length ξ. The pattern period L then results from a bal-
ance of elastic and interfacial energies, so that L scales
as the geometric mean between ξ and the elasto-capillary
length γ/E. In contrast, the interaction strength χ, lead-
ing to phase separation in the first place, affects L only
weakly, but it determines whether the patterned phase
is stable, similar to ordinary phase separation. However,
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the normal first-order transition between the homoge-
neous and heterogeneous phase (at the binodal line) can
now also exhibit a continuous phase transition. Conse-
quently, the patterned phase can appear with arbitrarily
small amplitude in a reversible process.

Our model captures the main features of the experi-
ment [1], including the continuous phase transition lead-
ing to reversible dynamics. Moreover, it explains that
the pattern length scale L is independent of the cooling
rate, only weakly affected by the final temperature, and
decreases with stiffness E. Importantly, our model pre-
dicts that a structural length ξ of the mesh is essential for
the emergence of the observed L. Our numerics indicate
that L can be an order of magnitude larger than ξ, sug-
gesting that ξ could relate to observed correlation lengths
of the order of a few hundred nanometers [21]. Since ξ
is small compared to the distance between droplets (see
Eq. 10), the nonlocal effects of elasticity do not affect
droplet positioning. Furthermore, we found that a coex-
isting homogeneous phase does not affect the free energy
of the patterned phase strongly (see Appendix C), sug-
gesting that the two phases can be interspersed, which
would contribute to irregularity of the droplet placement
in real systems. In contrast, the observed variation in
droplet size [1] likely originates from local heterogeneity
in material properties, like ξ, E, and γ. Taken together,
our theory makes clear predictions that could be tested
experimentally.

To capture the mesh’s microstructure, we employ non-
local elasticity [10–14] based on a convolution of the
stress field, which is similar to theories used in fracture
mechanics [29]. Our work complements related theories,
which either modeled pores explicitly [20, 30–33] or re-
sorted to particle-based methods [34, 35]. Nonlocality is
generally responsible for the emergence of microstructure
in multiple physical systems, such as the Ohta-Kawasaki
model [36], phase separation with electrostatic interac-

tion [37], and also nonlocal elasticity [38, 39], e.g., to
study polymeric materials [40, 41]. In contrast to the
first two theories, we use a convolution in the reference
frame, capturing the microscopic topology of the elastic
mesh. More generally, the convolution kernel given by
Eq. 4 can be interpreted as a Green’s function of a diffu-
sion process in the reference frame, suggesting that the
nonlocal elasticity is similar to the damage field intro-
duced in fracture mechanics [42].

We analyzed our model in the simple case of one dimen-
sion to highlight fundamental properties, but to capture
experimental details, including various morphologies, we
need to generalize the model to higher dimensions, which
will require a tensorial convolution kernel [11]. Moreover,
we might require more realistic models of phase separa-
tion (including different molecular sizes and higher-order
interactions terms) and elasticity (involving finite exten-
sibility, viscoelasticity [43], as well as plastic deformation,
like fracture [44, 45] and cavitation, which can lead to
regular droplet patterns [46]). Finally, experimental sys-
tems exhibit heterogeneities in key model parameters in-
cluding ξ, E, and γ, which will contribute to uncertainty
and might even induce large scale rearrangements [9, 47].
Such extended theories will allow us to compare the full
pair correlation and scattering functions to experiments,
shedding light on how we can manipulate this pattern
forming system to control microstructures.
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Physics of active emulsions, Rep. Prog. Phys. 82, 064601
(2019).

[17] P. W. Voorhees, The Theory of Ostwald Ripening, J.
Stat. Phys. 38, 231 (1985).

[18] J. Carr, M. E. Gurtin, and M. Slemrod, Structured Phase
Transitions on a Finite Interval, Arch. Rational Mech.
Anal. 86, 317 (1984).

[19] N. R. Richbourg and N. A. Peppas, The swollen poly-
mer network hypothesis: Quantitative models of hydro-
gel swelling, stiffness, and solute transport, Prog. Polym.
Sci. 105, 101243 (2020).

