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Abstract

Different from the usual harmonic oscillator, the time-decaying har-

monic oscillator accelerates particles and generates scattering states. We

study one of the multidimensional inverse scatterings in this two-body quan-

tum system perturbed by short-range interaction potentials that have a

bounded part and a locally singular part. Applying the Enss–Weder time-

dependent method, we prove that the scattering operator determines the

interaction potentials uniquely.
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1 Introduction

Let n > 2, x = (x1, . . . , xn) ∈ R
n and ip = (∂x1

, . . . , ∂xn
) with i =

√
−1. In this

paper, we consider the quantum system governed by the following time-dependent
free Hamiltonian

H0(t) = p2/2 + k(t)x2/2 (1.1)

acting on L2(Rn), where the time-decay coefficient of the harmonic term is

k(t) =

{

ω2 if |t| < r0,

σ/t2 if |t| > r0.
(1.2)

for 0 < σ < 1/4, ω > 0 and r0 > 0. For simplicity, we write

0 < λ = (1−
√
1− 4σ)/2 < 1/2. (1.3)

We now state the assumptions imposed on the external potentials as multiplication
operators that perturb H0(t).

Assumption 1.1. The potential function V is decomposed into a bounded part
and a singular part,

V (x) = V bdd(x) + V sing(x). (1.4)
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V bdd ∈ L∞(Rn) satisfies
|V bdd(x)| . 〈x〉−ρ (1.5)

almost everywhere, with x ∈ R
n, ρ > 1/(1 − λ), 〈·〉 =

√

1 + | · |2 and A . B
means that there exists a constant C > 0 such that A 6 CB. V sing ∈ Lq(Rn) is
compactly supported, where q satisfies

∞ > q

{

= 2 if n 6 3,

> n/2 if n > 4.
(1.6)

The part V sing is well known to be p2-bounded infinitesimally (Reed–Simon
[25, Theorems X.15 and X.20]). We define the full Hamiltonian such that

H(t) = H0(t) + V (x). (1.7)

The Newton equation of classical mechanics

(d2/dt2)x(t) = −k(t)x(t) (1.8)

has general solution x(t) = c1t
1−λ + c2t

λ for t > r0 and the classical trajectory
of the free particle behaves like x(t) = O(t1−λ) as t → ∞. From this classical
motion of the particle, Ishida–Kawamoto [11, Theorems 1 and 2] proved that the
threshold between short- and long-range is −1/(1− λ).

By virtue of Yajima [32, Theorem 6 and Remark (a)], the existence of the
propagators uniquely generated by H0(t) and H(t) is guaranteed under Assump-
tion 1.1. We denote these propagators by U0(t, s) and U(t, s), respectively. The
wave operators

W± = s-lim
t→±∞

U(t, 0)∗U0(t, 0) (1.9)

then exist by [11, Theorem 1] and the scattering operator is defined such that

S(V ) = (W+)∗W−. (1.10)

Remark 1.2. We can also treat the following combination of V bdd- and V sing-type
potentials V = Vsing that satisfy Vsing ∈ Lq(Rn) with (1.6), and 〈x〉ρVsing(x)〈p〉−2

is the bounded operator on L2(Rn) for ρ > 1/(1 − λ). To prove Theorem 1.5 for
this V = Vsing, it suffices to modify slightly the proof of Lemma 3.2 (specifically,
(3.11), (3.20), and (3.32)).

Remark 1.3. [11, Theorem 1] proves the existence of (1.9) only for V = V bdd.
We can immediately prove the existence of (1.9) for V = V bdd + V sing and
V = Vsing using propagation estimates [11, Proposition 2] and the standard Cook-
Kuroda method [26, Theorem XI.4].
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Remark 1.4. If the constants ω, r0 and λ satisfy the following relation

ωr0 tanωr0 = −λ, (1.11)

the ordinary differential equation (1.8) has two fundamental solutions for all t ∈ R,
and by [20, Theorem 1.2] (see also [21, Lemma 3.1]), the Lp1Lp2-type estimates

‖U0(t, 0)φ‖Lp1 . |t|−n(1−λ)(1/2−1/p1)‖φ‖Lp2 (1.12)

holds for φ ∈ S (Rn), which is the rapid decreasing function space, where p1 > 2
and p2 is the Hölder conjugate of p1. Note that we do not assume any relations
among ω, r0 and λ in this paper.

Applying the Enss–Weder time-dependent method [6], we prove the follow-
ing theorem that claims that the scattering operator determines the potential
functions uniquely.

Theorem 1.5. Let V1 and V2 satisfy Assumption 1.1. If S(V1) = S(V2), then
V1 = V2 holds.

Since the Enss–Weder time-dependent method was devised, many authors
have applied it to establish the uniqueness of the interaction potentials for various
quantum models. [1], [2], [3], [10], [22], [23], [27], and [31] investigated the models
with external electric fields, whereas [8] and [24] studied repulsive Hamiltonians,
and [9] and [13] studied fractional and relativistic Laplacians. [28], [29], and [30]
applied the method to the non-linear Schrödinger equations and the Hartree-Fock
equations.

