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In active matter systems, non-Gaussian, exact scaling exponents have been claimed in a range
of systems using perturbative renormalization group (RG) methods. This is unusual compared to
equilibrium systems where non-Gaussian exponents can typically only be approximated, even using
the exact (or functional/nonperturbative) renormalization group (ERG). Here, we perform an ERG
analysis on the ordered phase of incompressible polar active fluids and find that the exact non-
Gaussian exponents obtained previously using a perturbative RG method remain valid even in this
nonperturbative setting. Furthermore, our ERG analysis elucidates the RG flow of this system and
enables us to identify an active Goldstone regime with nontrivial, long-ranged scaling behavior for
parallel and longitudinal fluctuations.

Renormalization group (RG) methodology constituted
one of the greatest advances in the toolbox of theo-
retical physicists in the past 50 years and has brought
many great advances in physics since its inception. Orig-
inated from particle and condensed matter physics [1–
6], RG techniques have since found applications in di-
verse disciplines of physics. In the context of many-
body physics, RG methods enable us to identify emer-
gent behavior that is universal to a wide class of systems
sharing the same key qualitative characteristics features,
such as the underlying conservation laws and symme-
tries [7, 8]. Furthermore, RG provides us with a way
to classify many-body systems into distinct universality
classes (UCs), each of which is associated with a unique
RG fixed point. Importantly, distinct UCs typically ex-
hibit quantitatively different scale-invariant structures
and thus leave measurable experimental imprints.

Interestingly, this also provides a way to ascertain nov-
elty in physics: a system can be said to exhibit novel
physics if it is governed by a novel UC. In this regard, the
nascent field of active matter, nonequilibrium many-body
systems that generate local stresses at the constituent-
level [9, 10], has been a treasure trove of novel UCs: di-
verse new critical phenomena and nonequilibrium phases
have been uncovered in the recent past (see [11–19] for
recent examples).

However, while the novelty of these dynamical systems
can typically be identified through analytical RG calcu-
lations, the accompanying quantitative features can be
more difficult to discern. This is partly because RG
calculations have historically been perturbative in na-
ture, with the ϵ-expansion method being one of the most
popular methods used [20, 21]. In an ϵ-expansion, the
supposed “small” parameter ϵ corresponds to the value
between the spatial dimension of interest and a model-
dependent upper critical dimension, du. Unfortunately,
du is for many systems beyond any physical dimensions
(e.g., du = 4 for the critical Ising model), thus mak-
ing a quantitative RG calculation using the ϵ-expansion

method in physical dimensions, where ϵ = 1 or ϵ = 2,
questionable.

Undeterred, physicists continued to make great strides
in developing RG methodology. In particular, tremen-
dous advances have been made in exact (or func-
tional/nonperturbative) RG methods [22–24], which was
shown to be quantitatively accurate when applied to di-
verse physical systems [25]. Despite the namesake, prac-
titioners of exact RG (ERG) calculations almost never
claim that their outputs, such as the scaling exponents
computed, are actually exact when dealing with a non-
trivial RG fixed point. This is because an ERG calcula-
tion is invariably coupled to an approximation scheme,
such as the derivative expansion [26–29] or the BMW
approximation [30–32]. The accuracy of scaling expo-
nents obtained in such an approximation can typically
be improved, by incorporating higher-order terms which
are irrelevant by naive power-counting. For example, the
convergence of the derivative expansion to the virtually
exact exponents has been demonstrated quantitatively
for the critical point of O(N) models [28, 29].

Since in general it is impossible to perform an ERG cal-
culation on a completely generic Hamiltonian (i.e., with
infinitely many terms), no exact results can be expected.
Ironically, practitioners of the perturbative dynamic RG
(DRG) [33] have long claimed that they have found nu-
merically exact scaling exponents across a spectrum of
dimensions in biology-inspired systems [12, 34–38]. So
how can both observations be reconciled?

In this Letter, we provide strong evidence that for some
systems exact calculations can be performed using RG
methods. Specifically, we apply ERG to analyze the or-
dered phase of incompressible polar active fluids (IPAF)
in three dimensions, whose associate scaling exponents
were claimed to be determined exactly using the pertur-
bative DRG method [36].

By performing an ERG calculation on the same sys-
tem from scratch, we confirm the existence of the fixed
point, which previously was only assumed, and find that
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the scaling exponents [36] remain unchanged, thus af-
firming the exact nature of these quantities. Further, we
find an active Goldstone regime, where two other modes:
velocity fluctuations that are aligned with collective mo-
tion and wavevector respectively, become soft and exhibit
nontrivial scaling behavior.

In the following, we will first recapitulate the key ar-
guments in the DRG calculation in Ref. [36] that lead to
the claim of exact scaling exponents. We then reanalyze
IPAF using out-of-equilibrium ERG [39] with a more gen-
eral ansatz, and show that the scaling exponents remain
unmodified. In the course of the analysis, we will find a
more general fixed point than described before, realizing
the active Goldstone regime.

A recap of DRG on IPAF.—The equation of motion
(EOM) that governs generic IPAF corresponds to the
incompressible version of the Toner-Tu EOM for generic
compressible polar active fluids. Specifically, denoting
the system’s velocity field by v, the EOM is

∂tv+λ(v ·∇)v = −∇P−(a+b|v|2)v+µ∇2v+h.o.t.+ f ,
(1)

where P is the “pressure” term (or Lagrange multi-
plier) present to enforce the incompressibility condition
∇ · v = 0 and “h.o.t.” denotes higher order terms, i.e.,
terms of higher order in both v and the spatial deriva-
tives. Finally, f is a zero-mean Gaussian noise with statis-
tics:

⟨fm(r, t)fn(r
′, t′)⟩ = 2Dδd(r+ r′)δ(t+ t′). (2)

Since in the ordered phase the continuous rotational
symmetry is broken spontaneously, we expect that the
resulting Goldstone modes exhibit scaling behavior that
is described by a RG fixed point. Specifically, letting
u = v−|⟨v⟩|x̂ where x̂ denotes, without loss of generality,
the direction of the collective motion ⟨v⟩, we expect that

⟨u⊥(0, 0) · u⊥(r, t)⟩ = |r⊥|2χS
(
x− νt

|r⊥|ζ
,

t

|r⊥|z
)

, (3)

where “⊥” denotes components perpendicular to x̂ and so
u⊥ corresponds to the Goldstone modes in the ordered
phase. Furthermore, S in Eq. (3) is a scaling function
that is universal up to a model-dependent constant pref-
actor, and ν is again a model-dependent constant.