[20] P. Ronceray, S. Mao, A. Košmrlj, and M. P. Haataja,
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Appendix A: General local free energies cannot exhibit equilibrium patterns

To show that local elasticity cannot yield patterns, we first consider a generic procedure to minimize the free energy
functional, and explain afterwards that any periodic structure with finite period cannot be the minimum of the free
energy functional if the interfacial term is the only nonlocal term. Consider a free energy functional of a system of
arbitrary dimension, which includes a volume-fraction-dependent term Ffrac[ϕi], an interfacial energy term Fint[ϕi] to
penalize sharp interface, an elastic energy term Fel[u] and the constraint Fcon[ϕi,u, ζ, η],

F [ϕi,u, ζ, η] = Ffrac[ϕi] + Fint[ϕi] + Fel[u] + Fcon[ϕi,u, ζ, η] , (A1)

where ϕi with i = 1, 2, . . . , N are the volume fraction fields of N components, u is the deformation vector field of the
elastic component, and ζ and η are two Lagrangian multipliers. We keep the generic form of Eq. A1 for simplicity
and universality, except for the constraint, where we use

Fcon[ϕi,u, ζ, η] =

∫
dxζ

(∑
i

ϕi − 1

)
+

∫
dxη(JϕN − ϕN,0) . (A2)

The first term accounts for incompressibility, while the second one indicates that the N -th component is the elastic
component, so its volume fraction is related to the displacement field by volume conservation. Here, ϕN,0 is the
volume fraction distribution of the elastic component in the relaxed state (Fig. 1A), and J is the determinant of the
deformation gradient tensor ∇Xu, where X is the coordinate in the reference frame. Extremizing the free energy in
Eq. A1 with respect to all of its variables leads to the corresponding self-consistent equations,

δFfrac

δϕi
+
δFint

δϕi
+ ζ + ηJδi,N = 0 (A3a)

δFel

δu
+

δ

δu

(∫
dxηJϕN

)
= 0 (A3b)

1−
∑
i

ϕi = 0 (A3c)

JϕN − ϕN,0 = 0 , (A3d)

where δi,N is the Kronecker delta. Note that the last two equations are simply the incompressibility and the volume
conservation of the elastic component, respectively. The constraint term Fcon[ϕi,u, ζ, η] does not contribute to the
free energy when the constraints are satisfied.

To minimize the free energy, we follow two steps: First we require that the phase separated structure is periodic,
and describe the unit cell by a group of parameters θ [48]. For a given θ, Eqs. A3 can be solved to obtain the free
energy minimum with fixed unit cell F ∗(θ) = F [ϕ∗i (θ),u

∗(θ), ζ∗(θ), η∗(θ)], where the symbols with asterisk denote
the solution of Eqs. A3. The minimum of the free energy can then be obtained by optimizing F ∗ with respect to the
period θ. Note that F ∗ is not a functional, but a function of θ instead.

Follow the steps in [48], we find that the derivative of F ∗(θ) can be obtained from the partial derivative of the free
energy functional with respect to the period θ while keeping the shape of all the spatial functions unchanged,

dF ∗

dθ
=
∂Ffrac

∂θ

∣∣∣∣
∗
+
∂Fint

∂θ

∣∣∣∣
∗
+
∂Fel

∂θ

∣∣∣∣
∗
. (A4)

Assuming the total volume of the system V is constant, the total free energy can be replaced by the average free
energy density f̄ = F/V ,

df̄∗

dθ
=
∂f̄frac
∂θ

∣∣∣∣
∗
+
∂f̄int
∂θ

∣∣∣∣
∗
+
∂f̄el
∂θ

∣∣∣∣
∗
. (A5)

Note that Eq. A5 does not impose any assumptions on the exact form of the terms. For any local volume-fraction-
dependent term Ffrac[ϕi], e.g., the Flory-Huggins free energy, the partial derivative with respect to θ vanishes, since
the variables ϕi are dimensionless and have no explicit dependence on the pattern length scale. For any local elasticity,
including nonlinear ones with large deformations, the elastic energy Fel takes a local form of the deformation gradient
tensor ∇Xu, which is also dimensionless and has no explicit dependence on the length scale. Therefore, the partial
derivative of the local elastic energy vanishes as well, leading to

df̄∗local
dθ

=
∂f̄int
∂θ

∣∣∣∣
∗
. (A6)
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FIG. S1. Free energy exhibits a minimum when varying pattern length scale. Average free energy density
f̄nonlocal = Fnonlocal/V in units of kBT/ν as a function of the length scale L̃ of the periodic pattern obtained numerically. Model
parameters are E = 0.02kBT/ν, κ = 0.05ξ2, ϕ0 = 1, ϕ̄ = 0.5, and χ = 4.

