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TRANSFERRING COMPACTNESS

TOM BENHAMOU AND JING ZHANG

Abstract. We demonstrate that the technology of Radin forcing can
be used to transfer compactness properties at a weakly inaccessible but
not strong limit cardinal to a strongly inaccessible cardinal. As an appli-
cation, relative to the existence of large cardinals, we construct a model
of set theory in which there is a strongly inaccessible cardinal κ that is
n-d-stationary for all n ∈ ω but not weakly compact. This is in sharp
contrast to the situation in the constructible universe L, where κ being
(n+ 1)-d-stationary is equivalent to κ being Π

1
n-indescribable. We also

show that it is consistent that there is a cardinal κ ≤ 2ω such that Pκ(λ)
is n-stationary for all λ ≥ κ and n ∈ ω, answering a question of Sakai.

0. Introduction

In general, compactness refers to the phenomenon that if some property
holds for all small substructures then it holds for the structure itself. For
example, a compact topological space asserts that any collection of closed
sets with the finite intersection property, has a non-empty intersection; The
compactness theorem for first order Logic states that any first order theory
such that all of its finite subsets are consistent must also be consistent; In
cardinal arithmetic, Silver’s theorem [29] asserts that if 2ℵα = ℵα+1 for any
α < ω1, then necessarily 2ℵω1 = ℵω1+1. This compactness phenomenon does
not occur at the level of ℵω, as Magidor proves [21] that it is consistent that
2ℵn = ℵn+1 for every n < ω while 2ℵω > ℵω+1. In Graph Theory, König’s
Lemma asserts that if G has an infinite, locally finite, and connected graph,
then there is an infinite simple path. This lemma ensures for example that
ω has the tree property which is a paradigmatic compactness principle which
says that any countably infinite tree, such that every level is finite must have
a branch.

The dual notion of compactness is reflection i.e. if some property holds
at some mathematical structure, then there must be a small substructure
for which it was true. So compactness of some property φ is equivalent
to the reflection of ¬φ. It turns out that many important instances of
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compactness such as free of abelian groups, Metrizable topological spaces
[23] and others [28, 30] boil down to a specific reflection principle known
as stationary reflection. Recall that a subset C ⊆ κ is a closed unbounded
(club) if C is closed in the order topology of κ and in unbounded below κ.
A subset S ⊆ κ is stationary if it intersects any club.

Definition 0.1. We say that a cardinal κ satisfies sationary reflection if for
any stationary set S ⊆ κ, there is α < κ of uncountable cofinality such that
S ∩ α is stationary at α.

Usually, reflection principles require assumptions beyond ZFC i.e. large
cardinals. In fact, some large cardinal notions are tailored to satisfy reflec-
tion and compactness properties e.g. weakly/strongly/super-compact cardi-
nals. One specific hierarchy of large cardinals which this paper considers is
the Π1

n-indescribable cardinals (see definition 0.2) which was discovered by
Hanf and Scott [15]. These large cardinals turned out to form a yardstick
hierarchy in the landscape of large cardinals and provide a nice character-
ization of other large cardinal notions in terms of their ability to reflect
formulas of higher complexity. Due to lack of technologies, a few implica-
tions among certain compactness principles around the region of “moderate
large cardinals” are not well understood.

For example, it is open whether κ > ω being weakly compact is implied
by any of the following:

(1) any two κ-c.c posets P,Q, P ×Q is also κ-c.c,
(2) κ→ [κ]2ω,
(3) κ is strongly inaccessible and there does not exist a κ-Suslin tree,
(4) κ is strongly inaccessible and κ→ [κ]2κ,
(5) κ is strongly inaccessible Jónsson, namely, κ→ [κ]<ω

κ .

The first 4 items are consequences of κ being weakly compact while the last
item is not.

It is important that we insist κ is a strongly inaccessible cardinal in the last
3 items since these properties are consistent with κ being weakly inaccessible
but not strong limit. Since if κ is weakly compact, then it is necessarily a
strong limit cardinal, we can cheat and declare these principles are separated.
However, if we insist that κ is strongly inaccessible, then these problems
become much harder. In fact, they are open.

In this paper, we explore the possibility of “fixing the cheat” by transfer-
ring compactness principles at a weakly inaccessible cardinal to a strongly
inaccessible cardinal. The technology we employ is Radin forcing [26], de-
noted RŪ , which is defined using a measure sequence Ū on a cardinal κ.
Radin forcing has already turned out useful in order to tune the large car-
dinal properties and compactness principles holding at κ in the model V RŪ .
For example,

(1) If cf(lh(Ū )) = ρ < κ then V RŪ |= cf(κ) = cf(ρ) ([14, Section 5.1]).
(2) If cf(lh(Ū )) ≥ κ+ then V RŪ |= κ is strongly inaccessible ([25]).
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(3) If Ū has a repeat point then V RŪ |= κ is measurable ([25]).
(4) If κ+ ≤ cf(lh(Ū )) ≤ lh(Ū ) < 2κ, then V RŪ |= ¬♦κ (Woodin, see

[7]).
(5) If Ū has a weak repeat point then V RŪ |= κ is weakly compact ([7]).
(6) If cf(lh(Ū)) ≥ κ++ then V RŪ |= κ satisfy stationary reflection ([7]).
(7) If Ū satisfy the local repeat point then V RŪ |= κ is almost inaffable

([8]).

The common idea in those results is that we isolate some property of the
length lh(Ū ) of the measure sequence Ū which guarantees that κ has some
large cardinal property in V RŪ . Let us just mention that most of the im-
plications above are reversible. In [8], Ben-Neria and the second author
tighten the connection between compactness principles in the Radin exten-
sion and properties. In this paper, the length of the sequence is usually
lh(Ū) < (2κ)+. The very rough idea is that if we force using a measure
sequence such that the length of the measure sequence satisfies suitable
compactness principles, then the Radin forcing transfers these compactness
principles to actually hold at κ, which is strongly inaccessible in the generic
extension.

As an application, relative to the existence of large cardinals, we con-
struct a model where higher order stationary reflections hold at a strongly
inaccessible cardinal which is not weakly compact. To properly state the
theorem, we need the following definitions. Bagaria [2, Definition 4.1] used
generalized logic to extend the indescribable cardinal hierarchy of Hanf and
Scott to Π1

ξ-formulas for ξ ≥ ω.

Definition 0.2 (Hanf-Scott for ξ ∈ ω, Bagaria [2] for ξ ≥ ω). Let ξ be
an ordinal. A set S ⊆ κ is Π1

ξ-indescribable if for all R ⊆ Vκ and all

Π1
ξ-sentence φ(X), if (Vκ,∈, R) |= φ(R) then there is an α ∈ S such that

(Vα,∈, R ∩ Vα) |= φ(R ∩ Vα).

Definition 0.3 (Bagaria [2]). Recursively define that a set A is:

(1) 0-stationary in α if sup(A) = α,
(2) ξ-stationary in α where ξ ≤ α if

∀η < ξ∀S which is η-stationary in α,∃β ∈ A,S ∩ β is η-stationary

(3) Given A ⊂ κ, let Trξ(A) denote the set

{α ∈ κ : A ∩ α is ξ-stationary}.

We say that α is ξ-stationary if α is ξ-stationary as a subset of α.

Bagaria’s motivation for the notions comes from a result in [2], where these
higher-order stationary reflection properties characterize the non-isolated
points in the ordinal topology interpretation of generalized provability logics
(see [5] or [6] for more information regarding this motivation).Note that:

(1) A is 1-stationary iff A is stationary,
(2) α is 1-stationary iff α has uncountable cofinality,
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(3) α is 2-stationary iff every stationary subset of α reflects.

Let us define the two variations of Bagaria’s higher order stationarity
central to this paper. Loosely speaking, one is obtained by varying the
degree of simultaneous reflection and the other one is the diagonal version.

Definition 0.4. Let 2 ≤ χ < κ be any regular cardinal and κ be a limit
ordinal.

(1) A ⊆ κ is called (0, χ)-s-stationary iff A is unbounded in κ and
cf(A) = cf(κ) ≥ χ.

(2) A ⊆ κ is called (ξ, χ)-s-stationary if for any χ′ < χ and any 〈Ti | i <
χ′〉 such that each Ti is (ηi, χ)-stationary for some ηi < ξ, there is
α ∈ A such that ∀i < χ′, Ti ∩ α is (ηi, χ)-stationary.

(3) Given A ⊂ κ, let Trχξ (A) denote the set

{α ∈ κ : A ∩ α is (ξ, χ)-s-stationary}.

Remark 0.5. • κ is (1, χ)-s-stationary iff cf(κ) > χ.
• S ⊆ κ is (1, χ)-s-stationary iff S∩ cof(≥ χ)∩κ is a stationary subset
of κ.
• κ is (2, χ)-s-stationary iff every less than χ-many stationary subsets
of cof(≥ χ) ∩ κ reflect simultaneously.

Remark 0.6. The case when χ = 3 appeared in [2, Definition 2.8]. We
will follow the existing literature and let “n-s-stationary” denote “(n, 3)-s-
stationary” as in Defintion 0.4.

Definition 0.7. Let κ be a ordinal.

(1) A ⊆ κ is called 0-d-stationary iff A is unbounded in κ.
(2) A is called ξ-d-stationary if for every 〈Ti | i < κ〉 such that each Ti is

ηi-stationary for some ηi < ξ, there is some α ∈ A such that ∀i < α,
Ti ∩ α is ηi-d-stationary.

(3) Given A ⊂ κ, let Trdξ (A) denote the set

{α ∈ κ : A ∩ α is ξ-d-stationary}.

Remark 0.8. • κ is 1-d-stationary iff κ is a regular cardinal.
• S ⊆ κ is 1-d-stationary iff S ∩ κ is stationary.
• κ is 2-d-stationary iff for any 〈Ti : i < κ〉 where each Ti is a stationary
subset of κ, there exists a regular α < κ such that for all i < α, Ti∩α
is stationary in α.

Theorem 0.9 (Jensen [18] for ξ = 1, Bagaria-Magidor-Sakai [4] for ξ ∈ (1, ω),
Bagaria [2] for ξ ≥ ω). In L, the following are equivalent:

(1) α is ξ + 1-stationary,
(2) α is ξ + 1-s-stationary,
(3) α is Π1

ξ-indescribable.
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As we will see in Corollary 1.12, the equivalence also extends to ξ + 1-d-
stationary and (ξ+1, χ)-s-stationary for any χ < α. Note that the implica-
tions from bottom to top are valid in ZFC. The additional constructibility
assumption helps in proving (1) implies (4).

In terms of the consistency strength of these principles, Magidor [22]
showed that the existence of a 2-s-stationary is equiconsistent with the ex-
istence of a weakly compact cardinal. Surprisingly, Mekler and Shelah [24]
showed that the consistency strength of κ being 2-stationary is strictly in
between a greatly Mahlo cardinal and a weakly compact. They isolated re-
flection cardinals and showed κ being a reflection cardinal is equiconsistent
with κ being a 2-stationary cardinal. Generalizing their results and meth-
ods, Bagaria-Magidor-Mancilla [3] showed that the consistency strength of
a ξ + 1-stationary cardinal is strictly in between a ξ-greatly-Mahlo cardinal
and a Π1

ξ-indescribable cardinal. We refer the readers to [3] for relevant
definitions. To achieve this, they isolate the notion of a ξ-reflection cardinal
and show that

• there are many ξ-reflection cardinals below any Π1
ξ-indescribable

cardinal,
• no ξ-reflection cardinal can be ≤ the first ξ-greatly Mahlo cardinal.

Note that by definition, if κ is a ξ-reflection cardinal, then κ is ξ-stationary.
In L, even more is true: it is ξ + 1-stationary.

