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Response theories in condensed matter typically describe the response of an electron fluid to
external electromagnetic fields, while perturbations on neutral particles are often designed to mimic
such fields. Here, we study the response of fermions to a space-time-dependent velocity field, thereby
sidestepping the issue of a gauge charge. First, for a space-dependent velocity field, we use a
semiclassical chiral kinematic theory to obtain a subtle modification of the phase space measure due
to the interplay between the Berry curvature and fluid rotation. The theory immediately predicts a
"converse vortical effect," defined as an orbital magnetization driven by linear velocity. It receives
contributions from magnetic moments on the Fermi surface and the Berry curvature of the occupied
bands, with the latter stemming from the modified measure. Then, for a space-time-dependent
velocity field, transcending semiclassics via a complementary Kubo formalism reveals that the uniform
limit of a clean system receives only the Berry curvature contribution – thus asserting the importance
of the modified measure – while other limits sense the Fermi surface magnetic moments too. We
propose CoSi as a candidate material and magnetometry of a sample under a thermal gradient to
detect the effect. Overall, our study sheds light on the effects of a space-time-dependent velocity
field on electron fluids and paves the way for exploring quantum materials using new probes and
perturbations.

I. INTRODUCTION

Response theories, a fundamental framework in physics,
explore how physical systems dynamically respond to ex-
ternal perturbations. In the context of quantum materials,
they describe a myriad of properties ranging from conven-
tional ones such as longitudinal conductivity and magne-
tization, to topological ones such as the quantized Hall
conductivity of two-dimensional (2D) insulators and the
half-quantum Hall effect on the surface of 3D topological
insulators1,2. As most responses involve the constituent
electrons responding to external electromagnetic fields,
response theories provide a bridge from microscopic quan-
tum phenomena to macroscopic material properties and
facilitate the design of novel functional materials tunable
by these fields.

Since the discovery of Weyl semimetals (WSMs)3–10,
interest has mushroomed in chiral responses in condensed
matter11–16. Chirality refers to an intrinsic handedness of
the system and is non-zero only in systems that break all
improper symmetries, such as an isolated Weyl fermion.
Chiral responses were initially explored in various con-
text in fundamental physics ranging from left-handed
neutrinos17,18 and parity violation19,20 in the Standard
Model to the fluid dynamics of rotating blackholes21–24

and axion models of dark matter25–27. In WSMs, the
basic chiral objects are band intersections or Weyl nodes
which, at low energies, mimic massless, relativistic Weyl
fermions. Most chiral responses can be traced to chiral
anomalies, defined as the breakdown of classical conserva-
tion laws upon quantization of chiral fermion16,28–33. The
anomalies, too, were first explored in high-energy physics,
but have found remarkable applications in topological con-
densed matter, particularly in Weyl and Dirac semimetals,
manifesting as exotic transport phenomena34–39.

A powerful framework that captures responses is the
kinetic theory40–49, which provides a semiclassical descrip-
tion of the responses of the system. A key feature of the

theory that encodes the topological content of various
responses is the enhancement of the phase space measure
in the n-th band by 1+B·Ωn(k), where B is the magnetic
field and Ωn(k) is the Berry curvature of the band at
momentum k.

The semiclassical kinetic theory for Dirac and Weyl
particles with electromagnetic fields and global rotation
is studied in Ref.50, and an effective curved-space Weyl
theory is presented in Ref.51. On the other hand, us-
ing analogies between electromagnetic and fictitious non-
inertial fields, such as the similarity between the classical
Lorentz and Coriolis forces, chiral kinetic theory can also
encompass certain responses of Weyl fermions to space
and time-dependent velocity fields v(r, t)43,52–56. Such
kinematic responses are routinely used to simulate gauge
fields for neutral ultracold atoms57–60. They are arguably
more fundamental than electromagnetic responses as they
do not rely on a well-defined conserved charge and ex-
ist, for instance, even for superconducting quasiparticles
whose charge is ill-defined. However, while the analo-
gies are established for non-relativistic and relativistic
free particles in vacuum, they are unknown for electrons
in general band structures. Thus, a general description
of kinematic responses independently of electromagnetic
analogies is highly desirable.

The outline of this paper is as follows. In Section II,
we use a semiclassical chiral kinematic theory (CKmT)
that delineates the linear response of electrons in general
band structures to space-dependent velocity field v(r). In
particular, we show that fluid vorticity or local angular
velocity, V = 1

2 ∇ × v, alters the semiclassical equations
of motion in a way that forces a modification of the
phase space measure to conserve the phase space Liouvil-
lian density. The modification influences thermodynamic
quantities, including the free energy density, and directly
results in an orbital magnetization Morb = χorbv, where
χorb denotes the susceptibility of orbital magnetization
to the velocity field. We refer to this phenomenon as the
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converse vortical effect. In Section III, we then employ
a complementary, quantum mechanical Kubo approach
to compute the linear response function at general fre-
quencies ω and momenta q of the velocity field in the
presence of a phenomenological quasiparticle lifetime τ .
This approach shows that the uniform limit of a clean
system, defined by q = 0, ω → 0 and |ωτ | ≫ 1, has a
response purely governed by Ωn(k) of the occupied bands
that reduces to the contribution from the modified phase
space measure in the semiclassical limit. In contrast, other
orders of limits of ω → 0, q → 0 and τ → ∞ also acquire
contributions from morb

n (k) on the Fermi surface. We
refer to the response in the uniform limit (q → 0 before
ω → 0) as the converse gyrotropic vortical effect (cGVE),
and that in the static limit (q → 0 after ω → 0) as the
converse chiral vortical effect (cCVE). In Section IV, we
demonstrate the cGVE and cCVE in Weyl fermions. We
propose CoSi as a candidate material to observe both the
cGVE and cCVE.