Using a DRG analysis, it is claimed in Ref. [36] that in
2 < d ≤ 4, the values of the scaling exponents are exactly
given by

χ =
3− 2d

5
, ζ =

d+ 1

5
, z =

2(d+ 1)

5
. (4)

We now summarize the chain of arguments leading to
the claim of exact scaling exponents that describe the
ordered phase of IPAF.

Step 1. An analysis of the linearized version of the
EOM (1) indicates that the correlation function ⟨u(k, t) ·

u(k′, t′)⟩ is dominated by ⟨uT (k, t) · uT (k
′, t′)⟩ where

uT (k, t) ≡ u⊥(k, t)− [u⊥(k, t) · k̂]k̂.
Step 2. After determining the dominant components

in the fluctuations, the most dominant nonlinear terms
in the EOM are identified by power counting. Retaining
only the most relevant nonlinear term, the reduced EOM
of u⊥, in the comoving frame along x̂, is found to be

∂tu⊥ + λ(u⊥ · ∇⊥)u⊥ = −∇⊥P + µ⊥∇2
⊥u⊥

+µx∂
2
xu⊥ + f⊥ . (5)

In particular, the upper critical dimension du is 4.
Step 3. The RG flow equations of the four model co-

efficients (λ, µ⊥, µx and D) evaluated at the fixed point
(that is assumed to exist) lead to four linear algebraic
equations in terms of the yet to be determined scaling ex-
ponents χ, ζ, and z, and potential graphical corrections.
However, since the structure of the EOM corresponds ex-
actly to the model equation analyzed by Toner and Tu
in 1995 [35], we know that only one of the coefficients
(µ⊥) admits a graphical correction (Gµ⊥). The four lin-
ear equations obtained at the RG fixed point thus enable
us to solve for the four unknowns: χ, ζ, z and Gµ⊥ , using
simple linear algebra, yielding Eq. (4).
Step 4. One can now use the scaling exponents ob-

tained to check that all other nonlinear terms ignored in
the analysis remain irrelevant for d = 3. Therefore, the
scaling behavior of the system is claimed to be described
by the exact scaling exponents obtained.
ERG on IPAF.—We now reanalyze the ordered phase

of IPAF from scratch to answer the questions: Does
the fixed point actually exist? And can nonperturba-
tive effects modify the scaling behavior (4)? Akin to
the treatment of passive incompressible fluids with long-
ranged forcing, described by the Navier-Stokes equation
[41, 42], we first convert the EOM (1) to an action using
the Martin-Siggia-Rose-De Dominicis-Janssen formalism
[43–45], keeping the pressure as an auxiliary variable that
enforces the incompressibility condition,

S
[
v̄,v, P̄,P

]
=

∫

r̃

{
v̄ ·

[
∂tv + λ(v · ∇)v +∇P − µ∇2v

+ (a+ b|v|2)v
]
−D|v̄|2 + P̄∇ · v

}
, (6)

where
∫
r̃
=

∫
ddrdt and v̄ and P̄ are the response fields

introduced by the formalism.
Expressed in this form, the functional renormalization

group formalism, based on the exact Wetterich equation
[22–24],

∂kΓk =
1

2
Tr

[(
Γ
(2)
k +Rk

)−1

∂kRk

]
, (7)

where the trace Tr sums over all degrees of freedom,
i.e., field indices, wavenumbers, and frequencies, can
now straightforwardly be applied. Eq. (7) describes the
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FIG. 1. a) Two-dimensional projection of the RG flow diagram in d = 3 (how the projection is obtained is explained in
Ref. [40]). The yellow pentagon denotes the trivial Gaussian fixed point and the blue diamond the universality class described
in [36]. At the green square, the system is in the Goldstone regime of the equilibrium O(N) model (for N = d − 1). Finally
the red circle denotes the active Goldstone regime described in this paper. b) A specific RG trajectory in d = 3 which shows a
crossover from the Gaussian fixed point (yellow pentagon) over the equilibrium Goldstone regime (green square) to the active
Goldstone regime (red circle). c) The scaling dimension of the 3 different dynamical modes along the same trajectory as in b).
In the active Goldstone regime the Goldstone modes scaling dimension, αT , agrees with the value calculated in Ref. [36], while
the other two modes not considered in Ref. [36], αT and αL, show novel scaling behavior.

coarse-graining flow of Γk, the scale-dependent effective
average action, from the microscopic action ΓΛ = S at
the UV-cutoff scale Λ to the macroscopic effective aver-
age action Γ = Γ0, which encodes the effective equations
of motion for the average fields, all fluctuation effects
included. This is facilitated by the regulator Rk which
freezes out fluctuations at scales larger than the length
scale k−1. The boundary conditions of Γk are enforced by
requiring RΛ ∼ ∞ and R0 = 0. Γk contains all informa-
tion about the statistics of the theory with fluctuations
until the scale k−1 incorporated. For example the in-

verse of Γ
(2)
k , the second order functional derivative of

Γk, contains the correlation and response functions.

In general, Eq. (7) can not be solved exactly and one
has to resort to an approximation scheme, specified by
an ansatz for the scale-dependent effective average ac-
tion Γk and the regulator Rk. Since Eq. (7) does not
hinge on the expansion of a small parameter, contrarily
to the DRG formalism, these approximations are a priori
nonperturbative.