It is therefore a natural question to clarify the relationship between higher
order stationary reflections and indescribable cardinals. For example, for any
given ζ, is it true that there exists a large enough ξ such that whenever κ
is ξ-d-stationary (or ξ-stationary), then κ is Π1

ζ-indescribable? The main
result of this paper is that in general the answer is negative.

Another reason for this investigation is to expose another way of estab-
lishing higher order stationary reflection principles, fundamentally different
from the Mekler-Shelah approach. Aside from the papers mentioned previ-
ously, variations of the Mekler-Shelah method have been used to study the
extent of the weakly compact reflection principle by Cody and Sakai [9].

The following are the main results for this paper.

Theorem 0.10. Suppose that λ is a measurable cardinal in V . Then in
any forcing extension with a poset satisfying γ-c.c for some γ < λ, λ is
λ-stationary, λ-d-stationary and (λ, χ)-stationary for all χ < λ.

In particular, we have a way of producing a non strong limit weakly
inaccessible cardinal λ that is λ-d-stationary. The next theorem “transfers”
this compactness to a strongly inaccessible cardinal, using the technology of
Radin forcing.

Theorem 0.11. Relative to the existence of a H(λ++)-hypermeasurable car-
dinal1 κ where λ > κ is a measurable cardinal, it is consistent that a strongly

1A cardinal κ is an H(θ)-hypermeasurable cardinal if there is an elementary embedding
j : V → M with crit(j) = κ and H(θ) ∈ M .
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inaccessible cardinal κ is n-d-stationary for all n ∈ ω, but κ is not weakly
compact.

The organization of this paper is:

(1) In Section §1, we record some preliminary facts regarding higher
order stationary sets.

(2) In Section §2, we prove Theorem 0.10 and its 2-cardinal generaliza-
tion.

(3) In Section §3 we prapare the ground model and present the relevant
background for Radin forcing.

(4) In Section §4, we present a proof of Theorem 0.11.
(5) In Section §5, we conclude with some open questions.

0.1. Notations. Given a function f : A → B and X ⊆ A, the pointwise
image of X by f is the set f ′′X := {f(x) | x ∈ X}. Given a set X and
a cardinal λ, we denote by PλX = {Y ⊆ X | |Y | < λ}. For a sequence
〈Xi | i < λ〉 consisting of subsets of λ we denote by the diagonal intersection
∆i<λXi := {ν < λ | ∀α < ν, ν ∈ Xi}. For a set of ordinals A, sup(A) = ∪A
and we say that A is bounded in λ if sup(A∩λ) < λ. We say that A is closed
if it is closed in the order topology of the ordinals. A set C is a club at λ is
it is closed and unbounded, and the club filter is

Cubλ := {X ∈ P (λ) | ∃C a club C ⊆ X}

A set S is called stationary in λ is S∩C 6= ∅ for every club C in λ. We assume
familiarity with forcing theory and refer the reader to [12] for background
and standard notations. An elementary embedding j is always a function
j : V → M where M is a transitive model, crit(j) denoted the minimal
ordinal which is moved by j. If U is a σ-complete ultrafilter then jU : V →
MU denoted the ultrapower by U . Given two finite sequence 〈x1, ..., xn〉 and

〈y1, ..., yn〉 we denote by 〈x1, ..., xn〉
a〈y1, ..., yn〉 = 〈x1, ..., xn, y1, ..., yn〉.

1. Some preliminary facts

1.1. n-stationarity, (n, χ)-s-stationarity and n-d-stationarity. Let us
start with a useful lemma regarding the trace operation.

Lemma 1.1. Fix a regular cardinal λ, T ⊂ λ, χ < λ and n < λ.

(1) If A ⊂ Trk(T ) where k ≤ n, then Trn(A) ⊂ Trk(T ),
(2) If A ⊂ Trχk (T ) where k ≤ n, then Trχn(A) ⊂ Trχk (T ),

(3) If A ⊂ Trdk(T ) where k ≤ n, then Trdn(A) ⊂ Trdk(T ). Furthermore,

if A ⊂ ∆i<λTr
d
k(Ti), then Trdn(A) ⊂ ∆i<λTr

d
k(Ti).

Proof. For (1), fix β ∈ Trn(A). Let S ⊂ β be m-stationary for some m < k.
We need to find β′ ∈ T ∩ β such that S ∩ β′ is m-stationary. Since A ∩ β is
n-stationary, we can find β0 ∈ A ∩ β such that S ∩ β0 is m-stationary. As
A ⊂ Trk(T ), T ∩β0 is k-stationary. Therefore, there is β

′ ∈ T ∩β0 such that
S ∩ β′ is m-stationary.
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For (2), fix β ∈ Trχn(A). Let 〈Si : i < χ′〉 for some χ′ < χ and Si ⊂ β being
(ki, χ)-s-stationary where ki < k be given. Since A∩β is (n, χ)-s-stationary,
there exists β′ ∈ A ∩ β such that β′ ∈

⋂
i<χ′ Tr

χ
ki
(Si). As T ∩ β′ is (k, χ)-

s-stationary, there exists β∗ ∈ T ∩ β′ such that β∗ ∈
⋂

i<χ′ Tr
χ
ki
(Si ∩ β′) =⋂

i<χ′ Tr
χ
ki
(Si). In other words, T ∩ β is (k, χ)-s-stationary.

For (3), fix β ∈ Trdn(A). Let 〈Si : i < β〉 where each Si ⊂ β is ki-d-
stationary where for some ki < k. Since A∩ β is n-d-stationary, there exists
β′ ∈ A ∩ β such that β′ ∈

⋂
i<β′ Trdki(Si). As T ∩ β′ is k-d-stationary, there

exists β∗ ∈ T ∩ β′ such that β∗ ∈
⋂

i<β∗ Trdki(Si). In other words, T ∩ β is

k-d-stationary. To see the “furthermore” part, fix α ∈ Trdn(A) and i < α,
we know that A − (i + 1) ⊂ Trdk(Ti). By the previous argument, we have

that α ∈ Trdn(A− (i+ 1)) ⊂ Trdk(Ti). �

The combinatorial properties of the n-stationary sets are best expressed
in the language of ideals and filters. Ideals are the standard absractization
of the notion of “smallness”. Recall that a set I ⊆ P (X) is an ideal on X
if ∅ ∈ I, I is downward closed with respect to “⊆” and closed under finite
unions. We say that an ideal I is proper ifX /∈ I. The dual notion of an ideal
is a filter, i.e. given an ideal I we define the dual filter I∗ := {X\N | N ∈ I}.
We extend the definition of I∗ to any set I ⊆ P (X). The set of positive sets
with respect to some ideal I is denoted by I+ := P (X) \ I. For more
information about ideal and filters we refer the reader to [17, Ch. 7]

Definition 1.2. For every n < λ, let NSn
λ , NS

(n,χ)
λ , and NSd

λ be the set of
all non-n-stationary, non-(n, χ)-s-stationary, non-n-d-stationary subsets of

λ (resp.), and let Cubnλ, Cub
(n,χ)
λ , Cubdλ be the corresponding dual filters.

Fact 1.3. (1) If T /∈ NSn
λ , then Trn(T ) ∈ Cubmλ for any m > n. Indeed,

λ \ Trn(T ) is not m-stationary as witnessed by the n-stationary set
T .

(2) Conversely, if NSm
λ is proper, then for every set C ∈ Cubmλ there is

an n-stationary set T for some n < m such that Trn(T ) ⊆ C. To
see this, since λ\C ∈ NSm

λ , there is some n < m and a n-stationary
set T such that Trn(T ) ∩ (λ \ C) = ∅, namely, Trn(T ) ⊆ C.

(3) We have that NSn
λ ⊆ NSm

λ (and therefore Cubnλ ⊆ Cubmλ ) for any
n ≤ m < λ. This follows from the fact that whenever S is m-
stationary, by Definition 0.3, it is also n-stationary.

(4) NSn
λ is always upward closed with respect to ⊆. Indeed ∅ ∈ NS0

λ ⊆
NSn

λ , if X ∈ NSn
λ and Y ⊆ X, then and m-stationary set S for

m < n which witnesses that X is not n-stationary will also witness
that Y is not n-stationary.

(5) If NSn
λ is an ideal, then it is proper iff λ is an n-stationary cardinal.

Lemma 1.4. Let λ be regular and n < λ. Fix any S ⊂ λ. Then S is n+1-
stationary iff λ is n-stationary and for any n-stationary T ⊂ λ, Trn(T )∩S 6=
∅.
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Proof. We prove the non-trivial direction (←). Given any m ≤ n and m-
stationary W , we need to show Trm(W ) ∩ S 6= ∅. If m = n, then we are
done by the hypothesis. So assume m < n. Let T = Trm(W ). Since
Cubm+1

λ ⊂ Cubnλ by Fact 1.3, we have that T is n-stationary. By the hy-
pothesis, Trn(T ) ∩ S 6= ∅. Fix β ∈ Trn(T ) ∩ S. Our goal is to show that
β ∈ Trm(W ), namely W ∩β is m-stationary. Let V be a k-stationary subset
of β for some k < m. Since T ∩ β is n-stationary, there is some β′ ∈ T such
that V ∩ β′ is k-stationary. Recall that T = Trm(W ). Then we have that
W ∩ β′ is m-stationary. As a result, there is β′′ ∈ W ∩ β′ such that V ∩ β′′

is k-stationary. Hence, we have found β′′ ∈ Trk(V ) ∩W ∩ β. �

We record the following fact for the other ideals. The proof is similar to
that of Lemma 1.4.

Lemma 1.5. Let λ be regular and n, χ < λ with χ infinite. Fix any S ⊂ λ.
Then

(1) S is (n + 1, χ)-s-stationary iff λ is (n, χ)-s-stationary and for any
(n, χ)-s-stationary sets 〈Ti : i < χ′〉 for some χ′ < χ,

⋂
i<χ′ Tr

χ
n(Ti)∩

S 6= ∅.
(2) S is n + 1-d-stationary iff λ is n-d-stationary and for any n-d-

stationary sets 〈Ti : i < λ〉, ∆i<λTr
d
n(Ti) ∩ S 6= ∅.

Proof. We only prove the non-trivial direction (⇐) in the following.

(1) Given 〈Ti : i < χ′〉 such that each Ti is (ki, χ)-s-stationary for some
ki ≤ n, we note that if ki < n, then Trχki(Ti) is (n, χ)-s-stationary.

To see this, suppose ~S = 〈Sk : k < χ′′ < χ〉 is given with each Sk

being (mk, χ)-s-stationary for some mk < n. Since λ is (n, χ)-s-
stationary, there is some α ∈

⋂
k<χ′′ Tr

χ
mk

(Sk) ∩ Trχki(Ti). For each

i < χ′, let T ′
i = Ti if ki = n and T ′

i = Trχki(Ti) if ki < n. Apply the

hypothesis, we have that S ∩
⋂

i<χ′ Tr
χ
n(T ′

i ) 6= ∅. Fix some β in the

intersection. Then β ∈ S ∩
⋂

i<χ′ Tr
χ
ki
(Ti) by Lemma 1.1 (2).

(2) The proof is similar to the previous one, except that we apply Lemma
1.1(3) instead.

�

Lemma 1.6. (1) NS
(ξ,χ)
κ is a proper subset of P (κ) iff κ is (ξ, χ)-s-

stationary.

(2) NS
(ξ,χ)
κ is always (might be P (κ)) χ-complete ideal when χ is an

infinite regular cardinal.
(3) Suppose that κ is (n, χ)-s-stationary such that χ is an infinite car-

dinal and either n is a successor ordinal or cf(n) ≥ χ. For any

C ∈ Cub
(n,χ)
κ , there is R which is (k, χ)-s-stationary for some k < n

such that Trχk (R) ⊆ C.

