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Abstract

There is significant interest in modelling the mechanics and physics of growth of soft biological
systems such as tumors and bacterial biofilms. Solid tumors account for more than 85% of cancer
mortality and bacterial biofilms account for a significant part of all human microbial infections.
These growing biological systems are a mixture of fluid and solid components and increase their
mass by intake of diffusing species such as fluids and nutrients (swelling) and subsequent conver-
sion of some of the diffusing species into solid material (growth). Experiments indicate that these
systems swell by large amounts and that the swelling and growth are intrinsically coupled, with
the swelling being an important driver of growth. However, many existing theories for swelling
coupled growth employ linear poroelasticity, which is limited to small swelling deformations, and
employ phenomenological prescriptions for the dependence of growth rate on concentration of
diffusing species and the stress-state in the system. In particular, the termination of growth is
enforced through the prescription of a critical concentration of diffusing species and a homeostatic
stress. In contrast, by developing a fully coupled swelling-growth theory that accounts for large
swelling through nonlinear poroelasticity, we show that the emergent driving stress for growth
automatically captures all the above phenomena. Further, we show that for the soft growing
systems considered here, the effects of the homeostatic stress and critical concentration can be
encapsulated under a single notion of a critical swelling ratio. The applicability of the theory is
shown by its ability to capture experimental observations of growing tumors and biofilms under
various mechanical and diffusion-consumption constraints. Additionally, compared to general-
ized mixture theories, our theory is amenable to relatively easy numerical implementation with
a minimal physically motivated parameter space.

Keywords: Swelling, Nonlinear poroelasticity, Growth, Tumor growth, Bacterial biofilms,
Homeostatic stress

1. Introduction

Understanding the mechanics and physics of growth of soft biological systems ranging from
cellular systems such as tumors and bacterial biofilms to tissues and organs such as arteries,
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lungs, skin, and the brain (Araujo and McElwain, 2004; Kuhl, 2014; Jain et al., 2014; Mattei
et al., 2018), can aid in development of clinical therapies and diagnosis that have important
societal implications. For example, solid tumors account for more than 85% of cancer mortality
(Jain, 2005). Similarly, bacterial biofilms, aggregates of bacterial cells held together by an extra-
cellular matrix, account for a significant part of all human microbial infections (Bryers, 2008).
These growing biological systems are a mixture of solid components such as cells and extracellu-
lar matrix, and diffusing fluid components with dissolved solutes such as nutrients, oxygen, and
growth factors. They increase their mass by intake of diffusing species from their surroundings,
the process of swelling, and subsequent conversion of some of the diffusing species into additional
solid material, a process henceforth referred to here as growth.

Experiments on bacterial biofilms indicate that swelling and growth are intrinsically coupled
and that swelling is an important driver of growth (Seminara et al., 2012; Yan et al., 2017).
The diffusing fluids supply the mass for growth and dissolved species such as nutrients, oxygen
and growth factors significantly affect the growth rate. In particular, the growth rate typically
increases with the concentration of diffusing species, saturating at high concentrations (Monod,
1949; Casciari et al., 1992; Narayanan et al., 2010) while the growth rate at small concentrations
is well captured using a critical concentration below which growth is assumed to stop (Greenspan,
1972; Hlatky et al., 1988; Ward and King, 1997; Bertuzzi et al., 2010; Araujo and McElwain, 2004;
Xue et al., 2016). There are other considerations which also make it important to account for
swelling during the growth process. For example, it is known that cell packing density of tumor
cells (which is inversely related with the amount of swelling) increases when they grow against a
stiff medium (Helmlinger et al., 1997) or through application of external pressure (Koike et al.,
2002; Alessandri et al., 2013; Chalut and Janmey, 2014) and such compaction can set the basis for
a multicellular-dependent mechanism of increased radiation resistance and both intrinsic and ac-
quired drug resistance (Olive and Durand, 1994; Kobayashi et al., 1993; Kerbel et al., 1994; Croix
et al., 1996). Similarly, compactness of bacterial biofilms, which also increases with confining
stiffness (SI of Zhang et al. (2021)), is a key determinant of underlying resistance to invader cells
(Nadell et al., 2015; Yan et al., 2017). A fundamental understanding of the physics of coupled
swelling-growth in these systems can aid potential development of clinical therapies, for exam-
ple, Croix et al. (1996) showed that a decrease in cell compaction, as induced by hyaluronidase
treatment of tumor spheroids, alleviated multicellular-dependent drug resistance. Similarly, Yan
et al. (2017) demonstrate the possibility of using external osmolytes to control the compactness
of pathogenic biofilms, which is critical to the penetration of antibiotic molecules.

Further, the extracellular matrix in these cellular systems are akin to hydrogels and can swell
by significant amounts (Yan et al., 2017) where the solid volume fraction can be as low as 20%
(SI of Zhang et al. (2021) and Section 5.7 of this manuscript). Thus a large deformation coupled
swelling-growth theory is required to accurately characterize and elucidate the physics in these
growing systems. However, current growth theories that account for diffusing species typically
either model the diffusion as an auxiliary process that neglects swelling, mechanics coupling, and
mass balance (Ambrosi and Mollica, 2002, 2004; Ambrosi and Guillou, 2007; Kim et al., 2011;
Ciarletta et al., 2013), or employ linear poroelasticity (Roose et al., 2003; Sarntinoranont et al.,
2003; Xue et al., 2016; Sacco et al., 2017; Xue et al., 2018; Carpio et al., 2019) based on the
seminal works of Biot (Biot, 1941; Biot and Temple, 1972), which is limited to relatively small
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deformations (Bouklas and Huang, 2012). Mixture theories of growth on the other hand account
for the mechanics and motion of every phase in the growing body (Humphrey and Rajagopal,
2002; Ambrosi and Preziosi, 2002; Byrne et al., 2003; Garikipati et al., 2004; Ateshian, 2007;
Azeloglu et al., 2008; Narayanan et al., 2009; Ateshian and Ricken, 2010; Chatelain et al., 2011;
Ciarletta et al., 2011; Amar et al., 2011; Ateshian et al., 2012, 2014; Myers and Ateshian, 2014;
Faghihi et al., 2020) and can account for large deformations and the coupling between swelling
and growth. However they also suffer from several drawbacks - (i) The requirement for specifi-
cation of a large number of constitutive relations and associated material parameters (Ambrosi
et al., 2011; Oden et al., 2016) that can be both impractical to experimentally determine and
to model, (ii) Difficulties associated with specifying boundary conditions and in dealing with
partial stresses and mass exchanges between the single phases (Ambrosi et al., 2010), and (iii)
Complexity of numerical implementation with more equations being modelled than might be
necessary to describe the required physics.

In addition to the shortcomings discussed above, a major limitation of the vast majority of
growth theories in the literature is the use of phenomenological prescriptions to capture impor-
tant experimental observations. For example, most growth theories capture the earlier discussed
dependence of the growth rate on concentration of diffusing species using phenomenological pre-
scriptions including a critical concentration that halts growth. Similarly, when it comes to the
effects of mechanical constraints, it is generally known that applied compressive stresses deter
volumetric growth. A widely established concept in the literature is that of ‘homeostatic stress’,
which prescribes a preferred stress state that growing systems tend towards and upon reaching
which the growth process halts (Rodriguez et al., 1994; Taber, 1998; Fung, 2013). In terms of
theory development, the homeostatic stress is mostly introduced in an ad hoc phenomenological
fashion (Rodriguez et al., 1994; Taber, 1998; DiCarlo and Quiligotti, 2002; Lubarda and Hoger,
2002; Ambrosi and Guana, 2007; Menzel and Kuhl, 2012; Mpekris et al., 2015; Xue et al., 2016;
Curatolo et al., 2017). Under compressive stress states, which is generally the case for many of
these growing systems, this ad hoc homeostatic term often becomes the primary positive driving
term in evolution laws for the growth process. This kinematic modelling of the physics does
not explain the kinetic origins of these phenomena starting from the underlying mechanisms.
It further limits the confidence in general applicability of the theories to scenarios beyond the
specific experimental data they are calibrated to capture.

In light of all the above considerations, the goal of this manuscript is to formulate a ho-
mogenized single phase continuum theory for fully coupled swelling and growth that accounts for
large swelling deformations and mass balance, while capturing important coupled swelling-growth
phenomena using underlying kinetics instead of ad hoc kinematic prescriptions. To do so, we will
augment growth modelling frameworks (Rodriguez et al., 1994; DiCarlo and Quiligotti, 2002;
Ambrosi and Mollica, 2002; Ambrosi and Guillou, 2007; Ambrosi and Guana, 2007; Menzel and
Kuhl, 2012; Kuhl, 2014) with nonlinear poroelasticity formulations developed for soft swelling
elastomers and polymeric gels (Hong et al., 2008; Doi, 2009; Duda et al., 2010; Chester and
Anand, 2010, 2011; Lucantonio et al., 2013; Liu et al., 2015) and prescribe the swelling and
growth evolution using the kinetic driving terms that arise naturally. We note in passing that a
nonlinear poroelastic swelling growth model has also been developed in Fraldi and Carotenuto
(2018), assuming moderate variations in fluid content. A large deformation swelling-growth the-
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ory has also been developed by Curatolo et al. (2017), in the context of bulking of wood, wherein
growth is simply a change in relaxed state instead of an increase in mass of the solid as consid-
ered here, while employing phenomenological prescriptions including for the homeostatic stress.
See also Dervaux and Amar (2011) where instability arising from large deformation growth is
compared with that arising from large swelling.

The paper is organized as follows. In Section 2, we begin by discussing a set of tumor growth
experiments that encapsulate all the phenomena discussed above and use it to motivate the
theory development and analysis to follow in subsequent sections. The governing equations of
the theory are then developed in Section 3. The theory is specialized in Section 4 by choosing
specific forms of the constitutive functions and non-dimensionalized to allow for ease of analysis
and to make limiting approximations. Subsequently, in Section 5 we analyze the theory and
use it to solve boundary value problems and model experiments of growing tumor and bacterial
biofilms. We provide some concluding remarks in Section 6.

2. Motivating example of tumor growth experiments

To motivate the theory development in the following sections, we begin by discussing a set
of tumor growth experiments that encapsulates the complete spectrum of phenomena that the
theory should capture.

(b)(a)
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Figure 1: (a) Experiments of in vitro spheroid tumor growth in four different environments: (A) free growth,
(B) large and thick microcapsule confinement, (C) small and thick microcapsule confinement, and (D) small and
thin microcapsule confinement that breaks. Scale bar: 50 µm. Reprinted from Alessandri et al. (2013). (b)
Comparison of experimental data of time evolution of tumor volume ratio (ratio of tumor volume at time t to
its value at t = 0) with predictions of our swelling growth theory (see Section 5.6). Volume of tumor at t = 0 is
0.003 mm3.

Alessandri et al. (2013) performed microfluidic experiments to study tumor growth in re-
sponse to mechanical confinement using spheroids of CT26 mouse colon carcinoma cells. The
experiments studied multiple scenarios: free growth with no confinement (Case A) and growth
under the confinement of alginate microcapsules of different radii and thicknesses (Cases B -
D). Images from the experiments are shown in Figure 1(a) while the experimental data for the
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evolution of the tumor volume ratio (ratio of volume at time t to its value at t = 0) is plotted in
Figure 1(b). The experimental data was time-shifted so that in all cases, the volume at t = 0 is
0.003 mm3 which is the inner volume of the smallest confining microcapsule. The microcapsules
were permeable and thus the surface of the tumors were supplied with required fluids, nutrients
and oxygen for growth. Below are the observations for these four typically studied cases.

1. In Case A, the free growth is initially exponential followed by a power-law volume increase.
Further growth leads to a necrotic/dying core while growth is confined to thin rim of
proliferating cells.

2. In Case B, the tumor undergoes free growth until it comes in contact with a large and thick
microcapsule following which the growth rate is rapidly suppressed.

3. In Case C, the tumor is confined by a small and thick microcapsule, and the growth is
inhibited by the confinement as it deforms.

4. In Case D, the tumor is confined by a small and thin microcapsule. The growth rate
falls as the tumor expands against the confinement but the large deformation causes the
microcapsule to burst following which the tumor resumes exponential growth similar to
free-growth case.

Conventional growth theories would capture these experiments using phenomenological prescrip-
tions for the established phenomena discussed in Section 1, namely the growth rate dependence
on concentration of diffusing species and applied stresses, and in particular the existence of a
critical concentration and homeostatic stress (Xue et al., 2016). The diffusion of fluids and dis-
solved nutrients from the outside of the tumor to its core, combined with consumption for growth
leads to a radially decreasing concentration profile from the outside to inside. While the outer
edge of the growing body remains replenished with diffusing species, the spatial decrease of con-
centration towards the core becomes more pronounced as the body grows exponentially to larger
sizes. Initially the concentration everywhere is high and the growth rate is at a saturated value
leading to the exponential growth. But at larger sizes the growth rates are spatially decreasing
towards the core leading to the decrease in overall growth rate. The growth in the core halts
when the concentration reaches the critical value. Eventually most of the tumor stops growing
and the growth localizes to a very thin proliferating ring near the outside. Further, increasing
compressive stresses when growing against mechanical confinement causes the growth rate to fall
off, till the homeostatic value is reached when growth halts and a steady size is reached. In the
case of thin confinement, the confinement breaks before homeostatic stress is reached, leading to
resumption of free-growth.

Such modelling of the above experiments is fundamentally handicapped by the reliance on
phenomenological prescriptions and raises several questions. Why does the growth process ac-
celerate with increasing concentration of diffusing species while saturating at high values and
what causes it to halt below a critical concentration? Why is there a mechanical stress state that
halts growth? Can these seemingly unlinked diffusion-consumption and mechanical phenomena
be described by a unified kinetic theory? We will answer these questions in the following sections
by developing a fully coupled large deformation swelling-growth theory where we use the kinetic
driving stress that naturally arises to model the growth process.
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3. Theory

The key ingredients and assumptions of the swelling-growth theory are summarized below
following which we develop the theory.

1. Solid components such as cells and the extracellular matrix are abstracted and their be-
havior is assumed to be described by models for hydrogels.

2. While biological growth generally depends on several diffusing components such as wa-
ter/fluids, nutrients, oxygen, glucose, and growth factors, we consider a single representa-
tive fluid phase whose concentration reflects the concentration of dissolved solutes, which
we henceforth refer to as the diffusing species. Though the physical or mechanical swelling
is primarily a result of the diffusing water, the bio-chemical energy of the dissolved com-
ponents such as nutrients and growth factors is an important driver of growth. While the
theory here can be generalized to multiple diffusing components, we will show that a single
representative species is sufficient to capture the essential physics.

