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A major challenge in the field of correlated electrons is the computation of dynamical correlation
functions. For comparisons with experiment, one is interested in their real-frequency dependence.
This is difficult to compute, as imaginary-frequency data from the Matsubara formalism require
analytic continuation, a numerically ill-posed problem. Here, we apply quantum field theory to the
single-impurity Anderson model (AM), using the Keldysh instead of the Matsubara formalism with
direct access to the self-energy and dynamical susceptibilities on the real-frequency axis. We present
results from the functional renormalization group (fRG) at one-loop level and from solving the self-
consistent parquet equations in the parquet approximation. In contrast to previous Keldysh fRG
works, we employ a parametrization of the four-point vertex which captures its full dependence on
three real-frequency arguments. We compare our results to benchmark data obtained with the nu-
merical renormalization group and to second-order perturbation theory. We find that capturing the
full frequency dependence of the four-point vertex significantly improves the fRG results compared
to previous implementations, and that solving the parquet equations yields the best agreement with
the NRG benchmark data, but is only feasible up to moderate interaction strengths. Our methodical
advances pave the way for treating more complicated models in the future.

I. INTRODUCTION

Strongly correlated electrons are of central interest in
condensed matter physics and a prime application for
quantum field theory (QFT). Two current frontiers in
this context are (i) dealing with two-particle correlations
on top of the familiar one-particle correlations, and (ii)
obtaining real-frequency information relevant to exper-
iments, as opposed to imaginary-frequency information
popular in theoretical analyses. Indeed, much attention
has recently been devoted to the two-particle—or four-
point (4p)—vertex of correlated systems, e.g., regarding
efficient representations [1–7] or the divergences of two-
particle irreducible vertices [8–22]. Moreover, new algo-
rithms have emerged, such as diagrammatic Monte Carlo
for real-frequency 2p functions (one frequency argument)
working with analytic Matsubara summation [23–29] or
real-time integration [30–33], as well as numerical renor-
malization group (NRG) computations of real-frequency
4p functions (three frequency arguments) [34, 35].

Here, we combine aspects (i) and (ii) and study real-
frequency two-particle correlations in a QFT framework
within the Keldysh formalism (KF) [36–38]. We em-
ploy two related methods: functional renormalization
group (fRG) flows at one-loop level [39] and solutions
of the self-consistent parquet equations [40]. These ap-
proaches are promising candidates for real-frequency di-
agrammatic extensions [41] of dynamical mean-field the-
ory [42], where the self-consistently determined impu-
rity model is solved with NRG [43]. In practice, this
means using the NRG 4p vertex [34, 35] as input for

∗ These authors contributed equally to this work.

fRG [44, 45] or the parquet equations [46, 47]. Fully ex-
ploiting this non-perturbative input requires taking the
full frequency dependence of the 4p vertex into account.
The present work is a proof-of-principle study showing
that it is indeed possible to track the three-dimensional
real-frequency dependence of the 4p vertex with fRG and
parquet methods.

To demonstrate our capability of handling 4p vertices
in real frequencies, we choose the well-known [48] single-
impurity Anderson model (AM) [49] as a test case. Its
4p vertex depends only on frequency and spin arguments,
orbital or momentum degrees of freedom are not involved.
Moreover, we can benchmark our results against numer-
ically exact data obtained with NRG [43].

On a historical note, we mention some early pioneering
works on the AM where multipoint functions depending
on multiple real frequencies were computed using vari-
ous diagrammatic methods [50–53]. Anders and Grewe
[50, 51] computed the finite-temperature impurity den-
sity of states and spin-fluctuation spectra up to order
O(1/N2) in a large-N expansion using a resummation
that included skeleton diagrams of the crossing variety
up to infinite order. This approach involved the analytic
continuation of 2p and 3p functions from imaginary to
real frequencies. Kroha, Wölfle, and Costi [52, 53] stud-
ied the AM in the strong-coupling limit using a slave-
boson treatment of local fermions and a conserving T -
matrix approximation. They computed the auxiliary
(pseudofermion and slave boson) spectral functions in the
Kondo regime. Their approach involved the analytic con-
tinuation of T -matrices (4p objects depending on three
frequencies) from imaginary to real frequencies. This
was possible due to two simplifications arising in their
approach. First, the Bethe–Salpeter equations for the T -
matrices were simplified via ladder approximations that
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neglect interchannel feedback but are sufficient to capture
the leading and subleading infrared singularities. Sec-
ond, the auxiliary propagators involve projection factors
that cause their contributions to vanish along the branch
cuts encountered during the analytic continuation of the
T -matrices. As a result, only integrations along branch
cuts of the conduction electron propagators contribute
to the auxiliary-particle self-energies. In particular, only
one of the fifteen Keldysh components of the T -matrices
were involved in these computations.

In the present paper, we consider a more general set-
ting. We compute the full 4p (impurity-electron) ver-
tex, which requires a treatment of the complete Keldysh
structure. Furthermore, the diagrammatic methods con-
sidered here—the fRG and the parquet equations—treat
all three channels of two-particle fluctuations (density,
magnetic, pairing) in an equitable manner, fully includ-
ing interchannel feedback. The latter causes severe tech-
nical complications: each channel has its own frequency
parametrization; hence, interchannel feedback involves
interpolations between different frequency parametriza-
tions, which in turn demand great care when working
with discrete frequency grids. One of our goals is to de-
velop numerical strategies for conquering these complica-
tions in a general, robust manner, as a first step toward
studying more complicated models in future work.

Keldysh fRG flows with dynamic 2p and 4p functions
were pioneered by Jakobs and collaborators [54–56] and
subsequently used in Refs. 57–59. In all of these works,
the dependence of the 4p vertex on three frequencies was
approximated by a sum of three functions, each depend-
ing on only one (bosonic) frequency. Here, we present—
for the first time—Keldysh one-loop fRG flows with the
full, three-dimensional frequency dependence of the ver-
tex, finding remarkable improvement compared to pre-
vious implementations [54, 55]. We also solve the par-
quet equations in the parquet approximation (PA) in this
setting, yielding results closest to NRG in the regime
where the parquet self-consistency iteration converges.
This regime corresponds rather accurately to the con-
dition u < 1, where u = U/(π∆) is the dimensionless
coupling constant that controls the (convergent bare)
zero-temperature perturbation series [60]. For complete-
ness, we also discuss second-order perturbation theory
(PT2). Although the PT2 self-energy in the particle-
hole symmetric AM (sAM) yields strikingly good results
(for known reasons, see Sec. II E), the susceptibilities or
the results in the asymmetric AM (aAM) clearly show
the benefits of the infinite diagrammatic resummations
provided by fRG and the PA.

A conceptual equivalence between truncated fRG flows
and solutions of the parquet equations has been estab-
lished via the multiloop fRG [61–63]. For the AM treated
in imaginary frequencies, this equivalence was analyzed
numerically in Ref. 64, and multiloop convergence was
demonstrated up to moderate interaction strengths. We
refrain from presenting a similar study in real frequencies
here, leaving that for future work.

The rest of the paper is organized as follows: In Sec. II,
we give a minimal introduction to the KF (Sec. II A)
and summarize the methodical background for fRG and
the PA (Secs. II B and II C). The AM is briefly intro-
duced in Sec. II D, followed by a concise description
of our benchmark methods for this model (Sec. II E).
In Sec. III, we present our results, beginning with dy-
namical correlation functions computed directly on the
real-frequency axis (Sec. III A). We then turn to various
static properties in Sec. III B and check the fulfillment
of zero-temperature identities between them (Sec. III C).
The frequency-dependent two-particle vertex is shown in
Sec. IIID. We conclude in Sec. IV and give a brief outlook
on possibilities for future work.

Nine appendices are devoted to technical matters. Ap-
pendix A summarizes our parametrization of the 4p ver-
tex and its symmetry relations. Appendix B shows the
frequency dependence of all vertex components, as ob-
tained in the PA. The fully parametrized parquet and
fRG flow equations are stated in App. C , and App. D
discusses a channel-adapted evaluation of the Schwinger–
Dyson equation for the self-energy in the PA. Appendix E
deals with a known equal-time subtlety in the KF, rele-
vant for computing, e.g., the Hartree self-energy in the
aAM. In App. F, we give a concise definition of all dia-
grammatic contributions to PT2. We provide more de-
tails on the actual fRG and PA implementation in App. G
and comment on the numerical costs in App. H. Finally,
App. I scrutinizes the fRG static magnetic susceptibility
at u ≳ 1 for different settings of the frequency resolution.

II. BACKGROUND

A. Keldysh formalism

The Keldysh formalism [36–38] is a suitable frame-
work for studying systems out of equilibrium, as well
as systems in thermal equilibrium if aiming for a finite-
temperature real-frequency description. An extensive in-
troduction can be found in Ref. 65; more compact intro-
ductions in the context of fRG are also given in related
PhD theses [54, 57, 66, 67]. Here, we only give a short
summary of the concepts needed in this paper.

Consider a (potentially time-dependent) Hamiltonian
H(t) and a density matrix known at time t0, ρ0 = ρ(t0).
The expectation value of an operator Ô at time t reads

⟨Ô(t)⟩ = Tr
[
T̃ e−i

´ t0
t dt′H(t′) Ô T e−i

´ t
t0

dt′H(t′)
ρ0

]
. (1)

Here, T is the time-ordering operator, and T̃ denotes
anti-time ordering. In the KF, one rewrites Eq. (1) as

⟨Ô(t)⟩ = Tr
[
TC

{
e−i

´ t0
t dt′H+(t′) Ô e

−i
´ t
t0

dt′H−(t′)
ρ0

}]
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=
Ô

t t0time

−

+ . (2)

The Hamiltonian, and all operators in it, acquire an addi-
tional contour index c=∓, indicating whether they sit on
the forward (−) or backward (+) branch of the Keldysh
double-time contour. The contour-ordering operator TC
puts all operators on the backward branch left of those
on the forward branch, and anti-time orders (time orders)
them on the backward (forward) branch.