The time-decaying harmonic oscillator has been an interesting topic for re-
search in both mathematical and physical aspects. For the usual harmonic os-
cillator, there are no scattering states and all of its spectrum is covered by the
infinite discrete pure points. However, if the term x2 has a time-decay coefficient
of a specified order, the situation changes completely. This time-decay coefficient
accelerates the particles and generates the scattering states. From this perspec-
tive, [11] and [12] discussed whether the wave operators exist. [11] proved that
V (x) = O(|x|−ρL) as |x| → ∞ with 0 < ρL 6 1/(1 − λ) has to belong to the
long-range class and proposed Dollard-type modified wave operators. If σ = 1/4
in (1.2), the circumstances of scattering change considerably. [12] found that the
classical trajectory has order x(t) =

√
t log t as t → ∞ and clarified the thresh-

old between short- and long-range. In contrast, [20] and [16] constructed the
Strichartz estimates, and recent studies of non-linear analysis [14], [15], [16], [17],
[18] and [19] have shown progress.

By the definition of k(t), H0(t) ≡ H0 = p2/2 + ω2x2/2 is a time-independent
harmonic oscillator for |t| < r0. Let us here state the well-known Mehler formula
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for H0 [4, Theorem 12.63]; specifically, the time evolution for 0 < |t| < r0 is
represented as

e−itH0 = M (tanωt)D(sinωt)FM (tanωt) (1.13)

where M denotes multiplication and D dilation,

M (t)φ(x) = eix
2/(2t)φ(x), (1.14)

D(t)φ(x) = (it)−n/2φ(x/t), (1.15)

and F denotes the Fourier transform over L2(Rn). A straightforward calculation
yields

D(sinωt) = in/2D(cosωt)D(tanωt), (1.16)

M (tanωt)D(cosωt)M (− tanωt) = M (− cotωt)D(cosωt) (1.17)

and
e−itH0 = in/2M (− cotωt)D(cosωt)e−i tanωtp2/2, (1.18)

because
e−itp2/2 = M (t)D(t)FM (t). (1.19)

The formula (1.18) was derived originally in Ishida [8] for the repulsive Hamil-
tonian. On the other hand, U0(t, s) and U(t, s) also have the convenient factor-
izations for t, s > r0 or t, s 6 −r0, that were proved by [11, Proposition 1]. We
define

Ũ0(t) = eiλx
2/(2t)e−iλ log tAe−it1−2λp2/(2(1−2λ)) (1.20)

if t > r0 and
Ũ0(t) = eiλx

2/(2t)e−iλ log(−t)Aei(−t)1−2λp2/(2(1−2λ)) (1.21)

if t 6 −r0, where A = (p · x+ x · p)/2. Then

U0(t, s) = Ũ0(t)Ũ0(s)
∗ (1.22)

and
U(t, s) = eiλx

2/(2t)e−iλ log |t|AŨ(t, s)eiλ log |s|Ae−iλx2/(2s) (1.23)

hold for t, s > r0 or t, s 6 −r0, where Ũ(t, s) is the propagator generated by

H̃(t) = p2/(2|t|2λ) + V (|t|λx). (1.24)

We additionaly define
Ũ0(t) = e−itH0 (1.25)

if |t| < r0. The following strong limits

W̃± = s-lim
t→±∞

U(t, 0)∗Ũ0(t) (1.26)
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exist because (1.9) exist and we define

S̃(V ) = (W̃+)∗W̃−. (1.27)

Noting that W± = W̃±Ũ0(s±)
∗U0(s±, 0) for s+ > r0 and s− < −r0, we easily find

that S and S̃ the relation

S(V ) = U0(s+, 0)
∗Ũ0(s±)S̃(V )Ũ0(s−)

∗U0(s−, 0), (1.28)

and that S(V1) = S(V2) is equivalent to S̃(V1) = S̃(V2). To analyze the time-
evolution by U0(t, 0) for all t ∈ R directly is difficult but can be overcome by
pursuing the evolution of e−i tanωtp2/2 if |t| < r0 and e∓i|t|1−2λp2/(2(1−2λ)) if |t| > r0.
While the particles escape with order x(t) = O(|t|1−λ) through the potential effects
when |t| > r0, the particles cannot scatter far away from the time-independent
harmonic oscillator when |t| < r0. We consequently reconstruct the potential func-
tions from the time-independent harmonic oscillator (see the proofs of Theorems
2.1 and 3.1).

Throughout this paper, we use the following notation; ‖·‖ denotes the L2-norm
and operator norm on L2(Rn), (·, ·) the scalar product of L2(Rn), and F (· · · ) the
characteristic function of the set {· · · }.

2 Bounded case

We first consider the instances for which V sing ≡ 0, that is, V = V bdd and prove
the following reconstruction formula.