Here, term ∂f̄int/∂θ
∣∣
∗ does not vanish since the interfacial term usually depends on the gradient of the volume fraction

fields ∇ϕi, which has the dimension of length−1 and contains explicit dependence on the length scale.
The period θ typically contains not only the size but also the shape of the unit cell, including the angles between

the base vectors of the unit cell. Keeping the shape of the unit cell unchanged and denoting its size by L̃, we have

df̄∗local
dL̃

=
∂f̄int

∂L̃

∣∣∣∣
∗
, (A7)

which is usually negative since the interfacial energy prefers larger structure size. Specifically, for the interfacial energy

f̄int =
kBT

ν

1

V

∫ ∑
i

1

2
κi(∇ϕi)

2dx , (A8)

where κi quantifies the interfacial cost for component i, we have

∂f̄int

∂L̃

∣∣∣∣
∗
= − 2

L̃
f̄∗int = −kBT

ν

2

L̃

1

V

∫ ∑
i

1

2
κi(∇ϕ∗i )

2dx , (A9)

which is negative. Consequently, Eq. A6 states that with local elasticity, even if a periodic patterned structure is
formed, it still cannot be the equilibrium state. Instead, Ostwald ripening is inevitable, since the free energy can
always be lowered by coarsening, and the equilibrium length scale diverges. With nonlocal elasticity, the elastic energy
will no longer be a local function of the deformation gradient tensor, implying two non-vanishing terms in Eq. A5,
which compete with each other,

df̄∗nonlocal
dL̃

=
∂f̄int

∂L̃

∣∣∣∣
∗
+
∂f̄el

∂L̃

∣∣∣∣
∗
, (A10)

leading to equilibrium pattern length scale (Fig. S1).
The conclusion drawn from the free energy derivative above, although not a strict proof, can be understand in

a more intuitive way: Imagine a periodic patterned structure with average free energy f̄ , which is first scaled to
be slightly larger, and then relaxed. With local elasticity, the free energy decreases during scaling since only the
interfacial term is affected. Since the free energy must not be higher after relaxation due to the variational principle,
the new free energy is generally lower than f̄ . This process can be repeated until the length diverges, implying local
elasticity cannot explain the finite equilibrium length scale in a continuous field theory.

Appendix B: Generic model of nonlocal elasticity

The simplest (linear) nonlocal elasticity can be introduced by treating the elastic energy as a functional of the
displacement field and expand it to second order [10]. We here focus on a one-dimensional system, and assume that
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the elastic energy Fel is a functional of the displacement field u(X), where X is the coordinates in the reference frame.
Expanding Fel to the second order, we have

Fel = Φ0 +

∫
dXΦ1(X)u(X) +

1

2

∫
dXdX ′Φ2(X,X

′)u(X)u(X ′) + · · · , (B1)

where Φi are the derivatives of order i of Fel. Since the constant part is irrelevant and the expansion is made near
the relaxed state, the Φ0 and Φ1 terms can be dropped. Consequently, the lowest order approximation of Fel reads

Fel ≈
1

2

∫
dXdX ′Φ(X,X ′)u(X)u(X ′) . (B2)

Since the elastic energy must be invariant under constant shifts of the displacement field u,∫
dX ′Φ(X,X ′) = 0 . (B3)

Extracting the diagonal element from Φ(X,X ′),

Φ(X,X ′) = ψ(X)δ(X −X ′)− Ψ(X,X ′) , (B4)

and integrating both side with respect to X ′ and using Eq. B3, we find

ψ(X) =

∫
dX ′Ψ(X,X ′) . (B5)

Note that the function Ψ is arbitrary and not subject to a constraint similar to Eq. B3, in contrast to Φ. Inserting
Eq. B4 into Eq. B2 and using Eq. B3 again, we find

Fel ≈
1

4

∫
dXdX ′Ψ(X,X ′)

[
u(X)− u(X ′)

]2
. (B6)

The equation above has a very clear physical picture: The system contains multiple springs, with both ends of each
spring tied to X and X ′ in the reference frame, and stretched by u(X) − u(X ′) after the deformation of the elastic
component. The elastic energy of the system is just the total potential energy of all the springs, while the function Ψ
is related to the stiffness of the springs. Defining the strain ϵ = du/dX, this can be written as

Fel ≈
1

4

∫
dXdX ′Ψ(X,X ′)

[∫ X′

X

dX∗ϵ(X∗)

]2
=

1

4

∫
dXdγΨ(X − γ/2, X + γ/2)

[∫ X+γ/2

X−γ/2

dX∗ϵ(X∗)

]2
=

1

2

∫
dXdX ′ϵ(X)ϵ(X ′)c(X,X ′) , (B7)

with

c(X,X ′) =
1

2

∫
dγdXΨ(X − γ/2, X + γ/2)Πγ(X −X∗

1 )Πγ(X −X∗
2 ) , (B8)

where Πγ(X) is the box function centered at 0 with width γ. Assuming no explicit dependence on position, we have

Φ(X,X ′) = Φ(X −X ′) Ψ(X,X ′) = Ψ(X −X ′) and c(X,X ′) = c(X −X ′) . (B9)