In the above equation, Ô, inserted at time t, can be
placed on either branch. However, if Ô is a product of
multiple operators, they also come with contour indices
to ensure the correct ordering. It follows that an n-point
correlator generically has 2n Keldysh components. For
example, the two-point correlator in terms of the creation
(ψ†) and the annihilation operator (ψ) reads

Gc|c′(t, t′) = −i⟨TC ψc(t)ψ†c′(t′)⟩. (3)

Resolving the contour indices c, c′ yields the matrix

Gc|c′ =

(
G−|− G−|+

G+|− G+|+

)
=

(
GT G<

G> GT̃

)
. (4)

Using the redundancy G<+G>−GT −GT̃ = 0, which
holds as long as t ̸= t′ (see App. E for the case t= t′), the
Keldysh structure of G can be simplified. The Keldysh
rotation invokes the Keldysh indices k=1 and 2, where

ψ1 = 1√
2
(ψ− − ψ+) , ψ2 = 1√

2
(ψ− + ψ+) , (5)

and equivalently for ψ†. We can thus define a basis trans-
formation matrix D via ψk = Dkcψc:

D = 1√
2

(
1 −1
1 1

)
, D−1 = 1√

2

(
1 1
−1 1

)
. (6)

Rotating G as Gk|k′
=DkcGc|c′(D−1)c

′k′
yields

Gk|k′
=

(
G1|1 G1|2

G2|1 G2|2

)
=

(
0 GA

GR GK

)
, (7)

where G1|1 = 0 follows from the redundancy mentioned
above. We find the retarded propagator

GR(t1, t2) = −iΘ(t1 − t2)⟨{c(t1), c†(t2)}⟩, (8)

where {·, ·} denotes the anticommutator, and its ad-
vanced counterpart GA(t1, t2)= (GR(t2, t1))

∗, as well as
the Keldysh propagator GK(t1, t2)=−(GK(t2, t1))

∗ [54].
For a time-independent problem, we have G(t1, t2) =

G(t1 − t2) and frequency conservation with

G(ν) =

ˆ
dt eiνtG(t) , G(t) =

ˆ
dν

2π
e−iνtG(ν) . (9)

In the following, we consider thermal equilibrium at tem-
perature T and chemical potential µ, set to zero. Then,
the density matrix is ρ0 = e−H/T /Z (with kB = 1 and
Z=Tr e−H/T ), and the Keldysh components of G fulfill
the fluctuation-dissipation theorem (FDT) [54, 65]

GK(ν) = 2i tanh
(

ν
2T

)
ImGR(ν). (10)

B. Diagrammatic framework

The one-particle propagator can be expressed through
the bare propagator G0 and the self-energy Σ via the
Dyson equation. Using multi-indices 1, 1′, etc., we have

G1|1′ =
1 1′

=
1 1′

G0

+ Σ
1 2′ 2 1′

G0 G
,

(11)

where the internal arguments 2, 2′ are summed over. This
equation is solved by G= (G−1

0 −Σ)−1. The self-energy
has a Keldysh structure similar to Eq. (7),

Σk′
1|k1 =

(
Σ1|1 Σ1|2

Σ2|1 Σ2|2

)
=

(
ΣK ΣR

ΣA 0

)
, (12)

and ΣK(ν) = 2i tanh
(

ν
2T

)
ImΣR(ν), cf. Eq. (10).

The two-particle (or four-point) correlation function
G(4) can be expressed through the four-point vertex Γ,

G
(4)
12|1′2′ = G(4)

2′ 2

1 1′

=

2′ 2

1 1′

−

2′ 2

1 1′

+ Γ

2′ 2

1 1′

4 4′

3′ 3

,

(13)

where the internal arguments (3, 3′, 4, 4′) are again
summed over. From G(4), one obtains susceptibilities by
contracting pairs of external legs (see App. C for details).

The bare vertex, as the full vertex, is fully antisymmet-
ric in its indices. Thus, a purely local and instantaneous
interaction is of the type

(Γ0)σ′
1σ

′
2|σ1σ2

(t′1, t
′
2|t1, t2) = −Uδ(t′1= t′2= t1= t2)δσ1,σ̄′

2

× (δσ′
1,σ2

δσ′
2,σ1
− δσ′

1,σ1
δσ′

2,σ2
), (14)

with U > 0 for a repulsive interaction. This corresponds
to a Hugenholtz diagram (single dot) [68]

(Γ0)1′2′|12 =

1′

2′

1

2

=
σ

σ

σ̄

σ̄
−

σ̄

σ

σ̄

σ

.

(15)
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As the bare vertex is part of either H+ or H− in
Eq. (2), all its contour indices must be equal [54],

(Γ0)1′2′|12 = −c1 δc′1=c′2=c1=c2(Γ0)σ′
1σ

′
2|σ1σ2

(t′1, t
′
2|t1, t2).

(16)

It acquires a minus sign −c1 when moved from the for-
ward (c1 = −) to the backward (c1 = +) branch of the
Keldysh contour. After Keldysh rotation, one obtains

(Γ0)
k′
1k

′
2|k1k2

σ′
1σ

′
2|σ1σ2

=

{
1
2 (Γ0)σ′

1σ
′
2|σ1σ2

,
∑

i ki odd,
0, else, (17)

where
∑

i ki is short for k′1 + k′2 + k1 + k2.

C. Many-body approaches

So far, we defined the basic objects of interest, namely
one- and two-particle correlation functions in the KF,
encapsulated in the self-energy Σ and the 4p vertex Γ,

Σ1′|1 = Σ
1′ 1

, Γ1′2′|12 = Γ

2 2′

1′ 1

. (18)

One can derive a diagrammatic perturbation series for
each of them. However, to extend our description from
weak to intermediate coupling, we want to resum in-
finitely many diagrams. We use two strategies achieving
this: fRG [39, 69] and the PA [40]. We summarize both
schemes in turn and then comment on their relation.

In fRG, one introduces a scale parameter Λ into the
bare propagator G0, such that the theory is solvable at
an initial value Λ=Λi, while the original problem is re-
covered at a final value Λ = Λf (i.e., GΛf

0 =G0). Here,
we choose GΛi

0 very small, so that ΣΛi and ΓΛi can be
obtained by perturbation theory or by iterating the par-
quet equations (see below) until convergence. The final
results ΣΛf =Σ and ΓΛf =Γ are obtained by solving a set
of flow equations. In fact, the fRG provides an infinite
hierarchy of flow equations, which is in principle exact
but must be truncated in practice. The flow equations
for Σ̇=∂ΛΣ and Γ̇=∂ΛΓ in diagrammatic notation are

Σ̇ = −
Γ

, (19a)

Γ̇ = Γ Γ +
1

2 Γ Γ

−

Γ

Γ

+ Γ(6) . (19b)

The propagator with a dash is the single-scale propagator
S = ∂ΛG|Σ=const.; propagator pairs with a dash indicate
Π̇S = SG + GS. We adopt the one-loop fRG scheme
where the truncation consists of Γ(6)≈0. As is commonly
done, we then employ the so-called Katanin substitution
[70] where Π̇S is replaced by Π̇ = ĠG+GĠ.

The parquet formalism consists of solving a self-
consistent set of equations on the one- and two-particle
level. It involves the Schwinger–Dyson equation (SDE)

Σ = − − 1

2 Γ , (20a)

where the first term is the Hartree self-energy ΣH, as well
as the Bethe–Salpeter equations (BSEs)

γa = Ia Γ , (20b)

γp =
1

2 Ip Γ , (20c)

γt = −

It

Γ

. (20d)

Here, γr is the two-particle reducible vertex in a given
channel r∈{a, p, t}, while Ir=Γ−γr is the corresponding
two-particle irreducible vertex. The parquet equation

Γ = R+ γa + γp + γt (20e)

gives the full vertex in terms of the two-particle reducible
vertices as well as the fully irreducible vertex R. The set
of equations (20) is exact. However, R in Eq. (20e) is
not determined by an integral equation itself and serves
as an input, for which an approximation must be used in
practice. The PA is the simplest such approximation:

R = Γ0 +O[(Γ0)
4] ≈ Γ0. (21)

Thus, the set of equations (20) closes and can be solved
by standard means.
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The truncated (one-loop) fRG flow and the PA are
closely related but differ in details. An equivalence be-
tween them is established by the multiloop fRG [61–63]
(see also Refs. 64, 71–76): By incorporating additional
terms into the flow equations, which simulate part of the
intractable six-point vertex in the fRG hierarchy of flow
equations, the scale derivative of the self-energy and ver-
tex is completed to a total derivative of diagrams, which
are precisely the diagrams contained in the PA. Hence,
if multiloop convergence can be achieved, the regulator
dependence of the truncated fRG flow is eliminated, and
one obtains results equivalent to the PA. Here, we restrict
ourselves to one-loop fRG flows. Our numerical explo-
rations with multiloop fRG for the AM in the KF have
so far shown that the additional terms are numerically
less well behaved, requiring a prohibitively high numeri-
cal resolution. This task is therefore left for future work,
where compression techniques such as the new quantics
tensor cross interpolation scheme [33, 77, 78] could be
used to keep the needed numerical resources manageable.

D. Single-impurity Anderson model

The formalism introduced above is completely general
and can be applied, e.g., to lattice or impurity models
alike. Comparing Keldysh to Matsubara approaches, the
spatial or momentum degrees of freedom of lattice mod-
els are treated similarly in both cases. By contrast, the
temporal or frequency dynamics are naturally very dif-
ferent. In impurity models, the frequency dynamics are
isolated, saving the cost of including momentum vari-
ables. Hence, we consider in this paper the AM [49] in
thermal equilibrium. Its physical behavior is well under-
stood [48], and NRG [43] can be used to obtain highly
accurate real-frequency benchmark data.

The model is defined by the Hamiltonian

H =
∑
ϵσ

ϵc†ϵσcϵσ + (ϵd + h)n↑ + (ϵd − h)n↓ + Un↑n↓

+
∑
ϵσ

(Vϵd
†
σcϵσ +H.c.), (22)

with spinful bath electrons, created by c†ϵσ, and a lo-
cal level (d†σ). The latter has an on-site energy ϵd and
Coulomb repulsion U acting on nσ = d†σdσ. Although
we consider h = 0, we include the magnetic field in
Eq. (22) for a simple definition of the magnetic suscep-
tibility. The bath electrons are integrated out, yielding
the frequency-dependent retarded hybridization function
−Im∆R(ν) =

∑
ϵ π|Vϵ|2δ(ν − ϵ). We consider a flat hy-

bridization in the wide-band limit, ∆R
ν = −i∆, so that

the bare impurity propagator reads

GR
0 (ν) =

1

ν − ϵd + i∆
. (23)

We use the dimensionless parameter u=U/(π∆) for the
interaction strength on the impurity in units of the hy-
bridization strength to the bath. We focus on two choices

of the on-site energy: one with particle-hole symmetry,
ϵd=−U/2, and one without, ϵd=0. We refer to these as
the symmetric AM (sAM) and asymmetric AM (aAM),
respectively.

