
ar
X

iv
:2

30
7.

07
27

9v
1

 [
cs

.D
M

]
 1

4
Ju

l 2
02

3

Graph Search Trees and Their Leaves

Robert Scheffler

Institute of Mathematics, Brandenburg University of Technology,

Cottbus, Germany

robert.scheffler@b-tu.de

Graph searches and their respective search trees are widely used in algo-
rithmic graph theory. The problem whether a given spanning tree can be
a graph search tree has been considered for different searches, graph classes
and search tree paradigms. Similarly, the question whether a particular ver-
tex can be visited last by some search has been studied extensively in recent
years. We combine these two problems by considering the question whether
a vertex can be a leaf of a graph search tree. We show that for particular
search trees, including DFS trees, this problem is easy if we allow the leaf to
be the first vertex of the search ordering. We contrast this result by showing
that the problem becomes hard for many searches, including DFS and BFS,
if we forbid the leaf to be the first vertex. Additionally, we present several
structural and algorithmic results for search tree leaves of chordal graphs.

1 Introduction

Graph searches are an extensively used concept in algorithmic graph theory. The searches
BFS and DFS belong to the most basic algorithms and are used in a wide range of
applications as subroutines. The same holds for more sophisticated searches as LBFS,
LDFS, and MCS (see, e.g., [4, 9, 15]).

An important structure closely related to a graph search is the corresponding search
tree. Such a tree contains all the vertices of the graph and for every vertex different from
the start vertex exactly one edge to a vertex preceding it in the search ordering. Those
trees can be of particular interest as for instance the tree obtained by a BFS contains
the shortest paths from the root to all other vertices in the graph and DFS trees are
used for fast planarity testing [20]. Furthermore, trees generated by LBFS were used to
design a linear-time implementation of the search LDFS for chordal graphs [3].

The problem of deciding whether a given spanning tree of a graph can be obtained by
a particular search was introduced by Hagerup [18] in 1985, who presented a linear-time
algorithm that recognizes DFS trees. In the same year, Hagerup and Nowak [19] gave

1

http://arxiv.org/abs/2307.07279v1

a similar result for the BFS tree recognition. In 2021, Beisegel et al. [2] presented a
more general framework for the search tree recognition problem. They introduced the
term F-tree for search trees where a vertex is connected to its first visited neighbor,
i.e., BFS-like trees, and L-trees for search trees where a vertex is connected to its most
recently visited neighbor, i.e., DFS-like trees. They showed, among other things, that
F-tree recognition is NP-hard for LBFS, LDFS, and MCS on weakly chordal graphs,
while the problem can be solved in polynomial time for all three searches on chordal
graphs. These results are complemented in [30], where it is shown that the recognition
of F-trees of DFS and L-trees of BFS is NP-hard, a strong contrast to the polynomial
results for F-trees of BFS and L-trees of DFS.

Another feature of a graph search that was used several times within algorithms are
its end-vertices, i.e., the vertices that can be visited last by the search. Some of these
end-vertices have nice properties. One example are the end-vertices of LBFS on chordal
graphs. These vertices are simplicial, a fact that was used by Rose et al. [28] to design
a linear-time recognition algorithm for chordal graphs. Furthermore, the end-vertices
of LBFS are strongly related to dominating pairs of AT-free graphs [14] and transitive
orientations of comparability graphs [17]. Thus, it is well motivated to consider the
end-vertex problem, i.e., the question whether a given vertex of a graph is an end-vertex
of a particular search. Introduced in 2010 by Corneil et al. [12], the problem has gained
much attention by several researchers, leading to a wide range of hardness results and
algorithms for different searches on different graph classes (see, e.g., [1, 7, 16, 23, 26, 34]).

If we compare the known complexity results for the end-vertex problem and the recog-
nition problem of F-trees, we notice strong similarities between these two problems.
Motivated by that fact, a generalization of both problems, called Partial Search Order
Problem, was introduced in [29]. This problem asks whether a given partial order on
a graph’s vertex set can be linearly extended by a search ordering. Another way to
combine the end-vertex problem with the search tree recognition problems is motivated
by the following observation: If a vertex is the end-vertex of some search ordering, then
it is a leaf in the respective search tree, no matter whether we consider the F-tree or
the L-tree. Therefore, we ask whether a given vertex can be a leaf of a search tree con-
structed by a particular search. Note that this problem was first suggested in 2020 by
Michel Habib. Here, we study its complexity for F-trees and L-trees of several searches,
including BFS, DFS, LBFS, LDFS, and MCS.

Our Contribution. We consider two different types of leaves of search trees. A leaf is
a root leaf of a search tree if it is the start vertex of the respective search ordering. All
other leaves of a search tree are called branch leaves. We show that it is easy for all
the searches considered here to identify the possible root leaves both for F-trees and for
L-trees. For some searches, including DFS, these results imply directly that the general
problem of recognizing leaves of L-trees is easy. This is contrasted by the result that,
at least for DFS, the recognition of branch leaves of L-trees is NP-hard. We show that
the same holds for F-tree branch leaves of several searches, including DFS and BFS. In
contrast, the leaves of L-trees of BFS can be recognized in polynomial time for bipartite

2

graphs. This is quite surprising since the L-tree recognition problem of BFS is NP-hard
on bipartite graphs [30] while F-trees of BFS can be recognized efficiently on general
graphs [19]. In the final section we consider chordal graphs and show that on this graph
class the branch leaves of almost all considered searches can be recognized in linear
time.

2 Preliminaries

2.1 General Notation

The graphs considered in this paper are finite, undirected, simple and connected. Given
a graph G, we denote by V (G) the set of vertices and by E(G) the set of edges. The
terms n(G) and m(G) describe the number of vertices and edges of G, respectively, i.e.,
n(G) = |V (G)| and m(G) = |E(G)|. For a vertex v ∈ V (G), we denote by NG(v) the
(open) neighborhood of v in G, i.e., the set NG(v) = {u ∈ V | uv ∈ E} where uv denotes
an edge between u and v. The closed neighborhood of a vertex v is the union of the open
neighborhood of v with the set {v} and is denoted by NG[v]. Given a set S ⊆ V (G), the
term G[S] describes the subgraph of G that is induced by S.

The distance distG(v,w) of two vertices v and w in G is the length (i.e., the number of
edges) of the shortest v-w-path in G. The eccentricity eccG(v) of a vertex v in G is the
largest distance of v to any other vertex in G. The diameter diam(G) of G is the largest
eccentricity of a vertex in G and the radius rad(G) of G is the smallest eccentricity of
a vertex in G. A vertex v with eccG(v) = rad(G) is called central vertex of G. The set
N ℓ

G(v) contains all vertices whose distance to the vertex v in G is equal to ℓ.
A vertex ordering of G is a bijection σ : {1, 2, . . . , |V (G)|} → V (G). We denote by

σ−1(v) the position of vertex v ∈ V (G). Given two vertices u and v in G we say that u
is to the left (resp. to the right) of v if σ−1(u) < σ−1(v) (resp. σ−1(u) > σ−1(v)) and
we denote this by u ≺σ v (resp. u ≻σ v). Given two orderings σ of X and ρ of Y with
X ∩ Y = ∅, the ordering τ = σ ++ ρ is the concatenation of σ and ρ, i.e., τ(i) = σ(i)
if 1 ≤ i ≤ |X| and τ(i) = ρ(i − |X|) if |X| < i ≤ |X ∪ Y |. If v /∈ X, then v ++ σ (or
σ ++ v) denotes the concatenation of σ with the linear ordering of the set {v}.