For the regulator, we choose an algebraic cutoff [46],
which was previously used in polar active fluids [17], ex-
cept that it only acts on the wavevector component per-
pendicular to the collective direction of motion q⊥. In
Fourier space, it can be written as,

Rk(q̃, p̃) = µ⊥,k
k4

q2⊥




0 I 0 0
I 0 0 0
0 0 0 0
0 0 0 0


 δ̃qp , (8)

where I denotes a d-dimensional identity matrix, q̃ =
(q, ωq) and δ̃qp = (2π)d+1δd(q+p)δ(ωq +ωp). With this
regulator choice all momentum integrals appearing in the
trace of Eq. (7) can be taken analytically [40].
To confirm whether the results of Ref. [36] remain valid

in a nonperturbative setting, we choose an ansatz for Γk

that contains all terms present in the microscopic action,
including the cubic coupling bk that has been neglected
in Ref. [36] and additionally two nonlinear momentum-

dependant terms, characterized by z
(0)
k and z

(1)
k ,
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Γk[v̄,v, P̄,P] =

∫

r̃

{
v̄ ·

[
γk∂tv + λk(v · ∇)v +∇P − µ⊥

k ∇2
⊥v − µx

k∂
2
xv + (ak + bk|v|2)v

]
−Dk|v̄|2 + P̄∇ · v (9)

− z
(0)
k Tr v̄∇⊥ ·

[ (
|v|2 − v20,k

)
∇⊥,jv

]
− z

(1)
k v̄ · ∂x

[ (
|v|2 − v20,k

)
∂xv

]}
,

where v0,k =
√

|ak|/bk. Our motivation for including
these terms is to (a) check whether bk is actually an ir-
relevant coupling as claimed in Ref. [36], (b) try and shift
the fixed point location and thus potentially change the
value of the scaling exponents, as in the case of the crit-
ical O(N) model and many other systems [28, 29], and
(c) introduce couplings that could create graphical cor-
rections for the qx dependent part of the propagator, po-
tentially breaking one of the hyperscaling relations found
in the perturbative approach. In the perturbative calcu-
lation at one-loop level [36] these graphical correction are
vanishing. From a perturbative viewpoint, the additional

coupling z
(1)
k incorporates higher order loop effects which

could change this picture. Note that we could add up to
seven additional momentum-dependent nonlinear terms
of the same order, but only those included contribute
to the self-energy of the Goldstone mode [40]. Further,
since the terms containing the pressure field and its re-
sponse are linear they do not get renormalized [17, 42].
Therefore, we set their coefficients to unity. As deriva-
tives in Eq. (9) are split into contributions parallel and
transverse to the x-direction, our ansatz seemingly breaks
the rotational symmetry explicitly, however, all couplings
can be identified with a fully symmetric ansatz [40]. Fi-
nally, nonperturbative contributions could also arise from
the regulator choice: due to its dependence on µ⊥,k, the
graphical correction of µ⊥,k will be defined recursively,
leading to flow equations that are nonpolynomial in the
interaction terms.

The RG flow equations can now be deduced from
Eq. (7), evaluated around the expectation value of the
velocity v(x, t) = v0 and in the comoving frame by set-
ting external frequencies equal to ω = λkqxv0 [40]. All
but the Goldstone mode propagators are set to zero since
they are of subleading order [47]. This is also justified a
posteriori [40].

Expressing the scale-dependent coefficients in Eq. (9)
in dimensionless units (defined in [40] and denoted with

an overbar here), the flow equations read

∂lγk = ∂lDk = 0 , ∂lµ
⊥
k = η⊥k µ

⊥
k , ∂lµ

x
k = ηxkµ

x
k (10)

∂lλ̄k =
1

2

(
4− d− 5

2
η⊥k − 1

2
ηxk

)
λ̄k , (11)

∂lb̄k =

(
4− d− 3

2
η⊥k − 1

2
ηxk

)
b̄k + fb , (12)

∂lz̄
(a)
k =

(
2− d− 3− 2a

2
η⊥k − 1 + 2a

2
ηxk

)
z̄
(a)
k + f (a)

z ,

(13)

where l = − log k/Λ, and the detailed expressions for the
f ’s and η’s are given in Ref. [40].
At a fixed point of the flow equations [Eqs. (10)-(13)],

the scaling dimension of the Goldstone modes can be ex-
tracted from the k-dependence of the equal-time correla-

tion function [contained in (Γ
(2)
k=q)

−1] [40, 48] (in Fourier
space),

CT (q) ≡
∫

dω ⟨uT (q, ω) · uT (−q,−ω)⟩ (14)

≈ 2Dk

γkµkk2

∫
dω̄

δij − x̂ix̂j − q̂⊥,iq̂⊥,j

| − iω̄ + q̄2⊥ + q̄2x|2
∣∣∣∣
k=q

∼ qαT ,

with the dimensionless wavenumbers and frequencies,

q̄⊥ =
q⊥
k

, q̄x =
qx
k

√
µx
k

µ⊥
k

, ω̄⊥ =
ω⊥γk
µ⊥
k k

2
, (15)

and αT = η⊥ − 2. This exponent is related to the other
exponents via 2χ = −αT − d+ 1− ζ.
Note that in our approximation scheme, µx

k does ac-
quire a graphical correction (10). If ηxk were to take a
nonzero value at the fixed point, this would imply that
the scaling exponents obtained in [36] receive graphical
corrections and are thus not exact.
The flow equations [Eqs. (10)-(13)] can be integrated

straightforwardly at different initial conditions to obtain
the flow diagram, Fig. 1a. Besides the trivial Gaussian
FP (yellow pentagon), it contains 3 other nontrivial FPs
(modulo the sign of λ̄k).
FP 1: On the manifold b̄k = 0, we find the fixed point

(blue diamond) whose existence was assumed in Ref. [36].
We have shown here explicitly that it exists (in d = 3 the
fixed point values are: λ̄∗ = ±5.5 and all other couplings
vanishing) and confirm the scaling exponents that have
previously been found, αT = −2(d+ 1)/5 (4).
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FP 2: On the other manifold, where λ̄k = 0, we find
the fixed point (b̄∗ = 8.6 and all other couplings vanish-
ing in d = 3) associated to the Goldstone regime of the
O(N) model (N = (d − 1) here, since v is a vector in
realspace and one mode is removed by the incompress-
ibility condition). At this fixed point, the scaling behav-
ior of the Goldstone modes remains unmodified from the
mean-field behavior αT = −2, however, the mode par-
allel to the flocking direction, ux = u · x̂, becomes soft
with a scaling dimension αx = d − 4, which is differ-
ent from mean-field theory, where one would expect this
mode to have a finite correlation length [49–52]. In the
ERG formalism, this can again be seen from the equal
time correlation [analogously defined as in Eq. (14)] [52],