For the sAM, ΣH=U/2 is conveniently absorbed into
the bare propagator,

GR
0 → GR

H =
1

ν − ϵd + i∆− ΣH
=

1

ν + i∆
. (24)

For perturbative calculations in the aAM (as in PT2 or
to initialize the parquet iterations), we also replace G0

by GH (see App. E for details).
For the fRG treatment, we use the hybridization flow

[54], where ∆ acts as the flow parameter and is decreased
from a very large value to the actual value of interest.
This is convenient because every point of the flow de-
scribes a physical system, at the given values of ∆, U ,
T . In other words, the fRG flow provides a complete pa-
rameter sweep in ∆, while the other parameters (U , T )
remain fixed. Then, the fRG single-scale propagator is

SR(ν) = ∂∆G
R(ν)

∣∣
Σ=const. = −i[G

R(ν)]2. (25)

In the limit ∆→∞, the values of Γ and Σ are [54]

Γ
∣∣
∆=∞ = Γ0, ΣR

∣∣
∆=∞ = ΣH = U⟨nσ⟩. (26)

Note that while all vertex diagrams of second order or
higher vanish as ∆ → ∞, the first-order contribution
of ΣR/A (the Hartree term ΣH) is finite. As discussed in
App. E, ΣH is given by an integral over G<, which gives a
finite value U⟨nσ⟩ even in the limit ∆→∞. In practice,
we start the flow at a large but finite value of ∆, and use
the self-consistent solution of the parquet equations as
the initial conditions for Σ and Γ, as they can be easily
obtained for sufficiently large ∆.

E. Benchmark methods

As a real-frequency benchmark method, we use NRG
in a state-of-the-art implementation based on the QSpace
tensor library [79–81]. We employ a discretization pa-
rameter of Λ=2, average over nz=6 shifts of the logarith-
mic discretization grid [82], and keep up to 5000 SU(2)
multiplets during the iterative diagonalization. Dynam-
ical correlators are obtained via the full density-matrix
NRG [83, 84], using adaptive broadening [85, 86] and a
symmetric improved estimator for the self-energy [87].
We also extract zero-temperature quasiparticle param-
eters from the NRG low-energy spectrum [88–94]. Di-
viding the quasiparticle interaction Ũ by the square of
the quasiparticle weight Z2 yields the 4p vertex at van-
ishing frequencies Γ↑↓(0). Thereby, we obtain Γ↑↓(0) =
−Ũ/Z2 at T = 0 very efficiently and accurately. For a
finite-temperature estimate, we divide Ũ by the finite-
temperature Z deduced from the dynamic self-energy as
opposed to the zero-temperature Z following from the
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low-energy spectrum. We also compute the dynamical
4p vertex in the Keldysh formalism, exploiting the re-
cent advances described in Refs. 34 and 35.

For completeness, we also compare our results to PT2.
Pertubation theory of the AM is known to work well when
expanding around the nonmagnetic Hartree–Fock solu-
tion [60, 95–98]. PT2 famously and fortuitously (cf. the
iterated perturbation theory in the DMFT context [42])
gives very good results for the self-energy of the sAM,
where ϵd =−U/2 and ΣH cancel exactly. The reason is
that ΣPT2 is correct in the limits u → 0 and u → ∞.
In the latter case, the spectrum − 1

π ImG
R consists of

two discrete peaks, and, in the sAM, the resulting ex-
pression for ΣR =1/GR

0 − 1/GR is (U/2)2/(ν+i0+), co-
inciding with PT2. One may further note that correc-
tions to ΣPT2 start at order u4, as only even powers con-
tribute to the expansion of Σ for the sAM, and that the
expansion converges very quickly (see Fig. 3.6 and 3.7
in Ref. 96). Additionally, the high-frequency asymptote
limν→∞ ν(ΣR−ΣH) is fully captured by PT2, as the gen-
eral expression U2⟨nσ⟩(1−⟨nσ⟩) reduces to (U/2)2 (with
⟨nσ⟩=1/2 in the sAM), i.e., the second-order result.

For the aAM, ΣH must first be determined in a self-
consistent way. This is crucial as ⟨nσ⟩ is not well approx-
imated by few orders in u (recall the Friedel sum rule at
T =0 [99], ⟨nσ⟩ = 1

2− 1
π arctan[(ϵd +Σ(0))/∆]). The self-

consistent Hartree propagator fulfills the Friedel sum rule
at T =0, but the resulting ⟨nσ⟩ for given ϵd is of course
not exact. When using PT2, we compute quantities of
interest, such as ΣPT2, using the Hartree propagator (see
App. F for details). However, in contrast to the sAM,
ΣPT2 is not exact at u→∞ (cf. Ref. 100), odd powers in
u contribute to Σ, and the high-frequency asymptote of
ΣPT2, involving ⟨nσ⟩, is not reproduced exactly.

Finally, we also compare our fRG and PA results to
“K1SF calculations” mimicking the previous state of the
art in Keldysh fRG. References 54, 55, and 58 used a
scheme where the full vertex is decomposed into the three
channels [cf. Eq. (20e)] and, for each two-particle re-
ducible vertex γr, only the dependence on the bosonic
transfer frequency is retained (see Eq. (76) in Ref. 55):

Γ ≈ Γ0 +
∑

r=a,p,t

γr(ωr). (27)

Note that, within Matsubara fRG, Ref. 101 com-
pared this simplification (called “Appr. 1” therein) to
the full parametrization. When inserting the vertex
parametrized according to Eq. (27) into the self-energy
flow (19a), no further approximations are needed. How-
ever, when inserting the vertex on the right of the vertex
flow equation (19b), the inter-channel contributions are
approximated by their static values (in thermal equilib-
rium with µ = 0, see Eq. (83) in Ref. 55)

Γ
∣∣∣
RHS(γr)

≈ Γ0 + γr(ωr) +
∑
r′ ̸=r

γr′(ωr′)
∣∣∣
ωr′=0

. (28)

With this approximation the only frequency dependence
of the integrands lies in the propagator pair. By contrast,

an exact decomposition of each γr has the form [2]

γr(ωr, νr, ν
′
r) = K1r(ωr) +K2r(ωr, νr)

+K2′r(ωr, ν
′
r) +K3r(ωr, νr, ν

′
r). (29)

(The frequency arguments ωr, νr, ν′r are defined in
App. A, Fig. 12.) Thus, the above approximation can
be understood by retaining only the K1r contributions
while ensuring a static feedback (SF) between the differ-
ent channels—hence the abbreviation K1SF.

Within K1SF, there are different ways of treating the
feedback from the self-energy. Previous works found bet-
ter results at T = 0 by inserting only the static rather
than full dynamic Σ into the propagator [56]. We con-
firm this finding at T = 0 but observed that the static Σ
feedback has problems at T ̸=0, failing, e.g., the require-
ment ImΣ<0. Instead, we obtained much better results
(particularly fulfilling ImΣ<0) by using the full dynamic
Σ feedback together with the Katanin substitution [70].

F. Note on the numerical implementation

Compared to the more common Matsubara formalism
(MF), the KF entails notable differences in the numeri-
cal implementation that we summarize here (see App. G
for details). Most importantly, while finite-temperature
Matsubara computations employ a discrete set of (imag-
inary) frequencies, Keldysh functions depend on contin-
uous (real) frequencies. Furthermore, the Keldysh index
structure increases the number of components of the cor-
relators (to be computed and stored) by a factor of 4 and
16 for 2p and 4p objects, respectively. Hence, working
in the KF requires considerably higher effort in terms of
implementational complexity and numerical resources.

To minimize systematic numerical errors, a faithful
representation of the vertex functions is essential. The
decomposition (29) of the reducible vertices [2] is benefi-
cial for capturing the high-frequency asymptotics. In-
deed, the lower-dimensional asymptotic functions, K1

and K2(′) , allow for a good resolution at comparably
low numerical cost. A good resolution of the continuous
Keldysh functions further necessitates a suitable choice
of sampling points. We use a frequency grid with high
resolution at small frequencies, where the vertices show
sharp features, and fewer points at higher frequencies. In
fRG with the hybridization flow, the frequency grids also
have to be rescaled to account for changes scaling with
∆; for fully adaptive grids (which were not required in
this work, cf. App. G) see also Refs. 73, 74, and 76.

Continuous-frequency computations also require effi-
cient integration routines. We use an adaptive quadra-
ture routine to capture the essential features of sharply
peaked functions (cf. App. G). The additional numerical
costs due to the Keldysh index structure can be mitigated
by vectorization, i.e., by exploiting the matrix structure
of the summation over Keldysh components. Storing all
Keldysh components contiguously in memory allows for
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Ã
(ν

)

u = 1.00

fRG

PA

NRG

K1SF

PT2

−2.5 0.0 2.5

ν/∆

0.0

0.5

1.0

Ã
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Figure 1: Spectral functions Ã(ν) ≡ π∆A(ν) for three
interaction values u in the symmetric AM (sAM, left)
and the asymmetric AM (aAM, right). Deviations be-
tween the methods appear with increasing u. Here and
in all subsequent figures, we consider a temperature of
fixed T/U = 0.01. At u= 1.5 in the sAM, the onset of
Hubbard bands centered at ν = ±U/2 is only captured
by NRG and (for reasons explained in Sec. II E) PT2. At
this interaction strength, fRG underestimates the quasi-
particle peak, and we were unable to converge the PA
results.
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Figure 2: Imaginary part of the retarded self-energy, or-
ganized as in Fig. 1. The limitations of PT2 in the aAM
are clearly exposed. The PA results are closest to NRG
at u=0.75 for both sAM and aAM, and at u=1 for the
aAM (this corresponds to the regime of not too strong
correlation, Z ≳ 0.8, see Fig. 7). Artifacts appear at u=1
in the sAM (where Z≈0.65, see Fig. 7). Throughout, the
fRG results with full frequency dependence match NRG
better than those in the K1SF simplification.

efficient access to matrix-valued vertex data, which can
be combined to matrix-valued integrands via linear al-
gebra operations. (Note that vectorization over Keldysh
components requires a quadrature routine that accepts
matrix-valued integrands.) Symmetries are used to re-
duce the data points that are computed directly, and
most resulting symmetry relations are compatible with
vectorization over Keldysh indices (see App. A)

Lastly, the fRG and the parquet solver generally have
the advantage that computations can be parallelized ef-
ficiently over all combinations of external arguments.
We use OMP and MPI libraries to parallelize execution
across multiple CPUs and compute nodes.

III. RESULTS

In the results, we focus on retarded correlation func-
tions like GR, ΣR, and χR. For brevity, we denote the
real and imaginary parts of, say, GR by G′ and G′′,
respectively, i.e., GR = G′+ iG′′. Since the fRG flow
varies ∆ at fixed U and T , we consider a temperature of

T/U = 0.01. Most plots show results both for the sAM
(ϵd = −U/2) and aAM (ϵd=0). Recall that u=U/(π∆).