A clique in a graph G is a set of pairwise adjacent vertices and an independent set in
G is a set of pairwise nonadjacent vertices. A clique C is dominating if any vertex of G
is either in C or has a neighbor in C. A vertex v is simplicial if its neighborhood induces
a clique. A vertex v of a connected graph G is a cut vertex if G − v is not connected.
Two vertices u and w form a two-pair if any induced path between u and w has length
two.

A graph is bipartite if its vertex set can be partitioned into two independent sets X
and Y . A graph is weakly chordal if G contains neither an induced cycle of the length ≥ 5
nor the complement of such an induced cycle. A graph is chordal if it does not contain
an induced cycle of length ≥ 4. A vertex ordering σ of a graph G is a perfect elimination
ordering if any vertex v is simplicial in the graph G[S(v)] with S(v) := {w | w ≺σ v}.
A graph G has a PEO if and only if G is chordal [27]. A split graph G is a graph whose

3

Algorithm 1: Label Search(≺A)

Input: A graph G
Output: A search ordering σ of G

1 begin

2 foreach v ∈ V (G) do label(v) ← ∅;
3 for i ← 1 to n(G) do
4 Eligible ← {x ∈ V (G) | x unnumbered and ∄ unnumbered y ∈ V (G)
5 such that label(x) ≺A label(y)};
6 let v be an arbitrary vertex in Eligible;
7 σ(i) ← v; /* assigns to v the number i */

8 foreach unnumbered vertex w ∈ N(v) do label(w) ← label(w) ∪ {i};

vertex set can be partitioned into sets C and I, such that C is a clique in G and I is an
independent set in G. It is easy to see that any split graph is chordal.

A tree is an acyclic connected graph. A spanning tree of a graph G is an acyclic
connected subgraph of G which contains all vertices of G. A tree together with a dis-
tinguished root vertex r is said to be rooted. In such a rooted tree T , a vertex v is an
ancestor of vertex w if v is an element of the unique path from w to the root r. A vertex
w is called the descendant of v if v is the ancestor of w. Vertex v is the parent of vertex
w if v is an ancestor of w and is adjacent to w in T . Vertex w is called the child of v if
v is the parent of w.

2.2 Searches, Search Trees and Their Leaves

In the most general sense, a graph search A is a function that maps every graph G to a
set A(G) of vertex orderings of G. The elements of the set A(G) are the A-orderings of
G. The graph searches considered in this paper can be formalized adapting a framework
introduced by Corneil et al. [11] (a similar framework is given in [24]). This framework
uses subsets of N+ as vertex labels. Whenever a vertex is numbered, its index in the
search ordering is added to the labels of its unnumbered neighbors. The search A is
defined via a strict partial order ≺A on the elements of P(N+) (see Algorithm 1). The
respective A-orderings are exactly those vertex orderings that can be found by this
framework using the partial label order ≺A.

In the following, we define the searches considered in this paper by presenting suitable
partial orders ≺A (see [11]). The Generic Search (GS) is equal to the Label Search(≺GS)
where A ≺GS B if and only if A = ∅ and B 6= ∅. Thus, any vertex with a numbered
neighbor can be numbered next.

The partial label order ≺BFS for Breadth First Search (BFS) is defined as follows:
A ≺BFS B if and only if A = ∅ and B 6= ∅ or min(A) > min(B). For the Lexicographic
Breadth First Search (LBFS) [28] we consider the partial order ≺LBFS with A ≺LBFS B
if and only if A (B or min(A \ B) > min(B \ A). Both BFS and LBFS are layered,
i.e., the sets N ℓ

G(r) are consecutive within orderings starting in r. We sometimes use the
term layer if we refer to a set N ℓ

G(r).

4

The partial label order ≺DFS for Depth First Search (DFS) is defined as follows:
A ≺DFS B if and only if A = ∅ and B 6= ∅ or max(A) < max(B). For the Lexicographic
Depth First Search [13] we use the strict partial order ≺LDFS where A ≺LDFS B if and
only if A (B or max(A \B) < max(B \ A).

The Maximum Cardinality Search (MCS) [33] uses the partial order ≺MCS with
A ≺MCS B if and only if |A| < |B|. The Maximal Neighborhood Search (MNS) [13]
is defined using ≺MNS with A ≺MNS B if and only if A (B. It follows directly from
these partial label orders, that any LBFS, LDFS, and MCS ordering is also an MNS
ordering. Furthermore, the orderings of all presented searches are GS orderings.

In general, there can occur ties during an application of all the searches considered
in this paper. This problem can be solved by considering so-called +-searches. Let A
be a graph search. Given an arbitrary vertex ordering ρ of a graph G, an A-ordering
σ = (v1, . . . , vn) of G is the A+(ρ)-ordering of G if σ fulfills the following condition: for
any i ∈ {0, . . . , n−1}, the vertex vi+1 is the leftmost vertex in ρ such that (v1, . . . , vi, vi+1)
is a prefix of an A-ordering of G.1

Searches as BFS and DFS are often used to compute corresponding graph search trees.
Beisegel et al. [2] formalized the different concepts of search trees as follows.

Definition 1 (Beisegel et al. [2]). Let σ be a GS ordering of a connected graph G.
The F-tree of σ is the spanning tree of G containing the edge from each vertex v with
σ−1(v) > 1 to its leftmost neighbor in σ.

The L-tree of σ is the spanning tree containing the edge from each vertex v with
σ−1(v) > 1 to its rightmost neighbor w in σ with w ≺σ v.

We will need the following two lemmas about DFS L-trees.

Lemma 2 (Tarjan [32]). Let G be a graph and let T be a spanning tree of G. Then T is
a DFS L-tree of G if and only if for each edge uv ∈ E(G) vertex u is either an ancestor
or a descendant of v in T .

Lemma 3 (Beisegel et al. [3]). Let T be an L-tree of some DFS ordering of G rooted
in s and let σ be a DFS ordering of T starting with s. Then σ is a DFS ordering of G
with L-tree T .

In this paper, we consider the leaves of search trees. For both F-trees and L-trees, we
distinguish two different types of leaves.

Definition 4. Let σ be a GS ordering of a connected graph G. A vertex v ∈ V (G) is an
F-leaf (L-leaf) of σ if v is a leaf in the F-tree (L-tree) of σ. If v is the first vertex of σ,
then it is the F-root leaf (L-root leaf) of σ, otherwise it is an F-branch leaf (L-branch
leaf) of σ.

As the graph with exactly one vertex has no leaf in its spanning tree, we will consider
only graphs with at least two vertices.

1Note that other authors define the vertex vi+1 to be the rightmost vertex in ρ.

5

3 Root Leaves

We start this section with the simple observation that F-root leaves of GS orderings of
a graph G are quite boring as they are exactly the leaves of G.

Observation 5. Let G be a connected graph with n(G) ≥ 2. The following conditions
are equivalent for a vertex v ∈ V (G).

(i) Vertex v is the F-root leaf of some GS ordering of G.