II. CHIRAL KINEMATIC THEORY FOR
CONVERSE VORTICAL EFFECT

Classically, the converse vortical effect can be heuristi-
cally likened to a bolt and nut analogy. When the head
of a bolt is rotated faster, it generates more torque, which
transforms into linear force, enabling the bolt to move
faster inside the nut. This faster circular rotation induces
quicker linear motion, corresponding to the vortical effect.
Conversely, when a bolt has a higher linear speed inside
the nut, its head gains faster circular rotation. This faster
linear motion induces a converse vortical effect, resulting
in quicker circular rotation. On the other hand, we would
like to emphasize the quantum nature of the converse
vortical effect, distinct from its classical analogy with a
bolt and nut. This effect links velocity to orbital mag-
netization, which relies on the Bloch wave function of
electrons in the lattice background. Consequently, there
may exist a fundamental connection between orbital mag-
netization and the Berry phase, a fundamental quantum
phenomenon.

To better understand the converse effects – and their
nomenclature – in a broader context, let us recap other
closely related effects. First, continuum Weyl fermions
in a B-field exhibit the chiral magnetic effect (CME),
arising from the chiral anomaly and manifesting as a
current parallel to B3,4,12, unlike conventional charged
particles that undergo circular motion in an orthogonal
plane. In WSMs, the CME vanishes at equilibrium due
to Bloch theorem but persists in non-equilibrium steady
states with unequal Fermi levels for left- and right-handed
Weyl nodes. Reconciling the continuum and lattice man-
ifestations of the CME involved considering non-zero q
and ω responses. The original CME emerges in the static
limit and relies on the existence of Weyl nodes while
the uniform limit revealed a new effect, termed the gy-
rotropic magnetic effect (GME)13,61, that corresponds
to a current along a time-dependent B-field and exists
for general band structures. Analogous to the CME,
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Figure 1. Color online. (a) Schematic depiction of the
converse vortical effect. (b) Device geometry for observing the
converse vortical effect: The temperature difference propels
electrons, inducing their motion with velocity v. The resulting
magnetization can be observed aligned with the velocity field.

the chiral vortical effect (CVE) corresponds to the static
limit and represents another anomaly-induced transport
phenomenon55,56,62–67, namely, the dissipationless axial
current proportional to V = 1

2 ∇ × v. Similarly, the gy-
rotropic vortical effect (GVE) was recently defined as the
extension of the CVE to the uniform limit that crucially
relies on the time-dependence of V52. Both vortical effects
exist at equilibrium for general band structures regardless
of Weyl nodes. In short, the CME and GME are defined
by J ∝ B in different limits whereas the CVE and GVE
are given by J ∝ V in these limits.

The GME inspires an effect dubbed the inverse GME,
defined as magnetization proportional to the vector po-
tential, M ∝ A with a response function that is the
matrix inverse of that of the GME61. The CME lacks
an inverse response since a static A is a pure gauge field.
The GME and its inverse are related by an interchange of
conjugate variables, J ↔ A and B ↔ M, followed by an
interchange of the left- and right-hand sides. Physically,
this means the field A conjugate to the GME response
J drives the inverse GME, and vice versa. This pattern
suggests analogous inverse kinematic responses where a
linear momentum P, conjugate to the linear current or
velocity J or v, drives an angular momentum L that is
conjugate to the angular velocity V . While such responses
presumably exist, our focus is on a distinct class of effects:
unlike the inverse effects, the converse effects correspond
to an interchange of responding and driving fields without
conjugation. Thus, we wish to compute an angular veloc-
ity V driven by a linear velocity v. However, we compute
a slightly different quantity that also characterizes rota-
tional motion, namely, Morb ≡ 1

2 r × J as a proxy for V ,
as Morb is directly measurable in experiments and easier
to compute than V . Note that L, not Morb, is conjugate
to V, even though L ∝ Morb in simple cases such as a
classical current loop.

In this section, we employ semiclassical wave-packet
dynamics to obtain a modified phase-space volume, which
in turn modifies the free energy density. Subsequently,
we utilize the free energy density to calculate the orbital
magnetization response to the velocity field to linear or-



3

der. However, the free energy density is not suitable for
a time-dependent velocity field. Therefore, our focus in
this section is solely on the space-dependent velocity field.
Let’s consider electrons governed by the Bloch Hamilto-
nian H0(q) with Bloch momentum q, which are influenced
by a space-dependent velocity field v(r) that is signifi-
cantly smaller than typical band velocities. Henceforth,
we suppress the r dependence of the velocity to simplify
notation in this section. The full Hamiltonian can be
written as H0 (q) − q · v = H0 (q + Mn · v) +O

(
v2)

(re-
fer to the Appendix A for details). Note that the term
v is similar to the electromagnetic potential A in the
Peierls substitution. However, there are essential differ-
ences between A and v. A is a gauge field, whereas v
is a physical field and is gauge invariant. Performing a
Taylor expansion on the right-hand side, the mass-like
tensor Mn is given by the equation:

−q · v = 1
2

d∑
i,j=1

{
∂H0 (q)
∂qi

,Mij
n vj

}
(1)

where {, } denotes an anticommutative operation, and
d is the dimension of space. While Mn reduces, upto a
sign, to the effective mass based on band curvature for
simple parabolic dispersions, it is distinct in general. For
instance, a Weyl fermion with unperturbed Hamiltonian
H0(q) = q · σ has Mij

n = −σiqj .
After introducing the effective mass tensor Mn and em-

ploying semiclassical wave-packet dynamics, we obtain the
semiclassical motion, denoted as (refer to the Appendix
B for details):

ṙ = ∂khn − k̇ × Ωn(k), (2)
k̇ = −∂rhn − ṙ × 2Mn · V ,

where k is the Bloch momentum, hn = ϵn,k − k · v −
2morb

n · Mn · V . It is noteworthy that a Berry connection
A (k (t) , t), which exhibits dependence on time both ex-
plicitly and implicitly through k (t), the right-hand side
of the first equation in Eq (2) would normally encompass
a term proportional to ∂tA. However, in this section,
where the Berry connection A (k (t)) solely functions as
an implicit function of time through the variable k (t),
the term proportional to ∂tA does not arise. If Mn were
constant, as it would be for a parabolic dispersion, the
term ṙ × 2Mn · V in Eq. (2) would reduce to the Coriolis
force while 2morb

n · Mn · V would be a magneto-vortical
coupling. In either case, the term 2Mn · V plays the
role of an effective magnetic field. Thus, Eq. (2) and hn

can be understood as generalizations of these effects for
arbitrary bands.