A. Dynamical correlation functions

As a first quantity that is directly measurable in ex-
periment, we show in Fig. 1 the spectral function Ã(ν)≡
π∆A(ν)=−∆G′′(ν). The absorbed factor of π∆ ensures
Ã(0) = 1 for the sAM and T → 0. We consider three
values of u ∈ {0.75, 1, 1.5}, referred to as “small”, “in-
termediate”, and “large” in the following (although truly
large interactions in the AM rather are u≳2 [60]). There
are no PA results for large u, as we could not converge
the real-frequency self-consistent parquet solver there.

At small u, the curves produced by all methods are
almost indistinguishable. Small but noticeable deviations
occur for the aAM at intermediate u, and pronounced
deviations are found at large u. At u=1.5 in the sAM,
only the methods exact in the u→∞ limit (cf. Sec. II E),
NRG and PT2, produce notable Hubbard bands centered
at ν =±U/2, while fRG also underestimates the height
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of the quasiparticle peak. Nevertheless, one may come
to the conclusion that all methods agree to a reasonable
degree of accuracy. Note, though, that at small u, where
Σ is small, GR = 1/([GR

0 ]
−1−ΣR) and thus also A(ν)

are dominated by the bare propagator. As all nontrivial
features of A(ν) = 1

π
∆−Σ′′(ν)

[ν−ϵd−Σ′(ν)]2+[∆−Σ′′(ν)]2 come from
Σ, we can gain more insight by looking at Σ directly.

In Fig. 2, we plot the negative imaginary part of the
retarded self-energy −Σ′′(ν) in units of the hybridization
strength ∆. This quantity is strictly non-negative [87],
which is a useful and non-trivial consistency check for all
our methods. Here, deviations between the methods are
visible at each value of u. At small u, the results mostly
agree, albeit better for the sAM than for the aAM. At
small and intermediate u in the aAM, the PA matches
NRG most closely and also captures the peak position
correctly, in contrast to fRG, K1SF, and PT2. Strik-
ingly, though, for intermediate u in the sAM (which is the
more strongly correlated setting with lower quasiparticle
weight Z, see Fig. 7), the PA shows considerable devia-
tions from NRG: Σ′′ has a “deformation” in that its max-
ima are misplaced outward. We performed a separate PA
calculation in the MF to confirm that the corresponding
MF result perfectly matches the “trivial” analytic con-
tinuation from KF to MF, − 1

π

´
dν′Σ

′′(ν′)
iν−ν′ , see Fig. 3.

Hence, we conclude that the Keldysh self-energy did not
acquire artifacts during the real-frequency self-consistent
parquet iteration. Instead, the deformations are a de-
ficiency of the PA solution at u = 1, which are obvious
in our Keldysh results, but could not have been guessed
from the more benign Matsubara self-energy (Fig. 3).

We also observe from Fig. 2 that the PT2 results be-
come much worse as soon as one leaves the special case of
particle-hole symmetry (see Sec. II E). The results from
fRG with full frequency dependence are better than the
ones from K1SF, showing that the frequency dependence
of Σ is only generated correctly if the dependence of the
4p vertex on its three frequencies is kept [39]. In fact, for
large u in the aAM, the K1SF result becomes negative
(with values on the order of 10−5) at around ν/∆ ≃ ±2,
thus failing the previously mentioned consistency check.

The inadequacies of a constant vertex manifest them-
selves even in the constant Hartree part of the self-energy,
ΣH = U⟨nσ⟩, shown in Fig. 4. The fRG and PA calcu-
lations produce the NRG value almost exactly, but the
K1SF curve starts to deviate early. We attribute this to
the fact that diagrammatic contributions beyond the K1

level are neglected, introducing an error ofO(U3) into the
flow of Σ, including ΣH, see Eq. (E5). The PT2 curve
shows the converged values obtained from self-consistent
evaluations of the Hartree diagram (see App. E), which
enters the Hartree propagator used in all PT2 computa-
tions. The self-consistency is likely the reason why PT2
performs better than K1SF (which does not obey such a
self-consistency) for small and intermediate u.

Apart from Ã and Σ, other dynamical quantities of
interest are susceptibilities. In the diagrammatic meth-
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−
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ν
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∆
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PA MF

PA KF→ MF

NRG

0 2 4 6 8 10

νn/∆
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0.2

0.3

−
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Σ
(i
ν
n

)/
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u = 1.00

Figure 3: Imaginary part of the Matsubara self-energy in
NRG and the PA. The PA results stem from an indepen-
dent solver implemented in the MF and from the “triv-
ial” analytic continuation of Σ′′ obtained in the KF. The
qualitative difference between NRG and PA observed in
the real-frequency results of Fig. 2 at u = 1 can hardly
be guessed from these imaginary-frequency results.

0 0.5 1 1.5u
0

0.5

1

Σ
H
/
∆

fRG

PA

NRG

K1SF

PT2

Figure 4: Hartree self-energy ΣH = U⟨nσ⟩ in the
aAM. PT2 corresponds to self-consistent solutions of the
Hartree term. Only fRG and PA agree well with NRG.

ods, these are derived directly from the 4p vertex (see
App. C). We consider the imaginary part of the re-
tarded magnetic and density dynamical susceptibilities
χ̃m/d(ω) ≡ π∆χm/d(ω), paying special attention to the
peak position and height. The peak position of χ̃m

shown in Fig. 5 is proportional to the Kondo temper-
ature and decreases with increasing u in the sAM. All
methods apart from K1SF produce good results at small
u with only minor deviations from NRG. The deviations
are smallest in PA from small to intermediate u, until the
PA results are no longer available at large u. fRG pro-
duces reasonable curves but, at large u, under- or over-
estimates the peak in the sAM and aAM, respectively.
K1SF does not produce sensible results for any u con-
sidered, while PT2 performs well for the aAM but yields
worse results than fRG in the sAM.

The density susceptibility shown in Fig. 6 is centered
at larger frequencies and has smaller magnitude than its
magnetic counterpart. Indeed, while χ̃m and χ̃d are equal
at u = 0, increasing interaction values discriminate be-
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Figure 5: Imaginary part of the dynamical magnetic sus-
ceptibility, χ̃m(ω)≡π∆χm(ω). At small to intermediate
u, all methods (except K1SF) produce good results, while
PA matches NRG best. Toward large u, fRG does not
capture the peak correctly. PT2 performs well for the
aAM but not the sAM; K1SF is off in all cases.
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Figure 6: Imaginary part of the dynamical density sus-
ceptibility, χ̃d(ω) ≡ π∆χd(ω). Both fRG and the PA
produce good results. The artifact in the PA solution at
u = 1 in the sAM observed in Fig. 2 is also seen here,
while it was not apparent in Fig. 5. Neither PT2 nor
K1SF produce sensible results for χ̃d.

tween spin fluctuations (enhanced) and charge fluctua-
tions (reduced). Here, fRG and the PA both produce ac-
ceptable results. However, the PA data at intermediate
u and in the sAM shows a deformation around ω/∆≃5,
reminiscent of the deformation in Σ′′ (cf. Fig. 2). The
K1SF curve for χ̃d (as for χ̃m) is not sensible, this time
lying far above (rather than below) the NRG curve. PT2
for χd, differently from χm, is unreliable, yielding a qual-
itatively wrong double-peak structure.

In summary, we find that the PA results generically re-
produce the NRG benchmark best, but are available only
up to intermediate u. Our new fRG computations with
the full frequency dependence of the vertex drastically
improve upon the K1SF results in almost every case, but
become quantitatively off with increasing u.

B. Static properties

We now turn to static quantities, obtained from Σ and
Γ by setting all frequency arguments to zero. Though
these can also be obtained using the imaginary-frequency
MF (see Ref. 101 for an early MF fRG treatment of the
AM), they serve as important consistency checks for our
Keldysh computations. The zero-frequency fermion ob-
jects can be used for an effective low-energy description,
and, by rescaling, converted to quasiparticle parameters

as in Hewson’s renormalized perturbation theory [102].
For the AM in the wide-band limit at T = 0, the static
fermionic quantities can also be deduced from the static
susceptibilities. We hence consider the static magnetic
and charge susceptibilities as well, before analyzing the
zero-temperature identities in the next subsection.

By virtue of the ∆ flow, see Sec. IID, a single fRG
computation suffices to obtain the entire dependence of,
e.g., Z(u) (at fixed T/U). By contrast, the PA requires
separate computations for every value of u, resulting in
a significantly bigger numerical effort. The top row of
Fig. 7 shows the quasiparticle weight

Z =
(
1− ∂νΣ′∣∣

ν=0

)−1
, (30)

as extracted from the slope at ν = 0 of the real part of the
retarded self-energy, Σ′. In all cases, the PA reproduces
the NRG benchmark best, but is again only available
up to u ≲ 1. The fRG curve follows NRG for small u
but starts to deviate already at intermediate u. K1SF
performs very well in the sAM, but deviates from NRG
in the aAM earlier than fRG. Since PT2 reproduces the
NRG full self-energy very well for the sAM (cf. Fig. 2),
the same applies to Z. In the aAM, PT2 also produces
reasonable results for Z, in contrast to Σ′′(ν) in Fig. 2.

The second row of Fig. 7 displays the scattering rate
−Σ′′(0) on a logarithmic scale. In the sAM, all methods
agree reasonably well up to intermediate u. Beyond that,
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Figure 7: Static fermionic properties as a function of
u: quasiparticle weight Z, scattering rate −Σ′′(0) on a
logarithmic scale, and effective interaction (k=12|22) in
units of the bare interaction. Overall, the PA (available
for u ≲ 1) matches NRG best, except for Σ′′(0) at u ≃
1 in the aAM. All other methods agree reasonably well
(except for Z and Σ′′(0) in the aAM in K1SF). Strikingly,
fRG strongly overestimates the effective interaction.

fRG significantly overestimates −Σ′′(0) (cf. Fig. 2). In
the aAM, the fRG results are slightly better. The PA
yields the best agreement with NRG, except for u≃1 in
the aAM where numerical artifacts appear. K1SF shows
large deviations early on, matching the observations in
Fig. 2. PT2 reproduces NRG almost exactly, even though
this is not the case for Σ′′(ν) (Fig. 2) in the aAM.

The last row of Fig. 7 shows the effective interaction.
The PA accurately reproduces the NRG results. In strik-
ing contrast, fRG overestimates the effective interaction
very strongly. (This can also be seen in Fig. 11 be-
low, third row, columns four to six, where the frequency-
dependent vertex is plotted.) PT2 and K1SF yield only
very weak renormalizations of the bare vertex (none at
all in PT2 in the sAM).