(ii) Vertex v is the F-root leaf of every GS ordering of G starting in v.

(iii) Vertex v is a leaf of G.

Next we consider the L-root leaves of GS, DFS, and MCS. They are exactly those
vertices of the graph that are not cut vertices. The same even holds for F-branch leaves
and L-branch leaves of GS.

Theorem 6. Let G be a connected graph with n(G) ≥ 2. The following conditions are
equivalent for a vertex v ∈ V (G).

(i) Vertex v is the L-root leaf of some DFS ordering of G starting in v.

(ii) Vertex v is the L-root leaf of every DFS ordering of G starting in v.

(iii) Vertex v is the L-root leaf of some MCS ordering of G.

(iv) Vertex v is the L-root leaf of some GS ordering of G.

(v) Vertex v is an L-branch leaf of some GS ordering of G.

(vi) Vertex v is an F-branch leaf of some GS ordering of G.

(vii) Vertex v is the end-vertex of some GS ordering of G.

(viii) Vertex v is not a cut vertex of G.

Proof. First we show the equivalence of all statements concerning GS and statement
(viii). Charbit et al. [7] showed that a vertex v is an end-vertex of a GS ordering if and
only if it is not a cut vertex of G. Thus, (vii) ⇔ (viii). Clearly, the end-vertex of a GS
ordering is also a branch leaf of its F-tree and its L-tree. Hence, (vii) ⇒ (v), (vi).

Now assume that vertex v is not a cut vertex of G. Then let σ be a GS ordering of
G − v that starts in a neighbor w of v. Obviously, σ′ = v ++ σ is a GS ordering of G.
As G− v is connected, every vertex of G− v accept from w has a neighbor to its left in
σ. Thus, the only neighbor of v in the L-tree of σ′ is w and v is a GS L-root leaf of G.
Hence, (viii) ⇒ (iv).

Assume that v is a cut vertex of G and let A and B be two components of G− v. If v
is the start vertex of the GS ordering σ of G, then the leftmost vertices of A and B in

6

σ are neighbors of v in the L-tree of σ. Therefore, v is not the L-root leaf of σ and (iv)
⇒ (viii).

If the GS ordering σ does not start with the cut vertex v, then w.l.o.g. we may assume
that σ starts with a vertex of A. Then the parent of v in the F-tree and in the L-tree
of σ is an element of A. Furthermore, the first vertex of B in σ is a child of v in the
F-tree and in the L-tree of σ. Therefore, v is neither an F-branch leaf nor an L-branch
leaf of a GS ordering of G. Hence, (v) ⇒ (viii) and (vi) ⇒ (viii).

As DFS orderings and MCS orderings are also GS orderings, the statements (i) and
(iii) directly imply (iv) and, thus, they also imply (viii).

To show that (viii) implies (iii), assume that v is not a cut vertex. Then let ρ be
a vertex ordering of G that starts with v and has all neighbors of v to the right of all
non-neighbors of v. Let σ be the MCS+(ρ) ordering of G. Assume for contradiction that
v has more than one child in the L-tree T of σ. Let x be the leftmost child of v in σ and
let y be another child of v in T . Since T is an L-tree and v is the first vertex of σ, both
x and y have only one neighbor to its left in σ, namely v. As v is not a cut vertex, there
is an x-y-path P in G− v. Let z be the vertex nearest to x on P that is to the right of
y in σ. Vertex z exists since v is the only neighbor of y to the left of y in σ and, thus,
the neighbor of y in P is not to the left of y in σ. Vertex z can only have one neighbor
to the left of y since, otherwise, σ would not be an MCS ordering. By the choice of z,
this neighbor lies on P . Thus, vertex z is not a neighbor of v and z is to the left of y
in ρ. This is a contradiction as y and z have both exactly one neighbor to the left of y
and, thus, MCS+(ρ) would have numbered z instead of y. Hence, v is an L-root leaf of
the MCS ordering σ.

Statement (ii) trivially implies (i). It remains to show that (viii) implies (ii). We show
the contraposition. Let σ be a DFS ordering starting with v and let T be the L-tree
of σ. Assume v has two children in T . Any path in G between these two children runs
through v, due to Lemma 2. Thus, v is a cut vertex of G.

Note that DFS differs from GS and MCS in this result. While for the latter three
searches it is possible that a vertex is not the L-root leaf of a search ordering starting
with that vertex, this is not possible for DFS.

Since DFS, LDFS, MCS, and MNS orderings are also GS orderings, Theorem 6 directly
implies that we can characterize the L-leaves of these orderings.

Theorem 7. For any search A ∈ {GS, DFS, LDFS, MCS, MNS} and any vertex v of
a connected graph G with n(G) ≥ 2, the following statements are equivalent.

(i) Vertex v is the L-root leaf of some A-ordering of G.

(ii) Vertex v is an L-leaf of some A-ordering of G.

(iii) Vertex v is not a cut vertex of G.

As we can check in linear time whether a vertex is a cut vertex, we can also recognize L-
leaves of GS, DFS, LDFS, MCS, and MNS within this time bound. However, we will see
in Corollary 10 that at least for DFS the recognition of L-branch leaves is NP-complete.

7

The characterization of L-root leaves given in Theorem 6 does not work for BFS as
the following theorem shows.

Theorem 8. Let G be a connected graph with n(G) ≥ 2. A vertex v ∈ V (G) is the
L-root leaf of some BFS ordering of G if and only if G[NG(v)] is connected.

Proof. First assume that G[NG(v)] is connected. Let σ be a GS ordering of G[NG(v)].
The ordering v ++ σ is a prefix of a BFS ordering of G and all vertices of NG(v) except
from the first in σ have a neighbor to its left in σ. Thus, v has only one child in the
L-tree of every BFS ordering starting with v ++ σ.

Now assume G[NG(v)] is not connected. Let A and B be two components of G[NG(v)]
and let σ be an arbitrary BFS ordering of G starting with v. The leftmost vertices of
A and B in σ are neighbors of v and, thus, they are children of v in the L-tree of σ.
Therefore, v is not an L-root leaf of σ.

4 NP-Hardness of Branch Leaf Recognition

4.1 Branch Leaves of DFS

DFS L-trees can be recognized in linear time [18, 21]. As we have seen in Theorem 7,
this also holds for DFS L-leaves. In contrast, recognizing DFS L-branch leaves of a graph
is as hard as the recognition of DFS end-vertices since the two concepts are equivalent.

Theorem 9. A vertex v ∈ V (G) of a graph G is an L-branch leaf of some DFS ordering
of G if and only if v is the end-vertex of some DFS ordering of G.

Proof. If v is the end-vertex of some DFS ordering σ of G, then it is also a branch leaf
of the L-tree of σ.

For the other direction, assume that v is a branch leaf of the L-tree T of the DFS
ordering σ of G starting with the vertex r. Consider a DFS ordering τ of T starting
with r with the following constraint. Whenever a vertex has more than one unnumbered
child, then the children that are not ancestors of v are to the left of v in σ. This means
that the DFS always numbers non-ancestors of v before ancestors of v if this is possible.
Due to Lemma 3, σ is also a DFS ordering of G.