Note that this does not require a homogeneous deformation of the elastic component, but only that the property of
the continuum is homogeneous. Defining the nonlocal stress σnonlocal(X) =

∫
dX ′ϵ(X)c(X −X ′), Eq. B7 becomes

Fel ≈
1

2

∫
ϵ(X)σnonlocal(X)dX , (B10)

which is the elastic energy term in Eq. 5 of the main text.
The nonlocal elasticity given by Eq. B10 can also be obtained from a more explicit model, such as a full network

model of polymer network [25]. Assuming that the network is formed by multiple Gaussian chains, and each polymer
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chain has N monomers, while its ends are fixed at X−γ/2 and X+γ/2 in the reference frame, respectively, the total
elastic energy of the network will be proportional to

Fel ∝
∫

dXdNdγkN [u(X + γ/2)− u(X − γ/2)]2w(N, γ) , (B11)

where kN is the stiffness of the entropic spring of a polymer chain of N monomers, w(N, γ) is the joint distribution
of N and γ to consider the polydispersity of the polymer chain and the end-to-end distance distribution. Note that

originally the energy of a polymer strand should be written in the form of kN
[
γ+u(X+γ/2)−u(X−γ/2)

]2
. However,

one can easily show that it is equivalent to Eq. B11 except for a constant shift. Change the order of the integration,

Fel ∝
∫

dXdγ

[∫
dNw(N, γ)kN

][
u(X + γ/2)− u(X − γ/2)

]2
, (B12)

which is just another form of Eq. B6.

Appendix C: Numerical methods

We minimize the nonlocal free energy using an iterative numerical scheme, which makes use of simple mixing and
the Anderson mixing method to improve numerical stability and convergence [49]. A variable-cell algorithm further
improves the performance of the numerical method [48, 50]. It makes use of the free energy derivative in Eq. A10,
and provides a way to obtain the optimal volume fraction profile and the equilibrium pattern length scale L at the
same time, thus greatly reducing computational costs.

We first express the Flory-Huggins part of the free energy in Eq. 6 in a symmetric form, with not only the volume
fraction fields of the elastic component and the solvent, ϕel and ϕs, but also their conjugated fields wel and ws,
respectively. In one dimension, the average Flory-Huggins free energy at given period L̃ reads

f̄frac =
kBT

ν

1

L̃

∫ L̃

0

dx
[
(χϕelϕs − welϕel − wsϕs)− ϕ̄el logQel − ϕ̄s logQs + ϕ̄el log ϕ̄el + ϕ̄s log ϕ̄s

]
, (C1)

where the single molecular partition functions Qel and Qs are defined as

Qel =
1

L̃

∫ L̃

0

dxe−wel Qs =
1

L̃

∫ L̃

0

dxe−ws . (C2)

Minimizing the free energy in Eq. A1 with respect to wel and ws gives

ϕel =
ϕ̄el
Qel

e−wel ϕs =
ϕ̄s
Qs
e−ws . (C3)

Note that compared to Eq. 6, Eq. C1 does not change the minimum of the free energy functional, since Eq. 6 can be
fully recovered by inserting Eq. C2 and Eq. C3 into Eq. C1. This method brings two advantages: First, the explicit
logarithm terms of ϕel and ϕs are removed, circumventing the numerical difficulty related to negative volume fractions.
Second, the average volume fraction is automatically kept constant, since Qel and Qs act as normalization factors.
The interfacial term is also reinterpreted in a symmetric form,

f̄int =
kBT

ν

1

L̃

∫ L̃

0

dx

[
κ

2

(
d

dx
ϕel

)2

+
κ

2

(
d

dx
ϕs

)2]
, (C4)

while the elastic energy term

f̄el =
E

2L̃

∫ L̃0

0

dX

∫ +∞

−∞
dX ′ du

dX

du

dX ′ gξ(X
′ −X) . (C5)

is expressed with the displacement field u, where L̃0 is the period in the reference frame. The Lagrangian multipliers
must also be included in the numerical calculation to enforce the incompressibility and the volume conservation,

f̄con =
kBT

ν

1

L̃

∫ L̃

0

dxζ(ϕel + ϕs − 1) +
kBT

ν

1

L̃

∫ L̃

0

dxη
(
Jϕel − ϕ0

)
, (C6)
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where J = du/dX + 1.
In addition to Eq. C3, other self-consistent equations for numerical calculation can be obtained by minimizing the

sum of the four energy terms in Eq. C1 and Eqs. C4–C6, which reads

wel = χϕs − κ
d2

dx2
ϕel + ζ + ηJ (C7a)

ws = χϕel − κ
d2

dx2
ϕs + ζ (C7b)