Proof. (1) Immediate.
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(2) Closure under subsets is immediate. To see that it is χ-complete,

suppose that 〈Ai | i < χ′ < χ〉 ⊆ NS
(ξ,χ)
κ , then for each i < χ′ there

is a sequence 〈Tj,i | j < χ′
i〉 with χ′

i < χ and ηij < ξ such that each

Ti is (ηij , χ)-s-stationary and Ai ∩
⋂

j<χ′

i
Trχ

ηi
j

(Tj,i) = ∅. It is clear

that 〈Tj,i : j < χ′
i, i < χ′〉 witnesses that

⋃
i<χ′ Ai ∈ NS

(ξ,χ)
κ .

(3) By definition, there is a sequence 〈Ti | i < χ′ < χ〉 with each Ti being
(ηi, χ)-s-stationary for some ηi < n such that R := ∩i<χ′Trχηi(Ti) ⊆
C. By the hypothesis about n, we can find some k < n such that
ηi ≤ k for all i < χ′.

We claim that R is (k, χ)-s-stationary. Let 〈Sj | j < χ′′〉 be
such that χ′′ < χ each Sj is (mj , χ)-s-stationary for some mj < k.
Apply the fact that κ is (n, χ)-s-stationary to the sequence 〈Sj | j <

χ′′〉a〈Ti | i < χ′〉 to conclude that R ∩
⋂

j<χ′′ Tr
χ
mj (Sj) 6= ∅. Finally

note that Trχk (R) ⊆ ∩i<χ′Trχηi(Ti) ⊆ C, by Lemma 1.1 (2).
�

Lemma 1.7. (1) NSξ,d
κ is a proper subset of P (κ) iff κ is ξ-d-stationary.

(2) NSξ,d
κ is always a (might be P (κ)) normal ideal.

(3) Suppose that κ is n + 1-d-stationary. For any C ∈ Cubn+1,d
κ , there

is R which is n-d-stationary such that Trdn(R) ⊆ C.

Proof. (1) Immediate.
(2) Closure under subsets is immediate. To see that it is normal, suppose

that 〈Ai | i < κ〉 ⊆ NSξ,d
κ , then for each i < κ there is a sequence

〈Tj,i | j < κ〉 with ηij < ξ such that each Ti is ηij-d-stationary and

Ai ∩∆j<κTr
d
ηij
(Tj,i) = ∅. Fix some bijection g from κ× κ to κ such

that on a clubD ⊂ κ, for any α ∈ D, for any i, j < α, g(j, i) < α. Let
T ′

g(j,i) = Tj,i. As a result, the sequence {D}∪〈Trd
ηij
(T ′

g(j,i)) : j, i < κ〉

witnesses that ▽i<κAi ∈ NSξ,d
κ . The reason is that ∆j,i<κT

′

g(j,i) ∩

C =def {α ∈ C : ∀j, i < α, α ∈ Trd
ηij
(Tj,i)} avoids ▽i<κAi =def {β :

∃i < β, β ∈ Ai}.
(3) By definition, there is a sequence 〈Ti | i < κ〉 with each Ti being

n-d-stationary such that R := ∆i<κTr
d
n(Ti) ⊆ C. That R is n-d-

stationary follows from the fact that κ is n-d-stationary. Finally
note that Trdn(R) ⊆ ∆i<κTr

d
n(Ti) ⊆ C, by Lemma 1.1 (3).

�

1.2. The relationship between different ideals in the constructible

universe.

Lemma 1.8. Fix a cardinal κ and n < κ. If NSn
κ is normal, and for any

k < n, {α < κ : NSk
α = NSk,d

α } ∈ Cubnκ ∩ Cubn,dκ and NSk
κ = NSk,d

κ , then

NSn
κ = NSn,d

κ .
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Let us clarify that “{α < κ : NSk
α = NSk,d

α } ∈ Cubnκ ∩ Cubn,dκ ” really

means whenever NSn
κ (respectively NSn,d

κ ) is proper, then {α < κ : NSk
α =

NSk,d
α } ∈ Cubnκ (Cubn,dκ ).

Proof. First suppose NSn
κ is not proper. In particular, this is the case

when κ is singular as NSn
κ is assumed to be normal. We need to show

NSn,d
κ is also not proper. If NSk

κ is not proper for some k < n, then

by the hypothesis, NSk,d
κ is not proper, which in turn implies that NSn,d

κ

is not proper. Hence, we may assume NSk
κ is proper for all k < n. By

the assumption, there is some k-stationary T ⊂ κ such that Trk(T ) = ∅.

Suppose for the sake of contradiction that NSn,d
κ is proper. As T is k-d-

stationary by the hypothesis, there is some α such that T∩α is k-d-stationary

and NSk
α = NSk,d

α . In particular, T ∩ α is k-stationary. This contradicts
with the fact that Trk(T ) = ∅.

We may now assume that NSn
κ is proper. Let B = {α < κ : ∀k <

n,NSk
κ = NSk,d

κ }, then B ∈ Cubnκ ∩ Cubn,dκ , as NSn
κ and NSn,d

κ are normal
and in particular κ-complete.

First we show that if A is n-stationary, then A is n-d-stationary. In

particular, this implies NSn,d
κ is proper. Let 〈Ti : i < κ〉 be given such

that each Ti is ki-d-stationary for some ki < n. By the hypothesis, we
know that Ti is ki-stationary. Since NSn

κ is normal, there is some α ∈
∆i<κTrki(Ti) ∩ A ∩B. We check that α ∈ ∆i<κTr

d
ki
(Ti). Fix i < α, Ti ∩ α

is ki-stationary. As α ∈ B, Ti ∩ α is ki-d-stationary.
Next we show that if A is n-d-stationary, then A is n-stationary. Let

T be a k-stationary subset of κ for some k < n. By the hypothesis, T is
k-d-stationary. Find α ∈ A ∩ Trdk(T ) ∩ B. Then T ∩ α is k-d-stationary.
Since α ∈ B, T ∩ α is k-stationary. �

Proposition 1.9. Suppose for any cardinal κ and any n < κ, NSn
κ is

normal, then for all κ and n < κ, NSn
κ = NSn,d

κ .

Proof. Suppose otherwise for the sake of contradiction. Fix the least cardinal

κ and then the least n < κ such that NSn
κ 6= NSn,d

κ . Note that κ is regular
and n > 1. We will reach a contradiction by verifying that the hypotheses
of Lemma 1.8 are satisfied. For k < n,

• NSn
κ is normal by the assumption,

• NSk
κ = NSk,d

κ by the minimality of n and

• {α < κ : NSk
α = NSk,d

α } = κ by the minimality of κ.

�

Similar proofs to those in Lemma 1.8 and Proposition 1.9 give the follow-
ing:

Lemma 1.10. Fix a cardinal κ, n < κ and χ < κ. If NSn
κ is χ-complete,

and for any k < n, {α < κ : NSk
α = NS

(k,χ)
α } ∈ Cubnκ ∩ Cub

(n,χ)
κ and

NSk
κ = NS

(k,χ)
κ , then NSn

κ = NS
(n,χ)
κ .
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Proposition 1.11. Suppose for any cardinal κ, any n < κ and χ < κ, NSn
κ

is χ-complete, then for all κ and n < κ, NSn
κ = NS

(n,χ)
κ .

Corollary 1.12. If V = L, then all the following are equivalent for ξ < κ:

(1) κ is Π1
ξ-indescribable,

(2) κ is ξ + 1-stationary,
(3) κ is (ξ + 1, χ)-s-stationary for some (any) χ < κ,
(4) κ is ξ + 1-d-stationary.

In fact, in the theorem above, all the ideals corresponding to each clause are

the same. Namely, Π1
ξ ∩ P (κ) = NSξ+1

κ = NS
(ξ+1,χ)
κ = NSξ+1,d

κ .

Proof. This follows from [4, Corollary 2.5], [2, Theorem 5.1] and Propositions
1.9, 1.11. �

1.3. 2-cardinal higher order stationarity. Sakai [27] generalized the
higher order stationarity notions to the two-cardinal setting.

Definition 1.13 (Sakai [27]). For a regular cardinal κ, a set A ⊃ κ and
n ∈ κ,

• S ⊂ PκA is 0-stationary if S is ⊂-cofinal2 in PκA,
• S is n-stationary if for any m < n, any m-stationary T ⊂ PκA, there
is B ∈ S such that

– µ = B ∩ κ is a regular cardinal,
– T ∩ PµB is m-stationary.

The collection of B satisfying the above is called the m-trace of T ,
written as Trm(T ) (this is slight abuse of notation but there should
be no difficulty inferring from the context).
• PκA is n-stationary if PκA is n-stationary as a subset of PκA.

Remark 1.14. In the original definition, only n ∈ ω was considered. Gener-
alizing that to n ∈ κ poses no difficulty.

Remark 1.15. If T ⊂ PκA and B ∈ Trm(T ), then for any T ′ ⊂ T with
T∩PκB ⊂ T ′, we have B ∈ Trm(T ′). The reason is that T ′∩PκB = T∩PκB.

Lemma 1.16. If A ⊂ Trm(T ), then Trm(A) ⊂ Trm(T ).

Proof. Let B ∈ Trm(A) with B∩κ = µ regular. Let k < m and S ⊂ PµB be
a k-stationary subset. We need to show that T ∩Trk(S) 6= ∅. Since A∩PµB
is m-stationary, there is C ∈ A such that C ∩ κ = ν is regular and S ∩ PνC
is k-stationary. Since C ∈ Trm(T ), T ∩ PνC is m-stationary. Therefore,
there is some D ∈ T ∩ PνC such that D ∩ ν = δ is a regular cardinal and
S ∩ PνC ∩ PδD = S ∩ PδD is k-stationary in PδD. �

2Namely, for every X ∈ PκA there is Y ∈ S such that X ⊆ Y .
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2. Higher order stationary reflection at a non strong limit

cardinal

Definition 2.1. Let λ be a regular cardinal and κ be a cardinal. An ideal
I on λ is

(1) uniform if [λ]<λ ⊂ I,
(2) normal if for any 〈Ai : i < λ〉 ∈ [I]λ, the diagonal union▽i<κAi =def

{α : ∃i < α, α ∈ Ai} ∈ I
(3) κ-saturated if for any 〈Bj : j < κ〉 ∈ [I+]κ, there exist j0 6= j1 < κ

such that Bj0 ∩Bj1 ∈ I+.

Fact 2.2. Let I be uniform normal κ-saturated ideal on λ where κ < λ. Let
G ⊂ P (λ)/I be generic over V . Then in V [G],

(1) [13, Chapter 2] there is an elementary embedding j : V → M ≃
Ult(V,G) such that crit(j) = λ, V [G] |= λM ⊂M , and

(2) [19, Theorem 17.1] the ideal Ī generated by I is uniform normal and
κ-saturated.

(3) for any Ẋ such that 
P (λ)/I Ẋ ∈ Ī∗, there exists X ∈ I∗ such that


P (λ)/I X ⊂ Ẋ (this follows from the fact that P (λ)/I is κ-c.c and
I is κ-complete).

(4) a set A is in I if and only if 
P (λ)/I λ /∈ j
∼
(Ǎ).

Theorem 2.3. Let λ be a regular cardinal carrying a uniform normal κ-
saturated ideal I for some κ < λ. Fix also some χ < λ. Then for all

k < λ, NSk
λ, NS

(k,χ)
λ , NSk,d

λ are all proper ideals on λ. In particular, λ is
λ-stationary, (λ, χ)-s-stationary and λ-d-stationary.