3. The consumption of the diffusing species supplies the mass for solid growth. The remain-
ing diffusing species swells the grown solid. While growth can involve various complex
cellular processes including cell division and production of extracellular matrix, consider-
ing continuum scale phenomena here, it is abstracted as conversion of the diffusing species
into additional solid material. The chemical energy for the conversion process is thus a
homogenized value from all the underlying cellular processes.

4. The growing body is described by a fixed set of material points and growth and swelling are
modelled as an increase in volume of these material points in appropriate relaxed spaces
mapped from a reference space through the widely employed decomposition of deformation
gradient (Rodriguez et al., 1994; Ambrosi and Mollica, 2002; Chester and Anand, 2010).
The volume increases correspond to an increase in mass of the homogenized continuum
through closure of mass balance. This is in contrast to several growth theories in the
literature where an intrinsic mass supply is assumed and open system thermodynamics is
employed (Ambrosi and Mollica, 2004; Kuhl, 2014; Xue et al., 2016).

5. We neglect any viscoelastic and inertial effects at the timescale of growth.

3.1. Kinematics
Consider an initial compatible dry reference configuration of the body in the absence of

diffusing species denoted by BR. Let Bt denote the current/observed configuration of the swelling
and growing body at time t. Consider a material point at the position X in the dry reference
configuration whose position in the current configuration is given by x = φ(X, t). We define the
deformation gradient F and its decomposition as follows1 (see Figure 2)

F = ∇φ = FesFg = FeFsFg, Fs = λs I, Fes = FeFs (1)

where Fg is the growth tensor describing the change in solid mass, Fs is the swelling tensor
describing the change in mass due to diffusing species, and Fe is the elastic deformation tensor.
The swelling tensor is taken to be isotropic where λs is the swelling stretch (similar to Chester

1The Lagrangian spatial gradient operator ∇(·) is defined as ∇(·) = ∂(·)
∂X
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Figure 2: Decomposition of the deformation gradient.

and Anand (2010, 2011)). The growth tensor Fg maps the material point at X in the dry refer-
ence configuration to its relaxed unswollen state that would be obtained if the particle associated
with X is cut out from the body and drained of its diffusing species content while retaining the
mass of the solid skeleton. The density of the solid matrix is assumed to be constant from its
value in dry reference space, ρm0 , through the mapping by Fg. The tensor Fes(X) maps the
relaxed unswollen state to the current state of the particle. Note that the configuration of the
body in the intermediate spaces mapped by Fg and Fs do not have any physical requirement of
compatibility unlike Bt. The displacement u is defined as u(X, t) = x−X.

We define the following volumetric ratios (all assumed to be positive)

Jg = det Fg, Js = det Fs = (λs)3, Je = det Fe, (2)
Jes = det Fes = JeJs, J = det F = JgJeJs, (3)

such that the volume of a particle in the dry reference space, dV R, relates to its current volume
dV and volume in the intermediate grown and swollen-grown spaces, dV g and dV sg respectively,
as

dV g = Jg dV R , dV sg = JsJg dV R , dV = J dV R (4)

The volume fraction of solid, ϕ, is then defined as

ϕ =
dV g

dV gs =
Jg dV R

JgJs dV R

=
1

Js
(5)

so that it is inversely related to the swelling ratio Js. We have the physical requirement ϕ ∈ (0, 1]
or equivalently 1 ≤ Js <∞. Let dA and dAR denote corresponding area elements in the current
and dry reference space with outward pointing normals n and nR, respectively. They are related
by Nanson’s formula - n dA = JF−TnR dAR.

The following deformation tensors are defined for later use,

Ce = FeTFe, Ces = FesTFes = (Js)
2
3Ce, Be = FeFeT , Bes = FesFesT = (Js)

2
3Be (6)
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Using eq. (1), we can derive the following rate relation

L = ḞF−1 = Le + FeLgFe−1 +
J̇s

3Js
I (7)

where an overdot represents material time derivative and

Le = ḞeFe−1, Lg = ḞgFg−1 (8)

The growth rate tensor Lg is then decomposed as follows

Lg =
Γ

3
I+ dev(Lg), Γ = tr(Lg) =

J̇g

Jg
(9)

where Γ is the growth rate and dev(·) represents the deviatoric operator2. The deviatoric part of
Lg is associated with the directionality of growth in the dry reference space. When the volumetric
growth rate Γ is zero, the growth directionality represents remodelling where the grown reference
state is changing from processes like cellular rearrangement or changes in micro-structure.

3.2. Balance of mass
Mass balance of diffusing species can be written as

ċR + Div(jMR ) = −ξ̇R (10)

where ξR is the mass of diffusing species per unit volume of the dry reference configuration that
has been consumed during growth and the concentration cR is the mass of remaining diffusing
species per unit dry reference volume. The vector jMR is the referential diffusion flux written in
units of mass of diffusing species per unit area per unit time. The mass balance equation eq. (10)
can be rewritten in units of volume by multiplying it by Ωf , the referential volume per unit mass
of diffusing species3,

Ωf ċR + Div(jR) = −Ωf ξ̇R, jR = Ωf jMR (11)

where jR is the referential diffusion flux written in terms of volume of diffusing species per unit
area per unit time.We can relate the remaining concentration of diffusing species per unit grown
reference volume, cg, to cR as

cR = cgJ
g (12)

Swelling constraint: The change in Js is assumed to arise entirely due to the change in the
remaining diffusing species content, which yields the swelling constraint

J̇s = Ωf ċg (13)

2dev(Z) = Z− 1
3 tr(Z)I

3In terms of the referential density (no elastic deformation) of diffusing species, ρf0 , we have the relation
Ωf = 1/ρf0 .
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Integration of eq. (13) along with the condition that the swelling ratio is unity when the solid is
dry (cg = 0) results in the following constraint,

Js = 1 + Ωfcg (14)

Growth constraint: The consumption of the diffusing species supplies mass for the growth
and leads to the following volumetric growth relation (also see Appendix A.1)

J̇g = Ωmξ̇R (15)

where Ωm is the referential volume per unit mass of the solid matrix (Ωm = 1/ρm0 ). The integrated
form of eq. (15) reads

Jg = 1 + ΩmξR (16)

where the growth volume ratio is unity when no diffusing species has been consumed (Jg = 1
when ξR = 0). The constraint eq. (16) ensures mass balance during species conversion.

The eqs. (12), (13) and (15) can be used to rewrite eq. (11) as

JgJ̇s + J̇g

(
Js − 1 +

Ωf

Ωm

)
+ Div(jR) = 0 (17)

The eqs. (14), (16) and (17) together ensure mass balance. Since the density of solid matrix is
typically close to the density of the fluid components in our systems of interest, here we assume
isochoric conversion of the diffusing species into solid so that Ωf = Ωm = Ω . Under this
assumption, eq. (17) simplifies to

JgJ̇s + JsJ̇g + Div(jR) = 0 (18)

See Appendix A.4 for the general version of the theory for non-isochoric species conversion.

3.3. Mechanical equilibrium
Let T(x, t) and S(X, t) denote the Cauchy and Piola stress tensor fields, respectively. Since

swelling and growth are usually much slower than the mechanical response of the body, we
ignore the momentum arising from swelling-growth. Mechanical equilibrium in the absence of
body forces and inertial effects requires that (see also Ambrosi and Mollica (2004); Xue et al.
(2016))

div T = 0, T = TT (19)

and equivalently that

Div S = 0, SFT = FST , where S = JTF−T (20)

3.4. Dissipation inequality
Under isothermal conditions and in absence of body forces, the first two laws of thermody-

namics collapse into the following free energy imbalance equation over any material subregion P
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in the body (see Appendix A.2)
ˆ

P
ψ̇R dVR ≤

ˆ
∂P
(SnR) · φ̇ dAR +

ˆ
∂P
µ(−jR · nR) dAR (21)

where ψR is the Helmholtz free energy per unit dry reference volume of the fluid-solid continuum
within the dry material region P and µ is the chemical potential of the diffusing species4. Lo-
calizing eq. (21), while employing eq. (18) yields the local dissipation inequality (see Appendix
A.2)

S · Ḟ+ µ(JgJ̇s + JsJ̇g)− jR · ∇µ− ψ̇R ≥ 0 (22)

It can be shown using (7) that (see Appendix A.3)

S · Ḟ =
1

2
JsJgTe · Ċe + JgMes · Lg +

JJ̇s

3Js
tr(T) (23)

where the Mandel stress Mes and the elastic second Piola stress Te are given by

Mes = JesFesTTFes−T , Te = JeFe−1TFe−T (24)

Using eq. (23) and eq. (9)2 in eq. (22), we arrive at the following form of the dissipation inequality,

Jg (Mes + JsµI) · Lg +
1

2
JsJgTe · Ċe +

(
µ+

Je

3
tr(T)

)
JgJ̇s − jR · ∇µ− ψ̇R ≥ 0 (25)

To be able to specify constitutive equations using the dissipation inequality, the form of the free
energy is specified in the following section.

3.5. Free energy
We consider a free energy function of the form ψR = ψR(J

g, Js,Ce), which we decompose as
follows

ψR = Jgψg(C
e, Js) + µm

0 Ω
mξR + µf

0Ω
fcR (26)

= Jgψg(C
e, Js) + µm

0 (J
g − 1) + µf

0J
g(Js − 1) (Using (12), (14), (16)) (27)

ψg = ψmech
g (Ce, Js) + ψmix

g (Js) (28)

where
(i) µm

0 is the reference chemical potential for the solid and µm
0 Ω

mξR is the chemical energy of
formed solid per unit dry reference volume.
(ii) µf

0 is the reference chemical potential for the diffusing species and µf
0Ω

fcR is the biochemical
energy of the diffusing species per unit dry reference volume. It represents the reference energy
of the diffusing species with all its dissolved nutrients and growth factors.

4Typically the chemical potential µ is written in terms of energy per species unit (mole or molecule) since the
flux is written in terms of species units per unit area per unit time, see for example Hong et al. (2008); Chester
and Anand (2010). However, since the flux in this manuscript is written in terms of referential species volume
per unit area per unit time, the chemical potential is in terms of energy per unit referential species volume.
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(iii) ψmech
g is the change in free energy due to the deformation of the solid, per unit grown refer-

ence volume.
(iv) ψmix

g is the change in free energy due to mixing of the remaining diffusing species with the
solid, per unit grown reference volume.

A specific form of the free energy is provided later. Differentiating eq. (26) and employing eqs. (9)
and (12)–(15) yields the following equation,

ψ̇R = Jg
(
ψg + µm

0 + µf
0(J

s − 1)
)
I · Lg + Jg ∂ψg

∂Ce
· Ċe + Jg

(
µf
0 +

∂ψg

∂Js

)
J̇s (29)

3.6. Constitutive response
Substituting eq. (29) in the dissipation inequality eq. (25) yields

JgTg ·Lg +

(
1

2
JsJgTe − Jg ∂ψg

∂Ce

)
· Ċe + Jg

(
µ+

Je

3
tr(T)− ∂ψg

∂Js
− µf

0

)
J̇s − jR · ∇µ ≥ 0 (30)

where Tg is the driving stress conjugate to the growth deformation rate tensor Lg, given by

Tg = Mes +
(
Jsµ− µm

0 − µ
f
0 (J

s − 1)− ψg

)
I (31)

Employing the Coleman-Noll procedure we arrive at the following two constitutive equations for
the elastic second Piola stress and chemical potential,

Te =
2

Js

∂ψg

∂Ce
, µ = µf

0 +
∂ψg

∂Js
− 1

3
Jetr(T), (32)

respectively. We can then readily derive the constitutive equations for the Cauchy, Piola, and
Mandel stresses using eqs. (1), (20) and (24) as

T = 2
Jg

J
Fe ∂ψg

∂Ce
FeT , S = 2JgFes ∂ψg

∂Ces
Fg−T , Mes = 2Ce ∂ψg

∂Ce
(33)

Further substituting eq. (32)2 for the chemical potential in eq. (31) results in the following
equation for the growth driving stress,

Tg = Mes +

(
∆µ0 + Js

(
∂ψg

∂Js
− 1

3
Jetr(T)

)
− ψg

)
I (34)

where ∆µ0 = µf
0 − µm

0 is the energy associated with converting a unit (referential) volume of
diffusing species to solid, henceforth referred to as conversion energy.

To ensure non-negative dissipation rate, we require the following residual inequality to be
satisfied

JgTg · Lg − jR · ∇µ ≥ 0 (35)
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We enforce the following inequalities to be independently satisfied,

Tg · Lg ≥ 0, jR · ∇µ ≤ 0 (36)

so that the dissipation inequality (35) is automatically enforced. We choose the following ther-
modynamically admissible prescription for the diffusion flux,

jR = −Mmob∇µ (37)

where the mobility tensor Mmob is positive semi-definite. The diffusion law in eq. (37) can be
written in the current configuration as

j = −FMmobF
T

J
grad µ (38)

where j = FjR/J is the diffusion flux in the current space such that j · n dA = jR · nR dAR, and
grad (·) = F−T∇(·) is the Eulerian spatial gradient operator. The form of the mobility tensor is
specified later in Section 4.4.

3.6.1. Growth kinetics
Following the previous constitutive prescriptions, we are left with the following inequality to

be satisfied
Tg · Lg = Γ

tr(Tg)

3
+ dev(Tg) · dev(Lg) ≥ 0 (39)

where we used5 eq. (9) to examine the separate contributions of volumetric growth and growth
directionality. Any prescription for Lg that satisfies this inequality is a thermodynamically
admissible growth law. We enforce the following inequalities separately,

Γ
tr(Tg)

3
≥ 0, dev(Tg) · dev(Lg) ≥ 0 (40)

such that the inequality in eq. (39) is automatically satisfied.

Volumetric growth rate: Using the expression for Tg in eq. (34) along with eq. (24)1, we
can write eq. (40)1 as

Γfg ≥ 0, fg =
tr(Tg)

3
= ∆µ0 + Js∂ψg

∂Js
− ψg (41)

where fg is the driving stress for volumetric growth. Any thermodynamically admissible growth
law for the volumetric growth rate can be prescribed as follows

Γ = Γ̂(fg) such that Γ̂(fg)fg ≥ 0 (42)

5Note the identity Y · dev(Z) = dev(Y) · dev(Z)
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Recalling that ψg = ψmech
g +ψmix

g , the driving stress fg in eq. (41)2 can be decomposed as follows

fg = ∆µ0 + fmix
g + fmech

g (43)

where fmix
g and fmech

g are the parts of the driving stress that arise from the mixing free energy
and mechanical free energy respectively,

fmix
g = Js

∂ψmix
g

∂Js
− ψmix

g , fmech
g = Js

∂ψmech
g

∂Js
− ψmech

g (44)

Growth directionality evolution: Similarly using the expression for Tg in eq. (34), we
can write eq. (40)2 as

dev(Mes) · dev(Lg) ≥ 0 (45)

Any thermodynamically admissible evolution law for the growth directionality can thus be pre-
scribed as follows

dev(Lg) = f̂(Mes) such that f̂(Mes) · dev(Mes) ≥ 0 (46)

Therefore, the Mandel stress drives growth directionality. Morphogenesis, the process by which
the growing body acquires its shape, can arise from both spatially varying growth rates and
evolution of growth directionality. When the growth rate is spatially uniform, morphogenesis
would be driven solely by the Mandel stress.