0 =
d

dX

(
νE

kBT

∫ +∞

−∞
dX ′ du

dX ′ gξ(X
′ −X)

)
+ ϕ0

d

dx
(ηJ) (C7c)

1 = ϕel + ϕs (C7d)

ϕ0 = Jϕel . (C7e)

Note that we transform all the coordinates to the reference frame, where the convolution exhibits a simple form
and can be calculated efficiently with fast Fourier transforms (FFT). In practice, we use the periodic alternative
u∗(X) = u(X)− (ϕ0/ϕ̄− 1)X as the free variable since the displacement field u(X) is not periodic. Using u, wel and
ws as the main variables, the following iteration scheme solves Eqs. C7,

J (i) =
du(i)

dX
+ 1 (C8a)

(ηJ)(i) = − 1

ϕ0

∫
dX

[
J (i) d

dX

(
νE

kBT

∫ +∞

−∞
dX ′ du

(i)

dX ′ gξ(X
′ −X)

)]
(C8b)

Qel
(i) =

1

L̃

∫ L̃0

0

dXJ (i)e−wel
(i)

(C8c)

Qs
(i) =

1

L̃

∫ L̃0

0

dXJ (i)e−ws
(i)

(C8d)

ϕel
(i) =

ϕ̄el

Qel
(i)
e−wel

(i)

(C8e)

ϕs
(i) =

ϕ̄s

Qs
(i)
e−ws

(i)

(C8f)

ζ(i) =
1

2

[
wel

(i) + ws
(i) − κ

d2

dx2
ϕel

(i) − κ
d2

dx2
ϕs

(i) − (ηJ)(i)
]

(C8g)

u(i,new) =

∫
dX

(
ϕ0

ϕel
(i)

− 1

)
(C8h)

wel
(i,new) = χϕs

(i) − κ
d2

dx2
ϕel

(i) + ζ(i) + (ηJ)(i) (C8i)

ws
(i,new) = χϕel

(i) − κ
d2

dx2
ϕs

(i) + ζ(i) . (C8j)

To improve numerical stability, a simple mixing method is used in most cases, where the differences between the new
fields and the old ones are partially accepted,

u(i+1) = u(i) + λu
(
u(i,new) − u(i)

)
(C9a)

wel
(i+1) = wel

(i) + λw
(
wel

(i,new) − wel
(i)
)

(C9b)

ws
(i+1) = ws

(i) + λw
(
ws

(i,new) − ws
(i)
)
. (C9c)

Here λu and λw are two empirical constants, which usually take value smaller than 0.1. To accelerate the convergence,
Anderson mixing is also used every few steps [49].

The variable-cell method is used to simultaneously optimize the period L̃ of the structure during iteration. L̃ is
evolved in the direction of lowering the free energy [48, 50],

L̃(i+1) = L̃(i) − λL̃
νξ2

kBT

[(
∂f̄int

∂L̃

)(i)

+

(
∂f̄el

∂L̃

)(i)]
, (C10)
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FIG. S2. Common-tangent construction of free energies reveals coexistence states. Average free energy density of
homogeneous phase (brown) and patterned phase (blue) as a function of the average fraction ϕ̄ of the elastic component for a
soft (E = 0.01kBT/ν, left panel) and stiff system (E = 0.04kBT/ν, right panel). The gray dashed lines mark common tangent
lines. l(ϕ̄) is a linear function of ϕ̄ chosen for better visualization without affecting the common-tangent construction. Data
obtained from full numerics at χ = 3.2, κξ−2 = 0.05, and ϕ0 = 1.

where the partial derivative of the interfacial energy and the elastic energy can be calculated by

(
∂f̄int

∂L̃

)(i)

= − 2

L̃(i)
f̄
(i)
int (C11a)(

∂f̄el

∂L̃

)(i)

=
E

2L̃(i)

∫ L̃0

0

dX

∫ +∞

−∞
dX ′ du

(i)

dX

du(i)

dX ′ hξ(X
′ −X) , (C11b)

with the new kernel hξ(X) = gξ(X) +Xdgξ(X)/dX. The evolution of L̃ is also accelerated by Anderson mixing [50].

When converged, L̃ reaches the equilibrium length scale L.

For all of the numerical results, we use periodic boundary condition and 2048 spatial sample points per period of
the patterned phase. The incompressibility and the relative square-mean-root of the field error are converged to below
10−5, while the free energy derivative with respect to the period is converged to below 10−8.