We claim that v is the end-vertex of σ. Assume for contradiction that w 6= v is the
end-vertex of σ. Then, w is a branch leaf of T . Therefore, w is not an ancestor of v. Let
x be the common ancestor of v and w that has the largest distance to the root vertex r
in T . Let v′ be the child of x that is an ancestor of v and let w′ be the child of x that is
an ancestor of w (v′ could be equal to v and w′ could be equal to w). By construction of
σ, the vertex w′ is to the left of v′ in σ. Since the descendants of w′ appear consecutively
directly after w′ in σ, w is to the left of v in σ; a contradiction.

Charbit et al. [7] gave sufficient conditions on a graph class G such that the end-vertex
problem of DFS is NP-complete on G. Due to Theorem 9, we can replace the term
end-vertex in their result by the term L-branch leaf.

8

Corollary 10. Let G be a graph class that is closed under the insertion of universal
vertices. If the Hamiltonian path problem is NP-complete on G, then the problem of
deciding whether a vertex of a graph G ∈ G is an L-branch leaf of some DFS ordering
of G is NP-complete. In particular, the problem is NP-complete on split graphs.

A similar result can be given for F-branch leaves of DFS. By adapting the proof given
in [30] that F-trees of DFS are hard to recognize, we can show that the same holds for
F-branch leaves of DFS.

Theorem 11. Let G be a graph class that is closed under the insertion of universal
vertices and leaves. If the Hamiltonian path problem is NP-complete on G, then the
problem of deciding whether a vertex of a graph G ∈ G is an F-branch leaf of some DFS
ordering of G is NP-complete. In particular, the problem is NP-complete on chordal
graphs.

Proof. Let G be a graph in G with the vertex set {v1, . . . , vn}. W.l.o.g. we may assume
that n ≥ 2. We construct the graph G′ as follows: First we add the vertex v′i for all
i ∈ {1, . . . , n} and connect it to vi. Then we add the vertex y which is adjacent to all
other vertices. Due to the conditions on the graph class G, the graph G′ is in G. We
claim that there is a DFS ordering of G′ with F-branch leaf y if and only if there is a
Hamiltonian path in G.

If there is an Hamiltonian path in G, then there is a DFS ordering of G′ that starts
with this path. In the F-tree of such an ordering, vertex y is a branch leaf.

Now assume that y is a branch leaf of the F-tree T of some DFS ordering σ of G.
Assume for contradiction that v ∈ V (G) is to the right of y in σ. As v′ is not a child
of y in T , vertex v′ is to the left of y in σ. Thus, v′ is to the left of both its neighbors
in σ and, thus, v′ must be the start vertex of σ with s 6= xi for all i ∈ {1, . . . , k + 3}.
However, this implies that y is the second vertex of σ and, since n ≥ 2, vertex y has
at least one child in T ; a contradiction. It follows that all vertices v ∈ V (G) are to the
left of y in σ. Now let T ′ be the L-tree of σ. Due to Lemma 2, all the vertices of G are
ancestors of y in T ′ and, thus, they all lie on a path P from the root of T ′ to y. If some
vertex v′ lies on this path, then either v′ is the first vertex of P or the successor of v′

in σ is vertex y. Thus, only the first and the last vertex of the path P could be one of
these vertices. Therefore, P contains a Hamiltonian path of G.

The Hamiltonian path problem is NP-complete on chordal graphs [5]. Furthermore,
chordal graphs are closed under the addition of leaves and universal vertices as neither
universal vertices nor leaves can be an element of an induced cycle of length ≥ 4.

If we compare Corollary 10 and Theorem 11, then we see that for L-branch leaves
it is sufficient that the graph class G is closed under the addition of universal vertices
while for F-branch leaves we have the additional condition that G is closed under the
addition of leaves. We cannot omit this constraint (unless P = NP) as the F-branch
leaf recognition problem of DFS can be solved in polynomial time on split graphs (see
Corollary 28).

9

r

N1
G(r)

N2
G(r)

Nk−1

G
(r)

Nk

G(r)

L

...
...

x1

x2

...
...

xk−1

xk

xk+1

xk+2

xk+3

v w1 w2 · · · wℓ

w′

1 w′

2 · · · w′

ℓ

Figure 1: A graphical representation of the graph G′ constructed in the proof of
Theorem 12.

4.2 Branch Leaves of BFS

The end-vertex problem of BFS is NP-complete, even if the graph is bipartite and the
start vertex of the BFS ordering is fixed [7]. This fact can be used to show that recog-
nizing BFS F-branch leaves is also NP-complete.

Theorem 12. It is NP-complete to decide whether a vertex of a bipartite graph G is an
F-branch leaf of some BFS ordering of G.

Proof. We reduce the beginning-end-vertex problem of BFS on bipartite graphs to the
respective F-branch leaf recognition problem. Given a connected bipartite graph G and
a vertex r ∈ V (G), the problem asks whether a vertex v ∈ V (G) \ {r} can be the
end-vertex of some BFS ordering of G starting with r. The problem is NP-complete [7].

Let G and r, v ∈ V (G) be an input of this problem. Let k be the eccentricity of
r. W.l.o.g. we may assume that v is in Nk

G(r) since, otherwise, v is obviously not the
end-vertex of any BFS ordering of G starting with r. We construct the graph G′ from
G as follows (see Fig. 1). We add a path P = (r, x1, . . . , xk+3) of length k + 3 to G as
well as the edge vxk+3. Furthermore, for every vertex w ∈ Nk

G(r) \ {v} we add a vertex
w′ and the edges vw′ and ww′ to G. We collect these vertices w′ in the set L. Note that
G′ is also bipartite.

First assume that v is the end-vertex of some BFS ordering σ of G starting with r.
Let ρ = (x1, x2, . . . , xk+3) ++ σ and let τ be the BFS+(ρ) ordering of G′. By the choice
of ρ, the ordering τ starts with x1. Thus, every vertex xi is in layer i − 1 and every
vertex v ∈ N j

G(r) is in layer j+1. The choice of ρ also implies that every vertex xi is the
first vertex of its layer in τ . In particular, vertex xk+2 is to the left of v in τ and, thus,

10

xk+2 is the parent of xk+3 in the F-tree of τ . Furthermore, xk+3 is to the right of v in τ
since distG′(x1, xk+3) = k+ 2 and dist(x1, v) = k +1. For the same reason, the vertices
w′ ∈ L are also to the right of any vertex of V (G) in τ . Therefore, the restriction of τ
to the vertices of the graph G is exactly σ and, thus, every w ∈ Nk

G(r) \ {v} is to the
left of v in τ . Hence, v is an F-branch leaf of τ .

Now assume that v is an F-branch leaf of some BFS ordering σ of G′. First we show
that σ starts with a vertex xi. Assume for contradiction that this is not the case and let
s be the start vertex of σ. If every shortest path from s to xk+3 runs through v, then
v is the parent of xk+3 in the F-tree of σ; a contradiction. Thus, we may assume that
distG′(s, xk+2) < distG′(s, xk+3). This implies that distG′(s, xk+2) = distG(s, r)+ k+2.
However, distG′(s, v) ≤ distG(s, r) + distG(r, v) = distG(s, r)+ k. Hence, v is to the left
of xk+2 in σ and, therefore, v is the parent of xk+3 in the F-tree of σ; a contradiction.