Theorem 2.1. Let Φ0 ∈ S (Rn) such that FΦ0 ∈ C∞
0 (Rn). For v ∈ R

n, its
normalization is v̂ = v/|v|. Let Φv = eiv·xΦ0 and Ψv have the same properties.
Then

lim
|v|→∞

|v|(i(S̃(V bdd)− 1)Φv,Ψv) =

∫ ∞

−∞
(V bdd(x+ v̂ωt)Φ0,Ψ0)dt (2.1)

holds.

We now prepare to prove Theorem 2.1. The following propagation estimates
for the free evolution e−itp2/2 [5, Proposition 2.10] is very useful in some of our
estimates.

Proposition 2.2. Let M and M ′ be measurable subsets of Rn and f ∈ C∞
0 (Rn)

have supp f ⊂ {ξ ∈ R
n
∣

∣ |ξ| 6 η} for some η > 0. Then

‖F (x ∈ M ′)e−itp2/2f(p)F (x ∈ M)‖ .N,f (1 + |t|+ r)−N (2.2)

for t ∈ R and N ∈ N, where r = dist(M ′,M) − η|t| and .N,f means that the
constant depends on N and f .
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The following Lemma is the key propagation estimate in this section.

Lemma 2.3. Let Φv be as in Theorem 2.1. Then
∫ ∞

−∞
‖V bdd(x)Ũ0(t)Φv‖dt = O(|v|−1) (2.3)

holds as |v| → ∞.

Proof. We can take f ∈ C∞
0 (Rn) such that Φ0 = f(p)Φ0 and supp f ⊂ {ξ ∈ R

n
∣

∣

|ξ| 6 η} with some η > 0. We separete the integral such that

∫ ∞

−∞
=

∫

|t|<r0

+

∫

|t|>r0

(2.4)

and consider |t| < r0 first. By (1.18) and the relation

e−iv·xe−i tanωtp2/2eiv·x = e−i tanωt|v|2/2e−i tanωtp·ve−i tanωtp2/2, (2.5)

we have

‖V bdd(x)e−itH0Φv‖ = ‖V bdd(cosωtx)e−i tanωtp2/2Φv‖
= ‖V bdd(cosωtx+ sinωtv)e−i tanωtp2/2Φ0‖ 6 I1 + I2 + I3, (2.6)

where we put

I1 = ‖V bdd(x)‖‖F (|x| > | tanωt||v|/2)e−i tanωtp2/2f(p)

× F (|x| 6 | tanωt||v|/4)‖‖Φ0‖,
I2 = ‖V bdd(x)‖‖F (|x| > | tanωt||v|/2)e−i tanωtp2/2f(p)

× F (|x| > | tanωt||v|/4)〈x〉−2‖‖〈x〉2Φ0‖,
I3 = ‖V bdd(cosωtx+ sinωtv)F (|x| < | tanωt||v|/2)‖‖Φ0‖ (2.7)

as in the proof of [8, Proposition 2.2] (see also [1], [2], [3], [6], [9], [10], [27], and
[31]). Because of the periodicity of tanωt, we can assume that

π/(2ω) 6 r0 < π/ω (2.8)

without loss of generality. Moreover, if r0 < π/(2ω), we can demonstrate our
proofs much more simply. We state this details in Remark 3.3. Using Proposition
2.2 for I1, we have

∫

|t|<r0

(I1 + I2)dt .

∫ π/(2ω)

0

+

∫ r0

π/(2ω)

〈tanωtv〉−2dt. (2.9)
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When 0 6 t < π/(2ω), tanωt > ωt and

∫ π/(2ω)

0

〈tanωtv〉−2dt 6

∫ π/(2ω)

0

〈ωtv〉−2dt = |v|−1

∫ π|v|/(2ω)

0

〈ωτ〉−2dτ = O(|v|−1)

(2.10)
hold by changing τ = t|v|. When π/(2ω) 6 t < r0, | tanωt| > π − ωt and

∫ r0

π/(2ω)

〈tanωtv〉−2dt 6

∫ r0

π/(2ω)

〈(π − ωt)v〉−2dt

= |v|−1

∫ π|v|/(2ω)

(π/ω−r0)|v|
〈ωτ〉−2dτ = O(|v|−2) (2.11)

hold by changing τ = (π/ω − t)|v|. As for I3, when |x| < | tanωt||v|/2,

| cosωtx+ sinωtv| > | sinωt||v|/2 (2.12)

and
I3 6 ‖V bdd(x)F (|x| > | sinωt||v|/2)‖‖Φ0‖ (2.13)

hold. Assuming (1.5), we have

∫

|t|<r0

I3dt .