If (x,k) are canonical coordinates, the Hamiltonian
equations should be ẋ = ∂khn and k̇ = −∂xhn. However,
the presence of terms related to the Berry curvature and
the angular velocity in Eq. (2) suggests that the coor-
dinates (r,k) are noncanonical68–72. Consequently, the
phase-space volume element dV ≡ d3xd3k is modified
to dV = (1 + 2Ωn · Mn · V) d3rd3k. Consider a proba-
bility distribution function over the phase space volume,
denoted as n(r,k, t)(1 + 2Ωn · Mn · V)drdk. Under a

Hamiltonian flow (without collisions), it evolves accord-
ing to

∂n

∂t
+ ∂r (nṙ) + ∂k

(
nk̇

)
= −ndt (2Ωn · Mn · V)

1 + 2Ωn · Mn · V , (3)

where dt (2Ωn · Mn · V) ≡ ∂t (2Ωn · Mn · V) +
∂r (2Ωn · Mn · V) · ṙ + ∂k (2Ωn · Mn · V) · k̇. The Eq. (3)
does not have a form of the continuity relation, due to the
presence of the right-hand side. This reflects the fact that´
drdkn (r,k, t) is not conserved. However, the quantity´
drdkρ (r,k, t) ≡

´
drdkn (r,k, t) (1 + 2Ωn · Mn · V) re-

mains conserved. Therefore, any observables should be ex-
pressed as Ot =

´
drdk(1+2Ωn ·Mn ·V)n(r,k, t)O(r,k, t).

Also, ρ(r,k, t) ≡ (1 + 2Ωn · Mn · V)n(r,k, t) satisfies the
continuity equation:

∂ρ

∂t
+ ṙ · ∂rρ+ k̇ · ∂kρ = 0. (4)

Similar to B in the chiral kinetic theory, V modifies the
phase space measure in the free energy density:

F = − 1
β

∑
n

ˆ

k

(1 + 2Ωn(k) · Mn · V)×

ln
(

1 + e−β(ϵn,k−k·v−2morb
n (k)·Mn·V)

)
(5)

where
´

k ≡
´

d3k
(2π)3 , β is the inverse tempera-

ture, morb
n (k) ≡ i

2 ⟨∇kun,k| × (ϵn,k −H0 (k)) |∇kun,k⟩,
Ωn(k) ≡ i [⟨∇kun,k| × |∇kun,k⟩].

The converse vortical effect refers to the response of
orbital magnetization to velocity. In order to calculate
the density of orbital magnetization, we differentiate the
free energy density with respect to 2Mn · V while keeping
the temperature T = β−1 fixed. This calculation leads
to:

Morb(v) = − δF

δ(2Mn · V) |V=0

=
∑

n

ˆ
k

morb
n (k)f(ϵn,k,v)

+ 1
β

ˆ
k

Ωn(k) ln
(

1 + e−β(ϵn,k−k·v)
)

≡ χorb·v +O
(
v2)

(6)

where Fermi distribution function f (ϵn,k,v) ≡(
eβ(ϵn,k−k·v) + 1

)−1, and the tensor χorb representing the
orbital magnetic susceptibility is denoted as:

χorb
ij = −

∑
n

ˆ
k
morb

n,i (k)f
′
(ϵn,k)kj

+
∑

n

ˆ
k
f(ϵn,k)Ωn,i(k)kj ≡ χFs

ij + χocc
ij (7)

The equation above reveals that the magnetic suscepti-
bility is determined by the orbital magnetic moment of
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Limit Definition χocc
ij χFs

ij χWeyl
ij = χocc

ij + χFs
ij

Uniform, clean ṽq ≪ |ω|, 1 ≪ |ω|τ, arbitrary ṽqτ
∑

n

´
k

Ωn,i(k)Θ(−ϵn,k)kj 0 1
6 χC

ij = 1
6 χC

ij + 0

Static, clean |ω| ≪ ṽq, 1 ≪ τ ṽq, arbitrary ωτ
∑

n

´
k

Ωn,i(k)Θ(−ϵn,k)kj

∑
n

´
k

morb
n,i (k)δ(ϵn,k)kj

1
2 χC

ij = 1
3 χC

ij + 1
6 χC

ij

Uniform, disorder ṽqτ ≪ |ω|τ ≪ 1
∑

n

´
k

Ωn,i(k)Θ(−ϵn,k)kj

∑
n

´
k

morb
n,i (k)δ(ϵn,k)kj

1
2 χC

ij = 1
3 χC

ij + 1
6 χC

ij

Static, disorder |ω|τ ≪ ṽqτ ≪ 1
∑

n

´
k

Ωn,i(k)Θ(−ϵn,k)kj

∑
n

´
k

morb
n,i (k)δ(ϵn,k)kj

1
2 χC

ij = 1
3 χC

ij + 1
6 χC

ij

Table I. Summary of results as q → 0 and ω → 0 at various orders is presented for general band structures. In the definition
column, ṽ ≡ |∇kϵn,k|. The last column represents the orbital magnetization for an isotropic Weyl fermion with a velocity of
ṽ = vF , chiral charge C, and chemical potential µ relative to the Weyl node. Here, χC

ij = C
(

µ
2πvF

)2
δij .

electrons on the Fermi surface (indicated as χFs
ij ) as well

as the Berry curvature of the occupied bands (indicated as
χocc

ij ). Interesting, this response function takes the same
form as the vortical effect52. However, they represent
distinct responses. In the vortical effect, the response
function denotes the axial current response to angular
velocity, while in the converse vortical effect, the response
function represents the orbital magnetization response to
velocity.