Figure 8 shows the static magnetic and density suscep-
tibilities,

χm = 1
4∂h⟨ñ↑ − ñ↓⟩

∣∣
h=0

, χd = 1
4∂ϵd⟨ñ↑ + ñ↓⟩, (31)

where ñσ = nσ −⟨nσ⟩. Again, the PA results, where
available, reproduce the NRG benchmark best. The
fRG results are reasonable up to intermediate u for
χ̃′
m/d(0) = π∆χm/d. A comparison with the results ob-

tained by an independent MF computation (dashed lines
in Figure 8) reveals that the KF data at the largest u
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Figure 8: Static susceptibilities as a function of u. fRG
yields sensible results until χ̃′

m has a maximum at u ≈
1.3. PA data are available only for u ≲ 1, but show
excellent agreement with NRG there. Results from K1SF
and PT2 (for χ̃d) are rather bad.

values is not fully converged in the size of the frequency
grid (see App. I for details). As for the dynamical sus-
ceptibilities, K1SF does not produce sensible results at
all. PT2 gives fairly good results, in particular for χ̃′

m

in the aAM (see also Fig. 5), but χ̃′
d in the sAM quickly

deviates from NRG rather strongly (as it did in Fig. 6).
In summary, for all the static properties shown in

Figs. 7 and 8, the PA results agree very well with NRG
for all u for which the parquet solver converged, i.e., up
to u ≲ 1. By contrast, fRG results begin to deviate from
NRG somewhat earlier than PA, sometimes even much
earlier. This difference is most striking for the effective
interaction in the bottom panels of Figs. 7, where the per-
formance of fRG is surprisingly (even shockingly) poor.

This comparatively poor performance of fRG may be
due in part to the well-known fact that one-loop fRG
results depend on the choice of the fRG regulator. Fig-
ure 9 illustrates this in the present context by comparing
our KF results with independent calculations in the MF.
For the latter, we used three different regulators, called
∆ flow (same as for our KF computations), U flow, and
ω flow. (See Eqs. (3) and (4) in Ref. 64 for definitions
of the U and ω flow. The ω and U flows require many
more separate computations than the ∆ flow, since the
former two hold T/∆ fixed (the ω flow also T/U), while
the latter holds T/U fixed.) From Fig. 9, we note three
salient points. First, the MF and KF results for the ∆
flow match. This is expected for numerically converged
calculations and serves as a useful consistency check. Sec-
ond, the U flow deviates from the NRG benchmark very
early. Third, the best MF result is obtained from the
ω flow (similarly as observed in Ref. 64). Regrettably,
though, this advantage of the MF ω flow is not relevant
for the KF: there, the ω flow would violate causality [54]
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Figure 9: Effective interaction (k=12|22) of the sAM in
units of the bare interaction, including fRG results in the
MF obtained with three different regulators. The MF re-
sult in the ∆ flow perfectly matches its KF counterpart.
The U flow performs considerably worse, as it quickly de-
viates from NRG. By far the best result is obtained using
the ω flow, which can however not be used in the KF (see
the main text for details). In the MF, we approximate
vanishing frequencies by averaging over the lowest Mat-
subara frequencies, γr(0) ≈ 1

4

∑
ν,ν′=±πT γr(0, ν, ν

′).

and hence cannot be used. This, and the poor perfor-
mance of the U flow, is the reason why we chose the ∆
flow for all our KF computations.

C. Zero-temperature identities

As an internal consistency check for each method, we
consider four Fermi-liquid identities. These hold T = 0
and, more generally, at T≪TK, where TK is the Kondo
temperature. We deduce TK as TK=1/[4χ′

m(0)]|T=0 (see,
e.g., Eq. (20) in Ref. 103) from zero-temperature NRG
calculations. The resulting values for u ∈ {0.75, 1, 1.5}
are TK/U ∈ {0.31, 0.18, 0.07} for the sAM and TK/U ∈
{0.58, 0.45, 0.32} for the aAM. Note that the Kondo
regime of the sAM corresponds to u≳2 [102].

First, for a constant hybridization function in the wide-
band limit, we have the following two “Yamada–Yosida
(YY) identities” generalized to arbitrary ϵd (see Eq. (6.1)
in Ref. 96 and Eq. (7) in Ref. 98, Eqs. (24)–(25) in
Ref. 102, or Eqs. (4.30)–(4.33) in Ref. 104):

Z−1 = [χm(0) + χd(0)]/ρ(0), (32a)
−ρ(0)Γ↑↓(0) = [χm(0)− χd(0)]/ρ(0). (32b)

Here, ρ(0)≡A(0)|T=0 is the spectral function evaluated
at ν=0 and T =0,

ρ(0) =
1

π

∆

[ϵd +Σ′(0)]2 +∆2

=
1

π∆
·
{
1 for ϵd = −U/2

1
1+[Σ′(0)/∆]2 for ϵd = 0

. (33)

Next, Γ↑↓(0) is the full Matsubara 4p vertex evaluated
at vanishing frequencies (in the zero-temperature limit).
The minus sign in Eq. (32b) stems from our convention
of identifying, e.g., the bare Matsubara vertex Γ0,↑↓ with

−U . The analytic continuation of ℓp functions between
Matsubara and retarded Keldysh components involves a
factor 2ℓ/2−1 (see Eq. (69) in Ref. 34). Hence,

Γ↑↓(0) = 2Γk
↑↓(0),

k ∈ {(12|22), (21|22), (22|12), (22|21)}. (34)

Another identity derived by YY (see Eqs. (13)–(15)
and (18) in Ref. 98, Eqs. (31) and (34) in Ref. 102, or
Eq. (4.37) in Ref. 104) implies

−Σ′′(ν) = 1
2πρ(0)

3[Γ↑↓(0)]
2(ν2+π2T 2) (35)

for |ν|, T ≪ TK. We check this relation by fitting Σ′′ ∝
(ν2+π2T 2). Finally, the Korringa–Shiba (KS) identity
(see Eq. (1.4) in Ref. 105) reads

lim
ω→0

χ′′
m(ω)/ω = 2π [χ′

m(0)]
2
. (36)

To check the fulfillment of these identities, we ana-
lyze the relative difference 2(LHS−RHS)/(LHS+RHS)
of Eqs. (32a), (32b), (35) (36), referred to as YY1, YY2,
YY3, KS, respectively. These zero-temperature identities
of the AM only hold if T ≪ TK. As we keep T/U =0.01
constant, the temperatures increase with u, and T≪TK
is no longer fulfilled for u≳ 1 in the sAM. Accordingly,
there, the identities are violated even in NRG.

As can be seen in Fig. 10, the PA fulfills most identities
very well (below 8% throughout), but is again available
only up to u≃1. The fRG results obey YY1 up to u≲1,
but show clear deviations in all other identities, setting
in already for for very small values of u. Except for the
KS relation in the fourth row, PT2 mostly fulfills the
identities for the sAM but less so for the aAM, while
K1SF shows major deviations, even for small u.

D. Frequency dependence of the 4p vertex

Finally, we show fRG and PA results for the frequency
dependence of the 4p vertex in the sAM and compare
them to corresponding results from NRG. We restrict
ourselves to a fully retarded Keldysh component [34] and
show both the same-spin (↑↑) and the opposite-spin (↑↓)
components. We plot the vertex in the two-dimensional
frequency plane (ωt = 0, νt = ν, ν′t = ν′) in the natural
parametrization of the t channel for zero transfer fre-
quency. Physically, this corresponds to the effective in-
teraction of two electrons on the impurity with equal or
opposite spins, respectively, and energies ν, ν′ without
energy transfer [69]. The NRG 4p results are computed
with the scheme introduced in Refs. 34 and 35, utilizing
the symmetric improved estimator of Ref. 106.

In Fig. 11, we compare results from fRG, the PA, and
NRG for two values of the interaction u ∈ {0.5, 1}. We
observe good qualitative agreement throughout, as all
methods capture all nontrivial features. At u= 1, how-
ever, we observe a qualitative discrepancy in the data:
ReΓ↑↓ is strictly positive in fRG and slightly negative in
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Figure 10: Relative difference between the left- and right-
hand sides of the four zero-temperature identities as a
function of u. All calculations have finite T/U = 0.01;
thus, even NRG violates the identities if T ≪ TK is no
longer fulfilled. Apart from NRG, the PA shows the
smallest violations of these identities (below 8% through-
out), but is only available for u ≲ 1. The fRG data
fulfills YY1 relatively well, but shows clear deviations
otherwise, setting in already for very small values of u.
For YY2, e.g, the deviations become significant already
at u ≳ 0.25. PT2 obeys the identities (except KS) in the
sAM but not the aAM. K1SF shows major deviations
throughout.

NRG (bottom part, top row, first panel from the right
in Fig. 11). The PA result reaches even larger negative
values and retains them for a large range of ν values.
This strong negative signal appears to be an artifact of
the PA; it would likely be canceled by additional contri-
butions missed in the PA.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have shown that real-frequency QFT
calculations with full frequency resolution of the 4p ver-
tex are feasible. We chose the AM for a proof-of-principle
study and employed one-loop fRG flows and solutions of
the parquet equations in the PA, benchmarked against

NRG. We compared dynamical correlation functions as
well as characteristic static quantities and performed a
detailed numerical check of zero-temperature identities.
We found that keeping the full frequency dependence of
the 4p vertex in fRG strongly improves the accuracy com-
pared to previous implementations using functions with
at most one-dimensional frequency dependencies. Note
that the present study is performed at finite tempera-
ture, T/U=0.01, in contrast to previous work on spectral
functions at T =0 [55].

The numerical challenges imposed by the fully
parametrized real-frequency 4p vertex were overcome via
a suitably adapted frequency grid, vectorization over the
Keldysh matrix structure, and a parallelized evaluation
of the fRG or parquet equations (see App. G). We em-
ployed frequency grids with up to 1253 data points, and
our most expensive calculation consumed about 25000
CPU hours for a single data point in the PA.

The PA results could be converged only for u=U/(π∆)
in the range u ≲ 1, but there gave the best agreement
with NRG (except at the boundary of the accessible u
range). The PA also gave very good results for the ef-
fective interaction. However, by looking at Γk

↑↓ in a fre-
quency range around the origin, it appears that the mech-
anism by which the PA achieves low values of |Γk

↑↓(0)|
(compared to, say, fRG) is different from that of NRG,
as the PA data has a spuriously large regime of strongly
negative values in ReΓk

↑↓.
The fRG calculations in the present context were com-

paratively economical, since a single run with the “∆
flow” yields an entire parameter sweep in ∆. The flow
could be followed to large values of u, well beyond 1,
i.e., far beyond the regime where we could converge the
PA. However, for u ≳ 0.5 these one-loop fRG results are
significantly less accurate than the PA (as compared to
NRG). Strikingly, fRG strongly overestimates the effec-
tive interaction Γk

↑↓(0) by factors of 3 to 4 for u in the
range 1 to 1.5. We compared the Keldysh to Matsubara
fRG data obtained using three different regulators, and
we found that, for u>0.5, the latter strongly depend on
the choice of regulator: For the ∆ flow, the Matsubara
results agree with the Keldysh results, while performing
better than the U flow but worse than the ω flow. Re-
grettably, the ω flow is not available in the KF, where it
violates causality. It would hence be worthwhile to find
Keldysh fRG regulators akin to the ω flow but compat-
ible with the KF requirements regarding causality and
FDTs [54].