∫ π/(2ω)

0

+

∫ r0

π/(2ω)

〈sinωtv〉−ρdt = O(|v|−1) +O(|v|−ρ), (2.14)

noting that ρ > 1/(1 − λ) > 1 because sinωt > ωt/2 when 0 6 t < π/(2ω), and
sinωt > (π − ωt)/2 when π/(2ω) 6 t < r0. We next consider the integral over
|t| > r0, in particular, we consider t > r0. Integral over t 6 −r0 can be estimated
in the same way with t > r0. By (1.20) and relation

e−iv·xe−it1−2λp2/(2(1−2λ))eiv·x

= e−it1−2λ|v|2/(2(1−2λ))e−it1−2λp·v/(1−2λ)e−it1−2λp2/(2(1−2λ)), (2.15)

we have

‖V bdd(x)Ũ0(t)Φv‖ = ‖V bdd(tλx)e−it1−2λp2/(2(1−2λ))Φv‖
= ‖V bdd(tλx+ t1−λv/(1− 2λ))e−it1−2λp2/(2(1−2λ))Φ0‖ . I4 + I5 + I6, (2.16)

where we put, with N ∈ N,

I4 = ‖F (|x| > t1−2λ|v|/(2(1− 2λ)))e−it1−2λp2/(2(1−2λ))f(p)

× F (|x| 6 t1−2λ|v|/(4(1− 2λ)))‖,
I5 = ‖F (|x| > t1−2λ|v|/(4(1− 2λ)))〈x〉−N‖,
I6 = ‖V bdd(tλx+ t1−λv/(1− 2λ))F (|x| < t1−2λ|v|/(2(1− 2λ)))‖ (2.17)
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as in (2.7). Using Proposition 2.2 for I4, we have
∫

t>r0

(I4 + I5)dt .

∫ ∞

r0

〈t1−2λv〉−Ndt

= (|v|−1/(1−2λ)/(1− 2λ))

∫ ∞

r1−2λ
0

|v|
〈τ〉−Nτ 2λ/(1−2λ)dτ = O(|v|−N), (2.18)

where we changed τ = t1−2λ|v| and chose N ≫ 1 such that−N+2λ/(1−2λ) < −1.
As for I6, when |x| < t1−2λ|v|/(2(1− 2λ)),

|tλx+ t1−λv/(1− 2λ)| > t1−λ|v|/(2(1− 2λ)) (2.19)

and
I6 6 ‖|V bdd(x)F (|x| > t1−λ|v|/(2(1− 2λ)))‖ (2.20)

hold. By the assumption of V bdd (1.5), we have
∫ ∞

r0

I6dt .

∫ ∞

r0

〈t1−λv〉−ρdt (2.21)

= (|v|−1/(1−λ)/(1− λ))

∫ ∞

r1−λ
0

|v|
〈τ〉−ρτλ/(1−λ)dτ = O(|v|−ρ), (2.22)

where we changed τ = t1−λ|v| and used −ρ + λ/(1− λ) < −1. Equations (2.10),
(2.11), (2.14), (2.18), and (2.22) imply (2.3).

Lemma 2.4. Let Φv be as in Theorem 2.1. Then

sup
t∈R

‖(U(t, 0)W̃− − Ũ0(t))Φv‖ = O(|v|−1) (2.23)

holds as |v| → ∞.

Proof. This proof is taken from [6, Corollary 2.3] (see also [1], [2], [3], [8], [9], [10],
[22], [23], [24], [27], and [31]). We calculate

W̃− − U(t, 0)∗Ũ0(t) = −
∫ t

−∞
(d/dτ)U(τ, 0)∗Ũ0(τ)dτ

= −i

∫ t

−∞
U(τ, 0)∗V bdd(x)Ũ0(τ)dτ. (2.24)

We thus have

‖(W− − U(t, 0)∗Ũ0(t))Φv‖ 6

∫ ∞

0

‖V bdd(x)Ũ0(τ)Φv‖dτ = O(|v|−1) (2.25)

as |v| → ∞ by Lemma 2.3. This completes the proof.
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Proof of Theorem 2.1. It follows from

i(S̃ − 1) = i(W̃+ − W̃−)∗W̃− =

∫ ∞

−∞
Ũ0(t)

∗V bdd(x)U(t, 0)W−dτ (2.26)

that

|v|(i(S̃ − 1)Φv,Ψv) = |v|
∫ ∞

−∞
(V bdd(x)Ũ0(t)Φv, Ũ0(t)Ψv)dt +R(v) (2.27)

where

R(v) = |v|
∫ ∞

−∞
((U(t, 0)W̃− − Ũ0(t))Φv, V

bdd(x)Ũ0(t)Ψv)dt = O(|v|−1) (2.28)

as |v| → ∞ by virtue of Lemmas 2.3 and 2.4. We separate the integral on the
right-hand side of (2.27) such that

∫ ∞

−∞
=

∫

|t|<π/(2ω)

+

∫

π/(2ω)6|t|<r0

+

∫

|t|>r0

(2.29)

and consider the part |t| < π/(2/ω) first. By (1.18) and (2.5), we have

e−iv·xeitH0V bdd(x)e−itH0eiv·x = eitH0V bdd(x+ sinωtv)e−itH0. (2.30)