Thus, we may assume that σ starts with some vertex xi. For any vertex w′ ∈ L,
it holds distG′(xi, w

′) > distG′(xi, v). Thus, all the elements of L are to the right of
v in σ. Therefore, all the vertices in Nk

G(r) are to the left of v in σ since v is an F-
branch leaf of σ. If there is any vertex y ∈ V (G) \ Nk

G(r) to the right of v in σ, then
distG′(xi, y) ≥ distG′(xi, v). Thus, the shortest path from xi to v runs through xk+3

which implies that distG′(xi, xk+3) < dist(xi, z) for all z ∈ Nk−1

G (r). However, as xk+3

is adjacent to v in G but not adjacent to any other element of Nk
G(r), vertex v is the

leftmost vertex of Nk
G(r) in σ; a contradiction to the observation above.

Hence, v is the rightmost vertex of V (G) in σ. Since σ starts with some xi, vertex r
is the leftmost vertex of V (G) in σ. Let σ∗ be the restriction of σ to the vertices of G.
The ordering σ∗ starts with r and ends with v. None of the vertices in V (G′) \ V (G)
had an influence on the order of the vertices of G in σ. Thus, σ∗ is a BFS ordering of G
starting with r and ending with v.

In contrast to this result, there is a simple characterization of BFS L-branch leaves of
bipartite graphs.

Theorem 13. Let G be a connected bipartite graph with n(G) ≥ 2. A vertex v ∈ V (G)
is an L-branch leaf of some BFS ordering of G if and only if there is an r ∈ V (G) \ {v}
such that distG(r, w) = distG−v(r, w) for all w ∈ V (G) \ {v}.

Proof. Assume that there is a vertex r ∈ V (G)\{v} such that distG(r, w) = distG−v(r, w)
for all w ∈ V (G) \ {v}. Let (r = w0, . . . , wk = v) be a shortest path from r to v, i.e.,
v has distance k to r. It is easy to see that there is a BFS ordering σ of G in which
every vertex wi is the first vertex of the i-th layer. Let T be the L-tree of σ and let x
be a vertex in the (k + 1)-th layer. Due to the condition on r, there is a shortest path
from r to x in G that does not use vertex v. Therefore, x has a neighbor y in the k-th
layer that is not v. Since v ≺σ y ≺σ x, vertex v is not the parent of x in T . Since G is
bipartite, the layers of σ are independent sets and, thus, v is neither the parent of any
vertex in the k-th layer. Hence, v is a leaf of T .

Now assume that v is a branch leaf of the L-tree T of the BFS ordering σ. Let r be
the start vertex of σ. Let w be a vertex different from v and r. Consider the r-w-path P
in T . Since G is bipartite, the edges of G and, thus, the edges of T only connect vertices

11

of consecutive layers. Furthermore, every vertex has a neighbor in its preceding layer.
Thus, P has distG(r, w) edges. Since v is a leaf of T , P does not contain v. Therefore,
P is also contained in G− v and distG−v(r, w) = distG(r, w).

To check whether the condition of Theorem 13 is fulfilled, we simply make two all-
pair-shortest paths computations and compare the results. This can be done in O(n(G) ·
m(G)) by using O(n(G)) many BFS computations.

Corollary 14. Given a connected bipartite graph G and a vertex v ∈ V (G), we can
decide in time O(n(G) ·m(G)) whether v is the L-branch leaf of some BFS ordering of
G.

The results of Theorem 12 and Corollary 14 are quite surprising since the L-tree recog-
nition problem of BFS is NP-hard on bipartite graphs [30] while the F-tree recognition
problem of BFS can be solved in linear time [19, 25].

4.3 Branch Leaves of MNS-like Searches

For several subsearches of MNS, the recognition problem of F-branch leaves is NP-
complete on weakly chordal graphs.

Theorem 15. Let A be one of the following searches: LBFS, LDFS, MCS, MNS. It is
NP-complete to decide whether a vertex of a weakly chordal graph G is an F-branch leaf
of some A-ordering.

Proof. The proof of the theorem is inspired by the NP-completeness proof of the F-tree
recognition problem of MNS given by Beisegel et al. [2]. We construct a polynomial-time
reduction from 3-SAT. Let I be an instance of 3-SAT. W.l.o.g. we may assume that I
contains at least two clauses. We construct the corresponding graph G(I) as follows.
Let X = {x1, . . . , xk, x1, . . . , xk} be the set of vertices representing the literals of I. The
graph G(I)[X] forms the complement of the matching in which xi is matched to xi for
every i ∈ {1, . . . , k}. Let C = {c1, . . . , cℓ} be the set of vertices representing the clauses
of I. The set C forms an independent set in G(I) and every clause vertex ci is adjacent
to each vertex of X whose corresponding literal is contained in the clause associated
with ci. Additionally, we add a universal vertex t.

Assume G(I) has a fulfilling assignment B. Then we create the following A-ordering
σ. We first number all literal vertices of literals that are set to true in B and then we
number t. Since these vertices form a clique, this ordering is a prefix of an A-ordering.
We number the remaining vertices following an arbitrary A-ordering. As B is fulfilling,
all clause vertices and all literal vertices have a neighbor that is to the left of t in σ.
Thus, t is an F-branch leaf of σ.

Now assume that t is an F-branch leaf of the A-ordering σ of G(I). Let S be the set
of literal vertices that are to the left of t in σ. Since t is universal and the edges xixi
are missing, the set S contains at most one literal vertex for every variable. Thus, we
can define an assignment B by giving all literals whose vertices are contained in S the
value true. If some variable value is not fixed, then we choose an arbitrary value for the

12

variable. If a clause vertex has a parent in the F-tree T of σ, then this parent is an
element of S since t is a leaf in T . If the clause vertex ci does not have a parent in T ,
then ci is the first vertex of σ. Since there are at least two clause vertices, the second
vertex of σ is not t but a literal vertex adjacent to ci. Therefore, every clause vertex has
a neighbor in S and, thus, B is a fulfilling assignment.

To see that G(I) is weakly chordal, we first observe that every pair (xi, xi) forms a
two-pair in G(I). Spinrad and Sritharan [31] showed that the graph that results from
the addition of an edge between a two-pair is weakly chordal if and only if the initial
graph is weakly chordal. If we add all the edges xixi, then the resulting graph is a split
graphs and, thus, G(I) is weakly chordal.

5 Branch Leaves and Chordal Graphs

5.1 Branch Leaves of MNS-like Searches

MNS and all of its subsearches compute PEOs of chordal graphs [13, 33]. Thus, any
F-tree or L-tree of an MNS ordering is also an F-tree or L-tree of some PEO. Beisegel
et al. [2] showed that this also holds the other way around for a large family of graph
searches including LBFS, LDFS, MCS, and MNS, i.e., the rooted F-trees and rooted
L-trees of these searches on chordal graphs are exactly the rooted F-trees and rooted
L-trees of PEOs, respectively. Therefore, we will only characterize F-branch leaves and
L-branch leaves of PEOs.

We start by showing that the L-branch leaves of PEOs of a chordal graph are exactly
the graph’s simplicial vertices.

Theorem 16. Let G be a connected chordal graph with n(G) ≥ 2. A vertex v ∈ V (G)
is an L-branch leaf of some PEO of G if and only if v is simplicial.