Proof. We prove the following statement (∗)n by induction on n ∈ Ord. For
any λ > κ, n such that λ carries a uniform normal κ-saturated ideal I, for
any T ⊂ λ,

(1) if T is n-stationary, then Trn(T ) ∈ I∗.
(2) if T is (n, χ)-s-stationary, then Trχn(T ) ∈ I∗, and
(3) if T is n-d-stationary, then Trdn(T ) ∈ I∗.

Claim 2.4. (∗)n for all n ∈ Ord implies that: λ is λ-stationary, (λ, χ)-
s-stationary and λ-d-stationary whenever λ > χ carries a uniform normal
κ-saturated ideal I for some κ < λ.

Proof of the Claim. (1) Since λ is λ-stationary iff λ is k-stationary for
all k < λ, the first clause is immediate.

(2) Given χ′ < χ and 〈Ti : i < χ′〉 such that each Ti is (ηi, χ)-s-stationary
for some ηi < λ, by the hypothesis we know there are Ai ∈ I∗ such
that Ai ⊂ Trχηi(Ti) for each i < χ′. Since I∗ is λ-complete, we have
that

⋂
i<χ′ Tr

χ
ηi(Ti) ⊃

⋂
i<χ′ Ai ∈ I∗.

(3) Given 〈Ti : i < λ〉 such that each Ti is ηi-d-stationary for some
ηi < λ, by the hypothesis, there are Ai ∈ I∗ such that Ai ⊂ Trdηi(Ti)

for each i < λ. Since I is normal, ∆i<λTr
d
ηi(Ti) ⊃ ∆i<λAi ∈ I∗.
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�

Base case n = 1. Recall that in this case,

• T is 1-stationary if T is a stationary subset of λ,
• T is (1, χ)-s-stationary if T ∩ λ ∩ cof(≥ χ) is stationary in λ,
• T is 1-d-stationary if T is a stationary subset of λ.

Let G ⊂ P (λ)/I be generic over V . If T is a stationary subset of λ
(stationary relative to λ∩ cof(≥ χ)), then 
P (λ)/I T ⊂ λ is stationary since
the forcing satisfies κ-c.c. Note that j(T ) ∩ κ = T where j : V → M is
the elementary embedding from fact 2.2 item (1). In particular, M |= κ ∈
j(Tr1(T )) and by fact 2.2 (4) Tr1(T ) ∈ I∗ (Trχ1 (T ) ∈ I∗, or Trd1(T ) ∈ I∗).

Suppose we have proved (∗)i for all i < n, let us show (∗)n. Let G ⊂
P (λ)/I be generic over V and let j : V →M ≃ Ult(V,G) be an ultrapower
embedding in V [G]. Let us first assume T ⊂ λ is n-stationary. It suffices
to show that M |= T is n-stationary, as the conclusion follows from the
elementarity of j. Suppose for the sake of contradiction that M |= T is
not n-stationary. Since V [G] |= λM ⊂ M by Fact 2.2 (1), V [G] |= T is
not n-stationary. As a result, there exists a k-stationary S ⊂ λ such that

Tr
V [G]
k (S)∩T = ∅ for some k < n. By Fact 2.2 (2), the ideal Ī generated by

I is uniform normal and κ-saturated in V [G]. Therefore, we can apply the
induction hypothesis (∗)k in V [G] to conclude that there exists C ∈ Ī∗ such

that C ⊂ Tr
V [G]
k (S). Since Ī is generated by I, we may assume that C ∈ I∗.

In particular, C ∈ V . Apply (∗)k in V , we know that C is k-stationary.
As a result, Trk(C) ∩ T 6= ∅. Fix α ∈ Trk(C) ∩ T . Apply j to see that

α ∈ j(Trk(C) ∩ T ) = Tr
V [G]
k (C) ∩ T . Hence

M |= α ∈ Trk(C) ∩ T ⊂ Trk(Trk(S)) ∩ T ⊂ Trk(S) ∩ T

by Lemma 1.1. Contradicting the fact that Tr
V [G]
k (S) ∩ T = ∅ in V [G].

As the proof for the case where T is (n, χ)-s-stationary and n-d-stationary
is similar to the above, we only sketch the differences. Let us assume T is n-
d-stationary for concreteness. Proceed as above and assumeM |= T is not n-
d-stationary for the sake of contradiction. There exists 〈Si : i < λ〉 such that

each Si is ηi-d-stationary for some ηi < n, and ∆i<λ(Tr
d
ηi(Si))

V [G] ∩ T = ∅.

In V [G], apply the induction hypothesis and the normality of Ī, for each
k < n, we can get Ck ∈ I∗ such that

Ck ⊂ ∆k
i<λ(Tr

d
ηi(Si))

V [G] =def {α : ∀i < α, if ηi = k, then α ∈ (Trdk(Si))
V [G]}.

By Fact 2.2 (3), we may assume that 〈Ck : k < n〉 ∈ V . For each k < n,
the induction hypothesis (∗)k in V implies that Ck is k-d-stationary. As a
result, we can find α ∈ T ∩

⋂
k<n Tr

d
k(Ck). Apply j, we know that in M ,

α ∈ T ∩ Trdk(Ck) for each k < n. We check that α ∈ ∆i<λ(Tr
d
ηi(Si))

V [G],
which gives the desired contradiction. Fix i < α and ηi = k. By the
definition of Ck, we have that V [G] |= Ck − (i + 1) ⊂ Trdk(Si). By Lemma
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1.1, V [G] |= Trdk(Ck − (i+ 1)) ⊂ Trdk(Si). But then V [G] |= α ∈ Trdk(Ck −
(i+ 1)) ⊂ Trdk(Si). �

Proof of Theorem 0.10. Let λ be a measurable cardinal and a κ-c.c forcing
P be given where κ < λ. A theorem of Kunen ([20, Lemma 2]) gives that
in V P , there exists a λ-complete normal κ-saturated ideal on λ. Then we
apply Theorem 2.3 to get the conclusion as desired. �

Let us turn our attension to the 2-cardinal higher order stationary reflec-
tion principles (see Definition 1.13). Sakai [27] posed the following question:
For n ≥ 3, is it consistent that there is a cardinal κ ≤ 2ω such that Pκ(λ) is
n-stationary for all λ ≥ κ?

We answer this question positively in the following, adapting the proof of
Theorem 2.3 to the 2-cardinal setting. Recall that a cardinal κ is called λ-
supercompact if there is a fine normal measure U over Pκ(λ). Equivalently,
if there is an elementary embedding j : V →M such that crit(j) = κ, M is
transitive and Mλ ⊆M . κ is called supercomapct if it is λ-supercompact for
every λ. The following is a 2-cardinal version of the classic Mitchell order
on normal ultrafilters on measurable cardinals.

Definition 2.5. We define an ordinal function o on the set NF of all normal
fine measures on Pκλ recursively as follows: for all U ∈ NF ,

(1) o(U) ≥ 0,
(2) o(U) ≥ ξ if for any ξ′ < ξ, there exists some W ∈ Ult(V,U) ∩ NF

such that o(W ) ≥ ξ′.

For U ∈ NF , o(U) = ξ iff o(U) ≥ ξ but o(U) 6≥ ξ + 1.

Observation 2.6. If κ is a supercompact cardinal, then for any λ ≥ κ and
ξ < λ, there is a normal fine measure U on Pκλ such that o(U) ≥ ξ.

Proof. Recall that for a normal fine ultrafilter U on Pκλ and η, o(U) ≥ η
if for any ξ < η, there exists some normal fine ultrafilter W on Pκλ with
o(W ) ≥ ξ which belongs to MU ≃ Ult(V,U).

Fix λ ≥ κ. Suppose for the sake of contradiction that

sup{o(U) + 1 : U is a normal fine ultrafilter on Pκλ} = η < λ.

Let j : V →M witness that κ is λ+-supercompact. Let W be the normal
fine ultrafilter on Pκλ derived from j. Let i : V → N ≃ Ult(V,W ) and let
k : N → M be defined such that k([f ]W ) = j(f)(j′′λ). The following facts
are standard (see [19]):

(1) both i and k are elementary and j = k ◦ i,

(2) λ<κ
N ⊂ N and crit(k) ≥ (2λ

<κ
)+N ,

(3) W 6∈ N .

As a result, by elementarity,

N |= sup{o(U) + 1 : U is a normal fine ultrafilter on Pκλ} = η < λ.
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Note that since N is sufficiently closed, any normal fine ultrafilter on Pκλ
in N is a normal fine ultrafilter on Pκλ in V . But then by the definition,
o(W ) ≥ η, which is a contradiction. �

Theorem 2.7. Let κ be a supercompact cardinal and P be a forcing satis-
fying ν-c.c for some ν < κ. In V P , Pκλ is n-stationary for any n < κ and
λ ≥ κ.

Proof. The proof is similar to before, so we only highlight the modifications.
We prove the following statement (⋆)n by induction on n ∈ Ord: for any ν,
any λ > κ > max{n, ν}, any forcing P satisfying ν-c.c and any normal fine
measure U on Pκλ such that o(U) ≥ n, the following holds in V P : for any
n-stationary T ⊂ Pκλ, there exists A ∈ U such that Trn(T ) ⊃ A. As (⋆)1 is
easy to be seen to hold, let us focus on the inductive step.

Suppose we have proved (⋆)i for all i < n and let us show (⋆)k. Let
λ > κ > {n, ν}, forcing P and normal fine ultrafilter U on Pκλ with o(U) ≥ n
be given. Let j : V → M ≃ Ult(V,U) be the supercompact ultrapower
embedding, in particular, λM ⊂M . Let G ⊂ P be generic over V and T ⊂
Pκλ ∈ V [G] be n-stationary. We can continue to force and find G∗ ⊂ j(P )
generic over V extending j′′G, such that we can lift j to j+ : V [G]→M [G∗].
In V [G], standard arguments show that the ideal generated by the dual of
U is the same as {X ⊂ Pκλ : 
j(P )/j′′G j′′λ 6∈ j̇+(X)}. It suffices to show

that j+
′′
T remains n-stationary in Pκj

′′λ in M [G∗]. Then we finish by the
elementarity of j.

Suppose for the sake of contradiction that j+′′T is not n-stationary in
Pκj

′′λ. In M [G∗], let S ⊂ Pκj
′′λ be some m-stationary set such that

Trm(S) ∩ j+′′T = ∅ where m < n. Since o(U) ≥ n, we can find some
normal fine ultrafilter W ∈ M on Pκλ such that o(W ) ≥ m. We may
identify W as a normal fine ultrafilter W ′ on Pκj

′′λ induced by j ↾ λ ∈M .
Applying the induction hypothesis (⋆)m in M with respect to W ′, S and

j(P ), we know that there is B ∈W ′ such that M [G∗] |= B ⊂ Trm(S). Since
in Pκλ and Pκj

′′λ are isomorphic, we know that B′ = j−1(B) = {j−1(a) :
a ∈ B} is in W . In particular, both B,B′ are in V . As a result, applying
(⋆)l for all l ≤ m in V , we get that B′ is an m-stationary subset of Pκλ in
V [G]. In V [G], let D ∈ T ∩ Trm(B′) as T is n-stationary.

Let µ = D∩κ and we know µ is a regular cardinal in κ. By the elementar-
ity of j+, we have j+(D) = j+

′′
D ∈ j+

′′
T ∩ (Trm(j(B′)))M [G∗]. Note that

j+
′′
D ∈ (Trm(j′′B′))M [G∗], since j′′V contains (Pµj

+′′
D) ∩ j(B′) (Remark

1.15). To see this, let a ∈ (Pµj
+′′

D) ∩ j(B′), since B′ ∈ V , we have that
j(B′) ∈ M . Thus a ∈ M . As a result, a′ = j−1(a) ∈ V . Hence, in V [G],
we must have that a′ ⊂ D ∩ B′ and j(a′) = j′′a′ = a ∈ j′′V . Therefore,

in M [G∗], j+
′′
D ∈ Trm(j′′B′) = Trm(B) ⊂ Trm(S) by Lemma 1.16. This

contradicts with the fact that Trm(S) ∩ j+′′T = ∅ in M [G∗]. �



16 TOM BENHAMOU AND JING ZHANG

3. Preparing the ground model and Radin forcing

Start with a model of GCH where κ is an H(λ++)-hypermeasurable car-
dinal where λ is the least measurable cardinal greater than κ. Our goal
is to produce a universe V where 2κ = λ+ and there exists an elementary
embedding j : V →M such that

(1) H(λ++) ⊂M ,
(2) for every X ⊂ λ, there is g ∈ V such that j(g)(κ) = X,
(3) for any n ∈ ω, λ is (n, κ+)-s-stationary.