To perform common-tangent construction at fixed interaction strength χ and stiffness E, the free energy curve is
numerically sampled with the interval of average fraction ϕ̄ no larger than 0.01. Then, the numerical sample points
are interpolated for the common-tangent construction (Fig. S2). We notice that the free energy difference between
the periodic patterned phase and its coexistence with homogeneous phase is tiny, which might be related to the
irregularity of the droplet placement in real systems.

Appendix D: Identifying the continuous phase transition

We present two ways to identify the continuous phase transition, based on (i) overlap of spinodal and binodal lines
and (ii) on a higher-order analysis.

1. Spinodal and binodal overlap at continuous phase transition

The spinodal line, based on linear stability analysis, and the binodal line, obtained from full numerics, overlap at
the continuous phase transition. In our system, we have multiple spinodals, since we can have coexistence between
two homogeneous and a patterned phase.

To get the spinodal of the homogeneous phase, we first substitute ϵ = J − 1 = ϕ0/ϕ− 1 into Eq. 5 to express ϵ and
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FIG. S3. Continuous phase transition is identified in two different ways. Phase diagram as a function of the average
fraction ϕ̄ of the elastic component and interaction strength χ for two stiffnesses E. The brown and black dashed lines mark
the spinodal curves considering the microphase separation and the macrophase separation, obtained by evaluating Eq. D8
and Eq. D4, respectively. The binodal curves are obtained from the full numerics. The red dotted lines mark the window of
continuous phase transition, obtained by considering the inequality in Eq. D12.

σnonlocal with J , and transform the integral into the reference frame. The average free energy density then reads

f̄ =
kBT

ν

ϕ̄

ϕ0

1

L̃0

∫ L̃0

0

dXJ

[
ϕ log ϕ+ ϕs log(1− ϕ) + χϕ(1− ϕ) + κ

(
dϕ

dX

)2

/J2

]
+

ϕ̄

ϕ0

E

2L̃0

∫ L̃0

0

dX

∫ +∞

−∞
dX ′[J(X)− 1

][
J(X ′)− 1

]
gξ(X

′ −X) . (D1)

Since we have J = ϕ0/ϕ̄ for the homogeneous phase average volume fraction ϕ̄, we find

f̄homo. =
kBT

ν

(
ϕ̄ log ϕ̄+ (1− ϕ̄) log(1− ϕ̄) + χϕ̄(1− ϕ̄)

)
+
E

2

ϕ̄

ϕ0

(
ϕ0
ϕ̄

− 1

)2

. (D2)

To test the stability, we first take the second-order derivative of the f̄homo. with respect to ϕ̄,

∂2f̄homo.

∂ϕ̄2
= E

ϕ0
ϕ̄3

+
kBT

ν

(
1

1− ϕ̄
+

1

ϕ̄
− 2χ

)
. (D3)

The spinodal of macrophase separation between two homogeneous phase corresponds to f̄ ′′homo.(ϕ̄) = 0, yielding

χmacro =
1

2

(
νE

kBT

ϕ0
ϕ̄3

+
1

1− ϕ̄
+

1

ϕ̄

)
; (D4)

see the black dashed lines in Fig. S3.
To consider microphase separation, we perturb J from a constant value, J = (ϕ0/ϕ̄)

(
1 + a cos(qX)

)
, where a is

the amplitude of the perturbation and q is the associated wave number. Evaluating Eq. D1, taking the second-order
derivative of f̄ with respect to a, and taking the limit a→ 0, we find

∂2f̄

∂a2

∣∣∣∣
a=0

= E
ϕ0e

− 1
8 ξ

2q2

2ϕ̄
+
kBT

ν

(
κq2ϕ̄4

ϕ20
− χϕ̄2 +

ϕ̄2

2− 2ϕ̄
+
ϕ̄

2

)
. (D5)

Stability of the homogeneous state requires ∂2f̄/∂a2
∣∣
a=0

≥ 0 for all q, implying

χ ≤ χu =
νE

kBT

ϕ0e
− 1

8 ξ
2q2

2ϕ̄3
+
κq2ϕ̄2

ϕ20
+

1

2ϕ̄
+

1

2− 2ϕ̄
(D6)



17

holds for all q. χu assumes its minimum at q = q∗ with

q∗ =
2
√
2

ξ

√
log

(
νE

kBT

ξ2ϕ30
16κϕ̄5

)
, (D7)

if (νE/kBT )ξ
2ϕ30 > 16κϕ̄5, leading to the spinodal of microphase separation,

χmicro =
8κϕ̄2 log

(
νE
kBT

ξ2ϕ3
0

16κϕ̄5

)
ξ2ϕ20

+
8κϕ̄2

ξ2ϕ20
+

1

2ϕ̄
+

1

2− 2ϕ̄
; (D8)

see the brown dashed lines in Fig. S3. Comparing this line to the binodal curve obtained from the full numerics, we
find that they overlap in a parameter windows, which hints at the existence of a continuous phase transition (Fig. S3).
Note that if (νE/kBT )ξ

2ϕ30 > 16κϕ̄5 does not hold then χu takes its minimum at q → +0, where χu turns to χmacro

and the macrophase spinodal given by Eq. D4 is recovered.