In Section 4.3, we will specify the forms of the evolution functions Γ̂(fg) and f̂(Mes) to obtain
specialized forms of the growth evolution laws in eqs. (42) and (46).

3.7. Summary of formulation and boundary conditions
The governing equations of the swelling-growth theory for isochoric conversion of diffusing

species to solid are summarized below. See Appendix A.4 for the general equations for non-
isochoric species conversion.

Governing equations in BR

Mechanical equilibrium : Div S = 0, S = 2JgFes ∂ψg

∂Ces
Fg−T (47)

Mass balance : JgJ̇s + JsJ̇g = Div(Mmob∇µ) (48)

Constitutive equations : µ = µf
0 +

∂ψg

∂Js
− 1

3
Jetr(T), T = 2

Jg

J
Fe ∂ψg

∂Ce
FeT (49)

Kinetic law for volumetric growth :
J̇g

Jg
= Γ̂(fg), Γ̂(fg)fg ≥ 0 (50)

Kinetic law for growth directionality : dev(Lg) = f̂(Mes), f̂(Mes) · dev(Mes) ≥ 0 (51)

To complete the theory development, initial and boundary conditions need to be prescribed.
We consider the following sets of complementary subsurfaces of the boundary ∂BR : {∂BR

t , ∂BR
x },

{∂BR
j , ∂BR

µ }, where any two subsurfaces ∂BR
a and ∂BR

b are complementary if ∂BR
a ∪ ∂BR

b = ∂BR

and ∂BR
a ∩ ∂BR

b = ∅. Then for a time interval t ∈ [0, tf ] we consider the following boundary and
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initial conditions.

Boundary conditions

Traction : SnR = s̆ on ∂BR
t × [0, tf ] (52)

Position : x(X) = x̆ on ∂BR
x × [0, tf ] (53)

Diffusion flux : − (Mmob∇µ) · nR = j̆ on ∂BR
j × [0, tf ] (54)

Chemical potential : µ = µ̆ on ∂BR
µ × [0, tf ] (55)

with s̆, x̆, j̆, µ̆ being prescribed functions that depend on X and t.

Initial conditions
µ(X, 0) = µ0(X), Fg(X, 0) = Fg

0(X) (56)

where µ0 and Fg
0 are prescribed functions. For the analysis in this manuscript, we set Fg

0(X) = I.

This completes the development of the large deformation swelling-growth theory. It is im-
portant to note that setting Fg = I recovers nonlinear poroelastic theories. In the next section,
we will choose specific constitutive equations to specialize our theory and also write the dimen-
sionless form of the governing equations.

4. Specific constitutive equations and dimensionless formulation

In this section, we specialize the equations of the swelling-growth theory developed in the
previous section by choosing specific forms for the free energy, mobility tensor, and growth
evolution laws.

4.1. Mechanical free energy
We limit our attention to isotropic materials. The following form is chosen for the mechanical

free energy

ψmech
g (Ce, Js) =

G

2

(
(Js)

2
3 tr(Ce)− 3− 2 ln(Jes)

)
+
K

2
(ln Je)2 , Je =

√
det(Ce) (57)

where G and K are the linear shear modulus and the bulk modulus of the dry solid respectively.
The first term in eq. (57) is the entropic free energy change due to mechanical stretching of
the polymer network, given by classical statistical mechanics model of rubber elasticity (Treloar,
1975). The second term is the energetic component of free energy change due to compressibility
of the hydrogel, as also used in Chester and Anand (2011). Note that in the absence of swelling,
the mechanical free energy is essentially a compressible neo-Hookean model. While there are
better tailored free energy functions with more parameters to describe biological tissues, this is
a simple first choice for modelling of soft polymers or tissues (for example see tumor modelling
in Xue et al. (2016)).
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Hence the Cauchy and Mandel stresses are derived using eqs. (33) and (57) as

T =
1

Jes
(G (Bes − I) +K(ln Je)I) , Mes = G (Ces − I) +K(ln Je)I (58)

The following derivative is also readily derived,

∂ψmech
g

∂Js
=

G

3Js
(tr(Ces)− 3) (59)

4.2. Mixing free energy
The free energy of mixing is taken to be (Flory, 1942; Huggins, 1941)

ψmix
g =

µ∗

ϕ
((1− ϕ) ln(1− ϕ) + χϕ(1− ϕ)) where µ∗ =

kBT

ωf
, ωf =M fΩf (60)

where ωf and M f are the molecular volume and mass respectively of the diffusing species, kB is
the Boltzmann constant, T is the constant temperature, and χ is the Flory–Huggins interaction
parameter. The scalar µ∗ will later be used as a characteristic scaling value for the chemical
potential when developing the dimensionless version of the theory. The interaction parameter χ
represents the dis-affinity between the solid and the diffusing species; the larger the χ the smaller
the swelling ratio at diffusion equilibrium (at a fixed growth state). For χ ≤ 0.5 the minimum of
ψmix
g occurs at ϕ→ 0 which means that in the absence of mechanical free energy (say G,K → 0),

the solid would want to keep swelling till Js → ∞ (i.e. ϕ → 0). However for χ > 0.5, the
minimum of ψmix

g occurs at 0 < ϕ < 1 so that even in the absence of mechanical energy, the
solid would swell to a finite swelling ratio at diffusion equilibrium. Using the definition of solid
volume fraction ϕ from eq. (5) in eq. (60), the following derivative is readily obtained

∂ψmix
g

∂Js
= µmix(ϕ) = µ∗ (ln (1− ϕ) + ϕ+ χϕ2

)
(61)

where we have defined an auxiliary function µmix(ϕ) for later convenience.

Using eqs. (6), (28), (32), (58), (59) and (61), we obtain the following equation for the
chemical potential

µ = µf
0 + µmix(ϕ)−K ln(Je)ϕ (62)

4.3. Growth evolution
Guided by the inequality in eq. (42), we choose a piece-wise linear form of the volumetric

growth law that enforces irreversibility of species conversion6,

Γ =

{
kgfg, if fg ≥ 0

0, if fg < 0
(63)

6While technically cells can die and decompose back into the diffusing components, the associated processes
and kinetics are usually different from that of growth and we avoid such considerations here.
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where kg is a growth constant. Further, using eqs. (44), (57) and (59)–(61), we arrive at the
following expressions for different components of fg in eq. (43),

fmech
g = G

(
ln(Jes)− 1

6
(tr(Ces)− 3)

)
− K

2
(ln(Je))2 (64)

fmix
g (ϕ) = µ∗ (1 + ln (1− ϕ) + χ (2ϕ− 1)) (65)

Similarly, guided by the inequality in eq. (46), we choose the following linear evolution law
for the growth directionality

dev(Lg) =
kg
3

dev(Mes) =
kgG

3
dev(Ces) (66)

where for simplicity we have chosen the same rate parameter kg as for the volumetric growth
evolution law and have used eq. (58)2 for the Mandel stress. When fg ≥ 0, the evolution laws
eqs. (63) and (66) can be combined and written as 3Lg = kgT

g.

4.4. Mobility tensor
The diffusion is assumed to be be modelled by the following Eulerian law

j = −ĥ(Js)m∗ grad µ, m∗ =
D

µ∗ (67)

where D is the diffusion coefficient, m∗ is the characteristic scaling value for the mobility, and
ĥ(Js) describes the dependence of the mobility in the current space on swelling. Using eq. (38),
the associated mobility tensor is readily shown to be

Mmob = ĥ(Js)m∗JC−1 where C = FTF (68)

Different works in the literature have assumed different monotonically increasing functional forms
for ĥ (Baek and Srinivasa, 2004; Hong et al., 2008; Duda et al., 2010; Chester and Anand, 2011;
Abi-Akl et al., 2019). For example Hong et al. (2008) employed ĥ = Js − 1 while Abi-Akl et al.
(2019) chose ĥ = (Js − 1)/Js. However in the absence of any experimental evidence to choose a
particular functional form, here we choose ĥ = 1 which suffices to demonstrate all the relevant
physics while avoiding zero mobility in the dry state. Further, we note that different choices for
ĥ preserve the conclusions in this manuscript.

4.5. Dimensionless equations and approximate limits
In this section, a dimensionless version of the theory is developed which aids greatly with

the analysis in later sections and in making suitable approximations under different limiting
conditions. We first define the following dimensionless operations and quantities,

Div = L∗ Div, ∇ = L∗ ∇, µ̄ =
µ

µ∗ , Mmob =
Mmob

m∗ , t̄d =
t

τd
(69)
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where L∗ is a characteristic length scale and τd = L∗2/D is the associated diffusion timescale.
Using the definitions from eq. (69) along with eq. (68) and eq. (67)2 in eq. (48) yields the following
dimensionless diffusion-consumption equation,

Jg dJ
s

dt̄d
+ JsdJ

g

dt̄d
= Div

(
Mmob∇µ̄

)
, Mmob = JC−1 (70)

The dimensionless counterpart for the constitutive equation (62) for chemical potential is

µ̄ = µ̄f
0 + µ̄mix(ϕ)−

(
K

G

)(
G

µ∗

)
ln(Je)ϕ where µ̄f

0 =
µf
0

µ∗ , µ̄
mix =

µmix

µ∗ (71)

The Cauchy stress in eq. (58) is non-dimensionalized using the shear modulus G as follows,

T̄ =
T

G
=

1

Jes
(Bes − I) +

(
K

G

)
ln Je

Jes
I (72)

where K/G is a measure of the compressibility of the solid. A perfectly incompressible version
of theory is developed in Appendix B where K/G → ∞ such that Je → 1. The dimensionless
version of the mechanical equilibrium equation (20) is written as

Div S̄ = 0 where S̄ =
S

G
= JT̄F−T (73)

Defining the following additional quantities,

f̄g =
fg
µ∗ , τg =

1

kgµ∗f̄ ∗
g

, t̄g =
t

τg
, Γ̄ = τgΓ =

1

Jg

dJg

dt̄g
(74)

where τg is a characteristic timescale of growth and f̄ ∗
g is a dimensionless constant chosen to

normalize the growth law, we can rewrite the volumetric growth law (63) in dimensionless form
as

Γ̄ =

{
f̄g/f̄

∗
g , if f̄g ≥ 0

0, if f̄g < 0
(75)

where Γ̄ is the dimensionless growth rate. Non-dimensionalizing eqs. (43), (64) and (65) using
µ∗ yields

f̄g = ∆µ̄0 + f̄mix
g + f̄mech

g (76)

where ∆µ̄0 = ∆µ0/µ
∗ and

f̄mix
g (ϕ) =

fmix
g (ϕ)

µ∗ = 1 + ln (1− ϕ) + χ (2ϕ− 1) , (77)

f̄mech
g =

fmech
g

µ∗ =
G

µ∗

(
ln(Jes)− 1

2

(
K

G

)
(ln(Je))2 − 1

6
(tr(Ces)− 3)

)
(78)
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The evolution equation for growth directionality eq. (66) can be written in dimensionless form
as

dev(L̄g) =
1

3

(
G

µ∗

)
dev(Mes

)

f̄ ∗
g

=
1

3

(
G

µ∗

)
dev(Ces)

f̄ ∗
g

(79)

where M
es
= Mes/G and L̄g = τgL

g.

Note from eqs. (58) and (79) that for the growth to completely stop (Lg = 0), the stress state
T necessarily needs to be hydrostatic. This is a consequence of the fact that there is no inherent
directionality for swelling or species conversion which are the growth driving mechanisms in our
theory (all the non-stress terms in the driving stress Tg are hydrostatic in eq. (34)). However,
in the limit G/µ∗ → 0, the system can stop growing even at non-hydrostatic stress states. Es-
sentially, in this limit, the growth stops once the volumetric growth halts as the remodelling is
slow at the timescale of volumetric growth.

For our soft growing systems of interest, the value of the shear modulus G is typically low, ∼
1 kPa (Garteiser et al., 2012; Zhang et al., 2021), while the value of µ∗ is high for typical swelling
fluids at room temperature, ∼ 10-100 MPa (Hong et al., 2008; Chester and Anand, 2010). Thus
the value of the dimensionless parameter G/µ∗ is very small (∼ 1e−5 - 1e−4). Consequently it can
be inferred from eq. (79) that the growth directionality will be nearly isotropic. Thus if Fg

0 = I,
the growth tensor Fg continues to remain nearly spherical/isotropic during growth unless the
dimensionless Mandel stress reaches large and highly non-spherical values. This explains why the
assumption of isotropic growth, which is commonly used in the literature for soft growing systems
(Ambrosi and Mollica, 2002, 2004; Kim et al., 2011; Köpf and Pismen, 2013; Kuhl, 2014), works
well. Note that this is a consequence of our constitutive choice of same growth constant kg to
describe the evolution of both volumetric growth in eq. (63) and growth directionality in eq. (66),
combined with the fact that tr(Tg) ∼ µ∗ (when µ∗ >> G and dimensionless stresses are not very
large non-spherical values) whereas dev(Tg) ∼ G. However, more generally growth laws can be
specified with different growth constants for the volumetric and deviatoric parts of the growth
rate tensor (for example if cellular rearrangement is much faster than cell division in a particular
growing system) which can lead to more anisotropic growth evolution. Further, it can be shown
from eqs. (77) and (78) that f̄mix

g ≫ f̄mech
g for small G/µ∗ as long as the dimensionless stresses

are not very large7. Thus the dimensionless driving stress for volumetric growth can typically be
approximated very well as

f̄g ≈ ∆µ̄0 + f̄mix
g (ϕ) (80)

which is primarily a function of ∆µ̄0 (dimensionless conversion energy), and the solid volume
fraction, or equivalently the swelling ratio - recall eq. (5). Thus the swelling can be seen to be
an important driver of growth. The approximation also allows us to examine the driving stress
and make several key inferences before even solving boundary value problems, in Section 5.1.