Let r : κ→ κ be the function that takes any α to the minimal measurable
cardinals α < r(α). Since κ is anH(λ++)-hypermeasurable cardinal, r : κ→
κ. Since the preparation is standard, we will only sketch the proof and refer
the readers to the relevant literature for more details. Specifically, we follow
largely [10], [16] and [11].

We will use some standard facts about term-space forcing.

Definition 3.1. Let P be a forcing and Q̇ be a P -name for a forcing. Define
Q̇/P to be the poset consisting of terms σ̇ such that 
P σ̇ ∈ Q̇. The order

on Q̇/P is: σ̇ ≤ τ̇ iff 
P σ̇ ≤ τ̇ .

Fact 3.2. (1) [12, Proposition 22.3] Fix a forcing P and a P -name for

a forcing Q̇. Let G ⊂ P be generic over V and let H ⊂ Q̇/P be

generic over V . Then I = {iG(τ̇ ) : τ̇ ∈ H} is an iG(Q̇)-generic filter
over V [G].

(2) [10, Fact 2] Let κ be such that κ<κ = κ and P be a κ-c.c forcing.

Let Q̇ be a P -name for Add(κ, γ). Then in V , Add(κ, γ) is forcing

equivalent to Q̇/P .

3.1. Step One. The first stage is to ensure that there is a universe V0 in
which

(1) κ is an H(λ++)-hypermeasurable cardinal,
(2) GCH holds at all inaccessible α ≤ κ and β ≥ λ,
(3) there is an elementary embedding j : V0 →M such that

• H(λ++) ⊂M ,
• crit(j) = κ,
• j(r)(κ) = λ, and
• κM ⊂M

along with i : V0 → N being the ultrapower by the normal measure
derived from j, there is F ∈ V0 that is generic for i(Add(κ, λ

+)) over
N .

(4) V0 is a κ++-c.c forcing extension of V .

For the construction, see [16, Corollary 2.7]. Apter and Cummings [1] in-
dependently, in some unpublished work, has an alternative way of achieving
the above.

3.2. Step Two. We may take V0 from the previous subsection as our ground
model in this subsection. The second step is to perform the Easton support
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iteration 〈Pβ , Q̇α : α ≤ κ, β ≤ κ + 1〉 such that for any α < κ, Q̇α is

trivial unless 
Pα α is inaccessible, in which case Q̇α is a Pα-name for

Add(α, r(α)+). Finally, let Q̇κ be the Pκ-name for Add(κ, λ+). Let G =

Gκ ∗ gκ be V -generic for Pκ+1 = Pκ ∗ Q̇κ. Let j : V →M be the embedding
from Step One. We may without loss of generality assume that j = jE where
E is a short (κ, λ++)-extender on κ. Let i : V → N be the ultrapower by
the normal ultrafilter on κ derived from j.

Proposition 3.3. In V [G] we can lift j ⊆ j+ : V [G]→M [H] such that:

(1) (H(λ++))V [G] ⊆M [H].
(2) For every ξ < λ+ there is g ∈ V [G] such that j+(g)(κ) = ξ.
(3) 2κ = 2λ = λ+.

Proof. We need to construct a generic for j(Pκ+1). By definition of Pκ+1

and by elementarity of j, we have that

j(Pκ+1) = (Pκ ∗Add(κ, λ
+) ∗ P(κ,j(κ)) ∗Add(j(κ), j(λ)

+))M

where PM
(κ,j(κ)) is an iteration starting at the first MPκ+1-inaccessible

above κ (and in particular above λ+). In particular, after forcing j(Pκ+1),

(2λ)M
j(Pκ+1)

remains λ+– this explains (3). Up to κ+1 we can take G as the
M -generic filter. In V [G], we can find some G(κ,j(κ)) that is M [G]-generic

for P
M [G]
(κ,j(κ)) (see [12, Proposition 15.1 and the paragraph before Lemma

25.5]). The key point is that we can find gj(κ) ∈ V [G] that is generic for

Add(j(κ), j(λ)+)M [G∗H0]. This uses crucially (3) in the preparation of Step
One. Let us outline some key points. Let i : V → N be the ultrapower
by the normal ultrafilter derived from j and let k : N → M be the natural
map defined as k([f ]) = j(f)(κ). Then by Fact 3.2 (2), i( ˙Add(κ, λ+))/Pi(κ)

is forcing equivalent to i(Add(κ, λ+)). Hence we can find in V a generic for

i( ˙Add(κ, λ+))/Pi(κ) over N . By Fact 3.2 (1), this can be transferred along

the embedding k to a generic for j(Add(κ, λ+)) over M [Gj(κ)]. More details
can be found in [16, Theorem 2.11] or [11, The second step, Page 245-246].

We procceed with the usual Woodin surgery argument [12, Chapter 25]
and alter the values of gj(κ) (we abuse notation and keep denoting the al-

tered functions by gj(κ),α) so that for every ξ < λ+, gj(κ),j(ξ) ↾ κ = gκ,ξ
and gj(κ),j(ξ)(κ) = ξ. It is routine to check that gj(κ) is still generic,

and that j′′G ⊆ G ∗ G(κ,j(κ) ∗ gj(κ) =: H. So we may lift in j ⊆ j+ :

V [G] → M [H]. Note that we have (H(λ++))V [G] ⊂ M [H]. To see this,
as Pκ+1 ∈ H(λ++)V ⊂ M is a κ+-c.c forcing extension of V , we know
that H(λ++)V [G] ⊂ M [G] ⊂ M [H]. Since we made sure that j+(gκ,ξ)(κ) =
gj(κ),j(ξ)(κ) = ξ, we have shown that (1) − (2) hold. �

Corollary 3.4. Assume GCH, κ is a H(λ++)-hypermeasurable cardinal
where κ < λ is a measurable cardinal. Then there is a generic extension V ∗

where:
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(1) 2κ = 2λ = λ+ > λ.
(2) there is an elementary embedding j∗ : V ∗ →M∗ such that:

(a) crit(j) = κ, H((2κ)+)V
∗

⊆M∗.
(b) for every X ⊆ λ there is g ∈ V ∗ such that j(g)(κ) = X.

(3) For all n < κ, λ is (n, κ+)-s-stationary.

Proof. Let V ∗ and j∗ : V ∗ → M∗ be as in the conclusion of Proposition
3.3. In particular (1), (2a) hold. Moreover, for every ξ < λ+, there is a
function g ∈ V ∗ such that j∗(g)(κ) = ξ. To see (2b), take any X ⊆ λ and
factor j∗ through the ultrapower embedding i∗ : V ∗ → N∗ by the normal
ultrapower derived from j∗ and let k : N∗ → M∗ be the factor map such
that k ◦ i∗ = j∗ defined by k(i∗(g)(κ)) = j∗(g)(κ). Since λ++1 ⊆ Im(k), we
have that crit(k) > λ+. In particular, for every X ⊆ λ, such that X ∈ N∗,
k(X) = X. Also note that k(PN∗

(λ)) = PM∗

(λ) = PN∗

(λ). The reason is
that N∗ |= 2λ = λ+ and crit(k) > λ+. Therefore, every X ⊆ λ is of the form
j∗(f)(κ). Finally, to see (3), note that V ∗ is a generic extension of V by a
κ++-c.c forcing (the Step One forcing is κ++-c.c and the Step Two forcing
is κ+-c.c), so we may reason as in the proof of Theorem 0.10 following the
proof of Theorem 2.3. �

From now on, let us denote by V ∗ = V and j∗ = j the model and the
elementary embedding of the previous corollary. Let us give a brief descrip-
tion of the notations we use for Radin forcing [26] and relevant background
for our main result. For full detailed definitions and proofs consult [14].

3.3. Radin Forcing. Let Ū be a measure sequence derived from j of length

λ i.e. Ū = 〈κ〉a〈U(ξ) | ξ < λ〉 such that for every ξ < λ we define recursively

U(ξ) = {X ⊆ Vκ | Ū ↾ ξ ∈ j(X)}

and U(0) is just the normal measure derived from j using κ. More generally,
a measure sequence is any sequence of ultrafilter w̄ of any length, denoted
by lh(w̄), which is derived from some elementary embedding jw̄ in the same
way Ū was derived, always starting with the seed crit(j) which we denote
by κ(w̄) = crit(jw̄). We denote by MS the class of all measure sequences.
It is well-known (see for example [14]) that we may only consider w̄ ∈ MS
which concentrate onMS i.eMS ∩ Vκ(w̄) ∈

⋂
ξ<lh(w̄) w̄(ξ) =:

⋂
w̄.

Remark 3.5. We will always assume that given a set A ∈
⋂

w̄, for every
v̄ ∈ A, A ∩ Vκ(v̄) ∈

⋂
v̄. Such a v̄ is said to be addable to A. For generally,

we say that ~η = (v̄1, ..., v̄n) is addable to (w̄, A), and denote it by ~η << A,
if for every 1 ≤ i ≤ n, v̄i ∈ A and A ∩ Vκ(v̄i) ∈

⋂
v̄i.

Given two measure sequences ū, v̄, we denote ū ≺ w̄ if ū ∈ Vκ(w̄). If
B ⊆MS, then

B<ω =
⋃

n<ω

{〈ū1, . . . , ūn〉 ∈ Bn | ū1 ≺ ū2 ≺ · · · ≺ ūn}
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Let us follow the description of Radin forcing from [14] with the exception
that q ≤ p means q is a stronger condition.

Definition 3.6. The Radin forcing with Ū , denoted by RŪ consist of all
finite sequences p = 〈di | i ≤ k〉 such that each di is either an ordinal κi < κ
(which we identify as the measure sequence ūpi = 〈κi〉) or a pair (ūpi , A

p
i ),

such that:

(1) dk = (Ū , Ap) where Ap ∈
⋂

Ū .
(2) ūp1 ≺ ūp2 ≺ · · · ≺ ūpk.
(3) If di is a pair then Ap

i ∈
⋂

ūpi and if i > 0 then for every ū ∈ Ap
i ,

ūpi−1 ≺ ū.

Notation 3.7. We denote the length of the condition lh(p) = k, the lower
part p0 = 〈di | i < lh(p)〉, the upper part (Ū , A) (so we may write p =
p⌢0 (Ū , A)), Let κ0(p) = κ(dk−1), and R<κ = {p0 | p ∈ RŪ}.

Definition 3.8. Let p, q ∈ Rū. We say that p is a direct extension of q and
p ≤∗ q if:

(1) lh(p) = lh(q).
(2) For every i < lh(p), ūpi = ūqi and Ap

i ⊆ Aq
i .

Definition 3.9. Let p ∈ Rū. A one-step extension of p is obtained by
choosing i ≤ lh(p) ūpi and v̄ ∈ Ap

i which is addable to (ūpi , A
p
i ) and forming

the condition

py〈v̄〉 := 〈dj | j < i〉a(v̄, Ap
i ∩ Vκ(v̄)

a(ūpi , A
p
i \ Vκ(v̄)+1)

a〈dj | i < j ≤ lh(p)〉.