2. Higher-order analysis identifies the continuous phase transition

Eq. D8 defines the spinodal curve of the microphase separation in the ϕ-χ plane, which implies that the homogeneous
phase is (meta-)stable below the curve, and unstable above the curve. No information about stability is provided
right on the spinodal curve, since Eq. D6 is not a sufficient condition for stability when χ = χu.In order to test the
stability on the spinodal, we approximate J as J = (ϕ0/ϕ̄)

(
1 + aq∗ cos(q

∗X) +
∑

q ̸=q∗ aq cos(qX)
)
and perturb the

average volume fraction ϕ̄ as ϕ̄+ δϕ̄ at the same time. The average free energy density can then be written as

f̄ = f̄ [δϕ̄, aq∗ , aq1 , aq2 , . . .] . (D9)

On the spinodal line of the homogeneous phase, we have

∂2f̄

(∂δϕ̄)2

∣∣∣∣
0

> 0
∂2f̄

(∂aq∗)2

∣∣∣∣
0

= 0
∂2f̄

(∂aq)2

∣∣∣∣
0

> 0 if q ̸= q∗ , (D10)

while all second-order cross derivatives vanish. Here ·|0 indicates the value at the homogeneous state on the spinodal.
Expanding the free energy up to fourth-order, we find

f̄ = f̄
∣∣
0
+

∂f̄

∂δϕ̄

∣∣∣∣
0

δϕ̄+
1

2

∂2f̄

(∂δϕ̄)2

∣∣∣∣
0

(δϕ̄)2 +
1

2

∑
q ̸=q∗

∂2f̄

(∂aq)2

∣∣∣∣
0

a2q

+
1

2

∂3f̄

(∂aq∗)2∂δϕ̄

∣∣∣∣
0

a2q∗δϕ̄+
1

2

∂3f̄

(∂aq∗)2∂a2q∗

∣∣∣∣
0

a2q∗a2q∗ +
1

24

∂4f̄

(∂aq∗)4

∣∣∣∣
0

a4q∗ + o
(∥∥(δϕ̄, a2q∗ , aq1 , aq2 , . . .)∥∥2) , (D11)

where omitted terms are either zero or absorbed in the remainder. The stability of the homogeneous phase on the
spinodal then requires

1

24

∂4f̄

(∂aq∗)4

∣∣∣∣
0

−
(
1

2

∂3f̄

(∂aq∗)2∂δϕ̄

∣∣∣∣
0

)2/(
2

∂2f̄

(∂δϕ̄)2

∣∣∣∣
0

)
−
(
1

2

∂3f̄

(∂aq∗)2∂a2q∗

∣∣∣∣
0

)2/(
2

∂2f̄

(∂a2q∗)2

∣∣∣∣
0

)
≥ 0 . (D12)

Solving this inequality for ϕ̄ numerically, we obtain the window of ϕ̄ with a continuous phase transition. Combined
with Eq. D8, the phase boundary of the continuous phase transition can be obtained, which is marked as red dotted
lines or red surface in Fig. S3, Fig. 2 and Fig. 3. In fact, in all these phase diagrams, the continuous transitions are
verified with both the overlapping of spinodal and binodal, as well as the higher-order stability analysis.

Appendix E: Approximate model and asymptotic solutions

To understand the scaling law of the length scale L, we assume sharp interfaces and approximate the volume fraction
profile ϕ(x) as a box function,

ϕ(x) = ϕ+ + (ϕ− − ϕ+)ΠαL(x− L̃/2) , (E1)
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within one period x ∈ [0, L̃). Here α = (ϕ+ − ϕ̄)/(ϕ+ − ϕ−) is the fraction of the solvent-rich region relative to the

period L̃, ϕ̄ is the average volume fraction of the elastic component in the deformed state, and ϕ− and ϕ+ are the
minimum and the maximum value of the volume fraction profile, respectively. Converting the profile to the reference
frame and making use of the relationship between strain and the volume fraction given by Eq. 1, we find