The regulator dependence in fRG can be eliminated in
the multiloop fRG framework, yielding results equivalent
to the PA upon convergence in the number of loops [61–
63]. This has been demonstrated numerically in imag-
inary frequencies for the AM [64] (and in Refs. 71 and
72 for the Hubbard model). Yet, using a multiloop ex-
tension of our Keldysh fRG code, we found the compu-
tation of multiloop contributions considerably harder for
Keldysh vertices than for Matsubara vertices. The rea-
son seems to be that, for real-frequency Keldysh vertices,
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Figure 11: Fully retarded (k=12|22) Keldysh component of the full vertex, (Γk
σσ′(ωt=0, νt=ν, ν

′
t=ν

′)−Γk
0,σσ′)/Γk

0 ↑↓,
for u=0.5 (top panel) and u=1 (bottom), computed using fRG, PA and NRG (following Refs. [34, 35]). We observe
very good agreement for u=0.5, which, qualitatively, mostly persists for higher interaction. However, ReΓ↑↓ at u=1
and low frequencies differs significantly between the methods: it is strictly positive in fRG, slightly negative in NRG,
but much more strongly negative up to fairly large values of ν in the PA. Generally, the PA shows more complicated
features than NRG for larger u, despite being numerically converged, indicating the breakdown of the PA.

the higher-loop contributions for increasing u show a con-
siderably more complicated frequency structure than the
original fRG vertex itself (similarly to how the PA ver-
tex has more structure than its fRG counterpart in the
bottom panel of Fig. 11). A more detailed analysis along
these lines is however left for future work.

Our work paves the way for many follow-up studies.
For instance, one can exploit the power of the KF to
study non-equilibrium phenomena, and the AM with a
finite bias voltage is tractable with only minor increase
in the numerical costs [55, 107]. Further, we here con-
sidered moderate interaction strengths u ≲ 1.5 as it is
known that fRG and the PA are unable to access the
non-perturbative regime of the AM [20, 64] or, e.g., the
Hubbard model [72, 108]. An important future direc-
tion is, therefore, to use these methods in a more indi-
rect manner, as real-frequency diagrammatic extensions
[41] of dynamical mean-field theory [42]. The first, es-
tablished building block for this is the non-perturbative
input, namely 2p and 4p vertices, from NRG [34, 35].

The present work presents another building block: real-
frequency QFT with full frequency resolution of the 4p
vertex. An important next step will be to use our di-
agrammatic framework to study the consistency of the
NRG results for the 2p and 4p vertices, e.g., by check-
ing whether they fulfill the SDE. The final building block
will then be to include momentum degrees of freedom in
real-frequency QFT approaches built on top of NRG.

Keeping track of the momentum dependence will lead
to a major increase in numerical complexity. This can be
addressed using economical implementations and com-
pression algorithms such as truncated-unity approaches
[109–112] or the new quantics tensor cross interpolation
scheme [33, 77, 78]. The latter can be used to ob-
tain highly compressed tensor network representations
of multi-dimensional functions, potentially leading to ex-
ponential reductions in computational costs. First in-
vestigations have shown that the objects encountered in
diagrammatic many-body approaches may indeed have
strongly compressible quantics representations [77].
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DATA AND CODE AVAILABILITY

All raw data required to reproduce the plots as
well as the full data analysis and the plotting scripts
are available under https://opendata.physik.lmu.de/
ar879YbJwUpAM2S. A separate publication of the fully
documented source code used to generate the raw data
is in preparation.
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Appendix A: The two-particle vertex

In compact notation, we denote the vertex by Γ1′2′|12
where each leg carries a multi-index i = (ki, σi, νi) with
Keldysh index ki, spin σi, and fermionic frequency νi.
Generic symmetries of the full Keldysh vertex are derived
in Ref. 56 and other symmetries (such as spin or particle-
hole symmetry) are given in Ref. 113. In the following,
we recap these symmetries and detail the parametriza-
tion in our implementation. First, we work with Keldysh
indices rather than contour indices. In this basis, the
11...1 (22...2) component of a multipoint correlator (ver-
tex) vanishes [56]. This simplifies, e.g., the Dyson equa-
tion, GR = [(GR

0 )
−1 − ΣR]−1 and implies Γ22|22 = 0.

Furthermore, crossing symmetry gives

Γ1′2′|12 = −Γ2′1′|12 = −Γ1′2′|21 = Γ2′1′|21, (A1)

and complex conjugation

Γ1′2′|12 = (−1)1+
∑

i kiΓ∗
12|1′2′ . (A2)

Thermal equilibrium entails (generalized) fluctuation-
dissipation relations between different Keldysh compo-
nents. However, we choose to vectorize the code over
Keldysh components and thus do not use these relations

(see App. G for details on the vectorization). For a com-
prehensive list of multi-point fluctuation-dissipation re-
lations, we refer to Refs. 56, 114, and 115. They are very
well fulfilled (percent level) by our numerical results.

In the absence of a magnetic field, spin conservation
and the invariance under a global spin flip reduce the
number of independent spin components. The remaining
components are related by the SU(2) relation [113]

Γσσ|σσ = Γσσ̄|σσ̄ + Γσσ̄|σ̄σ (A3)

where ↑̄ =↓ and vice versa. Hence, the spin dependence
of the vertex can be parametrized by

Γσ′
1σ

′
2|σ1σ2

= Γ↑↓δσ′
1,σ1

δσ′
2,σ2

+ Γ↑↓δσ′
1,σ2

δσ′
2,σ1

. (A4)

The components on the right-hand side are related by
crossing symmetry. It thus suffices to compute a single
one of them. At particle-hole symmetry, we further have

Γ1′2′|12(ν
′
1, ν

′
2|ν1, ν2) = Γ12|1′2′(−ν1,−ν2| − ν′1,−ν′2)

(A2)
= (−1)1+

∑
i kiΓ1′2′|12(−ν′1,−ν′2| − ν1,−ν2)∗ (A5)

with the multi-indices i = (ki, σi), reducing the number
of independent frequency components even more.

By frequency conservation, ν′1+ν′2=ν1+ν2, the vertex
depends on only three independent frequencies. These
are chosen differently for each two-particle reducible ver-
tex γr (see Fig. 12), with the bosonic transfer frequency
ωr and the fermionic frequencies νr and ν′r. The vertices
γr have non-trivial asymptotics in the limits ν(′)r →∞.
One can decompose the reducible vertex γr in asymp-
totic classes, see Eq. (29) [2]. Since the bare interaction
is frequency independent, the asymptotic classes Kir can
be identified with certain diagrams that are reducible in
channel r [2, 73]. Connecting two external legs to the
same bare interaction vertex reduces the dependence by
one external frequency argument. K1r(ωr) consists of all
diagrams where the two external legs carrying frequency
νr connect to the same bare vertex and the external legs
carrying ν′r connect to another one. Hence, K1r only de-
pends on ωr. K2r(ωr, νr) consists of all diagrams where
the ν′r legs connect to the same bare vertex while each
of the other two legs connect to different bare vertices.
K2′r(ωr, ν

′
r) is analogous to K2r with the roles of νr and

ν′r interchanged. For K3r(ωr, νr, ν
′
r) all external legs con-

nect to different bare vertices.
The bare vertices simplify not only the dependence of

K1, K2, and K2′ on frequencie but also on Keldysh in-
dices. If a bare vertex connects to two external legs,
flipping their Keldysh indices, 1̄ = 2 (2̄ = 1), leaves the
function invariant, see Eq. (17). This gives, e.g.,

K
k1′k2′ |k1k2

1p = K
k̄1′ k̄2′ |k1k2

1p = K
k1′k2′ |k̄1k̄2

1p

= K
k̄1′ k̄2′ |k̄1k̄2

1p , (A6a)

K
k1′k2′ |k1k2

2p,σ1′σ2′ |σ1σ2
= K

k1′k2′ |k̄1k̄2

2p,σ1′σ2′ |σ1σ2
. (A6b)

https://opendata.physik.lmu.de/ar879YbJwUpAM2S
https://opendata.physik.lmu.de/ar879YbJwUpAM2S
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Figure 12: We show the frequency conventions for the two-particle reducible vertices γr with r = a, p, t. Symmetric
parametrizations with ±ω

2 ensure that vertex structures are centered around the frequency axis. The irreducible
vertex R is shown in bosonic frequencies for completeness.

Note that the diagrammatic channels a and t flip un-
der crossing symmetry, i.e., γa,1′2′|12 = −γt,1′2′|21, while
channel p is crossing symmetric itself. The symmetry re-
lations in Eqs. (A1)–(A5) are formulated for full vertices.
They can be adapted to the asymptotic classes Kir by in-
serting the decomposition on both sides of each relation
and taking the appropriate limits ν(′)r →∞. For instance,
K↑↓,2′p is related to K↑↓,2p by

K
k1′k2′ |k1k2

↑↓,2′p (ωp, ν
′
p)

(A2)
= (−1)1+

∑
i kiK

k1k2|k1′k2′
↑↓,2p (ωp, ν

′
p) .

(A7)

For a formulation of the parquet and fRG equations in
terms of asymptotic classes, we refer to Ref. 2 and to
Eqs. (75) in Ref. 75.

As we vectorize over Keldysh indices, we explicitly keep
track of all Keldysh components. The symmetry relations
are then used to reduce the spin and frequency compo-
nents (Eqs. (A1), (A2), and (A5) for Γ↑↓). To implement
these symmetries for the K3r class, it is convenient to
express the relations in terms of the three bosonic fre-
quencies [101], giving

Γ
k1′k2′ |k1k2

↑↓;ωa,ωp,ωt

(A2)
=

[
Γ
k1k2|k1′k2′
↑↓;ωa,ωp,−ωt

]∗
(−1)1+

∑
i ki

(A1)
= Γ

k2′k1′ |k2k1

↑↓;−ωa,ωp,−ωt

(A5)
=

[
Γ
k1′k2′ |k1k2

↑↓;−ωa,−ωp,−ωt

]∗
(−1)1+

∑
i ki ,

(A8)

such that the sign of the bosonic frequencies define sec-
tors that are related by symmetry.