We define recursively, py〈v̄1, . . . , v̄n+1〉 = (py〈v̄1, . . . , v̄n〉)
y〈v̄n+1〉.

Remark 3.10. We clarify the notations regarding concatenation and one-step
extension.

• p⌢(w̄, A) is the string concatenation in the usual sense. In particu-
lar, in order for this to make sense, κ(w̄) > κ(v̄) for all v̄ ∈ p and we
always need to specify the large set A.
• py〈w̄〉 is the one step extension as in the definition above. In par-
ticular, κ(w̄) < κ(v̄) for some v̄ ∈ p and we only specify the measure
sequence since the measure one set for w̄ is already determined.

We define the order by p ≤ q if there are v̄1, . . . v̄n, such that v̄i ∈ Aq
i and

p ≤∗ qy〈v̄1, . . . v̄n〉. Let us list some basic properties of RŪ (for the proof
see [14]):

Proposition 3.11. (1) RŪ is κ+-c.c.
(2) For any condition p, (RŪ/p,≤

∗) is κ(ūp0)-directed closed. In partic-
ular, if lh(p) = 1 the (RŪ/p,≤

∗) is κ-closed.
(3) For any p = 〈di | i ≤ lh(p)〉 ∈ RŪ , and any i < lh(p), we can factor

RŪ/p ≃ (Rūp
i
/p ↾ i+ 1)× (RŪ/p \ i+ 1)

where p ↾ i+ 1 = 〈dj | j ≤ i〉 and p \ i+ 1 = 〈dj | i < j ≤ lh(p)〉.
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(4) RŪ satisfies the Prikry property: For any sentence in the forcing
language σ, and any condition p ∈ RŪ there is a direct extension
p∗ ≤∗ p such that p∗ 
 σ ∨ p∗ 
 ¬σ3.

(5) RŪ satisfies the strong Prikry property: For every dense open set
D ⊆ RŪ and any condition p, there is p∗ ≤∗ p and a p∗-fat tree 4 T
such that for every maximal branch t ∈ T , p∗y〈t〉 ∈ D.

We will need the following proposition that reduces RŪ -names to names
which depends on bounded information:

Proposition 3.12. Let 〈γα | α < κ〉 ∈ V be any sequence of ordinals below

κ and p = pa0 (Ū , A) ∈ RŪ and 〈ẋα | γα < κ〉 be a sequence of RŪ -names such
that p 
 ẋα ⊆ γα. Then there is q ≤ p, q0 = p0 and a function f : Aq → Vκ

such that for every w̄ ∈ Aq, f(w̄) is an Rw̄-name forced by qa0 (w̄, A
q ∩Vκ(w̄))

to be a subset of κ(w̄) and qaw̄ 
 f(w̄) = ẋκ(w̄).

Proof. The proof is exactly as in [8, Lemma 2.13] exploiting the κ-closure

of ≤∗ of the upper part to determine Ṫ ∩ γκ(w̄). �

Definition 3.13. Let G ⊆ RŪ be V -generic. We denote by

MSG = {ū ∈ MS | ∃p ∈ G ∃i < lh(p) ū = ūpi }

The generic Radin club is the set O(MSG) = {α < κ : ∃ū ∈ MSG, α =
κ(ū)}.

We say that a set A is generated by a set in the ground model if there is
B ∈ V such that A = O(B∩MSG). Other useful lemmas concerning Radin
forcing can also be found in [7] and [8].

3.4. Compactness and stationarity in Radin Extensions. Let G ⊆
RŪ be V -generic. It turns out that some large cardinal properties of κ in
the generic extension V [G] correspond to combinatorial properties of lh(Ū )
(see the discussion in the introduction for some examples). One which is
relevant to us the that of a weakly compact cardinal which is due to the
second author and Ben-Neria:

Lemma 3.14 ([8, Lemma 3.14]). Suppose that (2κ)M does not divide lh(Ū),
then in V RŪ |= κ is not weakly compact.

In particular, the measure sequence Ū which we have prepared satisfies
that lh(Ū) = λ < (2κ)M . To show that κ has some reflection properties in
the generic extension, we will need to analyze stationary sets and higher-
order stationary sets in Radin forcing extensions.

Ben-Neria [7] has characterized clubs and stationary sets in the generic
extension using measure sequences:

3In this situation we say that p∗ decides σ and denote p∗||σ.
4Namely, a tree T ⊆ (MS∩Vκ)

n for some n < ω, such that for each t ∈ T , p∗y〈t〉 ∈ RŪ

and there is i ≤ lh(p∗), ξ < lh(ūp∗

i ) such that succT (t) := {w̄ | taw̄ ∈ T} ∈ ū
p∗

i (ξ).
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Theorem 3.15 ([7]). If Ū satisfies cf(lh(Ū )) ≥ κ+, where κ = κ(Ū), then

given pa0 (Ū , A) = p 
 τ̇ is a club subset of κ, there exists a measure one set
A′ ⊆ A and a set Γ such that for some η < κ, Γ ∈ U(ξ) for all ξ ∈ [η, lh(Ū ))

and pa0 (Ū , A′) 
 O(Γ ∩MSG) ⊂ τ̇ .

It follows that if cf(lh(Ū )) ≥ κ+, any set A ∈ V such that A ∈ U(ξ) for
unboundedly many ξ’s below lh(Ū), will generate a stationary set in V RŪ

i.e. O(A ∩ MSG) will intersect any club (see [7, Proposition 15]). There
are stationary sets which are not generated from a ground model set ([8,
Proposition 2.12]) and the exact characterization of stationary sets appears
in [7, Theorem 19] and uses the notion of measure function:

Definition 3.16. A measure function is a function b :MS → Vκ such that
for every ū ∈ MS, b(ū) ∈

⋂
ū.

Theorem 3.17 ([7, Theorem 19]). Suppose that Ū satisfies cf(lh(Ū)) ≥ κ+,

where κ = κ(Ū ), and Ṡ is RŪ -name such that p 
 Ṡ is a stationary subset

of κ. Then there is e = ea0 (Ū , B) ≤ p and a measure function b such that
for every ~η ∈ B<ω:

Ze0 \ ~η := {w̄ ∈ Ze0 | e
⌢
0 (w̄, b(w̄))⌢(Ū , B − Vκ(w̄)+1) 
 κ(w̄) ∈ Ṫ

and ~η << b(w̄)} ∈ U(ξ)

for unboundedly many ξ < lh(Ū).

For the sake of convenience, let us denote Ze0\∅ as Ze0 . This provided
the main ingredient in [7] to guarantee stationary reflection in the generic
extension:

Theorem 3.18 ([7]). Suppose that Ū is a measure sequence such that
cf(lh(Ū)) ≥ κ++, then V RŪ |= every stationary set at κ reflects and more-
over every κ-sequence of stationary subsets of κ reflects diagonally (or in
our terminology, κ is 2-d-stationary).

Our intention is to generalize this characterization to higher levels of
stationarity and show that the measure sequence we produced in the prepa-
ration, guarantees that κ is k-d-diagonal-stationary for all k ∈ ω in V RŪ .

Definition 3.19. Given A ⊂ Vκ, let

IndŪ (A) = {α < lh(Ū) | A ∈ U(α)}

Definition 3.20. Fix n < κ and a measure sequence Ū on κ of length λ.
Let χ < λ. We say that A ⊂ Vκ is:

(1) Ū -(n, χ)-s-club if IndŪ (A) ∈ Cub
(n,χ)
λ

(2) Ū -(n, χ)-s-stationary if IndŪ (A) 6∈ NS
(n,χ)
λ .

(3) Ū -(n, χ)-s-null if IndŪ (A) ∈ NS
(n,χ)
λ .
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4. Higher order stationary reflection in the Radin extension

In this section we present the proof of Theorem 0.11. We restate the
theorem for the convenience of the reader.

Theorem. Relative to the existence of a H(λ++)-hypermeasurable cardinal
κ where λ > κ is a measurable cardinal, it is consistent that a strongly
inaccessible cardinal κ is n-d-stationary for all n ∈ ω, but κ is not weakly
compact.

By the results from Section 3, we may assume the following: there is an
elementary embedding j : V →M with critical point κ such that

(1) V |= 2κ = 2λ = λ+ > λ,
(2) H(λ++) ⊂M and κM ⊂M ,
(3) λ is (ω, κ+)-s-stationary.
(4) For every X ⊆ λ there is f such that j(f)(κ) = X.

By the fact that H(λ++) ⊂ M , we can then derive a measure sequence Ū
of length λ from j (see [14, Lemma 5.1]). In particular, for ξ < λ, U(ξ)
concentrates on ū ∈ MS ∩ Vκ such that ū is derived from an embedding
j′ : V →M ′ such that κ(ū) is the critical point of j′ and:

(1) 2κ(ū) > lh(ū),
(2) for every X ⊆ lh(ū) there is f such that j′(f)(κ(ū)) = X.

The reflected objects here are the initial segments of Ū , namely {Ū ↾ ξ :
ξ < lh(Ū )}. By our assumption, any proper initial segment of Ū belongs
to M , hence, reflection is possible. Furthermore, for each such reflected
measure sequence, one can form an elementary embedding that derives it.
We refer the reader to [14, Lemma 5.1] for this type of arguments.

By shrinking to a measure one set in ∩Ū , we may abuse our notations by
assuming that each ū ∈ MS ∩ Vκ, there is an embedding j′ from which ū is
derived as above. We call these measure sequences good. If in addition, ξ < λ
is (ρ, κ+)-s-stationary for ρ < ω, then we may assume U(ξ) concentrates on
good measure sequences ū such that lh(ū) is (ρ, κ(ū)+)-s-stationary.

The argument is to prove inductively on n ∈ ω − {0} that: for any
good measure sequence Ū on κ with lh(Ū ) = λ, the following sequence
of propositions holds.

Proposition 4.1 (φ0,n). If V RŪ |= κ is n-d-stationary, then lh(Ū) = λ is
(n− 1, κ+)-s-stationary.

If in addition λ is (n−1, κ+)-s-stationary, then the following propositions
hold:

Proposition 4.2 (φ1,n). In V RŪ , S is n-d-stationary iff S∩O(Γ∩MSG) 6=
∅ for all Γ ⊂MS that is Ū -(n− 1, κ+)-s-club.

Proposition 4.3 (φ2,n). Let Ṫ be a RŪ -name such that p 
 Ṫ ⊆ κ is n-d-

stationary. Then there is e = ea0 〈Ū , B〉 ≤ p and a measure function b such
that:
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(1) Ze0 := {w̄ : e⌢0 (w̄, b(w̄))⌢(Ū , B − Vκ(w̄+1)) 
 κ(w̄) ∈ Ṫ} is Ū -

(n− 1, κ+)-s-stationary,
(2) For every ~η ∈ B<ω, Ze0 \ ~η := {w̄ ∈ Ze0 | ~η << b(w̄)} is Ū -

(n − 1, κ+)-s-stationary, where ~η << b(w̄) means for any measure
sequence v̄ appearing in ~η, it is the case that v̄ ∈ b(w̄) and b(w̄) ∩
Vκ(v̄) ∈

⋂
v̄, namely, v̄ can be added below (w̄, b(w̄)).

We call such (e,b) an n-d-stationary witness for Ṫ

Proposition 4.4 (φ3,n). If Ṫ is a RŪ -name such that an n-d-stationary

witness (e, b) for Ṫ exists, then e 
 Ṫ is n-d-stationary.

If in addition λ is (n, κ+)-s-stationary, then the following proposition
holds:

Proposition 4.5 (φ4,n). In V RŪ , for any sequence of n-d-stationary sets
〈Si : i < κ〉, there exists a Ū -(n, κ+)-s-club subset Γ∗ ⊂MS in V such that
O(Γ∗ ∩MSG) ⊂ ∆i<κTr

d
n(Si).