We thus have

|v|
∫

|t|<π/(2ω)

(V bdd(x)e−itH0Φv, e
−itH0Ψv)dt

= |v|
∫

|t|<π/(2ω)

(V bdd(x+ sinωtv)e−itH0Φ0, e
−itH0Ψ0)dt

=

∫

|τ |<|v|/ω
(1/

√

1− (ωτ/|v|)2)(V bdd(x+ v̂ωτ)e−i arcsin(ωτ/|v|)H0/ωΦ0,

e−i arcsin(ωτ/|v|)H0/ωΨ0)dτ (2.31)

by changing τ = sinωt|v|/ω. Because e−itH0 is strongly continuous at t = 0, we
have

(1/
√

1− (ωτ/|v|)2)(V bdd(x+ v̂ωτ)e−i arcsin(ωτ/|v|)H0/ωΦ0, e
−i arcsin(ωτ/|v|)H0/ωΨ0)

→ (V bdd(x+ v̂ωτ)Φ0,Ψ0) (2.32)

as |v| → ∞ pointwisely in τ ∈ R. In addition, we have

|v|
∫

|t|<π/(2ω)

|(V bdd(x)e−itH0Φv, e
−itH0Ψv)|dt

=

∫

|τ |<π|v|/(2ω)
|(V bdd(x)e−i(τ/|v|)H0Φv, e

−i(τ/|v|)H0Ψv)|dτ (2.33)
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by changing τ = |v|t. It follows from the calculations in the proof of Lemma 2.3
that

|(V bdd(x)e−i(τ/|v|)H0Φv, e
−i(τ/|v|)H0Ψv)| 6 ‖V bdd(x)e−i(τ/|v|)H0Φv‖‖Ψ0‖

. 〈tanω(τ/|v|)v〉−2 + 〈sinω(τ/|v|)v〉−ρ . 〈τ〉−2 + 〈τ〉−ρ. (2.34)

We therefore obtain

|v|
∫

|t|<π/(2ω)

(V bdd(x)e−itH0Φv, e
−itH0Ψv)dt →

∫ ∞

−∞
(V bdd(x+ v̂ωτ)Φ0,Ψ0)dt

(2.35)
as |v| → ∞ by the Lebesgue dominated convergence theorem. To complete our
proof, we prove that the second and third integrals of (2.29) converge to zero as
|v| → ∞. This was almost proved already in Lemma 2.3. Indeed, for the second
integral over π/(2ω) 6 |t| < r0, we find that |(V bdd(x)e−itH0Φv, e

−itH0Ψv)| 6

‖V bdd(x)e−itH0Φv‖‖Ψ0‖ and

|v|
∫

π/(2ω)6|t|<r0

|(V bdd(x)e−itH0Φv, e
−itH0Ψv)|dt

. |v|
∫ r0

π/(2ω)

(〈tanωtv〉−2 + 〈sinωtv〉−ρ)dt = O(|v|−1) +O(|v|−ρ+1) (2.36)

by (2.11) and (2.14). For the third integral on |t| > r0, we find that

|v|
∫

|t|>r0

|(V bdd(x)Ũ0(t)Φv, Ũ0(t)Ψv)|dt = O(|v|−N+1) +O(|v|−ρ+1) (2.37)

by (2.18) and (2.22). With N > 2 and ρ > 1, equations (2.35), (2.36) and (2.37)
complete the proof.

3 Singular case

We now consider the instances V sing 6≡ 0 and prove the following reconstruction
formula. At the end of this section, we finally complete the proof of Theorem 1.5.

Theorem 3.1. Let Φv and Ψv be as in Theorem 2.1. Then

lim
|v|→∞

|v|(i(S̃(V )− 1)Φv,Ψv) =

∫ ∞

−∞
(V (x+ v̂ωt)Φ0,Ψ0)dt (3.1)

holds.

To prove Theorem 3.1, we prepare the following Lemma 3.2, which is the
singular version of Lemma 2.3.
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Lemma 3.2. Let Φv be as in Theorem 2.1. Then
∫ ∞

−∞
‖V sing(x)Ũ0(t)Φv‖dt = O(|v|−1) (3.2)

holds as |v| → ∞.