7Note that while the term K
G →∞ in the incompressible limit, the term K

G (ln(Je))
2 in f̄mech

g (eq. (78)) still
approaches zero. See Appendix B and eq. (B.7) for expression of fmech

g in the perfectly incompressible limit.
Numerical simulations in Section 5 for the slightly compressible case also confirm f̄mix

g ≫ f̄mech
g .
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Finally, using eqs. (74)4, (75), and the definitions of t̄d and t̄g from eq. (69) and eq. (74)
respectively, we can rewrite eq. (70) as follows

Jg dJ
s

dt̄d
+ JsJgΓ̄

(
τd
τg

)
= Div

(
Mmob∇µ̄

)
(81)

In many growing systems, due to typically large growth timescales relative to small diffusion
timescales (due to small sizes), τg ≫ τd. Thus at the timescale of growth, the diffusion is often
assumed to be equilibrated (Greenspan, 1972; Preziosi, 2003; Ambrosi and Mollica, 2002, 2004),
and the following equilibrated version of the diffusion-consumption equation can be used

JsJgΓ̄

(
τd
τg

)
= Div

(
Mmob∇µ̄

)
(82)

In this limit, the net flux of diffusing species (right hand side) is being matched exactly by the
consumption for growth (left hand side). Note that for a given growth rate Γ̄, the larger the
body grows (larger JgJs), the larger the consumption term. For the tumor growth experiments
discussed in Section 2, this is what causes the equilibrium swelling profile (or equivalently con-
centration profile using eq. (14)) to drop with time inside the tumor for free growth, resulting
in reduced growth rates. When the equilibrated equation (82) is used, the initial condition for
chemical potential field in eq. (56) need not be supplied.

When we are not interested in diffusion-consumption limitations due to large growth sizes
and instead want to isolate the effect of applied stresses, we can focus on the limit τg/τd → ∞
where the diffusion is infinitely faster than growth. In this limit, the left hand side of eq. (82)
becomes zero and solutions where all spatial fields are uniform are possible for suitable boundary
value problems, allowing for analytical tractability. We analyze this limit while enforcing perfect
incompressibility (K/G → ∞, Je → 1) in Section 5.2. The results are useful in establishing the
effects of mechanical constraints on swelling-growth and subsequently in analyzing and explain-
ing the results when we consider added diffusion-consumption limitations (finite τg/τd). In the
following section, we will use the developed swelling-growth theory to study relevant boundary
value problems and model experiments of growing tumors and bacterial biofilms.

5. Analysis and results

This section is organized as follows: We first examine the growth driving stress in the limit
G/µ∗ → 0 in Section 5.1 and establish notions of a critical swelling ratio and critical conversion
energy that can halt growth. Following this, in Section 5.2 we focus on the effects of applied
stresses in the absence of diffusion-consumption limitations by studying uniform swelling-growth
that emerges in the limit of infinitely fast diffusion (τg/τd → ∞) and uniform applied pressure.
By linking the swelling ratio to the applied pressure, we establish a free swelling ratio in the
absence of stresses and a homeostatic pressure associated with the critical swelling ratio. In
Section 5.2.1, we demonstrate the above established concepts by studying the problem of uniform
swelling-growth against mechanical confinement in the infinitely fast diffusion limit. To account
for diffusion-consumption effects (finite τg/τd), which entails spatially varying field variables, we
formulate a spherically symmetric boundary value problem in Section 5.3. The formulation is
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used to study the case of free growth in Section 5.4 and the case of uniform applied pressure
in Section 5.5. Finally, the theory is used to model experimental results of growing tumors in
Section 5.6 and of bacterial biofilms in Section 5.7.

5.1. Growth driving stress
We consider the limit G/µ∗ → 0 (which is the case for our soft growing systems of interest

as discussed in Section 4.5). In this limit, the growth directionality evolution equation (79)
becomes trivial and enforces isotropy of growth so that Fg = JgI. Using eq. (75) for the growth
rate evolution, the growth process is now primarily determined by the dimensionless driving
stress f̄g. In the limit G/µ∗ → 0, we have

f̄g = ∆µ̄0 + f̄mix
g (ϕ) (83)

where f̄mix
g (ϕ) is defined in eq. (77) and ϕ is related to the swelling ratio Js through eq. (5).

Thus, any dependence of the growth on applied stresses and diffusion-consumption effects ap-
pears through the swelling ratio Js (note that Js depends on the mechanical equilibrium and
diffusion-consumption equations in Section 3.7). We first consider ∆µ̄0 = 0 (no contribution
from species conversion) and examine the dependence of the dimensionless driving stress f̄g on
the swelling ratio Js and the Flory-Huggins interaction parameter χ. Note that non-zero val-
ues of ∆µ̄0 will simply shift f̄g by a constant and not affect its qualitative dependence on Js and χ.
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Figure 3: Dimensionless driving stress for volumetric growth, f̄g, as a function of the swelling ratio in the limit
G/µ∗ → 0. (a) Plots of f̄g for different values of Flory-Huggins interaction parameter χ and zero conversion
energy (∆µ0 = 0). (b) Plots of f̄g for different values of the conversion energy ratio η for fixed representative
value of χ = 0.6.

Dependence on Js : The dimensionless driving stress f̄g is plotted as a function of the
swelling ratio Js when ∆µ̄0 = 0 in Figure 3(a), for different values of the Flory-Huggins interac-
tion parameter χ. This plot shows the functional dependence of f̄g as a function of the swelling
ratio (or equivalently concentration of diffusing species, recall eq. (14)) in the absence of any
conversion energy. It can be seen that generally higher Js leads to a larger driving stress for
volumetric growth and that the driving stress saturates at high values of Js. There exists a
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critical value of swelling ratio, Js
c , below which f̄g < 0. Based on our growth law in eq. (75), this

implies that growth halts for Js < Js
c , while for Js > Js

c , the growth rate linearly scales with
f̄g. Thus our theory already offers a kinetic basis for the experimentally observed dependence
of the growth rate on concentration of diffusing species, wherein the growth rate increases with
concentration, saturates at high values and halts below a critical value.

Effect of χ : The influence of χ on the driving stress is also shown in Figure 3(a). The
asymptotic value of f̄mix

g as Js →∞ is given by 1−χ and thus decreases for increasing χ (larger
dis-affinity between the solid and diffusing species). For χ < 0.5, f̄g is a monotonically increasing
function of Js and reaches its maximum value at Js

max → ∞. For χ ≥ 0.5, the driving stress f̄g
monotonically increases with Js till it reaches a maximum value at Js = Js

max = 2χ/(2χ − 1)
and subsequently decreases to its asymptotic value as Js →∞. This decrease is typically mild,
except for very high values of χ (such as χ = 0.9 in Figure 3(a)), which are typically unphysical
and represent extreme dis-affinity between solid and diffusing species. The maximum value of
the driving stress f̄mix

g is derived to write

max
1≤Js<∞

f̄mix
g (Js) =

{
χ− ln (2χ) , for χ > 0.5

1− χ, for 0 < χ < 0.5
(84)

which is always a positive value (as also seen in Figure 3(a)).
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Figure 4: (a) Plot of the dimensionless critical conversion energy that prohibits volumetric growth for any swelling
ratio as a function of the Flory-Huggins interaction paremeter χ in the limit G/µ∗ → 0. (b) Plot of the critical
solid value fraction ϕc, which is the value of solid volume fraction that stops growth (f̄g(ϕc) = 0), versus χ for
various values of the conversion energy ratio η, in the limit G/µ∗ → 0.

Effect of ∆µ̄0 : Now we consider the effect of non-zero dimensionless conversion energy ∆µ̄0.
A positive value of ∆µ̄0 corresponds to remaining energy after species conversion that accelerates
growth whereas a negative value corresponds to an energy penalty that deters growth. We can
define a critical dimensionless conversion energy, ∆µ̄c

0, as the maximum value of ∆µ̄0 such that
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f̄g ≤ 0 for all values of Js. Using eq. (83), we can write

∆µ̄c
0 = − max

1≤Js<∞
f̄mix
g (Js) (85)

When ∆µ̄0 < ∆µ̄c
0, growth is not possible irrespective of the swelling ratio since f̄g ≤ 0 for any

value of the swelling ratio Js. Using eqs. (84) and (85), the critical dimensionless conversion
energy for growth, ∆µ̄c

0, is plotted in Figure 4(a) as a function of χ. The value of ∆µ̄c
0 is always

negative, thus there is a maximum energy penalty for the species conversion, above which growth
will always be unfavourable no matter the swelling. The larger the χ, the smaller the conversion
penalty required to stop growth. We can then define a conversion energy ratio η = ∆µ̄0/∆µ̄

c
0

such that η ≤ 1 for growth to be feasible. A plot of f̄g as a function of Js for varying values of
η is plotted in Figure 3(b) for χ = 0.6. The larger the value of η, the smaller the dimensionless
driving stress for any given Js, and for η = 1, the growth is seen to be always unfeasible. Since
∆µ̄c

0 < 0, a positive value of η corresponds to an energy penalty which is seen to deter growth
(reduced f̄g) compared to η = 0 while a negative value corresponds to excess energy that can be
seen to accelerate growth.

Critical swelling ratio dependence: As noted earlier, there exists a critical value of
swelling ratio, Js

c , such that growth halts for Js < Js
c . The swelling ratio in the absence of

any constraints has a preferred value (established in the next section) and it can fall due to
applied stresses and diffusion-consumption effects. If it falls to or below the critical swelling
ratio, growth halts, and thus it is a critical parameter in capturing the effects of mechanical and
diffusion-consumption constraints on growth. From Figure 3, it can be seen that the critical
swelling ratio Js

c depends on both χ and η. The critical solid volume fraction ϕc = 1/Js
c can

be defined as the maximum value of the solid volume fraction above which growth ceases and
has been plotted in Figure 4(b) as a function of χ for different values of η. For a fixed value
of χ, increasing values of η lead to lower values of ϕc, or equivalently higher values of Js

c . At a
given value of ∆µ̄0, increasing values of χ lead to smaller values8 of Js

c . In the limit η → −∞,
that is the conversion energy being extremely favourable for growth, ϕc → 1, which means that
the solid would have to be completely dry to stop growing and even a small amount of swelling
would lead to growth. In the limit η → 1, it can be shown that ϕc = 1/Js

max.

5.2. Uniform growth without diffusion-consumption limitations (τg/τd →∞)
We have shown in the previous section that the growth in systems with small G/µ∗ is pri-

marily dependent on the swelling ratio and thus, to study the effect of applied stresses and
diffusion-consumption limitations on growth, we would have to study their effect on the swelling
ratio. Accounting for diffusion-consumption effects requires a full spatial solution of the coupled
governing equations in Section 3.7, which follows in later sections. Here we isolate the effects
of mechanical constraints on growth by considering uniform swelling-growth that emerges in the
infinitely fast diffusion limit (τg/τd →∞) for the case of uniform applied pressure and chemical
potential on the boundary. The results from this section also aid analysis in later sections where

8The dependence of ϕc on χ for a fixed η can be non-monotonic as seen in Figure 4(b) since ∆µ̄c
0 is a function

of χ and thus a fixed value of η does not necessarily correspond to a fixed value of ∆µ̄0 for varying χ.
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we include diffusion-consumption limitations.

Setting τg/τd →∞, the equilibrated diffusion-consumption equation (82) reduces to

Div
(
Mmob∇µ̄

)
= 0 (86)

Consider a boundary value problem where the chemical boundary condition is purely in terms
of an applied chemical potential of value µf

0 (which corresponds to a bath of diffusing species
maintained at its reference chemical potential) so that ∂BR

j = ∅, ∂BR
µ = ∂BR, and µ̆ = µf

0

in eqs. (54) and (55). Additionally, assume that the mechanical boundary condition is purely
in terms of an applied Cauchy pressure of value Pb so that ∂BR

x = ∅, ∂BR
t = ∂BR, and s̆ =

−JPbF
−TnR in eqs. (52) and (53). It can be shown that the solution fields for the deformation

tensors and the stresses are spatially uniform and spherical and that the chemical potential is
spatially uniform, such that

Fs = (Js)
1
3 I = ϕ− 1

3 I, Fg = (Jg)
1
3 I, Fe = (Je)

1
3 I, T = −PbI, µ = µf

0 (87)

Using eqs. (58), (62) and (87), the uniform elastic and swelling deformations can be obtained as
the solution to the following coupled set of equations,

µmix(ϕ)−K ln(Je)ϕ = 0 (88)

G
(
(Je)

2
3ϕ

1
3 − ϕ

)
+ µmix(ϕ) + JePb = 0 (89)

where µmix(ϕ) is defined in eq. (61). If we further restrict ourselves to the limit of perfect
incompressibility so that K/G→∞, then Je → 1, and the two equations reduce to one equation
that relates the applied pressure and the swelling ratio (Appendix B.1),(

ϕ
1
3 − ϕ

)
+

(
µ∗

G

)
µ̄mix(ϕ) + P̄b = 0 where P̄b =

Pb

G
(90)

The solution for ϕ in eq. (90) is the equilibrium solid volume fraction as a function of the applied
pressure in the limit of infinitely fast diffusion and perfect incompressibility, which we denote by
ϕeq(P̄b). The related swelling ratio is given by Js

eq(P̄b) = 1/ϕeq.

To solve for the swelling in eq. (90), we cannot set G/µ∗ → 0 as this leads to ϕeq → 0 (infinite
swelling) for χ < 0.5. Thus here we setG/µ∗ = 4×10−5, which is a representative value for tumors
and bacterial biofilm systems that we model later. The equilibrium solid volume fraction ϕeq is
plotted as a function of the dimensionless applied pressure P̄b in Figure 5(a) for various values of
χ. We only plot positive values of pressure, as a solution for ϕeq is not necessarily guaranteed for
negative pressures P̄b < 0 (diffusion equilibrium might not be possible). It can be seen that the
larger the applied pressure, the higher the equilibrium solid volume fraction or consequently the
lower the equilibrium swelling ratio as one would intuitively expect. Given that we know from
the previous section that the growth rate generally decreases with decreasing swelling ratio, this
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explains why the growth rate decreases in the presence of mechanical confinement9. For a given
value of applied pressure it can be seen that higher values of χ, which corresponds to greater
dis-affinity between the solid and diffusing species, leads to higher solid volume fraction or lower
swelling ratio. Finally, we define the free solid volume fraction ϕf and the free swelling ratio Js

f

as follows
ϕf = ϕeq(P̄b = 0), Js

f = 1/ϕf (91)

which characterize the swelling state under free-growth conditions in the absence of stresses and
diffusion-consumption constraints.