III. KUBO FORMULA FOR CONVERSE
VORTICAL EFFECT

For a space-time-dependent velocity field, we employ
the Kubo formula to compute χorb

ij at general q and ω in
the presence of quasiparticle lifetime τ . The Bloch energy
and wave function for the n-th band are given by ϵn,k
and ψn,k(r) = ψn,k(R + ρ) = N−1/2eik·(R+ρ)un,k(ρ), re-
spectively, where k represents the Bloch momentum of
electrons, and R denotes the coordinates of the unit
cells, ρ represents position within each unit cell and
N is the total number of unit cells. In this basis,
the matrix elements of the velocity-induced perturba-
tion H1 = −p̂ · v (r, t) with p̂ denoting the momen-
tum operator, are ⟨ψn,k|H1|ψm,k+q⟩ = (2π)3⟨un,k|(k −
i∇ρ)|um,k+q⟩·v(q, t), where v(q, t) is v(r, t) Fourier trans-
formed to momentum space. Thus, it is convenient to
introduce the operator Q̂ = k−i∇ρ and writeH1 = −Q̂·v.
Unlike the continuum perturbation −k·v, H1 respects the
Brillouin Zone periodicity and can be viewed as the kine-
matic analog of minimal coupling J ·A that is well-defined
on a lattice through Peierl’s substitution52.

To calculate χorb
ij , we Fourier transform Morb =

1
2 r × J to Bloch momentum and Matsubara frequencies,
Morb(q, iqn) = i

2 ∇q × J(q, iqn), and compute the suscep-
tibility, χorb

ij (q, iqn) = ∂Morb
i

∂vj
(q, iqn) with i and j denoting

spatial components. The basic one-loop diagram yields

χorb
ij (q, iqn) = −ϵiµνi∂qµ

1
2β

∑
iνn

ˆ

k

tr [jν(k + q)G0(k, iνn)G0(k + q, iνn + iqn)Qj ]
(8)

where G0(k, iνn) = [iνn −H0(k) + isgn(νn)/2τ ]−1 is the
unperturbed Matsubara Green’s function, the elements
of the matrix Qj are Qmn

j = ⟨um,k|Q̂j |un,k+q⟩, jν(k) =
∂H0(k)

∂kν
is the current density operator and repeated indices

are summed. The retarded response function follows from
analytically continuing iqn → ω + i0+. The Matsubara
sum yields

χorb
ij (q, iqn) = −1

2ϵiµνi∂qµ

ˆ
k

∑
n,m

Sm,n(k,q, iqn)

⟨un,k+q |jν(k + q)|um,k⟩Qmn
j , (9)

where

Sm,n(k,q, iqn) = 1
β

∑
iνn

1
iνn − ϵm,k + i sgn(νn)

2τ

1
iνn + iqn − ϵn,k+q + i sgn(νn+qn)

2τ

. (10)

At zero temperature, the off-diagonal elements of the
matrix Qj couple to the inter-band orbital magnetization
matrix of the Bloch electrons73, contributing to the orbital
magnetization (for more details, see the Appendix D).

In this section, we explore the zero-temperature regime
in the context of both the nearly-free electron approx-
imation and the deep tight-binding approximation52.
In the deep tight-binding approximation, within the
unit cell, the lattice potential can be approximated by
V (ρ) =

∑
j Vjδ (ρ − ρj). The Bloch function un,k (ρ) =∑

j un,kϕj (ρ), where k is within the first Brillouin zone,
and the function ϕj (ρ) ≈ e−

√
2|E|me|ρ−ρj |, with E and

me denoting the energy and mass of the electron, re-
spectively. The term ⟨ϕi|i∇ρ|ϕj⟩ ≪ 1 if i ̸= j and
⟨ϕj |i∇ρ|ϕj⟩ = 0 since ϕj (ρ) have definite parity, hence,
the inner product ⟨un,k|i∇ρ|un,k′ ⟩ is exponentially small.
Under these conditions, the Fermi distribution function
f(ϵnk) and Qmn

j simplify to Θ(−ϵnk) and kjδmn, respec-
tively. The difference between various orders of limits of
ω → 0, q → 0 and τ → ∞ is determined by the behavior
of Sm,n in these limits. In the static limit (ω → 0 followed
by q → 0), we find χorb

ij reduces to Eq. (7) derived using
CKmT for both vF qτ ≫ 1 and vF qτ ≪ 1, where vF is
a typical band velocity. In contrast, the dirty uniform
limit, (q → 0 followed by ω → 0 with |ωτ | ≪ 1), leads to
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Eq. (7) while the clean uniform limit (q → 0 followed by
ω → 0 with |ωτ | ≫ 1) gives:

χorb
ij =

ˆ

k

∑
n

Θ (−ϵn,k) Ωn,i(k)kj (11)

Thus, χorb
ij in this limit is solely determined by Ωn(k)

of occupied bands. It is worth noting that the Ωn(k) con-
tribution vanishes for a filled band in the continuum limit
at zero temperature, where Q̂j → k̂j and un,k become
k-independent as k → ∞, similarly to the GVE52. There-
fore, only partially filled bands contribute to Morb in any
limit. The results are summarized in Table I. However,
in a disordered electron fluid, both the Berry curvature
of the occupied bands and the orbital moment of elec-
trons on the Fermi surface contribute to the magnetic
susceptibility in both the static and uniform limits. This
magnetic susceptibility takes the same form as described
in Eq. (7), acquiring the combined effects of the Berry
curvature and the orbital moment.

IV. CCVE AND CGVE OF WEYL FERMIONS

We now evaluate χorb
ij for a single, isotropic, continuum

Weyl fermion with chirality C = ±1. The effective Hamil-
tonian is given by H(k) = Ck · σ − µ− k · v, where σ
represents the Pauli matrices and µ is the chemical poten-
tial relative to the Weyl node and v. The results at T = 0
are stated in Table I. Since the effect is proportional to the
chirality C and µ2, improper symmetries must be broken
for a material with pairs of Weyl fermions to show an
effect as improper symmetries reverse C while preserving
µ.