Proof. As in the proof of Lemma 2.3, we take f ∈ C∞
0 (Rn) such that Φ0 = f(p)Φ0

and supp f ⊂ {ξ ∈ R
n
∣

∣ |ξ| 6 η} with some η > 0 and assume that (2.8).
Separating the integral such that

∫ ∞

−∞
=

∫

|t|6π/(4ω)

+

∫

π/(4ω)<|t|<r0

+

∫

|t|>r0

(3.3)

and first consider the part |t| 6 π/(4ω). Similar to (2.6) and (2.7), we have

‖V sing(x)e−itH0Φv‖ = ‖V sing(cosωtx+ sinωtv)〈p/ cosωt〉−2

×e−i tanωtp2/2〈p/ cosωt〉2Φ0‖ 6 I1 + I2 + I3, (3.4)

where we put

I1 = ‖V sing(cosωtx+ sinωtv)〈p/ cosωt〉−2‖‖〈p/ cosωt〉2Φ0‖
× ‖F (|x| > | tanωt||v|/2)e−i tanωtp2/2f(p)F (|x| 6 | tanωt||v|/4)‖,

I2 = ‖V sing(cosωtx+ sinωtv)〈p/ cosωt〉−2‖‖〈x〉2〈p/ cosωt〉2Φ0‖
× ‖F (|x| > | tanωt||v|/2)e−i tanωtp2/2f(p)F (|x| > | tanωt||v|/4)〈x〉−2‖,

I3 = ‖V sing(cosωtx+ sinωtv)〈p/ cosωt〉−2

× F (|x| < | tanωt||v|/2)‖‖〈p/ cosωt〉2Φ0‖ (3.5)

as in the proof of [8, Proposition 2.3]. Noting that

‖V sing(cosωtx+ sinωtv)〈p/ cosωt〉−2‖
= ‖V sing(cosωtx)〈p/ cosωt〉−2‖ = ‖V (x)〈p〉−2‖ (3.6)

and that
‖〈p/ cosωt〉2Φ0‖ 6 ‖〈

√
2p〉2Φ0‖ (3.7)

because |t| 6 π/(4ω), we have

∫

|t|6π/(4ω)

(I1 + I2)dt .

∫ π/(4ω)

0

〈ωtv〉−2dt = O(|v|−1) (3.8)

as in the proof of Lemma 2.3. Because

| cosωtx+ sinωtv| > | sinωt||v|/2 > |t||v|/4 (3.9)
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holds when |x| < | tanωt||v|/2, we have

∫

|t|6π/(4ω)

I3dt .

∫ π/(4ω)

0

‖V sing(x)〈p〉−2F (|x| > |v|t/4)‖dt

= |v|−1

∫ 1

0

+|v|−1

∫ π|v|/(4ω)

1

‖V sing(x)〈p〉−2F (|x| > τ/4)‖dτ (3.10)

by changing τ = |v|t. The first integral over interval 0 6 τ < 1 clearly has order
O(|v|−1). For the second integral over 1 6 τ 6 π|v|/(4ω), we take χ ∈ C∞(Rn)
such that χ(x) = 1 if |x| > 1 and χ(x) = 0 if |x| 6 1/2. We then have

‖V sing(x)〈p〉−2F (|x| > τ/4)‖ 6 ‖V sing(x)〈p〉−2χ(4x/τ)‖
. ‖V sing(x)χ(4x/τ)〈p〉−2‖+ τ−1‖V sing(x)(∇χ)(4x/τ)〈p〉−2‖+ τ−2‖V sing(x)〈p〉−2‖

(3.11)

by calculating the commutator [〈p〉−2, χ(4x/τ)]. Noting that V sing is compactly
supported and that the integral intervals of the first and second terms of (3.11)
are finite for |v| ≫ 1, we have

∫

|t|6π/(4ω)

I3dt = O(|v|−1). (3.12)

We next consider the integral over π/(4ω) < |t| < r0. The strategy for the
estimates of the integral terms from the proof of [8, Proposition 2.3] (see also [24,
Lemma 4]). Using Mehler formula (1.13)

e−itH0Φv = M (tanωt)e−i sinωtv·p
D(sinωt)FM (tanωt)Φ0

= e−i sinωtv·pei cosωt sinωtv2/2ei cosωtv·xe−itH0Φ0 (3.13)

holds. Therefore we have

‖V sing(x)Ũ0(t)Φv‖ = ‖V sing(x+ sinωtv)e−itH0Φ0‖
= ‖V sing(sinωt(x+ v))FM (tanωt)Φ0‖ 6 I4 + I5, (3.14)

where we put

I4 = ‖V sing(sinωt(x+ v))〈p/ sinωt〉−2F (|x| 6 |v|/2)‖‖〈x/ sinωt〉2Φ0‖,
I5 = ‖V sing(sinωt(x+ v))〈p/ sinωt〉−2‖

× ‖F (|x| > |v|/2)FM (tanωt)〈x/ sinωt〉2Φ0‖. (3.15)

Clearly
‖〈x/ sinωt〉2Φ0‖ . ‖〈x〉2Φ0‖ (3.16)
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holds because π/(4ω) < |t| < r0 and

0 < min{1/
√
2, sinωr0} < | sinωt| (3.17)

noting r0 < π/ω. When |x| 6 |v|/2, there exists a small constant c > 0 such that

| sinωt(x+ v))| > | sinωt||v|/2 > c|t||v| (3.18)

again noting r0 < π/ω. We thus have
∫

π/(4ω)<|t|<r0

I4dt .