Cx(q) ≈
2Dk

γkµkk2

∫
dω̄

1

| − iω̄ + 2b̄kv̄20,k + q̄2⊥ + q̄2x|2

∣∣∣∣∣
k=q

k→0−−−→ Dk

2γkbkv20,k

∣∣∣∣∣
k=q

∼ qαx , (16)

so generally αx = ∂l log(bk) in the large k limit, since v0,k
approaches a fixed value in physical dimensions and Dk

and γk do not renormalize. Therefore, close to the Gaus-
sian fixed point (yellow pentagon, l <∼ 10 in Fig. 1b and
1c) αx = 0, indicating exponential decay of the correla-
tion function due to a finite correlation length. However,
at the Goldstone fixed point (green square), the dimen-
sionless b̄k takes a fixed point value such that bk vanishes
asymptotically with

αx = d− 4 +
3

2
η⊥ +

1

2
ηx . (17)

Since η⊥ = ηx = 0 at this fixed point, we recover αx =
d− 4.

The longitudinal mode, parallel to the transverse mo-
mentum, uL = q̂⊥ · u is enslaved to the mode in the
x-direction via the incompressibility condition q⊥uL =
−qxux, and therefore takes the same scaling dimension
αL = αx, since there is no anisotropic scaling at this fixed
point. The RG flow of the couplings and of the scaling
dimensions close to this fixed point is shown in Fig. 1b
and 1c for values of 15 <∼ l <∼ 30.

FP 3: Now we turn to the attractive fixed point (red
circle) that describes generically the ordered phase of
IPAF. In this active Goldstone regime, both λ̄k and b̄k
take nonvanishing fixed point values and the higher or-

der coupling z
(0)
k is generated (in d = 3: λ̄∗ = ±7.1,

b̄∗ = 5.7, z
(0)
∗ = −1.4 and all other couplings vanish-

ing). The coupling z
(1)
k , however, which generates the

anomalous dimension in the x-direction ηxk ∼ z
(1)
k , van-

ishes such that ηxk = 0. Therefore, the scaling behavior
of the Goldstone mode remains unmodified compared to
the b̄k = 0 fixed point, providing strong evidence that the
exponents described in Ref. [36] are indeed exact with
αT = −2(d+ 1)/5.

Interestingly, as in the equilibrium Goldstone regime,
the same argument for the fluctuations in the x-direction
(16) applies, yielding again Eq. (17). At this fixed point,
however, η⊥ = 2(4− d)/5, hence, αx = 2(d− 4)/5. Fur-
ther, since the scaling at this fixed point is no longer
isotropic, we find that the scaling dimension parallel to
the transverse momentum differs from that in the x-
direction: αL = αx + ηx − η⊥ = 4(d − 4)/5. Again,
the RG flow of the couplings and of the scaling dimen-
sions close to this fixed point is shown in Fig. 1b and 1c
for values of l >∼ 35.

To recapitulate, in the active Goldstone regime, the
fluctuations in the flocking direction (ux) and longitudi-
nal fluctuations (uL) become long-ranged due to interac-
tions with the Goldstone modes.

Having determined the values of these additional ex-
ponents not considered in Ref. [36], we can further check
that they are consistent with the “nonlinear-σ model”
picture. Namely, if we assume that

√
|v⊥|2 + v2x = constant , (18)

then ux ∼ |u⊥|2. Namely, the exponent governing the
spatial decay of the equal-time ux-ux correlation, χx, is
exactly 2χ. Hence, αx = 2αT +d−1+ ζ, which gives the
expected value of 2(d− 4)/5. Having found αx, one can
then use the incompressibility condition again to deter-
mine the scaling dimension of uL.

Summary & Outlook.—Our exact renormalization
group analysis not only confirms the exact scaling expo-
nents in 3D for incompressible polar active fluids (IPAF)
first described in Ref. [36], it also uncovers many novel
features of the active matter system. First, we demon-
strate the existence of the nontrivial renormalization
group (RG) fixed point (as opposed to being presumed
in Ref. [36]). Second, we obtain the actual RG flow dia-
gram (Fig. 1a) that i) demonstrates the relevance of the
coefficient bk [associated with the nonlinear term |v|2v
in (1)], which was omitted in the analysis of Ref. [36]
[see Eq. (5)], and yet whose presence does not modify
the exact scaling exponents; and ii) connects IPAF to
the thermal O(N) model (when λ = 0). Third, we un-
cover two novel exact scaling exponents that describe the
scaling behaviors of uL and ux.

Our work provides convincing evidence that exact scal-
ing exponents (and potentially other universal quanti-
ties, such as amplitude ratios) can be obtained using RG
methods at non-Gaussian RG fixed points. In particu-
lar, exact calculations seem possible for systems where
the number of scaling exponents plus allowed graphical
corrections is smaller than or equal to the number of rel-
evant coefficients in the equations of motion, as in the
case of IPAF considered here. An immediate and impor-
tant future direction is therefore to identify the precise
criteria for exact RG calculations to be possible.
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ANSATZ AND LINEAR ANALYSIS

The ansatz for the effective action Γk presented in the main text looks like it breaks the continuous rotational
symmetry of the theory explicitly, since it contains couplings for terms with derivatives oriented in the flocking
direction and perpendicular to it. It is however equivalent to the following ansatz that manifestly respects the
rotational symmetries,

Γk[v̄,v, P̄,P] =

∫

r̃

[
P̄∇ivi −Dkv̄iv̄i + v̄i ·

{
γk∂tvi + λk(vj · ∇j)vi +∇iP + U ′

k(κ)vi

−∇j (Zk(κ)∇jvi)−∇j (Yk(κ)vjvm∇mvi)

}]
, (1)

where κ = |v|2/2 and the term U ′
k is defined as a derivative such that Uk is the scale-dependent effective potential.