Appendix B: Frequency dependence of vertex
components

Figures 13 and 14 show plots for the frequency depen-
dence of the asymptotic classes K2 and K3 for each of
the three two-particle channels r ∈ {a, p, t}, computed
in the PA for u = 0.5 and u = 1, respectively. We use
the natural frequency parametrization for each channel
r and set the bosonic transfer frequency ωr = 0 in the
plots for K3. The figures instructively show what types
of non-trivial structures emerge during such calculations.
In particular, one can clearly see that the frequency res-
olution needs to be very high throughout to resolve all

sharp features (many occurring on scales much smaller
than ∆). Moreover, the weak-coupling results may serve
as benchmarks for future computations of Keldysh ver-
tices using other methods, such as NRG or QMC.

Appendix C: Fully parametrized equations

We can write the parquet equations (20) and one-
loop fRG flow equations (19) entirely in terms of two
functions, bubbles and loops. A bubble Br in channel
r = a, p, t combines two vertices via a propagator pair

Π34|3′4′
a,ωaνa

= G
3|3′
νa−ωa/2

G
4|4′
νa+ωa/2

, (C1a)

Π34|3′4′
p,ωpνp

= G
3|3′
ωp/2+νp

G
4|4′
ωp/2−νp

, (C1b)

Π
43|3′4′
t,ωtνt

= G
3|3′
νt−ωt/2

G
4|4′
νt+ωt/2

, (C1c)

where we use the natural frequency parametrization for
each channel (see Fig. 15) and superscripts indicate
Keldysh indices (34|3′4′) = (k3k4|k3′k4′). In the follow-
ing, we give explicit formulas for the ↑↓-spin component
of bubble diagrams that combine vertices V and W :

Ba[V,W ]
1′2′|12
↑↓,ωaνaν′

a
=

ˆ
ν̃

V
1′4′|32
↑↓,ωaνaν̃

Π
34|3′4′
a,ωaν̃

W
3′2′|14
↑↓,ωaν̃ν′

a
, (C2a)

Bp[V,W ]
1′2′|12
↑↓,ωpνpν′

p
=

ˆ
ν̃

V
1′2′|34
↑↓,ωpνpν̃

Π
34|3′4′
p,ωpν̃

W
3′4′|12
↑↓,ωpν̃ν′

p
, (C2b)

with
´
ν̃
=
´∞
−∞

dν̃
2πi (the internal spin sum and crossing

symmetry in Bp cancel the prefactor of 1/2), and

Bt[V,W ]
1′2′|12
↑↓,ωtνtν′

t
= −
ˆ
ν̃

Π
43|3′4′
t,ωtν̃

(C2c)

×
[
V

4′2′|32
↑↓,ωt,νt,ν̃

W
1′3′|14
↑↑,ωtν̃ν′

t
+ V

4′2′|32
↑↑,ωtνtν̃

W
1′3′|14
↑↓,ωtν̃ν′

t

]
,

where the ↑↑-spin component is obtained via Eq. (A4).
For the loop, we parametrize the vertex in the t-

channel convention with ωt = 0 and write

L[Γ, G]1
′|1

ν =−
ˆ
ν̃

G2|2′
νt

[Γ↑↓ + Γ↑↑]
1′2′|12
0νtν

. (C3)
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Figure 13: Real (left) and imaginary (right) parts of K2 (top) and K3 (bottom) vertex components in the PA for
u = 0.5. The three rows of each subfigure show results for the three two-particle channels r ∈ {a, p, t}. The columns
show all independent Keldysh components. Natural frequency parametrizations were used and for K3 the bosonic
transfer frequency ωr was set to zero. Consequently, some components of ReK3 vanish.

Using the loop L and bubbles Br, the parquet equa-
tions (20) read

γr = Br[Ir,Γ], (C4a)

Σ = L[Γ0, G] +
1
2L[Ba[Γ0,Γ], G]. (C4b)

In the SDE, the internal spin sum can be performed,
canceling the factor of 1/2 in Eq. (C4b) by crossing sym-
metry, to give

Σ
1′|1
SDEν =−

ˆ
νt

G2|2′
νt

[
Γ0,↑↓ +Ba[Γ0,Γ]

1′2′|12
↑↓,0νtν

]
. (C5a)

The one-loop fRG flow equations [cf. Eq. (19)] are

Σ̇ = L(Γ, S), γ̇r = Ḃr(Γ,Γ), (C6)

where the dot on Ḃr denotes a differentiated propagator
pair, ∂ΛΠr = ĠG+GĠ, including the Katanin substitu-
tion S → Ġ = S +GΣ̇G [70].

Susceptibilities are obtained from G(4), Eq. (13), by
contracting pairs of external legs and subtracting the dis-
connected parts [116, 117]. For the spin-↑↓ and spin-↑↑

components, we get

χ
12|1′2′
a,σσ′,ωa

=

ˆ
ν

Π12|1′2′
a,ωaν +

ˆ
ν

ˆ
ν′
Π14|1′4′

a,ωaν Γ
34|3′4′
σσ′,ωaνν′Π

32|3′2′
a,ωaν′ ,

(C7a)

χ
12|1′2′
p,σσ′,ωp

=

ˆ
ν

Π12|1′2′
p,ωpν (1− δσ,σ′)

+

ˆ
ν

ˆ
ν′
Π12|3′4′

p,ωpν Γ
34|3′4′
σσ′,ωpνν′Π

34|1′2′
p,ωpν′ , (C7b)

χ
12|1′2′
t,σσ′,ωt

=−
ˆ
ν

Π
12|1′2′
t,ωtν δσ,σ′

+

ˆ
ν

ˆ
ν′
Π

12|3′4′
t,ωtν Γ

34|3′4′
σσ′,ωtνν′Π

34|1′2′
t,ωtν′ . (C7c)

From these functions, we obtain physical susceptibilities
as χd/m = χt,↑↑±χt,↑↓, or after exploiting spin and cross-
ing symmetry, Eqs. (A1) and (A3),

χ
12|1′2′
d = 2χ

12|1′2′
t,↑↓ − χ21|1′2′

a,↑↓ , (C8a)

χ12|1′2′
m = −χ21|1′2′

a,↑↓ . (C8b)
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Figure 14: Same vertex components as in Fig. 13, computed in the PA for u = 1.

These functions have the Keldysh structure of 4p func-
tions. To identify the retarded susceptibilities χR(ω)
in terms of 2p functions [analogous to the propagator,
Eq. (7)], we use the bare three-leg Hedin vertex λ(k1k2)k3

0

[118] where the Keldysh indices k1, k2 belong to χ12|1′2′

and k3 to χR. In terms of contour indices, it reads
λ
(c1c2)c3
0 = −c1δc1=c2=c3 ; in Keldysh indices, the nonzero

components are

λ
(kk)2
0 =

1√
2
= λ

(kk̄)1
0 . (C9)

Hence, two (un-)equal fermionic Keldysh indices trans-
late to a “2” (“1”) for the bosonic line. We thus identify

χR
r = χ2|1

r = 2χ11|12
r , r = a, p, t. (C10)

In the parquet formalism, it was shown that the sus-
ceptibilities χr (r ∈ {a, p, t}) are related to asymptotic
functions via [2]

(K1a)1′2′|12 = −(Γ0)1′4′|32(χa)34|3′4′(Γ0)3′2′|14, (C11a)
(K1p)1′2′|12 = −(Γ0)1′2′|34(χp)34|3′4′(Γ0)3′4′|12, (C11b)
(K1t)1′2′|12 = −(Γ0)4′2′|42(χt)34|3′4′(Γ0)1′3′|13. (C11c)

For the retarded spin-↑↓-component, we have

KR
1r ↑↓ = −U2χR

r ↑↓. (C12)

Although one-loop fRG does not fulfill the BSEs (20b)-
(20d), Eq. (C12) can still be used as an estimate for
susceptibilities. In the present context, these are often
called “flowing” susceptibilities, while Eq. (C7) defines
the “post-processed” susceptibilities. The PA, fRG, and
K1SF results for χm and χd shown in the main text were
computed using Eqs. (C11).

Appendix D: Channel-adapted SDE

In the parquet formalism, the frequency dependence
of the self-energy Σ(ν) enters via the second term in the
SDE (20a). In the following, we discuss three options for
the numerical evaluation of this diagram.

First, using the parquet decomposition [Eq. (20e)], the
second term of the SDE can be written in terms of bub-
bles Br and loop L as (see Fig. 16) [72, 108]

ΣSDE1 = L(Ba(Γ0,Γ0), G) +
∑
r

L(Br(Γ0, γr), G). (D1)
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Figure 15: Diagrammatic representation of the bubble
functions in Eq. (C2).

Γ = + γa

+ γp +
γt

Figure 16: Rewriting of the SDE, where crossing symme-
try was used for the γt part. The red line indicates which
propagator enters the loop L in Eq. (D1).

Here and below, a loop, L, acting on a t bubble, Bt,
contracts the two right legs, as opposed to the two top
legs for all other vertex types (cf. Fig. 16).

Second, the SDE in Eq. (20a), without further manip-
ulation, reads

ΣSDE2 = L(Br(Γ0,Γ), G), r ∈ {a, p, t}, (D2)

where the channel r can be freely chosen. Third, using
Br(Γ0, γr) = K1r +K2′r [2], the SDE equivalently reads

ΣSDE3 = L(K1r +K2′r, G). (D3)

Even though the above versions of the SDE are ana-
lytically equivalent, they vary in numerical accuracy and
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−2.5

0.0

2.5

5.0

−
Σ
′′ (

0)
/
∆

×10−9

u = 0.1/πSDE 1

SDE 2

SDE 3 NRG

Figure 17: Imaginary part of the retarded self-energy at
ν=0, computed with the parquet solver and different ver-
sions of the SDE, shown as function of NK3

(u=0.1/π,
T/U=0.01). The dashed line is the NRG result. For low
NK3 , SDE2 and SDE3 give the wrong sign. With increas-
ing resolution, all results approach the correct value.

cost. Evaluating ΣSDE3 is cheaper than the others since
it skips the computation of bubbles Br. However, we
found that Eq. (D1) is most accurate, since the γr are in-
serted into bubbles Br of the same channel r. Using the
natural frequency parametrization for the reducible ver-
tices γr(ωr, νr, ν

′
r), ΣSDE1 also has the benefit that one

only needs to interpolate along the νr-direction.
To illustrate this point, we consider a third-order con-

tribution to the self-energy:

L(Bt(Γ0,K1t), G) = L(Ba(Γ0,K1t), G), (D4)

= . (D5)

Inserting K1t into Ba as done on the right results in di-
agrams that belong to the asymptotic class K2′a. How-
ever, on the left, K1t is inserted into Bt, resulting in dia-
grams belonging to K1t. The latter can be treated with
higher resolution and thus lead to better results for Σ, see
Fig. 17. Note that the question how to best parametrize
the SDE also arises in the context of the truncated-unity
formalism for momentum-dependent models, where this
choice was found to affect the quality of the results even
more strongly due to the additional approximation from
the truncation of the form-factor expansion [72, 108].