∫ r0

π/(4ω)

‖V sing(x)〈p〉−2F (|x| > ct|v|)‖dt

= |v|−1

∫ r0|v|

π|v|/(4ω)
‖V sing(x)〈p〉−2F (|x| > cτ)‖dτ (3.19)

by changing τ = |v|t. For τ > π|v|/(4ω) ≫ 1, we have

‖V sing(x)〈p〉−2F (|x| > cτ)‖ . τ−2‖V sing(x)〈p〉−2‖ (3.20)

as in (3.11) noting that V sing is compactly supported. Therefore, we can obtain
∫

π/(4ω)<|t|<r0

I4dt = O(|v|−2). (3.21)

For the integral I5, we write

FM (tanωt)〈x/ sinωt〉2Φ0

=

∫

Rn

e−ix·yeiy
2/(2 tanωt)〈y/ sinωt〉2Φ0(y)dy/(2π)

n/2. (3.22)

Using the relation e−ix·y = 〈x〉−2(1 + ix · ∇y)e
−ix·y and integrating by parts, we

have

FM (tanωt)〈x/ sinωt〉2Φ0 = 〈x〉−2
FM (tanωt)〈x/ sinωt〉2Φ0

+(1/ tanωt)〈x〉−2x · FxM (tanωt)〈x/ sinωt〉2Φ0

−i〈x〉−2x · FM (tanωt)∇x〈x/ sinωt〉2Φ0. (3.23)

and

‖F (|x| > |v|/2)FM (tanωt)〈x/ sinωt〉2Φ0‖
. |v|−2‖〈x〉2Φ0‖+ |v|−1(‖〈x〉3Φ0‖+ ‖〈x〉2∇Φ0‖). (3.24)

It follows from (3.24) and

‖V sing(sinωt(x+ v))〈p/ sinωt〉−2‖ = ‖V sing(x)〈p〉−2‖ (3.25)
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that
∫

π/(4ω)<|t|<r0

I5dt = O(|v|−1). (3.26)

We consider the final integral over |t| > r0, in particular t > r0. In the same way
with (2.16), (2.17), and (3.5), we have

‖V sing(x)e−iH0Φv‖ = ‖V sing(tλx+ t1−λv/(1− 2λ))〈p/tλ〉−2

×e−it1−2λp2/(2(1−2λ))〈p/tλ〉2Φ0‖ . I6 + I7 + I8, (3.27)

where we put, with N ∈ N,

I6 = ‖F (|x| > t1−2λ|v|/(2(1− 2λ)))e−it1−2λp2/(2(1−2λ))f(p)

× F (|x| 6 t1−2λ|v|/(2(1− 2λ)))‖,
I7 = ‖F (|x| > t1−2λ|v|/(4(1− 2λ)))〈x〉−N‖,
I8 = V sing(tλx+ t1−λv/(1− 2λ))〈p/tλ〉−2F (|x| < t1−2λ|v|/(2(1− 2λ)))‖. (3.28)

We here used ‖V sing(tλx)〈p/tλ〉−2‖ = ‖V sing(x)〈p〉−2‖, ‖〈p/tλ〉2Φ0‖ 6 ‖〈p/rλ0 〉2Φ0‖
and

‖〈x〉N〈p/tλ〉2Φ0‖ 6 ‖〈p/tλ〉2〈x〉NΦ0‖+ ‖[〈x〉N , 〈p/tλ〉2]Φ0‖ . 1 (3.29)

in (3.28). We immediately have

∫ ∞

r0

(I6 + I7)dt = O(|v|−N) (3.30)

as in (2.18) for N ≫ 1 such that −N + 2λ/(1− 2λ) < −1. Because (2.19) holds
when |x| < t1−2λ|v|/(2(1− 2λ)), we have

∫ ∞

r0

I8dt 6

∫ ∞

r0

‖V sing(x)〈p〉−2F (|x| > t1−λ|v|/(2(1− 2λ)))‖dt

. |v|−1/(1−λ)

∫ ∞

r1−λ
0

|v|
τλ/(1−λ)‖V sing(x)〈p〉−2F (|x| > τ/(2(1− 2λ)))‖dτ (3.31)

by changing τ = t1−λ|v|. As in (3.20), we thus have

∫ ∞

r0

I8dt . |v|−1/(1−λ)

∫ ∞

r1−λ
0

|v|
τλ/(1−λ)−2dτ = O(|v|−2) (3.32)

noting that λ/(1 − λ) − 2 < −1. Equations (3.8), (3.12), (3.21), (3.26), (3.30),
and (3.32) imply (3.2).
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Proof of Theorem 3.1. Note that Lemma 2.4 also holds for V = V bdd + V sing by
virtue of Lemma 3.2. We therefore have

|v|(i(S̃ − 1)Φv,Ψv) = |v|
∫ ∞

−∞
(V (x)Ũ0(t)Φv, Ũ0(t)Ψv)dt+O(|v|−1). (3.33)