The dimensionless driving stress for volumetric growth, f̄g, specializes for uniform isotropic
growth in the limit of infinitely fast diffusion and perfect incompressibility as follows (Appendix
B.1)

f̄g = f̄∞
g = ∆µ̄0 + f̄mix

g (ϕ) +
G

µ∗

(
ln
(
ϕ−1
)
− 1

2

(
ϕ− 2

3 − 1
))

(92)

wherein the driving stress remains a function of the swelling and there is one additional term
compared to eq. (83) to account for the finite value of G/µ∗. Note that for the small value of
G/µ∗ considered here, f̄g, the critical solid volume fraction ϕc, and the dimensionless critical
conversion energy ∆µ̄c

0, are practically unchanged from their values at the limit G/µ∗ → 0 from
the previous section. Nevertheless, we solve for the exact values of ∆µ̄c

0 and ϕc using the following
equations,

∆µ̄c
0 = − max

0≤ϕ≤1

(
f̄∞
g −∆µ̄0

)
, f̄∞

g (ϕc) = 0 (93)

We can define a homeostatic pressure Ph as the applied pressure that results in an equilibrium
solid volume fraction equal to the critical value that stops growth, so that

ϕeq(P̄h) = ϕc where P̄h =
Ph

G
(94)

The homeostatic pressure is the preferred pressure state that the system tends to and stops grow-
ing at, for the case of uniform applied pressure in absence of diffusion-consumption limitations.
Using eq. (87), the related homeostatic stress state is given by Th = −PhI. The dimensionless
homeostatic pressure is plotted as function of the conversion energy ratio η in Figure 5(b). The
more favourable the conversion energy (smaller η) or smaller the value of χ, the larger the home-
ostatic pressure. Further, the ratio ϕf/ϕc = Js

c /J
s
f is plotted in Figure 5(c), the homeostatic

pressure is positive when it is smaller than one (since Js
f is the swelling at zero pressure and the

swelling ratio decreases monotonically with increasing applied pressure) while the homeostatic
pressure is negative when it is larger than one. Hence, the homeostatic pressure is mostly positive
except for small negative values at high values of χ and η. Thus for the uniform swelling-growth
problem considered here, our swelling-growth theory offers a kinetic basis for the typically phe-
nomenologically prescribed homeostatic stress, its relation to underlying material parameters, and
for why it is typically observed to be compressive for soft growing systems. However, note that for
a general boundary value problem, there is no fixed stress state (dependent on material parame-

9It was numerically verified that Js
eq(P̄b ≥ 0) ≤ Js

max irrespective of χ and thus the growth rate necessarily
decreases with increasing positive pressure (f̄g increases monotonically with Js for Js < Js

max).
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Figure 5: Uniform swelling-growth that emerges for uniform applied pressure Pb and infinitely fast diffusion
(τg/τd → ∞), in the limit of perfect incompressibility. Plots, for various χ, of (a) The equilibrium value of
solid volume fraction, ϕeq, as a function of dimensionless applied pressure P̄b. (b) The dimensionless homeostatic
pressure (P̄h) as a function of the conversion energy ratio (η). (c) The ratio of the free solid volume fraction (ϕf )
to the critical solid volume fraction (ϕc), as a function of the conversion energy ratio. (d) Plots, for various χ
and η, of the dimensionless volumetric growth rate as a function of Pb/Ph, the ratio of applied pressure to the
homeostatic pressure.

ters alone) that stops growth based on our growth laws. This emphasizes the need to move away
from phenomenological prescriptions as experimental observations under specific conditions need
not translate to other scenarios.

Finally, we show the dependence of the dimensionless growth rate as a function of the applied
pressure using eqs. (75), (90) and (92). The growth rate only depends on the solid volume frac-
tion which only depends on the applied pressure here in the absence of diffusion-consumption
limitations. We choose f̄ ∗

g = f̄g(ϕf ) so that Γ̄ = 1 when Pb = 0. The dimensionless growth rate
Γ̄ is plotted as a function of Pb/Ph in Figure 5(d) for different values of χ and η (Ph > 0 for
all combinations of chosen χ and η). It can be seen that larger applied pressure (higher values
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of Pb/Ph) always leads to decreasing growth rates. For Pb/Ph > 1, we have Γ̄ = 0. Hence, our
swelling-growth theory also offers a kinetic basis for the experimentally observed dependence of
growth rate on applied stresses.

We note that all the conclusions above also hold for the case of non-isochoric species conversion
(see Appendix A.4). Having demonstrated the ability of the theory to qualitatively capture the
different experimentally observed dependences of the growth rate on the concentration of the
diffusing species and the applied stress (in the absence of diffusion-consumption effects), we
will now employ the theory to solve boundary value problems where these dependences become
relevant.

5.2.1. Growth under mechanical confinement without diffusion-consumption limitations
First, we consider the problem of growth under mechanical confinement in the limit of perfect

incompressibility and infinitely fast diffusion so that we neglect diffusion-consumption limitations.
The results will already demonstrate the coupling between swelling and growth and how the no-
tion of homeostatic stress developed in the previous section manifests in a physical boundary
value problem.

We consider mechanical confinement in the form of a deformable spherical shell and assume
the growing body is spherical, so that ∂BR is the surface of a sphere. The confining shell is taken
to have inner and outer radial dimensions, A and B respectively, so that B/A is a thickness
measure of the shell. It is assumed to be non-growing (Fg = I), non-swelling (Fs = I), perfectly
incompressible (Je → 1) and made up of a strain stiffening material described by a Mooney-
Rivlin model (Mooney, 1940; Rivlin, 1948) so that its reference free energy ψR is of the form
(Boulanger and Hayes, 2001)

ψR =
Gc

2
((1− n) (tr(B)− 3) + n (I2(B)− 3)) , I2(B) =

1

2

(
(tr(B))2 − tr

(
B2
))

(95)

where Gc is the linear shear modulus of the confinement, n is a stiffening parameter (larger the
n the more the stiffening) and B = Be. It can be shown (Chen, 2018) that the pressure applied
by the mechanical confinement upon deformation only depends on the circumferential stretch of
its inner boundary, λa, so that

Pb

Gc

=
1− n
2

(
4λ−1

b + λ−4
b − λ

−4
a − 4λ−1

a

)
+
n

2

(
−4λb + 2λ−2

b + 4λa − 2λ−2
a

)
(96)

where the circumferential stretch at the outer boundary, λb, is expressed in terms of λa due to
incompressibility by the relation

λb =

(
1 + (λ3a − 1)

(
A

B

)3
) 1

3

(97)

We assume that, at t = 0, the undeformed inner boundary of the shell is just in contact with
the initially diffusion equilibrated growing body, so that the circumferential stretch of the con-
fining shell is λ3a = J/J0, where J is the volume ratio of the uniformly growing body and
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J0 = J(t = 0) = Js
f is its initial value. The chemical boundary condition is still taken as µ = µf

0

on ∂BR.

We choose the following representative parameters based on our modelling of growing tumors
later in Section 5.6,

G/µ∗ = 4× 10−5, χ = 0.55, η = 0.95, n = 0.9 (98)

The choice of n = 0.9 corresponds to a strain stiffening confinement where the pressure applied
by the confinement increases continuously with deformation. Later, when we model growing
bacterial biofilms in Section 5.7, we will consider neo-Hookean confinement (n = 0) wherein the
applied pressure attains a maximum value with increasing deformation.

The form of the solution from the previous section in eq. (87) continues to apply here. To
solve the boundary value problem, we need to integrate the growth evolution equation (75) (with
f̄g in eq. (92)) while satisfying eqs. (90) and (96). This is done numerically and the results are
plotted in Figure 6 as a function of t̄g for different cases of stiffness ratio Gc/G and confinement
dimension ratio B/A. Note that the dimensionless results here are independent of dimensional
parameters such as the growth constant kg. In Figure 6(a1-a3), the results are plotted for the
case of a confining medium (B/A → ∞) with varying stiffness ratio Gc/G to show the effect
of confining stiffness on growth (later we model bacterial biofilm growth against a confining
medium). It can be seen that in the case of free growth (Gc/G→ 0), the swelling ratio remains
unchanged during growth at its free value Js

f . This leads to constant growth rate of Γ̄ = 1,
i.e a straight line in log-log plot of Jg vs t̄g with slope of unity (remember that f̄ ∗

g was chosen
such that the dimensionless growth rate is unity for free growth). When the confining stiffness is
finite, the applied pressure increases with deformation of the medium due to growth of the body
which reduces the swelling ratio Js (Figure 6(a2)), thus the swelling is coupled to the growth.
This decrease in Js leads to decrease in the growth rate (Figure 6(a3)) from its free growth value
(growth is coupled to the swelling). The combined reduction of growth rate and Js with time
from their free growth values leads to a suppressed profile for the evolution of J/J0 compared
to free growth (Figure 6(a1)) which will be the physically observed evolution of volume of the
growing body in experiments.

If the confining medium deforms enough that the applied pressure reaches the homeostatic
value Ph (or equivalently the swelling ratio reaches the critical value Js

c ) discussed in the previous
section, the growth will stop and the field variables stop evolving with time. The volume ratio
J/J0 at which growth will stop can be analytically evaluated by setting Pb = Ph and λ3a = J/J0
in eq. (96) where Ph is solved using eq. (94). These values are plotted using dashed lines in
Figure 6(a1) and are confirmed to match with simulations. As one would intuitively expect,
larger confining stiffness lowers the growth rate and leads to smaller steady size of the growing
body since the homeostatic stress (or critical swelling ratio) is reached at smaller deformations
(Figure 6(a1)). Such behaviour has been observed in tumors growing against a confining medium
(Helmlinger et al., 1997). Note that, for a neo-Hookean confinement (i.e non stiffening so that
n = 0), the applied pressure will saturate at a maximum cavitation pressure with increasing
deformation. If the homeostatic pressure is larger than this cavitation pressure, the body will
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Figure 6: Temporal evolution of variables for uniform swelling-growth against mechanical confinement, in the
limit of infinitely fast diffusion (τg/τd → ∞) and perfect incompressibility, with n = 0.9. (a1-a3) Plots for a
confining medium (B/A → ∞) for varying modulus ratio of confinement to the growing body (Gc/G). (b1-b3)
Plots for confining shells with varying dimension ratio B/A (outer to inner dimension) and fixed modulus ratio
Gc/G = 250. The dashed lines in (a1) and (b1) correspond to the analytic homeostatic limit.
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never stop growing due to the confinement. We will see such behavior in the bacterial biofilm
growth experiments we model later.

Next, we demonstrate the effect of varying thickness of the spherical shells for a fixed value
of Gc/G = 250 in Figure 6(b1-b3). The same discussion above for the case of varying stiffness
ratio applies again and it can be seen that larger thicknesses of the confinement for a given
stiffness ratio lead to smaller steady sizes as one would intuitively expect and as seen in the
tumor experiments in Section 2. The assumption of infinitely fast diffusion employed so far
prevents accounting for diffusion-consumption effects which are important for large volumetric
growth. We relax this assumption in the following sections.

5.3. Spherically symmetric equations
To account for diffusion-consumption effects as the body is growing, we need to account for

spatially varying field variables. We restrict the analysis to a spherically symmetric setting and
consider a swelling and growing body subjected to a uniform external pressure and immersed in a
bath of diffusing species maintained at a constant reference chemical potential. The dry reference
body is described by the radial coordinate R ∈ [0, R0] and the current radial coordinates is given
by r = r(R) where r(0) = 0 and r(R0) is the current radius of the body. Choosing L∗ = R0 to
non-dimensionalize the problem, we have dimensionless reference coordinates R̄(= R/R0) ∈ [0, 1]
and dimensionless current coordinates r̄ = r/R0 = r̄(R̄). The deformation gradient in spherical
basis and associated volume ratio J can then be written as

F = diag [λr, λθ, λθ] = diag
[
∂r̄

∂R̄
,
r̄

R̄
,
r̄

R̄

]
, J = λrλ

2
θ (99)

where λr is the radial stretch and λθ is the circumferential stretch. The elastic, swelling, and
elasto-swelling deformation gradient tensors Fe,Fe,Fes, and their associated determinants can
be written as

Fi = diag
[
λir, λ

i
θ, λ

i
θ

]
, J i = λirλ

i
θ

2 for i = {g, e, es} (100)

where the different stretches are related as follows

λei =
λi
λsλgi

, λesi =
λi
λgi
, for i = {r, θ} (101)

Thus, given r̄(R̄), λgr , λ
g
θ, and λs, all deformation gradient tensors can be determined. The

dimensionless Cauchy and Piola stresses in eqs. (72) and (73) specialize as

T̄ = diag
[
T̄r, T̄θ, T̄θ

]
, T̄i =

1

Jes

(
(λesi

2 − 1) +
K

G
ln(Je)

)
for i = {r, θ}, (102)

and S̄ = diag
[
S̄R, S̄Θ, S̄Θ

]
, S̄R = λ2θT̄r, S̄Θ = λrλθT̄θ (103)

respectively. The dimensionless mechanical equilibrium equation (73) under spherical symmetry
is given by

dS̄R

dR̄
+

2

R̄

(
S̄R − S̄Θ

)
= 0 (104)
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The equilibrated diffusion-consumption equation eq. (86) meanwhile specializes as

JsJgΓ̄

(
τd
τg

)
=

1

R̄2

∂
(
R̄2M̄R

mob
∂µ̄
∂R̄

)
∂R̄

where M̄R
mob =

λθ
2

λr
(105)

, the dimensionless chemical potential µ̄ is defined in eq. (71), and the dimensionless mobility
tensor is specialized from eq. (70)2.

The volumetric growth evolution is given by eq. (75) where f̄g specializes as

f̄g = ∆µ̄0 + f̄mix
g (ϕ) +

G

µ∗

(
ln(Jes)− K

2G
(ln(Je))2 − 1

6

(
λesr

2 + 2λesθ
2 − 3

))
(106)

We choose f̄ ∗
g = f̄∞

g (ϕf ) for normalizing the growth law, where f̄∞
g is defined in eq. (92) and

ϕf is the free solid volume fraction for free growth in the limit of infinitely fast diffusion and
perfect incompressibility, given by eq. (91). The growth directionality evolution equation eq. (79)
specialize for spherical symmetry as follows

1

λgr

dλgr
dt̄g

=
Γ̄

3
− 2G

9µ∗f̄ ∗
g

(
λesθ

2 − λesr
2
)
,

1

λgθ

dλgθ
dt̄g

=
Γ̄

3
+

G

9µ∗f̄ ∗
g

(
λesθ

2 − λesr
2
)

(107)

where Γ̄ is given by eq. (75). It can be shown that only two of the three evolution equations in
eqs. (75) and (107) are independent and therefore we have two independent evolution equations
for the growth (since essentially prescription of two of the three among λrg, λθg, and Jg automat-
ically determines the third through eq. (100)2). We thus have four field variables (r̄, λgr , λ

g
θ, and

λs) and four governing equations (eqs. (104), (105) and (107)). The prescription of boundary
conditions for eqs. (104) and (105), and initial conditions for equations in (107) complete the
definition of a solvable boundary value problem.