The two-point functions associated to this ansatz, evaluated in a uniform background field (v̄ = P̄ = P = 0, v = vu)
are,

Γ
(2,0,0,0)
k,ij [0,vu, 0, 0](q̃, p̃) =− 2Dkδij δ̃qp , (2)

Γ
(1,1,0,0)
k,ij [0,vu, 0, 0](q̃, p̃) =

{[
−iγkωq + iλkvuqx + U ′

k(κu) + Zk(κu)q
2 + Yk(κu)(vu · q)2

]
δij + U ′′

k (κu)vu,ivu,j
}
δ̃qp ,

(3)

Γ
(1,0,0,1)
k,i [0,vu, 0, 0](q̃, p̃) = iqi , (4)

Γ
(0,1,1,0)
k,i [0,vu, 0, 0](q̃, p̃) =− iqi , (5)

where we have used the following identities,

δ

δvj(q̃)
vi(r̃) = δije

iωqt−iq·r ,
δ

δv̄j(q̃)
v̄i(r̃) = δije

iωqt−iq·r ,
δ

δP(q̃)
P(r̃) = eiωqt−iq·r ,

δ

δP̄(q̃)
P̄(r̃) = eiωqt−iq·r , (6)

which also define our Fourier-Conventions. Note that the only difference between the contribution in the x-direction
and the isotropic term is generated by Uk, which will lead to the freezing out of the correlations in this direction. In
general, we could write down 7 other terms at the same order in derivatives as the terms characterized by Zk and Yk,
however, since those would not be isotropic, their linear contributions would only contribute to the subleading x- or
longitudinal modes or create nonlinear couplings to the same modes. Both effects would be vanishing in the small k
limit anyways.

By expanding the functions around the minimum of the potential, v0,k, where U ′
k(κ0,k) = 0 we can identify the

couplings from the main-text as,

ak = 2κ0,kU
′′
k (κ0,k) , bk = U ′′

k (κ0,k) , µ⊥
k = Zk(κ0,k) , µx

k = Zk(κ0,k) + 2Yk(κ0,k)κ0,k , (7)

z
(0)
k = Z ′

k(κ0,k) , z
(1)
k = Z ′

k(κ0,k) + 2Yk(κ0,k) . (8)

All couplings can therefore be obtained from the two-point function, such that all flow equations can be obtained
from the second-order functional derivative of the Wetterich equation,

∂lΓ
(2)
k = ∂l′

[
−1

2
Tr Γ

(4)
k Gk +Tr Γ

(3)
k GkΓ

(3)
k Gk

]

k′=k

, (9)
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with Gk being the regulated propagator

Gk =
(
Γ
(2)
k +Rk′

)−1

, (10)

and k and k′ are being treated as independent scale variables, such that ∂l′ only acts on the k-dependance of the
regulator. Defining,

G−1
k,ij(q̃) =

1

V T
Γ
(1,1,0,0)
k,ij [0,vu, 0, 0](q̃,−q̃) , (11)

where V T = (2π)d+1δd+1(0) is the spatiotemporal Volume, the unregulated propagator G̃k can be obtained by inverting
the two-point function Γ(2),

G̃k =
(
Γ(2)

)−1

=




−2Dk G−1
k (q̃) 0 iq

(GT
k )

−1(−q̃) 0 −iq 0
0 iqT 0 0

−iqT 0 0 0




−1

(12)

=




0 GT
k,⊥(−q̃) 0 PT

l (−q̃)

Gk,⊥(q̃) 2DkGk,⊥(q̃) ·GT
k,⊥(−q̃) Pr(q̃) 2DkGk,⊥(q̃) ·PT

l (−q̃)

0 PT
r (−q̃) 0

−iPT
r (−q̃)·(GT

k )−1(−q̃)·q
q2

Pl(q̃) 2DkPl(q̃) ·GT
k,⊥(−q̃)

iqT ·G−1
k (q̃)·Pr(q̃)

q2 2DkPl(q̃) ·PT
l (−q̃)


 (13)

where we have defined,

Pr(q̃) =
−iq+ iGk,⊥(q̃) ·G−1

k (q̃) · q
q2

, Pl(q̃) =
−iqT + iqT ·G−1

k (q̃) ·Gk,⊥(q̃)

q2
, (14)

and the transverse propagator,

Gk,⊥ = Gk,x⊥ +Gk,T , (15)

with,

Gk,x⊥(q̃) = Gk,x⊥(q̃)Px⊥(q) =
Px⊥(q)

−iγkωq + ak
q2⊥
q2 + iλkv0qx + µ⊥

k q
2
⊥ + µx

kq
2
x

(16)

Gk,T (q̃) = Gk,T (q̃)PT (q) =
PT (q)

−iγkωq + iλkv0qx + µ⊥
k q

2
⊥ + µx

kq
2
x

, (17)

and

Px⊥,ij(q) =

(
q⊥
q
x̂i −

qx
q
q̂⊥,i

)(
q⊥
q
x̂j −

qx
q
q̂⊥,j

)
(18)

PT,ij(q) = δij − x̂ix̂j − q̂⊥,iq̂⊥,j , (19)

which are the projector parallel to the component of x̂ that is perpendicular to q and the projector transverse to both
q and x̂ resepectively. The contributions from the pressure term, produce precisely the desired effect that all velocity
correlation and response functions (corresponding to v̄ and v entries) are transverse to the wavevector q. Most of the
correlation functions involving the pressure P or its response field P̄ (corresponding to all other entries) are nonzero,
but do not enter the RG calculation since there are no interaction terms involving the pressure. To represent the
graphical corrections diagrammatically later, we also adopt a graphical notation for these two propagators,

q̃
i j = Gk,T,ij(q̃) , (20)

q̃
i j = Gk,x⊥,ij(q̃) , (21)
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and the noise term,

i j = 2Dk . (22)

External lines never imply a propagator (except in Eqns. (20), (21) and (43)).
Further, from the two-point function G̃k, the correlation function C⊥ can be obtained, given by the (v,v) entry of

G̃k, i.e.,

C⊥(q̃) = 2DkGk,⊥(q̃) ·GT
k,⊥(−q̃) . (23)

Note, that q2xCxx = q2⊥Cq⊥q⊥ , as expected from the incompressibility condition qxux + q⊥uL = 0.
Since the contribution of Gk,x⊥ is massive, i.e., ak has a linear scaling dimension of 2, it will freeze out during the

RG-flow and no longer contribute in the large-scale limit. We can therefore make the approximation that

Gk,x⊥ = Px⊥(q)
q2

akq2⊥
, (24)

which will become exact in the limit k → 0. In most diagrams one can even set Gk,x⊥ = 0 directly, leading to the
vanishing of that diagram. However, there is one diagram that needs to be treated more carefully, which is discussed
below.