To experimentally observe the converse vortical effects,
we propose a simple experiment sketched in Fig. 1. This is
significantly simpler than the curved geometries required
for the vortical effects52. By leveraging a temperature dif-
ference gradient (∇T ≈ 1K/µm) and a Seebeck coefficient
(S = 100aµV/K), we generate an electric field strength of
|E| = 0.1V/m, driving the motion of electrons relative to
the lattice. Consequently, Morb aligns with v = µmobE,

with µmob representing the mobility of the system. For
a WSM with typical parameter values such as µmob =
105cm2/(V s), vF = 105m/s, and Fermi energy differences
µ± = (0.5 ± 0.025) eV relative to the left-handed/right-
handed Weyl nodes, |Morb| ≈ 4.68×10−2A/m. Moreover,
Weyl nodes are not mandatory, and the converse vorti-
cal effects can also occur in a chiral semimetal such as
CoSi74–76.

V. SUMMARY

We employ the chiral kinematic theory for investigat-
ing the influence of space-dependent velocity fields on
electron fluids. Through analysis of the modified free
energy density, we explore the orbital magnetization re-
sponse, known as the converse vortical effect, induced
by the velocity field. By applying the Kubo formula, we
calculate the converse vortical effect under different limits.
Our study reveals that the magnetic susceptibility in the
static limit, which encompasses both clean and disordered
systems, and in the uniform limit of disordered systems, is
primarily determined by the orbital moment on the Fermi
surface and the Berry curvature of occupied bands. These
findings are in agreement with the predictions derived
from chiral kinematic theories. However, in the uniform
limit of clean systems, the susceptibility is solely deter-
mined by the Berry curvature of occupied bands. This
research provides valuable insights into the behavior of
electron fluids under space-time-dependent velocity fields,
shedding light on the intricate relationship between the
velocity field and electron properties. Our results con-
tribute to advancing the understanding of fundamental
physical phenomena and offer opportunities for exploring
new applications in electron fluid systems.
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APPENDIX A: PERTURBATION INDUCED BY VELOCITY FIELD

In this section, we explore the response of electrons to a velocity field. We begin by deriving the perturbation
induced by this velocity field. To achieve this, we consider electrons on a lattice governed by a Bloch Hamiltonian
H0 (p), which are shifted by a small space-time dependent distance x (r, t) with respect to the lattice background.
Now, the time evolution of any wave function can be expressed as

ψ (r, t) = T̂ [ei
´ x(t)

x(0) p·dx(r,τ)−itH0(p)]ψ (r, 0) = T̂ [ei
´ t

0 dτp· ∂x(r,τ)
∂τ −itH0(p)]ψ (r, 0) , (12)

where T̂ denotes time ordering and p is the momentum that generates space translations on length scales larger
than the lattice constant. By defining ψI (r, t) = eitH0(p)ψ (r, t), we obtain:
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i∂tψI (r, t) = −p · ∂tx (r, t)ψI (r, t) ≡ −p · v (r, t)ψI (r, t) . (13)

The above equation indicates that ψI (r, t) behaves like a wave function in the Interaction Picture with an unperturbed
Hamiltonian H0 (p) and perturbation −p · v (r, t). Therefore, the total Hamiltonian can be expressed as:

H (p, r, t) = H0 (p) − p · v (r, t) . (14)

APPENDIX B : EQUATIONS OF SEMICLASSICAL MOTION

In this section, we explore the semiclassical equation of motion through the utilization of the semiclassical wave-packet
dynamics method77. Consider a system subjected to a weak external space-dependent velocity field, the corresponding
Hamiltonian is given by:

H(x̂, p̂,v(x̂)) ≈ Hc +H1. (15)

where Hc = H0(q) − q · v(r) and H1 = 1
2

[
(x̂ − r) · ∂Hc

∂r + ∂Hc

∂r · (x̂ − r)
]
. Here, q and r represent the center of

momentum and the center of mass position of a wave-packet, respectively.
For sufficiently weak velocity fields compared to the typical group velocity, we can approximate the Hamiltonian as

follows :

H0(q) − q · v(r) = Hc ≈ H0 (q + Mn · v (r)) , (16)

Performing the Taylor expansion on the right side, the mass-like tensor Mn is defined by the equation:

−q · v = 1
2

d∑
i,j=1

{
∂H0 (q)
∂qi

,Mij
n vj

}
. (17)

where {, } denotes an anticommutative operation, and d is the dimension of space. In the case of a free electron gas
with H0(q) = q2

2me
, the effective mass tensor is given by Mij

n = −meδij . Similarly, for a Weyl fermion with unperturbed
Hamiltonian H0(q) = q · σ has Mij

n = −σiqj .
Given the eigenstates |un (q + Mn · v (r))⟩ and the eigenvalues ϵn (q + Mn · v (r)) of the Hamiltonian

H0 (q + Mn · v (r)), the wave packet can be expressed as71:

|Ψ⟩ =
ˆ
d3pa(p)eip·x|un (p + Mn · v (r))⟩ (18)

Assuming the wave packet is sharply localized in the momentum space, we have |a(p)|2 ≈ δ(p − q). Here q = ⟨Ψ|p|Ψ⟩
is the center of mass momentum of the wave packet. On the other hand, the center of mass position r can be expressed
as:

r ≡ ⟨Ψ|x̂|Ψ⟩ = ∂γ

∂q + i⟨un,k|∂kun,k⟩, (19)

where γ = −arg(a(q)) and k ≡ q + Mn · v (r). The Lagrangian can be expressed as:

L = ⟨Ψ|(i∂t −Hc −H1)|Ψ⟩, (20)

Using the Eq. (19) and Eq. (18), the term ⟨Ψ|i∂t|Ψ⟩ can be expressed as:

⟨Ψ|i∂t|Ψ⟩ = k·ṙ − ṙ · Mn · v + ik̇ · ⟨un,k|∂kun,k⟩ (21)

up to a total time derivative, and the term ⟨Ψ|(Hc +H1)|Ψ⟩ ≡ En(r,k, t) can be expressed as:

En(r,k, t) = ϵn,k + i

2(⟨∂run,k| · [ϵn,k −H0 (k)] |∂kun,k⟩ − c.c.). (22)
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The last term of Eq. (22) can be expressed as:

i

2(⟨∂run,k| · [ϵn,k −H0 (k)] |∂kun,k⟩ − c.c.) =
∑

ij

i

2(Mn · ∂vj

∂ri
⟨∂kj

un,k| [ϵn,k −H0 (k)] |∂ki
un,k⟩ − c.c.)