Remark 4.6. Strictly speaking, we should decorate these propositions with

Ū , namely φj,n should be φŪ
j,n for j = 0, 1, 2, 3, 4, since for each n ∈ ω, we

quantify over all good measure sequences. In the following, we suppress the
superscript if the measure sequence we are dealing with is Ū . Otherwise,
we will always decorate with the superscript to make precise which good
measure sequence the induction hypothesis is applied to.

Fix an embedding j : V → M with critical point κ witnessing that Ū is
good. Namely,

(1) Ū is derived from j,
(2) 2κ > lh(Ū) =: λ,
(3) for every X ⊆ λ there is f such that j(f)(κ) = X.

The base case n = 1. Note that φ0,1 is saying that if V RŪ |= κ is regular,
then lh(Ū ) = λ must have cofinality ≥ κ+. This is true and follows from
the arguments in [14, Lemma 5.11-5.13] and the fact if ξ < 2κ, then ξ is
not a weak repeat point for Ū . Recall that for an ordinal θ ∈ cof(≥ κ+),
(0, κ+)-s-stationary subsets of θ are just the unbounded subsets of θ and
when θ is regular, 1-d-stationary subsets of θ are just stationary subsets of θ
as the club filter at θ is always normal. Thus φ1,1, φ2,1, φ3,1, φ4,1 were proved
in [7].

We focus on the inductive case n > 1. The argument is, to some extent,
a generalization of that in [7].

Proof of φ0,n. If lh(Ū) is not (n − 2, κ+)-s-stationary, then by φ0,n−1, in
V RŪ , κ is not n − 1-d-stationary and in particular not n-d-stationary. So
we may assume that lh(Ū ) is (n − 2, κ+)-s-stationary. Suppose λ = lh(Ū )
is not (n− 1, κ+)-s-stationary. Let 〈Ai | i < κ〉 be a sequence of (n− 2, κ+)-

s-stationary subsets of λ such that ∩i<κTr
κ+

n−2(Ai) = ∅.
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For each i < κ, by our assumption about the embedding j, let fi be
such that j(fi)(κ) = Ai and let Γi =def {w̄ ∈ MS : lh(w̄) ∈ fi(κ(w̄))}
so that in particular IndŪ (Γi) = Ai. Then by φ1,n−1, O(Γi ∩MSG) is a
n− 1-d-stationary set for any i < κ.

We would like to prove that 〈O(Γi ∩MSG) | i < κ〉 witness that κ is not
n-d-stationary. Indeed

B := {v̄ | ∀i < κ(v̄), Indv̄(Γi∩Vκ(v̄)) is (n− 2, κ(v̄)+)-s-stationary in lh(v̄)}

is Ū -null. To see this, for every ξ < lh(Ū), IndŪ↾ξ(Γi) = Ai ∩ ξ and since

∩i<κTr
κ+

n−2(Ai) = ∅, Ū ↾ ξ /∈ j(B). We may assume without loss of generality
thatMSG∩B = ∅. If κ(v̄) ∈ O(MSG) would have been a n−1-d-stationary
point of all the O(Γi ∩MSG) for i < κ(v̄). In particular κ(v̄) is n − 1-d-
stationary. By the induction hypothesis φv̄

0,n−1, lh(v̄) is (n − 2, κ(v̄)+)-s-

stationary. By φv̄
2,n−1, Indv̄(Γi ∩ Vκ(v̄)) should have been (n − 2, κ(v̄)+)-

s-stationary in lh(v̄). This would mean that v̄ ∈ B ∩ MSG, which is a
contradiction. �

From now on, assume λ is (n− 1, κ+)-s-stationary.

Proof of φ1,n. Work in V [G].

• (←): Let 〈Ti | i < κ〉 be a sequence of n− 1-d-stationary sets. As λ
is (n− 1, κ+)-s-stationary, we can apply φ4,n−1 to find Γ ∈ V which

is a Ū -(n − 1, κ+)-club such that O(Γ ∩MSG) ⊆ ∆i<κTr
d
n−1(Ti).

By our assumption on S, we have that ∅ 6= S ∩ O(Γ ∩ MSG) ⊆
S ∩∆i<κTr

d
n(Ti). Hence S is n-d-stationary.

• (→): Suppose there exists a set Γ ⊂MS that is Ū -(n−1, κ+)-s-club
such that S∩O(Γ∩MSG) = ∅, we will cook up a n−1-d-stationary
set H such that Trdn−1(H)∩S is bounded. This implies that S is not

n-d-stationary.5 Since λ is assumed to be (n−1, κ+)-s-stationary, by
Lemma 1.6 (3), we can find T0 ⊂ λ which is (n− 2, κ+)-s-stationary

such that Trκ
+

n−2(T0) ⊆ C = IndŪ (Γ). By our assumption on j, there
is f ∈ V such that j(f)(κ) = T0. Let

Γ′ = {w̄ ∈ Vκ ∩MS : lh(w̄) ∈ f(κ(w̄))}.

Note that IndŪ (Γ
′) = T0. Indeed, Ū ↾ ξ ∈ j(Γ′) iff ξ ∈ j(f)(κ) = T0.

Let H = O(Γ′ ∩MSG). Since Γ′ is Ū − (n− 2, κ+)-s-stationary, by
φ1,n−1, H is an n− 1-d-stationary subset of κ in V [G]. Note that:

Claim 4.7. Trdn−1(H) = O(Γ∗ ∩MSG) where

Γ∗ = {ū : Γ′ ∩ Vκ(ū) is ū-(n− 2, κ(ū)+)-s-stationary}.

Proof of the Claim. Let ū ∈ Γ∗ ∩MSG. Note that ū is good and
lh(ū) is (n− 2, κ(ū))-s-stationary. We can then apply the induction
hypothesis φū

2,n−1 to conclude that O(Γ′ ∩MSG ∩Vκ(ū)) = H ∩κ(ū)

5Note that if S is n-d-stationary, and H is n− 1-d-stationary, then Trdn−1(H)∩S must
be unbounded.
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is n − 1-d-stationary in V [G ↾ ū] and thus in V [G], as the upper
part of the forcing does not add subsets to κ(ū). It follows that
κ(ū) ∈ Trdn−1(H).

For the other direction, clearly each α = κ(ū) ∈ Trdn−1(H) =

Trdn−1(O(Γ′ ∩ MSG)) is a limit point of O(MSG) and therefore
in O(MSG). Hence ū ∈ MSG. We note that if O(Γ′ ∩ MSG) ∩
Vκ(ū) is (n− 1)-d-stationary, then by φū

0,n−1, lh(ū) is (n− 2, κ(ū)+)-

s-stationary. Apply φū
1,n−1 to conclude that Γ′ ∩ Vκ(ū) is ū-(n −

2, κ(ū)+)-s-stationary. As a result, κ(ū) ∈ Γ∗. �

It suffices to show that Γ∗ − Γ is Ū -null i.e. IndŪ (Γ
∗ − Γ) = ∅.

Indeed, this will imply that Trdn−1(H) = O(Γ∗ ∩MSG) ⊆
∗ O(Γ ∩

MSG) so Trdn−1(H) ∩ S will be bounded. Fix ξ < lh(Ū ). By the

definition, if Ū ↾ ξ ∈ j(Γ∗), then Γ′ = j(Γ′)∩ Vκ is Ū ↾ ξ-(n− 2, κ+)-

s-stationary, so ξ ∈ Trκ
+

n−2(IndŪ (Γ
′)) = Trκ

+

n−2(T0) ⊆ IndŪ (Γ), so

Ū ↾ ξ ∈ j(Γ).

�

Proof of φ2,n. Let p = p⌢0 (Ū , A). By Proposition 3.12, we may assume
that for each w̄ ∈ A, there is an Rw̄-name f(w̄) such that p⌢w̄ forces

Ṫ ∩ (κ(w̄)+1) = f(w̄). Furthermore, we may assume there exists a measure
function b satisfying the following: for each w̄ ∈ A, and any r ∈ R<κ(w̄), there
exists a direct extension r′ of r in R<κ(w̄) such that r′⌢(w̄, b(w̄)) decides the
statement κ(w̄) ∈ f(w̄). Split A into two sets:

A1 = {ū ∈ A | ∃t ∈ R<κ(ū)/p0, t
a(ū, b(ū))a(Ū , A) 
 κ(ū) ∈ Ṫ}, A2 = A\A1

Note that λ = IndŪ(A1) ⊎ IndŪ (A2).

Claim 4.8. A1 is Ū -(n− 1, κ+)-s-stationary.

Proof. Otherwise, IndŪ (A1) is not (n−1, κ+)-s-stationary, and thus A2 is a
Ū − (n− 1, κ+)-s-club. Note that by our construction of p and by definition
of A2, for every ū ∈ A2 and any t ∈ R<κ(ū)/p0, there is a direct extension t′

of t such that

t′
⌢
(ū, b(ū))⌢(Ū , A \ Vκ(ū)+1) 
 κ(ū) 6∈ Ṫ .

Let H be any generic with p ∈ H. Since p 
 Ṫ is n-d-stationary, we have
V [H] |= (Ṫ )H is n-d-stationary and by φ1,n, (Ṫ )H ∩ O(A2 ∩ MSH) 6= ∅.
Hence we can find ū ∈ A2 and a condition p′ := t′a(ū, a)a~sa(Ū , A′) ∈ H/p

such that p′ 
 κ(ū) ∈ Ṫ . By the definition of A2, there is a direct extension

t∗ of t′ in R<κ(ū) such that t∗a(ū, b(ū))a(Ū , A \ Vκ(ū+1) 
 κ(ū) /∈ Ṫ . So the
condition

p∗ = t∗a(ū, b(ū) ∩ a)a~sa(Ū , A′)

forces both κ(ū) ∈ Ṫ and κ(ū) /∈ Ṫ , which is a contradiction. �
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Let S1 = IndŪ (A1) /∈ NS
(n−1,κ+)
λ . For each ξ ∈ S1, U ↾ ξ ∈ j(A1). By

elementarity of j and the definition of A1, find some tξ ∈ R<κ such that

tξ ≤R<κ p0 and t⌢ξ (Ū ↾ ξ, j(b)(Ū ↾ ξ))⌢(j(Ū ), j(A) \ Vκ+1) 
j(RŪ ) κ ∈ j(Ṫ ).

By the κ+-completeness of NS
(n−1,κ+)
λ , we can find e0 ∈ R<κ/p0 such

that Ze0 =def {ū ∈ A : e⌢0 (ū, b(ū))⌢(Ū , A) 
 κ(ū) ∈ Ṫ} is Ū -(n − 1, κ+)-
s-stationary. Then e0 is the desired lower part. All that is left to do is to
shrink the measure one set.

Let us say that −→η ∈ A<ω is nice, if Ze0 \ ~η is Ū -(n − 1, κ+)-s-stationary.
We next show that we can find a Ū -measure one set B such any −→η ∈ B<ω

is nice. We achieve the task in steps by inducting on the length of the finite
sequence of measure sequences.

Let us first check that A1 = {w̄ : 〈w̄〉 is nice} ∈
⋂

Ū . Suppose for the
sake of contradiction that this set is not in U(ξ) for some ξ < lh(Ū). Let
S = IndŪ (Ze0). For each γ ∈ S−(ξ+1), we can find some w̄γ ∈ Ac

1∩j(b)(Ū ↾

γ) with j(b)(Ū ↾ γ) ∩ Vκ(w̄γ) ∈
⋂

w̄γ . Note that such a w̄γ exists since

Ac
1 ∩ j(b)(Ū ↾ γ) ∈ U(ξ). Since NS

(n−1,κ+)
λ is κ+-complete, there are w̄ ∈ Vκ

and (n − 1, κ+)-s-stationary S′ ⊂ S such that for any γ ∈ S′, w̄γ = w̄.
But then w̄ must be nice since for every γ ∈ S′, by elementarity and the
definition of Ze0 \ 〈w̄〉, U ↾ γ ∈ j(Ze0 \ 〈w̄〉). Hence S′ ⊆ IndŪ (Ze0 \ 〈w̄〉),
contradicting with the fact that w̄ 6∈ A1.