ϵ(X) =
ϕ0
ϕ+

− 1 +

(
ϕ0
ϕ−

− ϕ0
ϕ+

)
Πα0L̃0

(
X − L̃0

2

)
, (E2)

where L̃0 = (ϕ̄/ϕ0)L̃ and α0 = (ϕ−/ϕ̄)α are the period and relative droplet size in the reference frame, respectively.
To evaluate the elastic energy, we first consider the case where the period is much larger than the microscopic length

scale (L̃≫ ξ). In this case, we can safely ignore the interference between the neighboring periods since the Gaussian
convolution kernel decays exponentially with distance. The elastic energy density thus reads

f̄el =
E

2

(
ϕ0
ϕ−

− ϕ0
ϕ+

)2(
ξ

L̃

e−2β2L̃2/ξ2 − 1√
2π

+ L̃ erf

(√
2β
L̃

ξ

))
+ f̄el,0 with β =

ϕ−(ϕ+ − ϕ̄)

ϕ0(ϕ+ − ϕ−)
. (E3)

where f̄el,0 is a term with no dependence on L̃,

f̄el,0 =
E

2

[
2

(
1− ϕ̄

ϕ0

)
ϵ0 −

ϕ̄

ϕ0
ϵ20

]
, (E4)

with ϵ0 = ϕ0/ϕ+ − 1. Expanding Eq. E3 around L̃→ +0, we have

f̄ II
el = E

(ϕ+ − ϕ̄)2√
2πϕ2+

L̃

ξ
+ f̄el,0 + o(L̃3) , (E5)

while expanding around L̃→ +∞ leads to

f̄ III
el = E

(ϕ+ − ϕ̄)(ϕ+ − ϕ−)ϕ0
ϕ−ϕ2+

− E
1

2
√
2π

(
ϕ0
ϕ−

− ϕ0
ϕ+

)2
ξ

L̃
+ f̄el,0 + o

(
1

L̃2

)
. (E6)

Next, we consider the case L̃≪ ξ, where the elastic energy can be derived from the physical picture. Since the period
is much smaller than the microscopic length scale ξ, the convolution of the strain field simply gives the average strain
which is not affected by the period L̃. Evaluating Eq. 5 and converting it to energy density, we obtain

f̄ I
el =

E

2

ϕ0
ϕ̄

(
ϕ̄

ϕ0
− 1

)2

. (E7)

Combining the results in Eq. E5, Eq. E6 and Eq. E7, we find

f̄el ≈



E

2

ϕ0
ϕ̄

( ϕ̄
ϕ0

− 1
)2

L̃ < Lmin

f̄el,0 + E
(ϕ+ − ϕ̄)2√

2πϕ2+

L̃

ξ
Lmin < L̃ < Lmax

f̄el,0 + E
(ϕ+ − ϕ−)(ϕ+ − ϕ̄)ϕ0

ϕ−ϕ2+
− E

1

2
√
2π

(
ϕ0

ϕ−
− ϕ0
ϕ+

)2 ξ
L̃

L̃ > Lmax

, (E8)

where the boundary values Lmin and Lmax will be estimated later. Differentiating f̄el with respect to L, we have

∂f̄el

∂L̃
≈


0 L̃ < Lmin

E
(ϕ+ − ϕ̄)2√

2πϕ2+

1

ξ
Lmin < L̃ < Lmax

E
1

2
√
2π

( ϕ0
ϕ−

− ϕ0
ϕ+

)2 ξ
L̃2

L̃ > Lmax

. (E9)

Since the derivatives of the average free energy density govern the equilibrium length scale (see Eq. A10), we determine
Lmax by balancing the last two terms of the derivatives of f̄el, resulting in

Lmax =
1√
2

ϕ0
ϕ−

ϕ+ − ϕ−
ϕ+ − ϕ̄

ξ . (E10)
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In contrast, the derivatives are all constants in the first two regimes of Eq. E9, so we cannot estimate the boundary
in the same way. We thus balance f̄el directly in the first two regimes to get

Lmin =

√
π

2

ϕ0
ϕ̄
ξ . (E11)

Converting the two bounds Lmin and Lmax to the reference frame yields Eq. 10 in the main text.
For completeness, we here also present the generic expression of f̄el of the approximated model with the ϑ function

f̄el =
E

2L̃

∫ (1+α0)L̃0/2

(1−α0)L̃0/2

dXdX ′
(
ϕ0
ϕ−

− ϕ0
ϕ+

)2

ϑ3

(
π(X ′ −X)

L̃0

, e
−π2ξ2

2L̃2
0

)
+ f̄el,0 . (E12)

This integral can be evaluated numerically; see the black line in Fig. 6C for its derivative. Note that all orders of
derivative with respect to L̃ at L̃ → +0 are zero, so the free energy is almost independent of L̃, consistent with our
picture to derive Eq. E7.
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