Proof. If v is a simplicial vertex, then there is a PEO σ that ends with v. Vertex v is
an L-branch leaf of σ.

For the other direction, let σ be a PEO and let v be a non-simplicial vertex of G.
Hence, not all neighbors of v are to the left of v in σ. Let w be the leftmost neighbor of
v in σ that is to the right of v in σ. Let x be the parent of w in the L-tree T of σ. If x
is not equal v, then it holds v ≺σ x ≺σ w. As σ is a PEO and vw, xw ∈ E(G), the edge
vx is also in E(G); a contradiction to the choice of w. Hence, v is the parent of w in T
and v is not an L-branch leaf of σ.

Since we can decide in linear time whether a vertex is simplicial [1], we can recognize
L-branch leaves of PEOs in linear time.

Corollary 17. Given a connected chordal graph G and a vertex v ∈ V (G), we can decide
in time O(n(G) +m(G)) whether v is the L-branch leaf of some PEO of G. Therefore,
we can also decide in time O(n(G) + m(G)) whether v is the L-branch leaf of some
LBFS, LDFS, MCS, or MNS ordering.

13

Obviously, simplicial vertices are also F-branch leaves of PEOs. However, there are
further F-branch leaves.

Theorem 18. Let G be a connected chordal graph with n(G) ≥ 2. A vertex v ∈ V (G) is
an F-branch leaf of some PEO of G if and only if the graph G[NG(v)] has a dominating
clique.

Proof. First assume that G[NG(v)] has a dominating clique C. It is obvious that there
is an LBFS ordering σ of G that starts with the vertices of C. The ordering σ is a PEO.
Since all neighbors of v have a neighbor in C or are elements of C, v is an F-branch leaf
of σ.

Now let v be an F-branch leaf of the PEO σ. Let S be the set of neighbors of v that
are to the left of v in σ. The set S induces a clique of G. Thus, if S = NG(v), then
G[NG(v)] is a clique and we are done. Hence, we may assume that there is a vertex
w ∈ NG(v) \ S. As w is not a child of v in the F-tree of σ, there is a vertex x ∈ NG(w)
with x ≺σ v. Since σ is a PEO, vertex x is a neighbor of v and, thus, x ∈ S. Thus, any
neighbor of v that is not in S has a neighbor in S and, hence, S induces a dominating
clique of G[NG(v)].

To decide the complexity of the F-branch leaf recognition problem of PEOs, we exam-
ine the complexity of deciding the existence of a dominating clique in a chordal graph.
Kratsch et al. [22] showed that such a clique exists if and only if the diameter of the
graph is at most three.

Theorem 19 (Kratsch et al. [22]). A chordal graph G has a dominating clique if and
only if the diameter of G is at most three.

As the diameter of a graph can be determined by computing n(G) many BFS orderings,
we can decide the existence of a dominating clique in a chordal graph in polynomial time.
Although it is unlikely that the diameter of a chordal graph can be computed in linear
time,2 we can improve our algorithm to decide the existence of a dominating clique in
linear time. To this end, we can use the following result of Corneil et al. [10].

Theorem 20 (Corneil et al. [10]). Let G be a chordal graph and let v ∈ V (G) be the
end-vertex of some LBFS ordering of G. If ecc(v) < diam(G), then ecc(v) is even and
ecc(v) = diam(G) − 1.

Combining Theorems 18 to 20, we can give a linear-time recognition algorithm for
F-branch leaves of PEOs.

Corollary 21. Given a chordal graph G and a vertex v ∈ V (G), we can decide in time
O(n(G) +m(G)) whether v is an F-branch leaf of some PEO of G. Therefore, we can
also decide in time O(n(G) + m(G)), whether v is the F-branch leaf of some LBFS,
LDFS, MCS, or MNS ordering.

2Even on split graphs, the diameter cannot be computed in subquadratic time unless the Strong Ex-
ponential Time Hypothesis fails [6].

14

u v w x y

z

Figure 2: The given graph G is chordal. There is no dominating clique in the graph
G[NG(z)]. However, the given spanning tree is the F-tree of the BFS ordering
(w, v, x, z, u, y) and, thus, z is a F-branch leaf of BFS.

Proof. Due to Theorems 18 and 19, it is sufficient to check whether G′ = G[NG(v)] has
diameter 3. We compute an LBFS ordering σ of G′ in linear time. Let v be the end-
vertex of σ. We compute the eccentricity of v in G′ in linear time by starting a BFS in
v. If eccG′(v) > 3, then the diameter of G′ is larger than 3. If eccG′(v) = 3, then, by
Theorem 20, diam(G′) = 3. If eccG′(v) < 3, then diam(G′) ≤ eccG′(v) + 1 ≤ 3, due to
Theorem 20.

5.2 Branch Leaves of BFS

The condition given in Theorem 18 is also sufficient for a vertex to be a BFS F-branch
leaf since every LBFS ordering is also a BFS ordering. However, it is not necessary as
can be seen in Fig. 2. To characterize BFS F-branch leaves of chordal graphs, we start
with the following two lemmas.

Lemma 22. Let G be a chordal graph and let r be a vertex in V (G). Let x and y be
two vertices in N i

G(r). If there is a vertex z ∈ N i+1

G (r) which is adjacent to both x and
y, then xy ∈ E(G).

Proof. Let σ be an LBFS ordering of G starting with r. Vertex z is to the right of both
x and y in σ. Since σ is a PEO, the vertices x and y are adjacent.

Lemma 23. Let G be a chordal graph and let r be a vertex in V (G). Let x and y be two
vertices in N i

G(r). If xy ∈ E(G), then NG(x)∩N
i−1

G (r) ⊆ NG(y) or NG(y)∩N
i−1

G (r) ⊆
NG(x).

Proof. Let σ be an LBFS ordering starting with r. W.l.o.g. we may assume that x ≺σ y.
All the vertices of N i−1

G (r) are to the left of y in σ. Since σ is a PEO, all the neighbors
of y in N i−1

G (r) are adjacent to x and, thus, NG(y) ∩N i−1

G (r) ⊆ NG(x).

The next lemma makes a statement about the distances of neighbors of a vertex in a
chordal graph.

Lemma 24. Let G be a connected chordal graph and let v ∈ V (G). For any x, y ∈ NG(v),
the distance between x and y in G−v is equal to the distance between x and y in G[NG(v)].

Proof. Let P be a shortest x-y-path in G− v. If P is a subgraph of G[NG(v)], then we
are done. Otherwise, let u be the first vertex of P (starting from x) whose successor
on P is not in NG(v) and let w be the first element of P after u that is an element of

15

v w

v′ w′

v

w

v′

w′

w′′

Figure 3: Two cases of the proof of Theorem 25. The vertical arrangement of the vertices
represent their layers. Thick edges are edges of the F-tree. Dotted edges are
not present. Dashed edges are implied by either Lemma 22 or Lemma 23.

NG(v). Note that u could be equal to x and w could be equal to y. The subpath of P
between u and w contains at least three vertices. Therefore, this subpath and the edges
uv and vw form an induced cycle of length at least four in G; a contradiction.

Using Lemmas 22 to 24, we characterize BFS F-branch leaves of chordal graphs.

Theorem 25. Let G be a connected chordal graph with n(G) ≥ 2. A vertex v ∈ V (G)
is an F-branch leaf of some BFS ordering of G if and only if the radius of G[NG(v)] is
at most two.