By shifting the frequency ωq → ωq+qxλkv0,k/γk, the only other coupling with positive scaling dimension, i.e., λkv0,
can be removed from the propagator. It corresponds to a Galilei shift to the comoving frame. As we show later, this
can be done for both internal as well as external frequencies for all graphical corrections appearing later.

REGULATOR CHOICE

As the regulator, we choose an algebraic cutoff,

Rk(q̃, p̃) = µ⊥,k
k4

q2⊥




0 I 0 0
I 0 0 0
0 0 0 0
0 0 0 0


 δ̃qp , (25)

where,

r(y) =
1

y
(26)

and that acts only on transverse momenta. With this choice, all integrals appearing in the graphical corrections can
be taken analytically and, since the regulator is frequency independent, causality is preserved naturally. Since the
regulator modifies the the linear theory only by an isotropic term, the regulated propagators are obtained straight-
forwardly,

Gk,x⊥(q̃) =
1

−iγkωq + ak
q2⊥
q2 + iλkv0qx + µ⊥

k q
2
⊥ + µx

kq
2
x + µ⊥

k′k′
2r(q2⊥/k

′2)
(27)

Gk,T (q̃) =
1

−iγkωq + iλkv0qx + µ⊥
k q

2
⊥ + µx

kq
2
x + µ⊥

k′k′
2r(q2⊥/k

′2)
. (28)

The limit from Eq. (24), which must be taken in dimensionless units, is still valid in the regulated theory. Further,
since the scale derivative of (25),

∂lRk(q̃, p̃) = (η⊥k − 4)µ⊥,k
k4

q2⊥




0 I 0 0
I 0 0 0
0 0 0 0
0 0 0 0


 δ̃qp , (29)

depends on η⊥k , the flow equation for µ⊥
k defines a recursion relation for η⊥k , the solution of which is nonpolynomial in

at least some of the couplings. For instance, the nonperturbative nature of using such a regulator is enough to reveal
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the nonperturbative fixed point of the KPZ equation in the RG flow [1], even if the scaling exponents are not well
described in this case. We therefore use this regulator to check whether the same effect plays a role for incompressible
polar active fluids.

We have also studied the following regulator with a sharp cutoff,

Rk(q̃, p̃) = −2D [Θ(|q⊥| − k)− 1]




I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 δ̃qp , (30)

which also allows for an analytic solution of the same integrals as with the algebraic regulator, however, we found that
the resulting RG-flow becomes divergent in d = 3. In larger dimensions, the scaling exponents presented in the main
paper remained however unchanged. Since it has been shown previously, that sharp regulators can produce unreliable
results in nontrivial FRG approximations [2], we believe that the observed divergence at d = 3 was an artifact of
using this particular regulator.

RG FLOW EQUATIONS

As outlined above, the flow equations for all couplings (7)-(8) can be obtained from Eq. (9), for which we still need

to determine the vertices Γ
(3)
k and Γ

(4)
k . The only nonvanishing components of these vertices are

Γ
(1,2,0,0)
ijk (q̃, h̃, k̃) = [−iλk(kjδik + hkδij) + bkv0,k(δij x̂k + δjkx̂i + δkix̂j) (31)

− z
(0)
k v0,k(δij x̂kq⊥ · h⊥ + δikx̂jq⊥ · k⊥)

−z
(1)
k v0,k(δij x̂kqxhx + δikx̂jqxkx)

]
δ̃qhk ,

Γ
(1,3,0,0)
ijkl (q̃, h̃, k̃, l̃) = [bk(δklδij + δjlδik + δilδkj) (32)

− z
(0)
k (δijδklq⊥ · h⊥ + δikδjlq⊥ · k⊥ + δilδjkq⊥ · l⊥)

−z
(1)
k (δijδklqxhx + δikδjlqxkx + δilδjkqxlx)

]
δ̃qhkl .

Imposing momentum conservation at each vertex, we introduce their graphical notation,

q, i
h, j

q− h, k
=

1

V T
Γ
(1,2,0,0)
ijk (q̃,−h̃, h̃− q̃) , (33)

q, i
h, j
k, k
q− h− k, l

=
1

V T
Γ
(1,3,0,0)
ijkl (q̃,−h̃,−k̃, h̃+ k̃− q̃) (34)

where both propagators [Eqns. (27) and (28)] can connect to any of the in- or outgoing lines.
The graphical corrections to the 2-point functions,

Fv(qx,q⊥, ωq) =
1

V T
∂lΓ

(v̄v)
k

∣∣∣
v̄=0,v=x̂v0,k,P̄=0,P=0

=
1

V T

δ2∂lΓk

δv̄(q̃)δv(−q̃)

∣∣∣∣
v̄=0,v=x̂v0,k,P̄=0,P=0

, (35)

FD(qx,q⊥, ωq) =
1

V T
∂lΓ

(v̄v̄)
k

∣∣∣
v̄=0,v=x̂v0,k,P̄=0,P=0

=
1

V T

δ2∂lΓk

δv̄(q̃)δv̄(−q̃)

∣∣∣∣
v̄=0,v=x̂v0,k,P̄=0,P=0

, (36)

can then be represented as,

Fg(q̃) =
1

2 q q
−

q̃ q̃
−

q̃ q̃
, (37)

FD(0) = 0 . (38)
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Here, we have already set to zero all diagrams that contain the Gk,x⊥-propagator, except for the last diagram in
Eq. (37) hinted at above. The reason is that the three-point vertices contain contrbutions proportional to v0,k, which
diverges in dimensionless units, such that the total diagram remains finite. Since the first diagram in Eq. (37) is
independent of frequencies, the tilde on the wavevectors has been omitted. The usual Feynman rules apply and the ∂′

l

derivative needs to still be applied to each expression. Internal wavenumbers and frequencies are not written explicitly.
Plugging in the expressions for each diagram, we find,

q, i q, j

=2Dk∂l′

∫

h̃

[
Gk,T (h̃)Gk,T (−h̃)

]