Suppose −→η ∈ An is nice, then A−→η ,n+1 = {w̄ : −→η ⌢w̄ is nice} is in
⋂

Ū .

The argument is similar to the previous step, by looking at the set Ze0 \
−→η ,

and again applying the κ+-completeness of NS
(n−1,κ+)
λ . Let

An+1 = ∆nice −→η ∈(An)nA−→η ,n+1 :=

{v̄ ∈MS ∩ Vκ | ∀nice
−→η ∈ (An)

n ∩ Vκ(v̄), ν̄ ∈ A−→η ,n+1}.

Then An+1 ∈
⋂

Ū . Finally, it is easy to see that B =
⋂

n∈ω An is as desired.

Namely, (e⌢0 (Ū , B), b) is an n-d-stationary witness for Ṫ . �

Proof of φ3,n. By φ1,n, we need to prove that (Ṫ )G ∩ O(Γ ∩MSG) 6= ∅ for
every set Γ which is a Ū -(n − 1, κ+)-s-club, whenever e ∈ G. Suppose
toward a contradiction that this is not the case and fix Γ as above and
e′ ≤ e such that e′ 
 Ṫ ∩ O(Γ ∩ ˙MSG) = ∅. Let ~η′ ∈ B<ω be such
that e′ = e′0

a〈Ū , A′〉 ≤∗ ey〈~η′〉 and ~η be the part of ~η′ above max(e0).
Since (e, b) is an n-d-stationary witness, the set Ze0 \ ~η is Ū -(n − 1, κ+)-s-
stationary subset of λ, and since Γ is a Ū -(n − 1, κ+)-s-club in λ, there is
ξ ∈ IndŪ (Ze0 \~η)∩IndŪ (Γ). In particular, we can find w̄ ∈ Γ∩(Ze0 \~η)∩A

′

such that A′ ∩ Vκ(w̄) ∈
⋂

w̄. Consider the condition

e∗ = e′0
a〈w̄, b(w̄) ∩A′〉a〈Ū , A′〉.

Then e∗ ≤ e′ and also e∗ is compatible with ea0 〈w̄, b(w̄)〉a〈Ū , A〉. So there
exists an extension of e∗ that forces the following:

(1) Ṫ ∩O(Γ ∩ ˙MSG) = ∅.
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(2) κ(w̄) ∈ Ṫ .

(3) w̄ ∈ Γ ∩ ˙MSG,

which is a contradiction. �

It remains to prove φ4,n. From now on, assume that λ is (n, κ+)-s-
stationary.

Claim 4.9. Suppose that (e, b) is an n-d-stationary witness for Ṫ . Then

there is a Ū -(n, κ+)-s-club Γ , such that for each v̄ ∈ Γ, ea0 (v̄, B∩Vκ(v̄))
a(Ū , B\

Vκ(v̄)+1) 
 Ṫ ∩κ(v̄) is n-d-stationary. In particular, in the generic extension

V [G] with e ∈ G, O(Γ ∩MSG) ⊆ Trdn(T ).

Proof. By definition of an n-d-stationary witness, we have that for each

~η ∈ B<ω, IndŪ (Ze0 \ ~η) /∈ NS
(n−1,κ+)
λ and therefore Trκ

+

n−1(Ind(Ze0 \ ~η)) ∈

Cub
(n,κ+)
λ

6. Since NS
(n,κ+)
λ is κ+-complete and λ is (n, κ+)-s-stationary, we

have

C :=
⋂

~η∈B<ω

Trκ
+

n−1(IndŪ (Ze0 \ ~η)) ∈ Cub
(n,κ+)
λ .

Let

Γ = {ū ∈ B | ∀~η ∈ B<ω∩Vκ(ū), Ze0\~η∩Vκ(ū) is ū-(n−1, κ(ū)
+)-s-stationary}.

To see that Γ is a Ū − (n, κ+)-s-club, fix any ξ ∈ C. Note that for every
~η ∈ B<ω = j(B<ω)∩Vκ, we have that j(Ze0 \~η)∩Vκ = Ze0 \~η and therefore

ξ ∈ Trκ
+

n−1(IndŪ (Ze0 \ ~η)). By definition this means that Ind ¯U↾ξ(Ze0 \ ~η)

is (n − 1, κ+)-s-stationary in ξ = lh(Ū ↾ ξ), hence Ū ↾ ξ ∈ j(Γ) and ξ ∈
IndŪ (Γ). This implies that C ⊆ IndŪ (Γ) and thus Γ is a Ū−(n, κ+)-s-club.

Suppose towards a contradiction that there are v̄ ∈ Γ and q ≤ ea0 (v̄, B ∩
Vκ(v̄))

a(Ū , B), 〈τ̇i | i < κ(v̄)〉 a sequence of Rv̄-names such that q 
 τ̇i ⊆ κ(v̄)

is (n − 1)-d-stationary and ∆i<κ(v̄)Tr
d
n−1(τ̇i) ∩ Ṫ ∩ κ(v̄) = ∅. Note that by

definition of Γ, we have that lh(v̄) is (n − 1, κ(v̄)+)-s-stationary, and v̄ is
good. By φv̄

4,n−1, there is an extension q′ ≤ q and a v̄-(n − 1, κ(v̄)+)-s-club

set Γ0 such that q′ 
 O(Γ0 ∩ ˙MSG) ⊆ ∆i<κ(v̄)Tr
d
n−1(τ̇i). As 〈τ̇i : i < κ(v̄)〉

is an Rv̄-name, we may assume q′ − Vκ(v̄)+1 = q − Vκ(v̄)+1.

Recall that by the definition of Γ, Ze0 \ ~η ∩ Vκ(v̄) is v̄-(n − 1, κ(v̄)+)-s-
stationary where ~η is the part of q′ in Vκ(v̄) above max(e0). Thus q′ is

of the form q′⌢0 ~η⌢(Ū ,D), where q′0 ≤Rmax(e0)
e0 . Hence we can find ξ ∈

Indv̄(Γ0)∩Indv̄(Ze0 \~η∩Vκ(v̄)). Therefore, there is ū ∈ Γ0∩Ze0\~η∩Vκ(v̄)∩D
such that D ∩ Vκ(ū) ∈

⋂
ū. Form the condition

r = q′0
a~ηa(ū, b(ū) ∩D)a(Ū ,D).

6Indeed, λ\Trκ
+

n−1(IndŪ (Ze0 \~η)) is not (n, κ
+)-s-stationary as witnessed by IndŪ (Ze0 \

~η).
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Notice that r ≤ q′ and r is compatible with ea0 (ū, b(ū))
a(Ū , B \ Vκ(ū)+1). It

follows that some extension of r forces κ(ū) ∈ Ṫ ∩∆i<κ(v̄)Tr
d
n−1(τ̇i) ∩ κ(v̄),

contradicting with the fact that r ≤ q′ forces that Ṫ ∩ ∆i<κ(v̄)Tr
d
n−1(τ̇i) ∩

κ(v̄) = ∅. �

Proof of φ4,n. Let p = p⌢0 (Ū , A) 
 〈Ṡi : i < κ〉 be an RŪ -name for a
sequence of n-d-stationary sets.

For each i, let Ai be a maximal antichain subset of

{e ∈ RŪ : ∃ a measure function b, (e, b) is an n-d-stationary witness for Ṡi}.

Such a maximal antichain exists by φ2,n. By the κ+-c.c of RŪ , each |Ai| ≤
κ. Hence, we can list these conditions as {eik : k < κ} along with the
corresponding witnessing measure functions {bik : k < κ}.

By Claim 4.9, for each i, k < κ, there is Bi,k ∈ Cub
(n,κ+)
λ such that for any

ξ ∈ Bi,k, j(p
i
k)

y〈Ū ↾ ξ〉 
RŪ↾ξ
j(Ṡi)∩κ is n-stationary. Note that this is just

a reformulation of the claim in terms of the elementary embedding j. By

the κ+-completeness of NSn,κ
+

λ and the fact that λ is (n, κ+)-s-stationary,

B =
⋂

i,k<κBi,k ∈ Cub
(n,κ+)
λ .

Let G ⊂ RŪ be generic. In V [G], we define the function f : κ → κ. For
each i < κ, let ρi < κ be the least such that ρi > max(k, κ0(p

i
k)) where

• κ0(p
i
k) = max {κ(v̄) : v̄ ∈ pik} ∩ κ,

• pik is the unique element in Ai ∩G

and define f(i) = ρi. Let Cf be the club of closure points of f . Then by
Theorem 3.15, there is a Ū -0-club Γ ⊂MS such that O(Γ ∩MSG) ⊂ Cf .

Finally, consider

Γ∗ = {ū ∈ Γ : ∀i < κ(ū)∀k < κ(ū) pik
⌢
ū 
 Ṡi ∩ κ(ū) is n-d-stationary}.

Note that IndŪ (Γ
∗) ⊃ IndŪ (Γ) ∩ B and hence Γ∗ is also in Cub

(n,κ+)
λ .

To see this, for any ξ < lh(Ū ) such that ξ ∈ B and Ū ↾ ξ ∈ j(Γ), We need
to check Ū ↾ ξ ∈ j(Γ∗). Fix i < κ and k < κ. Since ξ ∈ B, we know that

j(pik)
⌢Ū ↾ ξ 
j(RŪ ) j(Ṡi)∩κ is n-d-stationary, as desired. We claim that Γ∗

witnesses the lemma, namely that O(Γ∗ ∩MSG) ⊆ ∆i<κTr
d
n(Si).

For each ū ∈ Γ∗ ∩ MSG and i < κ(ū), we know that f(i) < κ(ū). In
particular, the unique pik that belongs to G satisfies that k < κ(ū). As a

result, pik
⌢
ū ∈ G and forces that Ṡi ∩ κ(ū) is n-d-stationary. So in V [G],

Si ∩ κ(ū) is n-d-stationary for any i < κ(ū). �

Theorem 0.11 now follows easily from the proof in this section and Lemma
3.14.

Remark 4.10. Here is a comment on the necessity of the goodness assump-
tion on the measure sequence in the proof above. More precisely, without
the hypothesis that for any X ⊂ λ, there is f ∈ V such that j(f)(κ) = X,
the statement φ0,n may not be true. For example, if κ is strong in the ground
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model satisfying GCH and there is no inaccessible cardinal above it. In any
Radin extension using a measure sequence whose length is the first repeat
point, κ will remain measurable (and hence for example 3-d-stationary) but
the length of the measure sequence is not (2, κ+)-s-stationary.

5. Questions

The first question regards the possibility to separate higher order station-
ary reflection principles from weak compactness in an optimal way:

Question 5.1. Assuming only the existence of a n-stationary cardinal (n-
d-stationary cardinal) κ for n < ω, is it consistent that there is a car-
dinal λ which is n-stationary (n-d-stationary cardinal) but not even Π1

1-
indescribable?

Question 5.2. Is it consistent for a successor cardinal to be ω-stationary?

Problem 5.1. Characterize the measure sequences Ū such that in V RŪ , κ
is Π1

n-indescribable, where n > 1.

The next question is more open-ended:

Question 5.3. What other compactness properties can hold at κ in the
Radin extension V RŪ assuming that the length of the sequence (≤ 2κ) sat-
isfies the certain compactness properties? For example, how about being a
Jónsson cardinal?
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