Proof. First assume that G[NG(v)] has radius two and let w be a central vertex of
G[NG(v)]. There is a BFS ordering σ that starts with w followed by all neighbors of
w that are not v. Vertex v is an F-branch leaf of σ since all neighbors of v have some
neighbor in NG[w] \ {v} or are equal to w.

Now assume that v ∈ N i
G(r) is an F-branch leaf of some BFS ordering σ of G starting

with r. Let T be the F-tree of σ rooted in r and let v′ be the parent of v in T . Since T
is an BFS F-tree rooted in r, it holds that v′ ∈ N i−1

G (r).
We claim that in G − v vertex v′ has a distance of at most two to every element of

NG(v). Let w ∈ NG(v) \ {v
′}. If v′w ∈ E(G), then v′ and w have distance one in G− v.

Therefore, we may assume in the following that v′w /∈ E(G). Then Lemma 22 implies
that w /∈ N i−1

G (r). Furthermore, the parent of w in T , say w′, is different from v and v′.
If v′w′ ∈ E(G), then v′ and w have distance two in G− v via the path (v′, w′, w). Thus,
we may also assume that v′w′ /∈ E(G).

First assume that w ∈ N i
G(r) (see left part of Fig. 3). Then w′ ∈ N i−1

G (r). Lemma 23
implies that w′ is adjacent to v because vw, vv′, and ww′ ∈ E(G) but v′w /∈ E(G). Now
the non-existence of v′w′ contradicts Lemma 22.

Now assume that w ∈ N i+1

G (r) (see right part of Fig. 3). Then, due to Lemma 22,
vw′ ∈ E(G). Since v′w′ /∈ E(G), the parent of w′, say w′′, is different from v′. Since w′

is the parent of w, it holds that w′ ≺σ v. This implies that w′′ ≺σ v′. Therefore, w′′ is
not adjacent to v since, otherwise, v′ would not be the parent of v. The non-existence
of both v′w′ and vw′′ contradicts Lemma 23.

Summarizing, v′ has distance at most two in G−v to any neighbor of v. By Lemma 24,
v′ has distance at most two in G[NG(v)] to any neighbor of v in G and, thus, G[NG(v)]
has radius at most two.

16

Chepoi and Dragan [8] presented a linear-time algorithm that computes a central
vertex of a chordal graph. As the eccentricity of such a vertex can be computed in linear
time using BFS, we can compute the radius of a chordal graph and, in particular, of
G[NG(v)] in linear time. Thus, Theorem 25 implies a linear-time algorithm for the BFS
F-branch leaf recognition on chordal graphs.

Corollary 26. Given a connected chordal graph G and a vertex v ∈ V (G), we can decide
in time O(n(G) +m(G)) whether v is an F-branch leaf of some BFS ordering of G.

5.3 Branch Leaves of DFS

As we have seen in Theorem 11, the F-branch leaf recognition problem of DFS is NP-
complete on chordal graphs. However, there is a simple characterization of DFS F-
branch leaves of split graphs.

Theorem 27. Let G be a connected split graph with n(G) ≥ 2. A vertex v ∈ V (G) is
an F-branch leaf of some DFS ordering if and only if v is not a cut vertex of G.

Proof. Due to Theorem 6, no cut vertex of a graph G is an F-branch leaf of any GS
ordering. It remains to show that every vertex v of a connected split graph G for which
G − v is connected is an F-branch leaf of some DFS ordering of G. For the connected
split graph with two vertices, this is straightforwardly true. Thus, we may assume in
the following that n(G) ≥ 3. Let (C, I) be a the partition of V (G) into a clique C and
the independent set I. First note that C must contain at least one vertex that is not v
since, otherwise, v would be a cut vertex of G. Obviously, there is a DFS ordering σ of
G starting with the vertices of C \ {v}. As v is not a cut vertex, every vertex of I has
at least one neighbor in C \ {v}. Thus, v is an F-branch leaf of σ.

As cut vertices can be identified in linear time, Theorem 27 leads directly to a linear-
time algorithm for the DFS F-branch leaf recognition on split graphs.

Corollary 28. Given a connected split graph G and a vertex v ∈ V (G), we can decide
in time O(n(G) +m(G)) whether v is an F-branch leaf of some DFS ordering of G.

In contrast to this result, it is NP-hard to decide whether a vertex of a split graph
is a DFS L-branch leaf (see Corollary 10). Thus, the L-branch leaf recognition of DFS
seems to be harder than the F-branch leaf recognition of DFS, a surprising contrast to
the hardness of the DFS F-tree recognition problem [30] and the easiness of the DFS
L-tree recognition problem [18, 21]. Recall that we have made a similar observation
for the complexity of the branch leaf and tree recognition of BFS (see Theorem 12
and Corollary 14).

17

References

[1] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,
Robert Scheffler, and Martin Strehler. On the end-vertex problem of graph
searches. Discrete Mathematics and Theoretical Computer Science, 21(1), 2019.
doi:10.23638/DMTCS-21-1-13.

[2] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,
Robert Scheffler, and Martin Strehler. The recognition problem of graph
search trees. SIAM Journal on Discrete Mathematics, 35(2):1418–1446, 2021.
doi:10.1137/20M1313301.

[3] Jesse Beisegel, Ekkehard Köhler, Robert Scheffler, and Martin Strehler. Linear time
LexDFS on chordal graphs. In Fabrizio Grandoni, Grzegorz Herman, and Peter
Sanders, editors, 28th Annual European Symposium on Algorithms (ESA 2020),
volume 173 of LIPIcs, pages 13:1–13:13, Dagstuhl, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2020.13.

[4] Anne Berry, Jean R.S. Blair, Pinar Heggernes, and Barry W. Peyton. Maximum
cardinality search for computing minimal triangulations of graphs. Algorithmica,
39(4):287–298, 2004. doi:10.1007/s00453-004-1084-3.

[5] Alan A. Bertossi and Maurizio A. Bonuccelli. Hamiltonian circuits in inter-
val graph generalizations. Information Processing Letters, 23(4):195–200, 1986.
doi:10.1016/0020-0190(86)90135-3.

[6] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square: On
the complexity of some quadratic-time solvable problems. In Pierluigi Crescenzi
and Michele Loreti, editors, Proceedings of ICTCS 2015, the 16th Italian Confer-
ence on Theoretical Computer Science, volume 322 of ENTCS, pages 51–67, 2016.
doi:10.1016/j.entcs.2016.03.005.

[7] Pierre Charbit, Michel Habib, and Antoine Mamcarz. Influence of the tie-break
rule on the end-vertex problem. Discrete Mathematics and Theoretical Computer
Science, 16(2):57, 2014. doi:10.46298/dmtcs.2081.

[8] Victor Chepoi and Feodor Dragan. A linear-time algorithm for finding a cen-
tral vertex of a chordal graph. In Jan van Leeuwen, editor, Algorithms — ESA
’94, volume 855 of LNCS, pages 159–170, Berlin, Heidelberg, 1994. Springer.
doi:10.1007/BFb0049406.

[9] Derek G. Corneil, Barnaby Dalton, and Michel Habib. LDFS-based certifying al-
gorithm for the minimum path cover problem on cocomparability graphs. SIAM
Journal on Computing, 42(3):792–807, 2013. doi:10.1137/11083856X.