×
{
bk [(d− 2)δij + 2PT,ij(h)] + (d− 2)δij

(
z
(0)
k q2⊥ + z

(1)
k q2x

)}∣∣∣
k′=k

, (39)

q̃, i q̃, j
=2Dk∂l′

∫

h̃

[
PT,mn(h)Gk,T (h̃)Gk,T (−h̃)PT,kl(q− h)Gk,T (q̃− h̃)

]

× [iλk(qmδik + hkδim) + bkv0,kδmkx̂i]

×
[
iλk(qnδlj − hjδln) + bkv0,kδlnx̂j + z

(0)
k v0,k(δlnx̂j [h⊥ − q⊥] · h⊥) + z

(1)
k v0,k(δlnx̂j [hx − qx]hx)

]∣∣∣
k′=k

, (40)

q̃, i q̃, j
=2Dk∂l′

∫

h̃

[
PT,mn(h)Gk,T (h̃)Gk,T (−h̃)Px⊥,kl(q− h)Gk,x⊥(q̃− h̃)

]

×
[
iλk(qmδik + hkδim) + bkv0,k(δimx̂k + δmkx̂i) + z

(0)
k v0δimx̂kq⊥ · h⊥ + z

(1)
k v0δimx̂kqxhx

]

×
[
iλk(qnδlj − hjδln) + bkv0,k(δlnx̂j + δnj x̂l) + z

(0)
k v0,kδlnx̂j [h⊥ − q⊥] · h⊥ + z

(1)
k v0,kδlnx̂j [hx − qx]hx

]∣∣∣
k′=k

.

(41)

Projecting Eq. (41) transverse to both x̂ and q, plugging in Eq. (24), using ak = 2κ0,kbk = v20,kbk and taking the
limit v0,k → ∞ (technically speaking, in these physical dimensions, v0,k remains finite and all other couplings become
small, but the effect is the same), it simplifies to,

PT,im(q)
q̃,m q̃, n

PT,nj =2Dk∂l′

∫

h̃

[
Gk,T (h̃)Gk,T (−h̃)

]
{bkPT,im(q)PT,mn(h)PT,nj(q)}

∣∣∣∣
k′=k

, (42)

where some terms vanished due to antisymmetry with respect to reflection of the h integration. From the form in
Eq. (42) one can see that it cancels out the term proportional to PT,ij(h) from Eq. (39), once it is projected transverse
to both x̂ and q and equipped with the prefactors from Eq. (37). This effect is related to the fact that if one were
to solve the EOM for ux in the large scale-limit, it would remove the nonlinearity arising from the bk coupling (i.e.
in the equilibrium limit, where λk = 0, the Goldstone modes becomes effectively Gaussian). The fact that bk is still
a coupling that plays a role in this RG-calculation is that this cancellation will only happen fully on the tree level.
Our approach however is based on the effective action, i.e., the 1PI-generating functional, where tree-level effects are
intentionally removed. In other words, the 1-PI 4-vertex is finite but will be cancelled out by tree diagrams when
calculating, e.g., the 4-point correlation functions after the effective action has been determined, i.e., when k = 0.

For example, in the following correlation function,
〈
vT,i(q̃)v̄T,j (̃j)v̄T,k(k̃)v̄T,l(̃l)

〉

= − q, i

h, j

k, k

l, l

+

q, i

h, j

k, k

l, l
+

q, i

k, k

h, j

l, l
+

q, i

l, l

k, k

h, j

= 0 , (43)
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only the first diagram is a 1-PI contribution, which is nonzero. However, the three following diagrams cancel its
contribution in the limit of small k, such that the correlation function vanishes. In Eq (43), external lines do
correspond to a propagator.

From the F’s the flow equations for all the couplings [Eqns. (7)-(8)] can be projected:

∂lκ0,k = − 1

bk

1

d− 2
[TrPT (q)Fv(qx,q⊥, ωq + qxλk/γkv0,k)]q̃=0 , (44)

∂lγk =
i

d− 2

[
∂

∂ωq
TrPT (q)Fg(qx,q⊥, ωq + qxλk/γkv0,k)

]

q̃=0

, (45)

∂lµ
⊥
k =

1

2(d− 2)

[
∂2

∂q2⊥
TrPT (q)Fg(qx,q⊥, ωq + qxλk/γkv0,k)

]

q̃=0

, (46)

∂lµ
x
k =

1

2(d− 2)

[
∂2

∂q2x
TrPT (q)Fg(qx,q⊥, ωq + qxλk/γkv0,k)

]

q̃=0

, (47)

∂lλk = − i

g0(d− 2)

[
∂

∂qx
TrPT (q)Fg(qx,q⊥, ωq + qxλk/γkv0,k)

]

q̃=0

, (48)

∂lbk =
1

v0,k

1

d− 2

∂

∂v0,k
[TrPT (q)Fg(qx,q⊥, ωq + qxλk/γkv0,k)]q̃=0 , (49)

∂lz
(0)
k =

1

v0,k

1

2(d− 2)

∂

∂v0,k

[
∂2

∂q2⊥
TrPT (q)Fg(qx,q⊥, ωq + qxλk/γkv0,k)

]

q̃=0

, (50)

∂lz
(1)
k =

1

v0,k

1

2(d− 2)

∂

∂v0,k

[
∂2

∂q2x
TrPT (q)Fg(qx,q⊥, ωq + qxλk/γkv0,k)

]

q̃=0

, (51)

∂lDk = − 1

2(d− 2)
[TrPT (q)FD(qx,q⊥, ωq + qxλk/γkv0,k)]q̃=0 , (52)

where the Galilei transformation mentioned above is implemented on both the external and internal frequencies, ωq

and ωh, via shifting the argument of the F’s and a shift in the frequency integration respectively, to ensure comoving
fluctuations are captured. Upon rescaling the couplings to dimensionless units,