For the initial conditions for growth evolution, we set F0
g = I which reduces to the following

choices for spherical symmetry

λgr(R̄, t = 0) = 1, λgθ(R̄, t = 0) = 1 (108)

The following boundary conditions are prescribed for the radial stress and chemical potential at
the outer boundary

T̄r(R̄ = 1, t) = −P̄b(t), µ̄(R̄ = 1, t) = µ̄f
0 (109)

where P̄b(t) is the applied dimensionless pressure, related to the applied pressure Pb(t) through
the relation P̄b(t) = Pb(t)/G.

The spherically symmetric equations are solved using a numerical scheme outlined in Ap-
pendix C. For solving the equations in dimensionless space, the only material parameters of the
growing body that need to be specified are χ,∆µ̄0, τg/τd, G/µ∗, and K/G. Note from eqs. (71),
(105) and (109) that the value of µ̄f

0 does not affect any of the solution field variables of the prob-
lem except to shift the chemical potential by a constant value. Thus without loss of generality we
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set µ̄f
0 = 0. The parameter ∆µ̄0 can be replaced with the conversion energy ratio η = ∆µ̄0/∆µ̄

c
0

where ∆µ̄c
0 is evaluated using eq. (93)1.

Since the fields now spatially vary, we define the following volume averaged parameters,

J̄ = 3

ˆ 1

0

JR̄2 dR̄ , J̄s = 3

ˆ 1

0

JsR̄2 dR̄ , J̄g = 3

ˆ 1

0

JgR̄2 dR̄ , J̄0 = J̄(t = 0) (110)

where J̄ is the total volume ratio of the body with respect to its dry reference volume, J̄0 is initial
value of J̄ and J̄/J̄0 is the total volume ratio of the body compared to its initial equilibrium
volume (Note that we are solving the diffusion equilibrated version of the governing equations
so that J̄0 ̸= 1). It can be shown using eqs. (99) and (110)1 that J̄ = r̄3(R̄ = 1) = λ3θ(R̄ = 1).

In Section 5.4 we consider free growth so that P̄b = 0 and in Section 5.5 we consider a
constant applied pressure P̄b(t) = P̄b. For modelling the tumor experiments in Section 5.6 and
the bacterial biofilm experiments in Section 5.7, the applied pressure is described as a function of
the confinement deformation using eq. (96) where P̄b = (Pb/Gc)× (Gc/G). The circumferential
stretch at the inner boundary of the confining shell is now given by the following equation

λ3a =

{
J̄/Jc, if J̄/Jc ≥ 1

1, if J̄/Jc < 1
(111)

where Jc is the ratio of inner volume of undeformed confinement to the initial dry reference
volume of the body. The conditional cases in eq. (111) reflect the fact that the confinement only
starts deforming once the growing body comes in contact with it.

5.4. Free growth with diffusion-consumption limitations
In this section, we analyze the problem of free growth in the presence of diffusion-consumption

limitations. We solve the spherically symmetric equations and set Pb = 0. Once again we con-
sider χ = 0.55 and G/µ∗ = 4× 10−5. Near incompressibility is enforced by setting a high value
of K/G = 106. We consider different values of the conversion energy ratio η and the growth to
diffusion timescale ratio τg/τd.

The time evolution of spatially averaged variables defined in eq. (110) is plotted in Figure 7
for varying values of τg/τd at fixed conversion energy ratio η. The plots in Figure 7(a1-a3) are
for the case of η = 0 and those in Figure 7(b1-b3) are for the case of η = 0.9. The dashed
lines correspond to the case of infinitely fast diffusion (τg/τd →∞) and perfect incompressibility
(K/G → ∞) wherein the swelling ratio is the free value Js

f at all times and the dimensionless
growth rate is unity. The spatial profiles of the field variables are plotted at increasing times in
Figure 8 for a representative case of η = 0.9, τg/τd = 1000 (the timescale ratio used for tumor
growth modelling later).
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Figure 7: Plots of temporal evolution of spatially averaged quantities for the case of free growth with diffusion-
consumption limitations, for various values of τg/τd. (a1-a3) Plots for the case of zero species conversion energy.
(b1-b3) Plots for the case of conversion energy ratio η = 0.9. The dashed lines correspond to the limit of infinitely
fast diffusion (τg/τd →∞) and perfect incompressibility (K/G→∞).
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Figure 8: Plots of spatial variation of solution fields (over dimensionless referential radial coordinate R̄) for free
growth with diffusion-consumption limitations, at various times, for representative case of η = 0.9, τg/τd = 1000.
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When τg/τd is finite, it is seen from Figure 8(b) that the equilibrium swelling ratio profile
is spatially decreasing from the outer edge of the growing body to the inside, due to diffusion-
consumption balance, and that this profile drops with time as the body swells and grows. This
leads to spatially decreasing volumetric growth rates from the outside to inside which all drop with
time. Consequently the spatially averaged swelling ratio (J̄s) drops with time (Figure 7(a2,b2)),
as does the spatially averaged growth rate as seen by the decreasing slope with time of the log-log
plot of J̄g vs t̄g in Figure 7(a3,b3). The combined drop in swelling ratio and growth rates lead to
decreasing overall volume increase rate, resulting in a decreasing slope with time of the log-log
plot of J̄/J̄0 vs t̄g in Figure 7(a1,b1). For a given η, smaller values of τg/τd result in lower swelling
ratio profiles at all times as can be seen by comparing Figure 9(a) where the spatial profiles of
the swelling ratio are plotted for the case of η = 0.9, τg/τd = 100 with the curves in Figure 8(b)
for η = 0.9, τg/τd = 1000 (due to a smaller consumption term on the left hand side of eq. (105)).
Consequently for a given η, smaller values of τg/τd lead to larger decrease with time in spatially
averaged swelling ratio, growth rates, and volume increase rate, as seen in Figure 7. Further,
for increasing τg/τd, the curves correctly approach the results for infinitely fast diffusion limit
(τg/τd →∞). Thus, the presence of diffusion-consumption effects leads to decreased growth and
volume increase rates both with time and in comparison to the constant free growth rate in the
infinitely fast diffusion limit. Finally, we note that the higher the conversion energy ratio η for
a given τg/τd, the more pronounced the drop in averaged growth rate and volume increase rate
compared to their values in the corresponding infinitely fast diffusion limit10. This is due to the
fact that a larger value of η corresponds to a smaller value of ∆µ0 (when all other parameters
are fixed) which can be shown to lead to a smaller dimensionless growth rate at a given swelling
ratio (see Appendix A.5).

The spatial variation of the growth volume ratio Jg in Figure 8(a) at increasing times is
consistent with the earlier discussion wherein the growth rates are spatially decreasing from the
outer edge of the body to the inside due to the spatial variation of swelling ratio. The dimen-
sionless radial stress profiles are plotted in Figure 8(c). The radial stress is zero on the outer
boundary due to the boundary condition for free growth while being increasingly tensile towards
the core of the body, with the stress variation becoming more pronounced with increasing time.
This is due to the fact that the outer layers are growing at a faster rate and pulling on the slower
growing inner layers. The dimensionless circumferential stress plots in Figure 8(d) indicate the
circumferential stress is tensile in most of the growing body but is compressive near the outer
edge. This is due to mechanical equilibrium arising from the combined effects of swelling and
growth and is not intuitive, nevertheless the spatial variation in radial and circumferential stress
profiles is consistent with previous studies (Ambrosi and Mollica, 2002; Xue et al., 2016). Note
that the high tensile stresses in the core at large growth volumes can lead to cavitation in the
growing body, see for example Goriely et al. (2010); McMahon et al. (2010). In the context of
tumors and bacteria, this might manifest in the form of tendency of cells to liquefy. However, the
high surface tension of the diffusing fluids at small length scales such as in tumors and bacteria
could also delay such failure. Nevertheless, the ability to account for large deformations in our

10Note that the value of f̄∗
g chosen to normalize the growth law is different for different η (since we enforce

dimensionless volumetric growth rate of 1 for free growth with no diffusion-consumption limitations, irrespective
of conversion energy).
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swelling growth theory allows the possibility to access such nonlinear phenomena which might be
critical to understanding growing biological systems. Next, from the plots of the elastic volume
ratio in Figure 8(e), we can verify that the simulations are indeed in the nearly incompressible
limit (Je−1→ 0). The quantity λgr/λ

g
θ−1 is a measure of the anisotropy of growth, the closer it

is to zero the more isotropic the growth. This anisotropy measure is plotted in Figure 8(f) and
the growth is seen to be nearly spherical or isotropic at all times which is consistent with the
discussion in Section 4.5 due to low value of G/µ∗ and our choice of growth laws. Nevertheless,
the growth is seen to be more anisotropic towards the outer edge of the body and at increasing
times, with the radial growth stretch being higher than the circumferential growth stretch. This
is due to the fact that the circumferential stress is always more compressive (or less tensile)
than the radial stress which leads to suppressed circumferential growth in comparison to the
radial growth, and this stress difference is more pronounced for larger radial coordinate and at
increasing times.

Revisiting the spatial swelling profiles in Figure 8(b) and Figure 9(a), we note that the swelling
ratio is seen to not drop below the critical value Js

c . When Js approaches Js
c the growth rate

Γ̄ drops to zero which results in zero consumption of the diffusing species locally (see eq. (82)),
thus halting local reduction in swelling. At very large times, the vast majority of the body is seen
to be at the critical swelling ratio Js

c which means that the growth is confined to a thin outer
rim. We note that the growth can technically never completely stop at the outer edge since, as
discussed in Section 4.5, Lg = 0 necessitates a hydrostatic stress state and this requires T = 0
at the outer boundary (since Tr = 0). Zero stress (T = 0) along with µ = µf

0 at the boundary
would necessitate the swelling ratio at the boundary to be the free swelling ratio which is not
compatible with zero growth rate. However, since G/µ∗ is very small, the volumetric growth
can nearly stop when the swelling ratio approaches the critical value over the entire body from
accumulating stresses (the remodelling relieves stresses that can resume volumetric growth but
this process is slow since G/µ∗ is very small). We note that as the body grows to very large
volumes, the use of the equilibrated version of the diffusion-consumption equation will become
less accurate. However the accurate simultaneous integration of growth evolution equations along
with non-equilibrated diffusion-consumption equation is numerically prohibitive due to the large
τg/τd, strong swelling-growth coupling, and extreme growth sizes.

5.5. Growth under constant applied pressure with diffusion-consumption limitations
We now consider the combined effects of applied pressure (Pb ̸= 0) and diffusion-consumption

limitations on the growth. The same parameters from the previous section for free growth have
been employed here. The applied pressure is taken to be constant so that P̄b(t) = P̄b. Us-
ing the value of homeostatic pressure Ph developed for the limit of infinitely fast diffusion and
perfect incompressibility in Section 5.2, we consider different levels of applied pressure Pb by
considering different values of the ratio Pb/Ph (which is also equal to P̄b/P̄h). The results are
plotted in Figure 10 for different values of η and τg/τd. Since much of the physics is similar to
the case of free growth, only the temporal evolution of J̄/J̄0 is shown for sake of brevity, while
a representative plot of the spatial profile evolution of Js is shown in Figure 9(b) for the case
η = 0.9, τg/τd = 100, Pb/Ph = 0.5. The dashed lines in Figure 10 correspond to the limit of
infinitely fast diffusion and perfect incompressibility wherein the swelling ratio will be spatially
and temporally constant with a value Js

eq(P̄b) (defined in Section 5.2), leading to constant growth
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Figure 9: Plots of spatially averaged swelling ratio for growth with diffusion-consumption limitations for the case
of conversion energy ratio η = 0.9 and growth to diffusion timescale ratio τg/τd = 100. (a) Free growth case (b)
Case of applied pressure equal to 50% of the homeostatic pressure.

rate (Γ̄ in Figure 5(d)).

Similar to the free growth case, it is seen from Figure 9(b) that as the body grows, the swelling
ratio decreases everywhere. However the values of Js are lower compared to the free growth case
in Figure 9(a) due to applied pressure and the spatial profiles take longer to drop due to the
reduced growth rates at smaller swelling ratios. The decreasing swelling ratio profile once again
leads to decreasing volume increase rates with time in Figure 10 and the decrease is larger for
smaller τg/τd when all other parameters are the same. Higher applied pressures are seen to result
in reduced growth rates for a given η and τg/τd (similar to the infinitely fast diffusion limit as
seen by the dashed lines). The reduction in volume increase rates compared to the infinitely
fast diffusion limit is less pronounced for higher applied pressure, this is because the growth rate
Γ̄ is lower for higher applied pressure which results in a smaller consumption term on the left
hand side of eq. (105). On the other hand, the reduction in volume increase rate compared to
the infinitely fast diffusion limit is once again more pronounced for larger values of conversion
energy ratio η when all other parameters are held fixed. Similar trends also apply for case of
mechanical confinement considered in Section 5.2.1 when accounting for diffusion-consumption
limitations, once again we skip these results for brevity and directly demonstrate application to
tumor growth modelling in the next section.

5.6. Modelling tumor growth
We now model the tumor growth experiments discussed in Section 2 using our swelling-growth

theory. We choose R0 such that the initial equilibrated volume (under no applied pressure)
is just in contact with the smallest confinement (Case C, inner volume = 0.003mm3). The
material parameters for the simulation are listed in Table 1 and the associated key dimensionless
parameters are

G/µ∗ = 4× 10−5, τg/τd = 1000, η = 0.972, K/G = 106 (112)
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Figure 10: Plots of temporal evolution of total volume ratio with respect to initial equilibrium value (J̄/J̄0) for the
case of growth under uniform and constant applied pressure with diffusion-consumption limitations, for different
values of conversion energy ratio η, growth to diffusion timescale ratio (τg/τd), and ratio of applied pressure to
homeostatic pressure (Pb/Ph). The dashed lines represent the limit of infinitely fast diffusion (τg/τd → ∞) and
perfect incompressibility, and are shown for comparison.