= −
∑
lijbc

i

2(Mn · ϵlij
∂vj

∂ri
ϵlbc⟨∂kb

un,k| [ϵn,k −H0 (k)] |∂kc
un,k⟩)

= − i

2 ⟨∂kun,k| × [ϵn(k) −H0 (k)] |∂kun,k⟩ · Mn · (∇ × v) (23)

Finally, the Eq. (22) can be expressed as follows:

En(r,k, t) = ϵn,k − i

2 ⟨∂kun,k| × [ϵn(k) −H0 (k)] |∂kun,k⟩ · Mn · (∇ × v)

≡ ϵn(k) − 2morb
n · Mn · V , (24)

where morb
n ≡ i

2 ⟨∂kun,k| × [ϵn(k) −H0 (k)] ∂kun,k⟩ is the orbital magnetic moment of Bloch electrons, V ≡ 1
2 ∇ × v is

the angular velocity. Now the Lagrangian can be expressed as:

L = −
[
ϵn,k − 2morb

n · Mn · V
]

+ k·ṙ − ṙ · Mn · v + ik̇ · ⟨un,k|∂kun,k⟩. (25)

This Lagrangian equation is similar to the one in Equation (3.7) of Ref.77 with xc, kc, and eA(xc, t) replaced by k, r,
and Mn · v. The equations of semiclassical motion, up to linear order of velocity, can be derived variationally from the
aforementioned Lagrangian, resulting in:{

ṙ = ∂kh
0
n − k̇ × Ωn

∂t (k − Mn · v) = −∂rh
0
n − 2ṙ × Mn · V ,

(26)

where h0
n = ϵn,k − 2morb

n · Mn · V and the Berry curvature Ωn ≡ i∇ × ⟨un,k|∂kun,k⟩.
Upon substituting k → k + Mn · v, we get ϵn,k → ϵn,k − k · v, and under the condition |v| ≪ 1, the equations of

motion can be expressed as: {
ṙ = ∂khn − k̇ × Ωn,

k̇ = −∂rhn − ṙ × 2Mn · V .
(27)

where hn ≡ ϵn,k − k · v − 2morb
n · Mn · V with v denoting the external velocity field.

APPENDIX C : MODIFICATION OF THE PHASE SPACE MEASURE

In this section, we investigate the impact of the equations of motion on the phase space spanned by noncanonical
coordinates. In canonical coordinates, denoted as η = (q,p), the Hamilton equations can be expressed as η̇αθαβ = ∂βh,
where the antisymmetric matrix θ ≡ J = (0, 1; −1, 0) is known as the symplectic form72. This establishes the foundation
for understanding the dynamics in canonical coordinates.

For the equations of motion presented in Eq. (27), the corresponding symplectic form exhibits a distinct structure.
It can be expressed as:

θαβ =
(

ϵijl(2Mn · V)l δij

−δij −ϵijlΩl
n

)
(28)

Here, α and β represent elements from the set {r,k}, while i, j, and l take values from the set {x, y, z}. This
modified symplectic form reveals new insights into the equations of motion in noncanonical coordinates. It highlights
the influence of the antisymmetric matrix and the additional terms that arise due to the distinct structure of the
symplectic form.

In the canonical coordinates η = (q,p), the phase-space volume element is given by dV = dqdp. However, when
changing coordinates to noncanonical coordinates η → ζ = (r,k), the symplectic form undergoes a transforma-
tion. Specifically, Jαβ → θαβ = ∂ησ

∂ζα
∂ηγ

∂ζβ Jσγ . This transformation of the symplectic form leads to a corresponding
transformation in the phase-space volume element.
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The volume element in noncanonical coordinates is given by dV =
√

| det θ|drdk = (1 + 2Ωn · Mn · V)drdk. This
expression elucidates the modification to the volume element due to the transformation and emphasizes the role of the
additional terms involving the parameters Ωn and Mn.

These results shed light on the structure of the symplectic form in noncanonical coordinates and its impact on
the phase-space volume element. Understanding these transformations is vital for comprehending the dynamics and
exploring various physical systems with different coordinate choices.

APPENDIX D: KUBO FORMLA FOR ORBITAL MAGNETIC SUSCEPTIBILITY

In this section, we present a derivation of the response function for a clean (disordered) electron fluid in both the
static and uniform limit. The calculation is similar to the one that yields the vortical effect52, which we refer the
reader to for a more detailed description. In the continuum, the perturbation induced by the velocity field can be
written as: H1 ≡ −iv (r, t) · ∇r. In the Bloch basis, the perturbation matrix is composed of ⟨um,k|k|un,k+q⟩ · v(q, t)
and ⟨um,k|(−i∇ρ)|un,k+q⟩ · v(q, t). The first term arises from the plane wave component of the Bloch function ψn

k(r),
while the second term is a result of the periodic part of the Bloch function. The details are as follows:

The Bloch wavefunction for the n-th band is generically of the form ψn
k(r) ≡ ψn

k(R + ρ) = N−1/2eik·(R+ρ)un,k(ρ),
where N is the number of unit cells, R is a discrete index that labels them, ρ denotes position within a unit cell, and
un,k(ρ) is periodic in r with the same periodicity as the underlying Hamiltonian. In this basis,

⟨ψm
k | − iv (r, t) · ∇r|ψn

k+q′⟩ = −i
ˆ

r

ψm∗
k (r)v (r, t) · ∇rψ

n
k+q′(r) (29)

Suppose v (r, t) = e−iq·rv (q, t) is monotonic in space. Approximating r ∼ R and ∇r = ∇ρ, the matrix element
becomes