[10] Derek G. Corneil, Feodor F. Dragan, Michel Habib, and Christophe Paul. Di-
ameter determination on restricted graph families. Discrete Applied Mathematics,
113(2):143–166, 2001. doi:10.1016/S0166-218X(00)00281-X.

18

https://doi.org/10.23638/DMTCS-21-1-13
https://doi.org/10.1137/20M1313301
https://doi.org/10.4230/LIPIcs.ESA.2020.13
https://doi.org/10.1007/s00453-004-1084-3
https://doi.org/10.1016/0020-0190(86)90135-3
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.46298/dmtcs.2081
https://doi.org/10.1007/BFb0049406
https://doi.org/10.1137/11083856X
https://doi.org/10.1016/S0166-218X(00)00281-X

[11] Derek G. Corneil, Jérémie Dusart, Michel Habib, Antoine Mamcarz, and Fabien
De Montgolfier. A tie-break model for graph search. Discrete Applied Mathematics,
199:89–100, 2016. doi:10.1016/j.dam.2015.06.011.

[12] Derek G. Corneil, Ekkehard Köhler, and Jean-Marc Lanlignel. On end-vertices of
lexicographic breadth first searches. Discrete Applied Mathematics, 158(5):434–443,
2010. doi:10.1016/j.dam.2009.10.001.

[13] Derek G. Corneil and Richard M. Krueger. A unified view of graph
searching. SIAM Journal on Discrete Mathematics, 22(4):1259–1276, 2008.
doi:10.1137/050623498.

[14] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. Linear time algorithms for
dominating pairs in asteroidal triple-free graphs. SIAM Journal on Computing,
28(4):1284–1297, 1999. doi:10.1137/S0097539795282377.

[15] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure and
recognition of interval graphs. SIAM Journal on Discrete Mathematics, 23(4):1905–
1953, 2009. doi:10.1137/S0895480100373455.

[16] Jan Gorzny and Jing Huang. End-vertices of LBFS of (AT-free) bigraphs. Discrete
Applied Mathematics, 225:87–94, 2017. doi:10.1016/j.dam.2017.02.027.

[17] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-BFS
and partition refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theoretical Computer Science, 234(1–
2):59–84, 2000. doi:10.1016/S0304-3975(97)00241-7.

[18] Torben Hagerup. Biconnected graph assembly and recognition of DFS trees. Techni-
cal Report A 85/03, Universität des Saarlandes, 1985. doi:10.22028/D291-26437.

[19] Torben Hagerup and Manfred Nowak. Recognition of spanning trees defined by
graph searches. Technical Report A 85/08, Universität des Saarlandes, 1985.

[20] John Hopcroft and Robert E. Tarjan. Efficient planarity testing. Journal of the
ACM, 21(4):549–568, 1974. doi:10.1145/321850.321852.

[21] Ephraim Korach and Zvi Ostfeld. DFS tree construction: Algorithms and char-
acterizations. In Jan van Leeuwen, editor, Graph-Theoretic Concepts in Computer
Science, volume 344 of LNCS, pages 87–106, Berlin, Heidelberg, 1989. Springer.
doi:10.1007/3-540-50728-0_37.

[22] Dieter Kratsch, Peter Damaschke, and Anna Lubiw. Dominating
cliques in chordal graphs. Discrete Mathematics, 128(1):269–275, 1994.
doi:10.1016/0012-365X(94)90118-X.

[23] Dieter Kratsch, Mathieu Liedloff, and Daniel Meister. End-vertices of graph
search algorithms. In Peter Widmayer Vangelis Th. Paschos, editor, Algorithms

19

https://doi.org/10.1016/j.dam.2015.06.011
https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1137/050623498
https://doi.org/10.1137/S0097539795282377
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1016/j.dam.2017.02.027
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.22028/D291-26437
https://doi.org/10.1145/321850.321852
https://doi.org/10.1007/3-540-50728-0_37
https://doi.org/10.1016/0012-365X(94)90118-X

and Complexity, volume 9079 of LNCS, pages 300–312, Cham, 2015. Springer.
doi:10.1007/978-3-319-18173-8_22.

[24] Richard Krueger, Geneviève Simonet, and Anne Berry. A general label search to
investigate classical graph search algorithms. Discrete Applied Mathematics, 159(2-
3):128–142, 2011. doi:10.1016/j.dam.2010.02.011.

[25] Udi Manber. Recognizing breadth-first search trees in linear time. Information
Processing Letters, 34(4):167–171, 1990. doi:10.1016/0020-0190(90)90155-Q.

[26] Guozhen Rong, Yixin Cao, Jianxin Wang, and Zhifeng Wang. Graph
searches and their end vertices. Algorithmica, 84:2642–2666, 2022.
doi:10.1007/s00453-022-00981-5.

[27] Donald J. Rose. Triangulated graphs and the elimination process. Jour-
nal of Mathematical Analysis and Applications, 32(3):597–609, 1970.
doi:10.1016/0022-247X(70)90282-9.

[28] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.
doi:10.1137/0205021.

[29] Robert Scheffler. Linearizing partial search orders. In Michael A.
Bekos and Michael Kaufmann, editors, Graph-Theoretic Concepts in Com-
puter Science, volume 13453 of LNCS, pages 425–438, Cham, 2022. Springer.
doi:10.1007/978-3-031-15914-5_31.

[30] Robert Scheffler. On the recognition of search trees generated by
BFS and DFS. Theoretical Computer Science, 936:116–128, 2022.
doi:10.1016/j.tcs.2022.09.018.

[31] Jeremy Spinrad and R. Sritharan. Algorithms for weakly triangu-
lated graphs. Discrete Applied Mathematics, 59(2):181–191, 1995.
doi:10.1016/0166-218X(93)E0161-Q.

[32] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972. doi:10.1137/0201010.

[33] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively re-
duce acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.
doi:10.1137/0213035.

[34] Meibiao Zou, Zhifeng Wang, Jianxin Wang, and Yixin Cao. End vertices of
graph searches on bipartite graphs. Information Processing Letters, 173, 2022.
doi:10.1016/j.ipl.2021.106176.

20

https://doi.org/10.1007/978-3-319-18173-8_22
https://doi.org/10.1016/j.dam.2010.02.011
https://doi.org/10.1016/0020-0190(90)90155-Q
https://doi.org/10.1007/s00453-022-00981-5
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1137/0205021
https://doi.org/10.1007/978-3-031-15914-5_31
https://doi.org/10.1016/j.tcs.2022.09.018
https://doi.org/10.1016/0166-218X(93)E0161-Q
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0213035
https://doi.org/10.1016/j.ipl.2021.106176

	1 Introduction
	2 Preliminaries
	2.1 General Notation
	2.2 Searches, Search Trees and Their Leaves

	3 Root Leaves
	4 NP-Hardness of Branch Leaf Recognition
	4.1 Branch Leaves of DFS
	4.2 Branch Leaves of BFS
	4.3 Branch Leaves of MNS-like Searches

	5 Branch Leaves and Chordal Graphs
	5.1 Branch Leaves of MNS-like Searches
	5.2 Branch Leaves of BFS
	5.3 Branch Leaves of DFS