κ̄0,k =
γk

√
µ⊥
k µ

x
k

kd−2DkSd−1
κ0,k , λ̄k =

√√√√ DkSd−1

k4−dγkµ⊥ 3
k

√
µ⊥
k

µx
k

λk , b̄k =
DkS

d−1

k4−dγkµ⊥ 2
k

√
µ⊥
k

µx
k

bk , (53)

z̄
(0)
k =

DkS
d−1

k2−dγkµ⊥ 2
k

√
µ⊥
k

µx
k

z
(0)
k , z̄

(1)
k =

DkS
d−1

k2−dγkµ⊥
k µ

x
k

√
µ⊥
k

µx
k

z
(1)
k , (54)

and introducing the anomalous dimensions,

η⊥k =
∂lµ

⊥
k

µ⊥
k

, ηxk =
∂lµ

x
k

µx
k

, ηγk =
∂lγk
γk

, ηDk =
∂lDk

Dk
, (55)

the flow equations take the form,

∂lκ̄0,k = (d− 2 + ηγk − ηDk +
1

2
η⊥k +

1

2
ηxk)κ̄0,k + fκ , (56)

∂lλ̄k =
1

2
(4− d+ ηDk − ηλk − 5

2
η⊥k − 1

2
ηxk)λ̄k , (57)

∂lb̄k = (4− d+ ηDk − ηλk − 3

2
η⊥k − 1

2
ηxk)b̄k + fb , (58)

∂lz̄
(0)
k = (2− d+ ηDk − ηλk − 3

2
η⊥k − 1

2
ηxk)z

(0)
k + f (0)

z , (59)

∂lz̄
(1)
k = (2− d+ ηDk − ηλk − 1

2
η⊥k − 3

2
ηxk)z

(1)
k + f (1)

z , (60)
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where,

ηγk = 0 , (61)

ηDk = 0 , (62)

η⊥k =
(d− 2)(4− η⊥k )Γ(

6−d
4 )Γ(d4 )

16
√
π

z̄
(0)
k − (4− η⊥k )(1 + (5− 2d)d)Γ( 4−d

4 )Γ( 2+d
4 )

32
√
π(d2 − 1)

λ̄2
k , (63)

ηxk =
(d− 2)(4− η⊥k )Γ(

6−d
4 )Γ(d4 )

16
√
π

z̄
(1)
k , (64)

fκ = − (d− 2)(4− η⊥k )Γ(
6−d
4 )Γ(d4 )

16
√
π

, (65)

fb = − (d− 2)(4− η⊥k )Γ(
6−d
4 )Γ(d4 )

64
√
π

b̄k

(
dz

(0)
k + 2z

(1)
k

)
+

(d− 2)(4− η⊥k )Γ(
4−d
4 )Γ( 2+d

4 )

16
√
π

b̄2k , (66)

f (0)
z = − (4− η⊥k )

512(d2 − 1)
√
π

{[
8(d− 2)(d2 − 1)

(
dz̄

(0)
k + 2z̄

(1)
k

)
z̄
(0)
k + (6d− d2)(2d2 − 5d− 1)λ̄2

k b̄k

]
Γ

(
6− d

4

)
Γ

(
d

4

)

+4
[
8(d− 2)(d2 − 1)b̄kz̄

(0)
k + (2d2 − 5d− 1)

(
(2 + d)z̄

(0)
k + 2z̄

(1)
k

)
λ̄2
k

]
Γ

(
4− d

4

)
Γ

(
2 + d

4

)}
, (67)

f (1)
z = − (d− 2)(4− η⊥k )

64
√
π

z̄
(1)
k

[(
dz̄

(0)
k + 2z̄

(1)
k

)
Γ

(
6− d

4

)
Γ

(
d

4

)
+ 4b̄kΓ

(
4− d

4

)
Γ

(
2 + d

4

)]
. (68)

To solve the flow equations, Eq. (63) is first solved algebraically for η⊥k and then the flow equations are solved
numerically by integrating from different initial conditions. If β̄k = 0 and all other couplings nonzero initially, the
system is attracted to one of the blue diamonds in Fig. 1a in the MT. For λk = 0 and all other couplings nonzero
initially, the system is attracted to the green square in Fig. 1a of the MT and for completely generic couplings the
system is attracted to one of the red circles in Fig. 1a of the MT.

The flow diagram, Fig. 1a of the MT, is projected from the 4-dimensional coupling space (after having plugged in
the expressions for the η’s, and ignoring κ̄0, since all other flow equations no longer depend on it) in the following way:

First, since z
(1)
k is always attracted towards zero at every fixed point, it is set to zero. Second, z

(0)
k is interpolated in

such a way, that the location and stability of the fixed points is not impacted, i.e., we set,

z̄
(0)
k = z̄

(0)∗
k

λ̄2
k

λ̄∗
k
2

b̄k
b̄∗k

, (69)

where z̄
(0)∗
k , λ̄∗

k and b̄∗k denote the values of z̄
(0)
k , λ̄k and b̄k at the attractive fixed point (red circle in Fig. 1a of the

MT), i.e., for d = 3: z̄
(0)∗
k = −1.38, λ̄∗

k = 7.13 and b̄∗k = 5.73. Since z̄
(0)∗
k = 0 at all the other fixed points, the locations

and stabilities of all fixed points remains unchanged.
In d = 3 this produces the following two-dimensional set of ordinary differential equations,

∂lλ̄k =
128λ̄k

√
π − 72z̄

(0)∗
k Γ2

(
3
4

) λ̄3
k

λ̄∗
k
2
b̄k
b̄∗k

− 9Γ2
(
5
4

)
λ̄3
k

256
√
π + 16z̄

(0)∗
k Γ2

(
3
4

) λ̄2
k

λ̄∗
k
2
b̄k
b̄∗k

+ 2Γ2
(
5
4

)
λ̄2
k

, (70)

∂lb̄k =
128

√
πb̄k − 64Γ2

(
3
4

)
z̄
(0)∗
k Γ2

(
3
4

) λ̄2
k

λ̄∗
k
2

b̄2k
b̄∗k

− Γ2
(
5
4

)
(5λ̄2

k + 32b̄k)b̄k

128
√
π + 8z̄

(0)∗
k Γ2

(
3
4

) λ̄2
k

λ̄∗
k
2
b̄k
b̄∗k

+ Γ2
(
5
4

)
λ̄2
k

, (71)

from which Fig. 1a of the MT is produced. We also produced a flow diagram by simply solving the flow equation for

the fixed point solution of z̄
(0)
k in terms of λ̄k and b̄k. While this method seems more elegant on paper, the resulting

flow trajectories in the projected two-dimensional plane was much less accurate compared to the method used here.
This is probably coincidental.
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