We note that all parameters except the conversion energy ∆µ0 are either obtained or directly
inferred from experiments/literature or once fitted have been found to be in the range of reported
values in the literature. For example, the growth timescale τg is directly inferred from the initial
growth rate in the free growth experiments whereas the diffusion timescale τd is fitted for, and
the resulting associated diffusion coefficient has a value D ≈ 3.6× 10−7cm2/s, which is a typical
value for several growth factors in tumor studies (Thorne et al., 2004; Kim et al., 2011). The
dimensions of the confinement in Cases B-D are listed in Appendix C.1. For Case D, the breakage
of the confinement is modelled by removing the confinement at t = 10.35 days. The simulated
predictions of the theory are compared with the experiments in Figure 1(b), and it can be seen
that the theory is able to capture all the cases well with a single set of parameters. We emphasize
again the fact that unlike most conventional growth models, we have not prescribed any ad hoc
functional dependence of growth evolution on concentration including critical concentration for
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growth. Neither have we introduced an ad hoc homeostatic stress. The kinetic growth law
based on the driving stress is automatically able to capture simultaneously the effects of both
the mechanical confinement and diffusion-consumption limitations. Further, we draw attention
to our relatively small parameter space compared to other tumor growth studies. Our modelling
is also fully consistent, and accounts for mass balance.

Table 1: Material parameter values for modelling of tumor growth experiments

Quantity Value Source/Comment

R0 56.33 µm Chosen such that 4
3
πR3

0 J̄0 = 0.003 mm3

G 1 kPa Stylianopoulos et al. (2012)

K 1 GPa Typical value for nearly incompressible soft polymer

τg 1.0317 days Fitted from initial free growth rate

∆µ0 -10.15 MPa Fitted, corresponds to η = 0.972

D 3.6 ×10−7 cm2/s Fitted, close to reported values in literature

χ 0.6 Assumed based on free tumor porosity (ϕf ) ∼ 0.25

ωf 1.66× 10−28 m3/molecule Hong et al. (2008)

T 300 K Room temperature

Gc 250 kPa Alessandri et al. (2013)

n 0.9 Fitted, confinement known to be stiffening

5.7. Modelling bacterial biofilm growth
Finally, in this section, we model experiments of swelling and growing 3D bacterial biofilms.

Our collaborators at Yale University published experiments of growing 3D Vibrio cholerae biofilms
embedded in hydrogels, as they grow by orders of magnitude from their initial size (Zhang et al.,
2021). Using 3D visualization techniques with high spatio-temporal resolution, they were able to
capture the growth process at the level of individual cells which allows the separate extraction of
growth and swelling data. The biofilms are grown starting from a few cells to tens of thousands,
against confining hydrogel medium which is replenished with nutrient filled fluid. The confining
stiffness of the hydrogel was varied by about two orders of magnitude. Yet, interestingly it was
observed that the growth rate of the biofilms is constant with time (and inferred spatially uni-
form) and independent of the confining stiffness even though the swelling process was not. These
results are shown in Figure 11. The time evolution of the growth volume ratio from multiple
experiments is overlaid in Figure 11(a) where it can be seen that the growth rate is constant. The
swelling ratio reaches a steady value during growth and the steady value is plotted as function
of the stiffness ratio of confinement to the biofilm in Figure 11(b), along with the growth rate.
Note that from our earlier results in Section 5.2.1, we expect the growth rate to be suppressed
by increasing stiffness of the confining medium. We will resolve this seeming contradiction in
this section and demonstrate the ability of the theory to model the experimental results.
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Figure 11: Comparison of experimental data (Zhang et al., 2021) and theoretical predictions for swelling-growth
of bacterial biofilms. (a) Temporal evolution of the growth volume ratio. (b) The solid volume fraction (ϕ) and
growth rate (Γ) as a function of ratio of shear modulus of confinement to shear modulus of biofilm (Gc/G).

In a previous study, we analysed the morphogenesis in these biofilms as they grow using a
energy minimization approach (Li et al., 2022). However, we focused our attention to morpho-
genesis and used a kinematic prescription for the volumetric growth while neglecting swelling
since it was shown experimentally that the growth rate remained constant and spatially uniform.
Here instead, we will neglect the morphogenesis and use our swelling growth theory considering
spherical geometry (so that we can use eq. (96) for the pressure applied by confining medium) to
capture the swelling dependence and explain the growth rate behaviour. We first note that since
the initial size (R0 = L∗) is small (∼ 1 µm), the diffusion timescale is small compared to the
growth timescale (τg/τd ∼ 1× 105 for typical D ∼ 10−7 cm2/s) and we can comfortably employ
the infinitely fast diffusion approximation. Since the confinement is a thick medium, we set
B/A→∞ (and thus λb → 1) in eq. (97). Further, since the swelling reaches a steady value dur-
ing growth, the pressure applied by the confinement must saturate for large deformations. Thus,
we assume a neo-Hookean free energy function for the confining medium (n = 0 in eq. (95)) such
that the applied pressure Pb in eq. (96) saturates at a cavitation pressure11 value of 2.5Gc. Fur-
ther, the growth rate being independent of the confining stiffness, is possible if the homeostatic
pressure of the system is very high compared to the maximum confining stiffness such that Ph ≫
max(Gc). If this is the case, since Pb ∼ Gc, the pressure ratio Pb/Ph → 0 irrespective of the con-
fining stiffness varying by two orders of magnitude. From the dependence of volumetric growth
rate on Pb/Ph in Figure 5(d), it can be inferred that the dimensionless growth rate will be approx-
imately unity irrespective of the confinement if Pb/Ph → 0. Since the maximum value of stiffness
ratio Gc/G is ∼ 100, all we need to capture the growth rate independence is to require P̄h ≫ 100.

With the above discussion in mind, we choose the material parameters in Table 2 to model the
experiments using the swelling growth theory in the infinitely fast diffusion limit (Section 5.2).

11While in reality the pressure might saturate from damage in the confinement, for our analysis here only the
peak pressure is relevant for which the cavitation limit of neo-Hookean model is a good approximation
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The steady value of swelling is obtained by setting P̄b = 2.5Gc/G in eq. (90). Predictions of the
swelling growth theory agree with the experimental data shown in Figure 11. We note that the
difference from our results in Section 5.2.1 arises from two factors - (i) the confining medium is
non-stiffening (n = 0) so that the applied pressure saturates and (ii) we have chosen η = −10
here, which corresponds to a highly favourable conversion energy in comparison to the choice
of η = 0.95 previously. In principle, any value of ∆µ0 greater than the value chosen in Table 2
will also produce the same results. Essentially, if the conversion energy is favourable enough, it
maintains the growth rate irrespective of changes in swelling ratio due to mechanical confinement.
Or equivalently, if the conversion energy is favourable enough, the homeostatic pressure will be
high (see Figure 5(b)) compared to even the largest confining stiffness. We hypothesize that the
underlying cellular mechanism that leads to this high growth favourability is the use of a bacterial
strain that is locked in a high cyclic diguanylate level (Zhang et al., 2021; Beyhan and Yildiz,
2007) and therefore always producing biofilm matrix. The swelling ratio however is independent
of the conversion energy ∆µ0 and only depends on the applied pressure (eq. (90)), its dependence
on Gc/G has been captured in Figure 11(b) by fitting for χ. Thus our swelling-growth theory is
able to successfully model both tumor and bacterial biofilm swelling-growth. We conclude the
manuscript with a summary in the next section.

Table 2: Material parameter values for modelling of bacterial biofilm growth experiments

Quantity Value Source/Comment

G 1kPa Zhang et al. (2021)

T 300 K Room temperature

τg 2.17 h Fitted from constant growth rate

χ 0.59 Fitted from ϕ vs Gc/G

∆µ0 105.88 MPa Corresponds to η = −10
ωf 1.66× 10−28 m3/molecule Hong et al. (2008)

6. Summary and conclusions

Biological systems exhibit a vast array of growth phenomena that inherently rely on the
coupling between large deformations and diffusion of constituents that are needed to feed the
growth. Existing models of growth typically employ experimentally motivated phenomenological
prescriptions to capture the consequences of this coupling by prescribing the directionality of
growth (i.e. anisotropy), its rate, and the conditions required for it to stop (i.e. a homeostatic
stress and a critical concentration of diffusing species). In this work, we investigate the coupled
nature of growth by development of a thermodynamically consistent and mass conserving large
deformation swelling-growth theory. The theory considers a solid body permeated by a repre-
sentative diffusing species whose conversion into additional solid material leads to growth while
the remaining diffusing species swells the growing solid. The mechanics is modelled by treating
the mixture as a single homogenized continuum body, which circumvents difficulties of mixture
theory. The driving stress for growth is identified using the dissipation inequality, and a kinetic

40



growth law is prescribed. It is shown that this framework successfully captures experiments of
growing tumors and bacterial biofilms under diverse diffusion-consumption and mechanical con-
straints without the conventionally employed phenomenological prescriptions.

Several insights are drawn from the theory. Non-dimensionalization of the equations reveals
the key role of the ratio between the shear modulus of the growing material and the character-
istic chemical potential (i.e. G/µ∗); when this ratio is small, which is typically the case for soft
swelling and growing systems, our choice of growth laws here predict nearly isotropic growth
unless large and highly non-spherical dimensionless stresses are reached. This explains why con-
ventional growth studies that often employ the assumption of isotropic growth for these systems
fare well. In the same limit of small G/µ∗, it is shown that the growth driving stress is pri-
marily a function of the species conversion energy per unit volume and the swelling ratio (i.e.
∆µ0 and Js) and the existence of a critical swelling ratio that stops growth is established. It
is shown that the critical swelling ratio simultaneously captures the effect of two conventionally
imposed phenomenological prescriptions - (i) a critical concentration of diffusing species that
stops growth and (ii) a homeostatic pressure that the system tends to and stops growing at for
uniform pressure loading in absence of diffusion-consumption constraints. Through the latter,
the theory offers a kinetic basis for the homeostatic stress in relation to underlying material
parameters, and explains why it is typically observed to be compressive for soft growing systems
driven by swelling. Nonetheless, it is shown that for a general boundary value problem, the
kinetic growth law does not specify a fixed stress-state that stops growth, thus emphasizing the
potential pitfalls of phenomenological prescriptions, as experimental observations under specific
conditions need not translate to other scenarios. Further, the kinetic growth law based on the
driving stress is also able to qualitatively explain experimentally observed dependence of growth
on concentration of diffusing species, namely the increase in growth rate with concentration, and
saturation of growth rate at high concentration values. A critical conversion energy below which
growth is never possible irrespective of the swelling is also established.

The ability of the theory to account for large deformations in both swelling and growth,
in contrast to several studies in the literature, opens up a new avenue for investigation of the
spontaneous emergence of nonlinear morphological growth phenomena such as growth induced
wrinkling, buckling, fracture, and cavitation, which have been conventionally studied via inverse
methods using kinematic assumptions. However, the theory is not without limitations, for exam-
ple, directional growth mechanisms are not accounted for and need to be introduced to obtain
anisotropic homeostatic stress-states. Also, the model cannot account for specific cellular bio-
logical processes involved in growth which are homogenized as an effective species conversion.
The conversion energy ∆µ0, though physically motivated must be determined experimentally; its
estimation from homogenization of experimental data for cellular processes is non-trivial, future
work could potentially embed biological models in service of such estimation. To describe the
growth process in greater detail like in several mixture growth theories, such as by accounting
for micro-environment, multiplicity of cell species, and inter diffusion of multiple components
including nutrients, growth factors, and drugs, the theory needs to be generalized to account for
multiple reaction-diffusion equations. Finally, the primary physics predicted by the theory has
been established in this manuscript by solving boundary value problems with simple geometry.
Future work should consider more complex geometries to study morphogenesis under mechanical
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constraints and breakage of symmetry.
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Appendix A. Theory

Appendix A.1. Mass balance during growth
Consider the current mass density of the solid matrix, ρ, whose evolution is given by the

equation
∂ρ

∂t
+ div (ρv) = ρ̇+ ρ div v = ρ̃ (A.1)

where ρ̃ is the mass density supply rate to the solid matrix from the diffusing species and v = ẋ
is the velocity of the material point. Based on standard kinematics of a continuum, it is known
that J̇ = J div v, whose substitution into the mass balance equation above produces

ρ̇R = ρ̃R, (A.2)

where ρR = ρJ is the current solid mass per unit dry reference volume and ρ̃R = ρ̃J is the
referential mass density supply rate to the solid matrix (mass supplied per unit dry reference
volume per unit time). Thus ρR only changes during growth (ρ̃R ̸= 0). Since we assumed that
the density of the solid matrix remains constant (at value ρm0 ) during the growth process through
the mapping by Fg, we can write ρR = ρm0 J

g, the substitution of which in eq. (A.2) yields

ρm0 J̇
g = ρ̃R (A.3)

Recognizing ρm0 ≡ 1/Ωm and ρ̃R ≡ ξ̇R, we see that eq. (A.3) is equivalent to eq. (15).

Appendix A.2. Dissipation inequality
Under isothermal conditions, the entropy inequality can be written as

ˆ
P
η̇R dVR ≥

ˆ
∂P
µη(−jR · nR) dAR (A.4)

where ηR is the entropy per unit dry reference volume of the fluid-solid continuum within the dry
material region P and µη is the entropy supply per unit reference volume of the diffusing species,
into P through the boundary. Neglecting kinetic energy (or inertial effects) and assuming no
body forces, the balance law for energy under isothermal conditions can be written as

ˆ
P
ϵ̇R dVR =

ˆ
∂P
(SnR) · φ̇ dAR +

ˆ
∂P
µϵ(−jR · nR) dAR (A.5)

where ϵR is the internal energy per unit dry reference volume of the fluid-solid continuum within
the dry material region P and µϵ is the internal energy supply per unit dry reference volume of
the diffusing species, into P through the boundary. Introducing the Helmholtz free energy per
unit dry reference volume of the fluid-solid continuum, ψR = ϵR − θηR, where θ is the constant
absolute temperature, we can write the following rate relation under isothermal conditions

ψ̇R = ϵ̇R − θη̇R (A.6)

Defining the chemical potential µ as follows (see also Salvadori et al. (2018); Anand (2023)),

µ = µϵ − θµη (A.7)
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eqs. (A.4), (A.5), and (A.6) can be combined to write the dissipation inequality in eq. (21).
Next, we show the localization of eq. (21) into eq. (22). We rewrite the first term on the right
hand side of eq. (21) as follows

ˆ
∂P
(SnR) · φ̇ dAR =

ˆ
∂P

(
S · ∂φ̇

∂X
+ (Div S) · φ̇

)
dVR =

ˆ
∂P

S · Ḟ dVR (A.8)

where we have employed the divergence theorem, the mechanical equilibrium equation (20), and
the definition of F in eq. (1). Next, consider the second term on the right hand side of eq. (21),
ˆ
∂P
µ(−jR·nR) dAR =

ˆ
∂P

(−jR · ∇µ− µ Div jR) dVR =

ˆ
∂P

(
−jR · ∇µ+ µ

(
JgJ̇s + JsJ̇g

))
dVR

(A.9)
where we have used the divergence theorem and the isochoric diffusion-consumption equation
(18). Plugging eqs. (A.8) and (A.9) into eq. (21) and localizing the integral gives the required
inequality in eq. (22) (see also Loeffel and Anand (2011); Levitas and Attariani (2014); Konica
and Sain (2020); Afshar and Di Leo (2021); Bistri and Di Leo (2023)).