⟨ψm
k | − iv (r, t) · ∇r|ψn

k+q′⟩ = − 1
N

∑
R

ei(q′−q)·R
ˆ

ρ,ρ′

e−ik·ρ+i(k+q′−q)·ρ′ [
u∗

m,k(ρ)i∇ρδ (ρ − ρ′)un,k+q′(ρ′)
]

· v(q, t)

= (2π)3

N

∑
K

δ(q′ − q − K)

ˆ
ρ

ei(q′−q)·ρu∗
m,k(ρ) (k − i∇ρ)un,k+q′(ρ)

 · v(q, t)

= (2π)3

N

∑
K

δ(q′ − q − K)

ˆ
ρ

eiK·ρu∗
m,k(ρ) (k − i∇ρ)un,k+q+K(ρ)

 · v(q, t) (30)

where K are reciprocal lattice vectors. Since un,k+q+K(ρ) = e−iK·ρun,k+q(ρ), the equation above can be expressed
as follows:

⟨ψm
k | − iv (r, t) · ∇r|ψn

k+q′⟩ = (2π)3δ(q′ − q)

ˆ
ρ

u∗
m,k(ρ) (k − i∇ρ)un,k+q(ρ)

 · v(q, t) (31)

Each term in the sum over K gives the same contribution and cancels the factor of N . Thus, we can safely assume q
and q′ to be within the first Brillouin zone and write

⟨ψm
k | − iv (r, t) · ∇r|ψn

k+q⟩ = (2π)3 ⟨um,k|(k − i∇ρ)|un,k+q⟩ · v(q, t) ≡ (2π)3
〈
um,k|Q̂|un,k+q

〉
· v(q, t) (32)

These are the matrix elements of the perturbation in the Bloch basis, and they enter into Kubo’s formula, giving the
orbital magnetization response to an external velocity field.

The orbital magnetization response to an external velocity field is captured by the response function, which can be
expressed as a function of the Green’s function and current operator :

χorb
ij (q, iqn) = −1

2ϵiµνi∂qµ
T

∑
iνn

ˆ

k

tr [jν(k + q)G0(k, iνn) Q̂j G0(k + q, iνn + iqn)] , (33)
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Here, G0(k, iνn) represents the standard unperturbed Matsubara Green’s function, defined as
[iνn −H0(k) + isgn(νn)/2τ ]−1, where H0(k) denotes the unperturbed Hamiltonian. The ν-th component of
the current operator is denoted as jv and is given by ∂H0

∂kν
. Furthermore, we introduce Q̂ ≡ k̂ − i∇ρ, where i∇ρ

represents the modification arising from the lattice background52. In the continuum limit, Q̂ converges to k̂.
Substituting the expression of G0 into the above equation for the magnetic susceptibility and defining Qmn ≡

⟨um,k|Q̂|un,k+q⟩, we obtain:

χorb
ij (q, iqn) = − 1

2ϵiµνi∂qµ
T

∑
iνn

ˆ

k

∑
n,m

⟨un,k+q |jν(k + q)|um,k⟩(
iνn − ϵm,k + i sgn(νn)

2τ

) Qmn
j(

iνn + iqn + ϵn,k+q + i sgn(νn+qn)
2τ

) , (34)

which can be simplified as :

χorb
ij (q, ω) = − i

2ϵiµν

ˆ

k

∑
n,m

[
∂qµ

Sm,n (k,q, iqn)
]

⟨un,k+q |jν(k + q)|um,k⟩Qmn
j

− i

2ϵiµν

ˆ

k

∑
n,m

Sm,n (k,q, iqn)
[
∂qµ

⟨un,k+q |jν(k + q)|um,k⟩Qmn
j

]
, (35)

where |un,k⟩ and ϵn,k are the Bloch eigenfunction and eigenenergy of the band n, respectively, and the factor

Sm,n (k,q, iqn) = T
∑
iνn

1(
iνn − ϵm,k + i sgn(νn)

2τ

) 1(
iνn + iqn − ϵn,k+q + i sgn(νn+qn)

2τ

) , (36)

Performing the Matsubara summation and the analytical continuum iqn → ω + i0+, we get

Sm,n (k,q, ω) = −
ˆ
dzIm

[
2

z + i
2τ

]
f (ϵm,k + z) − f (ϵn,k+q − z)
z + ϵm,k − ϵn,k+q + ω + i

2τ

, (37)

At the limit (q, ω) → (0, 0), we get:

χorb
ij (0, 0) = − i

2ϵiµν

ˆ

k

∑
n,m

[
dSm,n (k,0, 0)

dϵn,k
∂µϵn,k

]
⟨un,k |∂νH0(k)|um,k⟩Qmn

j

− i

2ϵiµν

ˆ

k

∑
n,m

Sm,n (k,0, 0)
[
⟨∂µun,k |∂νH0(k)|um,k⟩Qmn

j + ⟨un,k |∂νH0(k)|um,k⟩ ⟨um,k | Q̂j | ∂µun,k⟩
]
,

(38)

At zero temperature and to leading order in τ−1, the factor Sm,n (k,0, 0) = Θ(−ϵm,k)−Θ(−ϵn,k)
ϵm,k−ϵnk

for m ̸= n, and
Sn,n (k,0, 0) = −δ(ϵn,k) or 0. Using the relations

⟨un,k |∂vH0(k)|um,k⟩ = − (ϵn,k − ϵm,k) ⟨un,k | ∂vum,k⟩ + δn,m∂vϵn,k, (39)
and

⟨un,k |∂vH0(k)| ∂θum,k⟩ = ϵn,k ⟨∂vun,k | ∂θum,k⟩ − ⟨∂vun,k | H0 (k) | ∂θum,k⟩ + ∂vϵn,k ⟨un,k | ∂θum,k⟩ . (40)
The first term on the right-hand side of Eq. (38) can be expressed as follows:

− i

2ϵiµν

ˆ

k

∑
n ̸=m

[δ(ϵm,k) + Sm,n (k,0, 0)]⟨∂µum,k | ∂νϵm,k | un,k⟩Qnm
j , (41)

and the second term on the right-hand side of Eq. (38) can be expressed as follows:

− i

2ϵiµν

ˆ

k

∑
n ̸=m

Sm,n (k,0, 0)
[
⟨∂µum,k | ∂νH0(k) | un,k⟩Qnm

j + ⟨um,k | ∂νH0(k) | un,k⟩⟨un,k | Q̂j | ∂µum,k⟩
]

− i

2ϵiµν

ˆ

k

∑
n

Sn,n (k,0, 0) [⟨∂µun,k | (ϵn,k −H0(k)) | ∂νun,k⟩Qnn
j ]

− i

2ϵiµν

ˆ

k

∑
n

Sn,n (k,0, 0) ∂νϵn,k[⟨un,k | Q̂j | ∂µun,k⟩ + ⟨∂µun,k | un,k⟩Qnn
j ], (42)
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Combining Eq. (41) and Eq. (42), finally, we obtain the expression for the magnetic susceptibility as:

χorb
ij (0, 0) = −

ˆ

k

∑
n ̸=m

Sm,n (k,0, 0) Mmn
i (k)Qnm

j

+ 1
2ϵiµν

ˆ

k

∑
n ̸=m

Sm,n (k,0, 0) (ϵm,k − ϵn,k)⟨um,k | ∂νun,k⟩⟨un,k | ∂ρj
| ∂µum,k⟩

+ i

2ϵiµν

ˆ

k

∑
n ̸=m

[Sm,n (k,0, 0) (ϵm,k − ϵn,k)]
[
Anm

ν (k)Amn
µ (k)

]
kj

− i

2ϵiµν

ˆ

k

∑
n

Sn,n (k,0, 0) [⟨∂µun,k | (ϵn,k −H0(k)) | ∂νun,k⟩Qnn
j ]

− i

2ϵiµν

ˆ

k

∑
n̸=m

δ(ϵm,k)⟨∂µum,k | ∂νϵm,k | un,k⟩Qnm
j

− i

2ϵiµν

ˆ

k

∑
n

Sn,n (k,0, 0) ∂νϵn,k[⟨un,k | Q̂j | ∂µun,k⟩ + ⟨∂µun,k | un,k⟩Qnn
j ]. (43)

where Mmn
i represents the inter-band orbital magnetization matrix for the Bloch electrons73, which takes the following

form,

Mmn
i (k) = i

2ϵiµν [⟨∂µum,k | (∂νH0(k) + ∂νϵm,k) | un,k⟩] . (44)

In some limit conditions, such as the nearly-free electron and deep tight-binding limits52, the term ⟨un,k | ∂ρjum,k⟩
is negligible, and Eq. (43) can be further simplified as:

χorb
ij (0, 0) = −

∑
n

i

2

ˆ

k

Sn,n (k,0, 0) [⟨∇kun,k | × (ϵn,k −H0(k)) | ∇kun,k⟩]i kj

+ i

2ϵiµν

ˆ

k

∑
n ̸=m

[Sm,n (k,0, 0) (ϵm,k − ϵn,k)]
[
Anm

ν (k)Amn
µ (k) kj

]
. (45)

The first term accounts for the contribution of the intra-band orbital magnetic moment to the orbital magnetization,
while the second term reflects the dependence of the orbital magnetization on the Berry connection of the occupied
bands. In the subsequent analysis, we assume the term ⟨un,k | ∂ρj

un,k⟩ is negligible and thoroughly examine the
magnetic susceptibility under different limits, with a specific emphasis on the zero-temperature.

A. Static limit (ω → 0 before q → 0)

In the static limit, the factor Sm,n can be written as52:

Sn,n (k,q → 0, 0) =
{

−δ (ϵn,k) |∇kϵn,k · qτ | ≫ 1,
1
π Im

[
1

ϵn,k+ i
2τ

]
|∇kϵn,k · qτ | ≪ 1, (46)

Sm,n (k,q → 0, 0) ≈ Θ (−ϵm,k) − Θ (−ϵn,k)
ϵm,k − ϵn,k

for m ̸= n. (47)

where τ−1 quantifies the strength of disorder. By substituting this expression for factor Sm,n into the Eq. (43), and
considering the leading order of τ−1, we obtain

χorb
ij (k,q → 0, 0) =

∑
n

ˆ

k

δ (ϵn,k)morb
i kj +

∑
n

ˆ

k

Θ (−ϵn,k) Ωi
nkj

for |∇kϵn,k · qτ | ≫ 1,
(48)
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χorb
ij (k,q → 0, 0) =

∑
n

ˆ

k

δ (ϵn,k)morb
i kj +

∑
n

ˆ

k

Θ (−ϵn,k) Ωi
nkj

for |∇kϵn,k · qτ | ≪ 1.
(49)

where morb
i ≡ i

2 [⟨∇kun,k | × (ϵn,k −H0(k)) | ∇kun,k⟩]i denotes the αth component of the orbital moment, and Ωα
n is

the αth component of the Berry curvature Ωn ≡ ∇k × An of nth band.

B. Uniform limit (q → 0 before ω → 0)

In the uniform limit, the factor Sm,n can be written as:

Sn,n (k,0, ω → 0) =
{

0 |ωτ | ≫ 1,
1
π Im

[
1

ϵn,k+ i
2τ

]
|ωτ | ≪ 1, (50)

Sm,n (k,0, ω → 0) ≈ Θ (−ϵm,k) − Θ (−ϵn,k)
ϵm,k − ϵn,k

for m ̸= n. (51)

the factor Sm,n is the same as in the static limit for the disorder case, however, the intra-band term Sn,n = 0 in the
clean case. Finally, we obtain the susceptibility in uniform limit for clean and disorder case which is given by:

χorb
ij (k,0, ω → 0) =

∑
n

ˆ

k

Θ (−ϵn,k) Ωn,ikj , for |ωτ | ≫ 1, (52)

χorb
ij (k,0, ω → 0) =

∑
n

ˆ

k

δ (ϵn,k)morb
i kj +

∑
n

ˆ

k

Θ (−ϵn,k) Ωn,ikj

for |ωτ | ≪ 1.
(53)
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