Because we have already proved

|v|
∫ ∞

−∞
(V bdd(x)Ũ0(t)Φv, Ũ0(t)Ψv)dt →

∫ ∞

−∞
(V bdd(x+ v̂ωτ)Φ0,Ψ0)dt (3.34)

as |v| → ∞ in the proof of Theorem 2.1, it suffices to prove

|v|
∫ ∞

−∞
(V sing(x)Ũ0(t)Φv, Ũ0(t)Ψv)dt →

∫ ∞

−∞
(V sing(x+ v̂ωτ)Φ0,Ψ0)dt (3.35)

as |v| → ∞. We separate the integral such that
∫ ∞

−∞
=

∫

|t|6π/(4ω)

+

∫

π/(4ω)<|t|<r0

+

∫

|t|>r0

(3.36)

and first consider the integral over |t| 6 π/(4ω). As in (2.31), we have

|v|
∫

|t|6π/(4ω)

(V sing(x)e−itH0Φv, e
−itH0Ψv)dt =

∫

|τ |6|v|/(
√
2ω)

(1/
√

1− (ωτ/|v|)2)

×(V sing(x+ v̂ωτ)e−i arcsin(ωτ/|v|)H0/ωΦ0, e
−i arcsin(ωτ/|v|)H0/ωΨ0)dτ. (3.37)

Because

pje
−itH0Φ0 = sinωte−itH0xjΦ0+sinωt tanωte−itH0pjΦ0+e−itH0pjΦ0/ cosωt (3.38)

for 1 6 j 6 n by (1.18), we have

‖〈p〉2e−i arcsin(ωτ/|v|)H0/ωΦ0‖ . 1 (3.39)

for |τ | 6 |v|/(
√
2ω) and

(1/
√

1− (ωτ/|v|)2)(V sing(x+ v̂ωτ)e−i arcsin(ωτ/|v|)H0/ωΦ0, e
−i arcsin(ωτ/|v|)H0/ωΨ0)

→ (V sing(x+ v̂ωτ)Φ0,Ψ0) (3.40)

as |v| → ∞ pointwisely in τ ∈ R. In addition, we have

|v|
∫

|t|6π/(4ω)

|(V sing(x)e−itH0Φv, e
−itH0Ψv)|dt

=

∫

|τ |6π|v|/(4ω)
|(V sing(x)e−i(τ/|v|)H0Φv, e

−i(τ/|v|)H0Ψv)|dτ (3.41)
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by changing τ = |v|t. From the calculations developed in the proof of Lemma 3.2,
we find

|(V sing(x)e−i(τ/|v|)H0Φv, e
−i(τ/|v|)H0Ψv)| 6 ‖V sing(x)e−i(τ/|v|)H0Φv‖‖Ψ0‖

. 〈τ〉−2 + ‖V sing(x)〈p〉−2F (|x| > |τ |/4)‖. (3.42)

The right-hand side of (3.42) is integrable for τ independently of v (see (3.11)).
We therefore obtain

|v|
∫

|t|6π/(4ω)

(V sing(x)e−itH0Φv, e
−itH0Ψv)dt →

∫ ∞

−∞
(V sing(x+ v̂τ)Φ0,Ψ0)dt (3.43)

as |v| → ∞ by the Lebesgue dominated convergence theorem. For the integral
over π/(4ω) < |t| < r0, integrating by parts in (3.23) once more, we find that
(3.26) has order O(|v|−2). we thus have

|v|
∫

π/(4ω)<|t|<r0

|(V sing(x)e−itH0Φv, e
−itH0Ψv)|dt = O(|v|−1) (3.44)

as |v| → ∞ by using calculations obtained in the proof of Lemma 3.2 (see also
(3.21)). Finally, for the integral over |t| > r0, we also have

|v|
∫

|t|>r0

|(V sing(x)Ũ0(t)Φv, Ũ0(t)Ψv)|dt = O(|v|−N+1) +O(|v|−1) (3.45)

as |v| → ∞ by (3.30) and (3.32). With N > 2, equations (3.43), (3.44) and (3.45)
imply (3.35).

Remark 3.3. In our proofs of Theorems 2.1, 3.1, Lemmas 2.3 and 3.2, we par-
titioned the integrals at points π/(4ω), π/(2ω), and r0. However, if we assume
0 < r0 < π/(2ω), it suffices to separate the integrals such that

∫ ∞

−∞
=

∫

|t|<r0

+

∫

|t|>r0

(3.46)

in these proofs. We especially do not have to consider the integrals over π/(4ω) <
|t| < r0 in the proofs of Theorem 3.1 and Lemma 3.2 even if r0 > π/(4ω).

Proof of Theorem 1.5. From Theorem 3.1 and the Plancherel formula associated
with the Radon transform (see [7, Theorem 2.17 in Chap.1]), V1 = V2 can be
proved similarly as in the proof of [6, Theorem 1.1].
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