Appendix A.3. Stress power
We prove the stress power equivalence stated in eq. (23) below. First, using eqs. (7), (8)

and (20), we write

S · Ḟ =
(
SFT

)
· L = JT · L = JT ·

(
Le + FeLgFe−1 +

J̇s

3Js
I

)
(A.10)

We now consider the first term in eq. (A.10),

JT · Le = JT ·
(
ḞeFe−1

)
=
(
JTFe−T

)
· Ḟe = JsJg

(
JeTFe−T

)
·
(
Fe−TFeT Ḟe

)
(A.11)

= JsJg
(
JeFe−1TFe−T

)
·
(
FeT Ḟe

)
= JsJgTe · sym

(
FeT Ḟe

)
=

1

2
JsJgTe · Ċe (A.12)

where we have used eqs. (3) and (8), the definition of Te in eq. (24)2 and its symmetry12. Next,
we consider the second term in eq. (A.10),

JT ·
(
FeLgFe−1

)
=
(
JFeTTFe−T

)
· Lg = Jg

(
JesFesTTFes−T

)
· Lg = JgMes · Lg (A.13)

where we have used eqs. (1) and (3), and the definition of Mes in eq. (24)1. Finally, we consider
the third term in eq. (A.10),

JT ·

(
J̇s

3Js
I

)
=
JJ̇s

3Js
tr(T) (A.14)

Using eqs. (A.11)–(A.14) in eq. (A.10) gives us the desired relation in eq. (23).

12Z is symmetric if Z = sym(Z) where sym(Z) = 1
2 (Z+ ZT ). If Z is symmetric, Z ·Y = Z · sym(Y).
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Appendix A.4. Non-isochoric conversion reaction
In this section, we generalize the theory to non-isochoric species conversion (Ωf ̸= Ωm). Fol-

lowing the same derivation procedure in the manuscript while using the non-isochoric diffusion-
consumption equation (17) instead of the isochoric version in eq. (18) gives us the desired theory.
Skipping the straightforward math, we present here directly the key equations that will differ for
the non-isochoric version of the theory from the equations for the isochoric case in the manuscript.
The only extra parameter that shows up in the theory is the ratio α = Ωf/Ωm = ρm0 /ρ

f
0 which

is the referential density ratio of the solid to diffusing species. The growth driving stress Tg in
eq. (34) is now instead

Tg = Mes +

(
∆µnis

0 + (Js + α− 1)

(
∂ψg

∂Js
− 1

3
Jetr(T)

)
− ψg

)
I (A.15)

where ∆µnis
0 = ∆µ0 + µf

0 (α− 1) is the chemical conversion energy per unit referential solid
volume for conversion of unit mass of diffusing species to solid. The driving stress for volumetric
growth in eq. (41)2 is now instead

fg = (α− 1)

(
∂ψg

∂Js
− 1

3
Jetr(T)

)
+∆µnis

0 + Js∂ψg

∂Js
− ψg (A.16)

= (α− 1) (µ− µf
0) + ∆µnis

0 + Js∂ψg

∂Js
− ψg (A.17)

where the chemical potential µ from eq. (32)2 remains unchanged along with the growth evolution
equations (63),(66). The specialized form of fg for the chosen constitutive functions in Section 3
is given by

fg = ∆µnis
0 + (α− 1)

(
µmix(ϕ)−K ln(Je)ϕ

)
+ fmix

g (ϕ) + fmech
g (A.18)

where expressions for µmix(ϕ), fmix
g , and fmech

g can be found in eqs. (61), (64) and (65).

For the boundary value problem in Section 5.2 where we consider the limit of infinitely fast
diffusion, we have µ = µf

0 and thus fg in eq. (A.17) reduces to

fg = ∆µmis
0 + Js∂ψg

∂Js
− ψg (A.19)

Thus it can be seen that the driving stress fg in this case has essentially the same functional
form as for the isochoric case in eq. (41)2 except that ∆µ0 has been replaced by ∆µmis

0 . Thus all
the conclusions devised for the isochoric case in Section 5.2 also hold for the non-isochoric case.

Appendix A.5. Γ̄ dependence on η

Now we demonstrate that in the limit of small G/µ∗, a larger value of the conversion energy
ratio η, when all other parameters are fixed, leads to a smaller dimensionless growth rate for a
given ϕ > ϕf . In the limit of small G/µ∗, the dimensionless growth rate can be written using
eqs. (75) and (83), for the choice of f̄ ∗

g = f̄g(ϕ
f ), as

Γ̄ =
∆µ̄0 + f̄mix

g (ϕ)

∆µ̄0 + f̄mix
g (ϕf )

= 1 +
f̄mix
g (ϕ)− f̄mix

g (ϕf )

∆µ̄0 + f̄mix
g (ϕf )

(A.20)
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We first note from Sections 5.1 and 5.2 that ϕf and ∆µ̄c
0 are independent of η when χ is fixed.

Thus when all other parameters are fixed, a larger value of η corresponds to a smaller value of
∆µ0, and for any given ϕ for which f̄mix

g (ϕ) < f̄mix
g (ϕf ), the dimensionless growth rate will be

smaller for larger η using eq. (A.20). Hence, to demonstrate the claim at the start of the section,
it only remains to show that f̄mix

g is a monotonically decreasing function of ϕ for ϕ > ϕf such that
ϕ > ϕf necessitates f̄mix

g (ϕ) < f̄mix
g (ϕf ). In Section 5.1, it was established that f̄mix

g is always
monotonically decreasing with ϕ for χ ≤ 0.5. Defining ϕmax = 1/Js

max, where Js
max was defined

in Section 5.1 as the swelling ratio at which f̄g attains its maximum value, we note that f̄mix
g is

a monotonically decreasing function of ϕ for ϕ > ϕmax. For χ > 0.5, we numerically verified that
ϕf > ϕmax in the limit G/µ∗ → 0. Thus f̄mix

g is always a monotonically decreasing function of ϕ
for ϕ > ϕf , irrespective of the value of χ, and hence the claim at the start of the section holds
true.

Appendix B. Perfectly incompressible limit

Here we consider the perfectly incompressible limit of the theory so that K/G → ∞ and
Je → 1. In rate form this means that J̇e = Jetr(ḞeFe−1) = Fe−T · Ḟe = 0. We do the following
manipulation to rewrite this constraint

Fe−T · Ḟe = Fe−T ·
(
Fe−TFeT Ḟe

)
=
(
Fe−1Fe−T

)
·
(
FeT Ḟe

)
= Ce−1 ·

(
FeT Ḟe

)
= Ce−1 · sym

(
FeT Ḟe

)
= Ce−1 · Ċe = 0

(B.1)

where we have used the definition of Ce in eq. (6) and its symmetry. We can thus add an
arbitrary scalar times Ce−1 · Ċe to the stress power in eq. (23),

S · Ḟ =
1

2
JsJgTe · Ċe + JgMes · Lg +

JJ̇s

3Js
tr(T) +

1

2
Jg
(
PCe−1

)
· Ċe (B.2)

where P is an arbitrary scalar field (the Lagrange multiplier associated with the incompressibility
constraint). Following the same process in the manuscript, we can now show that

T =
1

Js

(
2Fe ∂ψg

∂Ce
FeT − P I

)
, Mes = JsFesTTFes−T , Te = Fe−1TFe−T (B.3)

while the Piola stress is given by (20)3. All other quantities and prescriptions in Section 3 apart
from the above stresses remain unchanged.

The specific form the mechanical free energy in eq. (57) now reads

ψ̂mech
g (Ce, Js) =

G

2

(
(Js)

2
3 tr(Ce)− 3− 2 ln(Js)

)
(B.4)

The modified expressions in Section 4 for the incompressible limit are written below13 (unchanged

13A quick way to obtain the incompressible equations from the compressible theory is to set K ln(Je)→ (G−P ).
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expressions are not listed again for brevity),

T =
1

Js
(GBes − P I) , Mes = GCes − P I (B.5)

µ = µf
0 + µ∗ (ln (1− ϕ) + ϕ+ χϕ2

)
−Gϕ+ Pϕ (B.6)

fmech
g = G

(
ln(Js)− 1

6
(tr(Ces)− 3)

)
(B.7)

For the case of non-isochoric species conversion, the total driving stress fg for volumetric growth
is given by

fg = ∆µmis
0 + fmix

g + fmech
g + (α− 1)

(
µmix(ϕ)−Gϕ+ Pϕ

)
(B.8)

where fmech
g in the incompressible limit is expressed in eq. (B.7).

Appendix B.1. Uniform spherical fields in limit of infinitely fast diffusion
Consider the uniform swelling-growth problem in Section 5.2 where we assume infinitely

fast diffusion, now with the added constraint of perfect incompressibility. The uniform elastic
deformation field is now Fe = I since Je = 1. Using this along with eq. (87)4,5 in eqs. (B.5)
and (B.6), we arrive at the following equations

−Pb = ϕ
(
Gϕ

−2
3 − P

)
, µmix(ϕ)−Gϕ+ Pϕ = 0 (B.9)

Eliminating P from the two equations and non dimensionalising the resulting equation yields
eq. (90). Further, substituting Fe = I in eq. (B.7) results in the following equation

fmech
g = G

(
ln(Js)− 1

2

(
(Js)

2
3 − 1

))
(B.10)

so that the driving force is purely a function of the swelling ratio or solid volume fraction for the
uniform swelling-growth problem in the infinitely fast diffusion limit with perfect incompressibil-
ity,

fg = f∞
g = ∆µmis

0 + fmix
g (ϕ) +G

(
ln
(
ϕ−1
)
− 1

2

(
ϕ− 2

3 − 1
))

(B.11)

In the case of isochoric species conversion, ∆µmis
0 = ∆µ0. Non-dimensionalizing the result yields

eq. (92).

Appendix C. Numerical implementation

Here we outline the numerical procedure used to solve the spherically symmetric governing
equations in Section 5.3, which is written formally in Algorithm 1. The spatial domain R̄ was
discretized using N = 200 equally spaced points. The mechanical and swelling equilibrium equa-
tions were solved using finite difference schemes that solve a nonlinear system of equations using
Matlab’s ‘fsolve’ solver while supplying the Jacobian matrix (derivative of residual with respect
to the variables) using the ‘SpecifyObjectiveGradient’ option. An exact analytical expression for
the Jacobian matrix was coded for the mechanical equilibrium solver while an approximate Jaco-
bian matrix was supplied for the swelling equilibrium solver (which was sufficient for fast enough
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convergence). Simultaneous mechanical and swelling equilibrium is ensured using a staggered
scheme that is run till convergence. The evolution equations for growth were integrated using a
fourth order Runge-Kutta (RK4) scheme. After a convergence analysis in time, a conservative
value of dt̄g ∼ 10−3 was chosen for the stepping size of the time integration.

Appendix C.1. Confinement dimensions for tumor growth simulations
The dimensions of the confining shells used for simulating Cases B-D of the tumor growth

experiments are listed in Table C.3 where the inner volume of the confinement is given by 4
3
πA3.

The capsule volumes have been obtained from the dashed lines of Fig. 2E in Alessandri et al.
(2013), a slight correction has been made for Case D such that the confinement volume is chosen
based on the volume at which the tumor growth rate starts deviating from the free growth curve.
The estimation of dimensions of the confining shells in Alessandri et al. (2013) is approximate
and is inconsistent with the capsule volumes. Thus we have chosen representative dimension
ratios (B/A) based on their reported values for thick and thin capsules.
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Algorithm 1 Spherically Symmetric Swelling Growth
procedure SwellingGrowth

t̄g,
#»

λgr ,
# »

Jg ← 0,
#»
1 ,

#»
1

while t̄g < t̄fg do
#»

λgr ,
# »

Jg ←GrowthStep(
#»

λgr ,
# »

Jg, dt̄g)
#»r ,

#»

J s ←MechSwellEqb(
#»

λgr ,
# »

Jg)
t̄g ← t̄g + dt̄g

end while
end procedure

procedure MechSwellEqb(
#»

λgr ,
# »

Jg) ▷ Staggered solver for equilibrium
#»r ←MechEqb(

#»

J s,
#»

λgr ,
# »

Jg) ▷ Finite difference scheme that solves (104),(109)1
do

#»

J s ← SwellEqb( #»r ,
#»

λgr ,
# »

Jg) ▷ Finite difference scheme that solves (105),(109)2
#»µ 1 ← ChemPot(

#»

λgr ,
# »

Jg, #»r ,
#»

J s) ▷ Calculate µ̄ using (71)
#»r ←MechEqb(

#»

J s,
#»

λgr ,
# »

Jg)
#»µ 2 ← ChemPot(

#»

λgr ,
# »

Jg, #»r ,
#»

J s)
while ∥ #»µ 2 − #»µ 1∥ < ϵ ▷ ϵ is a small parameter to check convergence
return #»r ,

#»

J s

end procedure

procedure GrowthStep(
#»

λgr ,
# »

Jg, dt̄g) ▷ RK4 integration scheme
#»y ←

[
#»

λgr ,
# »

Jg
]

#»

k1 ← dydt( #»y )
#»

k2 ← dydt( #»y + 1
2

#»

k1 dt̄g)
#»

k3 ← dydt( #»y + 1
2

#»

k2 dt̄g)
#»

k4 ← dydt( #»y +
#»

k3 dt̄g)
#»y ← #»y + dt̄g/6

(
#»

k1 + 2
#»

k2 + 2
#»

k3 +
#»

k4

)
#»

λgr ,
# »

Jg ← #»y (1 : N), #»y (N + 1, 2 : N) ▷ Spatial domain R̄ is discretized using N points
return

#»

λgr ,
# »

Jg

end procedure

procedure dydt( #»y )
#»

λgr ,
# »

Jg ← #»y (1 : N), #»y (N + 1 : 2N)
#»r ,

#»

J s ←MechSwellEqb(
#»

λgr ,
# »

Jg)
#»z 1 ← DLamrgDt(

#»

λgr ,
# »

Jg, #»r ,
#»

J s) ▷ Calculates dλg
r

dt̄g
using (107)1

#»z 2 ← DJgDt(
#»

λgr ,
# »

Jg, #»r ,
#»

J s) ▷ Calculates dJg

dt̄g
using (74)4 and (75)

return [ #»z 1,
#»z 2]

end procedure
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Table C.3: Dimensions of confinement in tumor growth experiments

Case Inner Volume (mm3) B/A Jc/J̄0

B 0.12 1.25 40

C 0.003 1.25 1

D 0.0034 1.12 1.135
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