Appendix E: Equal-time correlators and Hartree
self-energy

Parts of the following discussion can be found in previ-
ous works, see Refs. 54, 59, and 66. We reiterate some of
the points made there and extend on them to the context
of this work.
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The definitions of G+|+ and G−|−, Eqs. (3) and (4),
are ambiguous at t1 = t2 as Θ(t1−t2 = 0) is not uniquely
defined. If two operators ψ,ψ† are placed at the same
point on the Keldysh contour, it is a priori not clear
how to order them. The ambiguity is resolved by de-
manding that ψ† be put left of ψ (“normal ordering”),
which implies G−|−(t, t) = G<(t, t) = G+|+(t, t). Then,
G<+G>−GT −GT̃ = 0 does actually not hold, and care
is due with Keldysh-rotated quantities. Since the point
t1 = t2 is of zero measure in time integrals, which occur
when computing diagrams in frequency space, this sub-
tlety is irrelevant for most practical purposes. However,
there is one important exception of equal-time nature,
namely diagrams with loops that begin and end at the
same bare vertex. With an instantaneous bare interac-
tion, both incoming and outgoing legs have the same time
argument, so that these diagrams involve the frequency-
integrated (i.e., equal-time) propagator.

The equal-time propagator determines the Hartree
self-energy of the AM (e.g., in PT2 calculations),

ΣH = − . (E1)

Recall that, for the sAM (ϵd=−U/2), the Hartree term is
constant, ΣH = U/2, and can be absorbed into the bare
propagator GR

0 → GR
H, see Eq. (24). Subsequently, GR

H is
used for all computations involving bare propagators. In
analogy, in the aAM, the bare propagator is replaced by
the Hartree propagator, too. However, here, ΣH is not
constant and must be computed self-consistently (using,
e.g., a simple bracketing algorithm), as it enters both
sides of Eq. (E1). Now, a naive computation of the re-
tarded component of this diagram after the Keldysh ro-
tation (and in the frequency domain) would yield

ΣR
H = Σ

1|2
H = −

1 2
= −

1 2

1 1

︸ ︷︷ ︸
G1|1 ?

=0

−
1 2

2 2

?
=
U

2

ˆ
dν′

2πi
GK(ν′). (E2)

This is, however, incorrect since G1|1(t|t) ̸= 0 after
Keldysh rotation. The correct result can be found by
staying in the contour basis, using that, at equal times,
only Σ

−|−
H (t, t) = −Σ+|+

H (t, t) is non-zero. Keldysh rota-
tion yields ΣR

H(t, t) = Σ
−|−
H (t, t), for which one has

ΣR
H = Σ

−|−
H = −

− −

− −
= U

ˆ
dν′

2πi
G<(ν′). (E3)

To compute Eq. (E3) in thermal equilibrium, one can
relate G< to GR using the inverse Keldysh rotation and
the FDT [Eq. (10)]

G<(ν) = 1
2 [−GR(ν) +GA(ν) +GK(ν)]

= −2i nF (ν)ImGR(ν), (E4)

with the Fermi function nF (ν) = 1/(1+eν/T ). This dis-
cussion of ΣH also applies to the PA via the first term of
the SDE (20a) (the second vanishes for |ν| → ∞).

In fRG, ΣH is generally renormalized throughout the
flow, according to Eq. (19a) for Σ̇. In the limit |ν| →
∞, relevant for extracting the Hartree contribution, only
those diagrams survive for which the in- and outgoing
lines are attached to the same bare vertex:

Σ̇H = − lim
ν→±∞ Γ

= − − K1t − K2t .

(E5)

In practice, the Hartree contribution Σ̇H is not computed
separately but is part of the full self-energy flow. There,
equal-time propagators are single-scale propagators, oc-
curring in the following contributions,

Σ̇ = −
Γ

⊃ − − K1t − K2′t
. (E6)

However, in the context of this work, it turns out that
these specific equal-time loops can be computed from just
the Keldysh-component of the single-scale propagator, as
in the naive calculation Eq. (E2). The reason is that, in
the hybridization flow, the retarded component of the
single-scale propagator asymptotically scales as ∼ 1/ν2

for ν → ±∞, see Eq. (25). Using the FDT in the forms
of Eqs. (E4) and (10), we can write

SK(ν) = 2i [1− 2nF (ν)] ImS
R(ν)

= 2i ImSR(ν) + 2S<(ν). (E7)

When computing
´
dν SK(ν), one can apply Cauchy’s

theorem to the first term, using its asymptotic behav-
ior (see above). Closing the integration contour by an
infinite semicircle in the upper half plane, avoiding the
pole in the lower half plane, gives zero. Hence, in the hy-
bridization flow, we have

´
dνSK(ν) = 2

´
dνS<(ν), and

the subtlety discussed previously is irrelevant. Note that
this argument may not apply to other regulators, where
S has a different expression.

Appendix F: Diagrammatic definition of PT2

Following the previous discussion, the Hartree term
in PT2 is determined self-consistently. The resulting
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Hartree propagator GH then fulfills the Dyson equation

GH
=

G0
+

GHG0
. (F1)

In these and the following diagrams, the Hartree prop-
agator GH is represented by a black line, whereas the
light gray line denotes the bare propagator G0. The dy-
namical part of the self-energy is computed from the first
non-trivial term of the SDE, using GH,

Σ ≡ Σ− ΣH = −1

2
. (F2)

The vertex in PT2 is given by the three diagrams

Γ− Γ0 = +
1

2
− , (F3)

again evaluated with GH in the internal lines. Suscepti-
bilities are then computed from this vertex via the stan-
dard formula; for χa, e.g., (again using GH throughout)

χa = +
Σ

+
Σ

+ Γ . (F4)

To obtain exactly the second-order contribution to the
susceptibility, one insertion of the dynamical part of the
self-energy into each line of the bubble term is required,
which gives rise to the second and third diagrams shown.

We checked that, in the sAM at sufficiently low tem-
peratures, our numerical PT2 solution matches the ana-
lytic T =0 results of Ref. 96 (Eqs. (3.14) and (3.6)–(3.8)
therein)

Z = 1−
(
3− 1

4π
2
)
u2, (F5a)

−Σ′′(ν)/∆ = 1
2u

2(ν2+π2T 2)/∆2, |ν|, T≪∆, (F5b)

χ̃m/d = 1
2

[
1± u+

(
3− 1

4π
2
)
u2

]
. (F5c)

Appendix G: Implementation details

Below, we describe our choices for the implementation
of the parquet and fRG solver, the sampling of contin-
uous functions, and the performance-critical quadrature
routine. In the process, we also discuss the numerical
accuracy of our results.

The evaluation of bubble diagrams, Eq. (C2), is a ma-
jor bottleneck in our methods. However, computations

for different external arguments can be distributed ef-
ficiently over multiple threads and compute nodes. It
also proved beneficial to vectorize the sum over internal
Keldysh indices by reordering and combining Keldysh in-
dices ki to Keldysh multi-indices (km, kn)

Γk1′ ,k2′ ,k1,k2 7→


Γ(k1′ ,k2),(k2′ ,k1), for a-channel,
Γ(k1′ ,k2′ ),(k1,k2), for p-channel,
Γ(k2′ ,k2),(k1′ ,k1), for t-channel,

(G1)

turning the Keldysh sum into an ordinary matrix prod-
uct (which is optimized in common linear algebra li-
braries). This pre-processing step enables us to efficiently
fetch matrix-valued integrands and to perform sums over
Keldysh indices and spins in an optimized manner. It re-
quires all Keldysh components to be present in the data,
and, therefore, all of them are included in our compu-
tations. Consequently, FDTs could not be exploited to
gain performance benefits as they merely relate different
Keldysh components.

For the integrals over internal frequencies in Eqs. (C2)
and (C3), we implemented an adaptive quadrature al-
gorithm which picks sampling points based on a local
error estimate and tolerance (ϵrel =10−5). With various
vertex components, the evaluation of a vertex at a cer-
tain frequency is rather expensive. Therefore, we choose
a quadrature algorithm that reuses the previous func-
tion evaluations when it refines the quadrature value on
a subinterval (4-point Gauss–Lobatto rule with 7-point
Kronrod extension) [119]. Due to fine structures in the
integrands, we found a higher-order quadrature rule to be
beneficial for the convergence of the routine. To help the
algorithm find the structure in the integrand, we subdi-
vide the integration interval at the expected positions of
structure in the vertices or the propagators. Quadrature
of the integrand’s tails at high frequency is performed
numerically by means of a suitable substitution of the
integration variable [120]. For matrix-valued integrands,
we use the sup norm ∥·∥∞ to compute the error estimate
for the quadrature.

Since Keldysh functions depend on continuous frequen-
cies, a reliable and efficient representation is vital. We
choose a non-uniform set of sampling points and obtain
function values by (multi-)linear interpolation. The over-
all behaviour of our functions is known: The self-energy
and the asymptotic functions Kir can have sharp struc-
tures at smaller frequencies while, at large frequencies,
they decay to a constant value with an approximate ω−k

with k ∈ N. To capture this behaviour, we map an
equidistant grid of an auxiliary variable Ω ∈ [−1, 1] to
a non-uniform one via the function

ω = fA(Ω) =
AΩ|Ω|√
1− Ω2

(G2)

with constant A > 0, see Figs. 18 and 19. The result-
ing sampling points are dense around ω = 0. At large
frequencies, the function fA(Ω) captures a 1/ω2-decay
effectively for |Ω| ≲ 1. Furthermore, the structures in
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1Ωmin

Ωmax

ωmin

ωmax

fω(Ω)

Figure 18: Non-linear frequency grid {ωj}Nj=1 obtained
via a transformation fA(Ω), Eq. (G2), from an auxiliary
linear grid {Ωj}Nj=1 of size N .
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ω

ReK
11|12
3a (ω, 0, 0)

−1 0 1

Ω

ImK
11|12
3a (ω, 0, 0)

Figure 19: Illustration of the resolution of vertex data for
a slice through ReK

11|12
3a and ImK

11|12
3a . The left panels

show the data on the equidistant auxiliary grid, the right
panels show the data on real frequencies. Many sampling
points are placed around the center where structures are
peaked, while the tails are treated with very few points.
Here, we also see an artifact due to our choice of the grid
function (G2): since the grid function has a discontinuity
at second order, we see a saddle point in the bottom left
panel even though the function is linear there. The good
resolution of the central peak in the real part comes at
the cost of a saddle point in the imaginary part.

the AM scale approximately with the hybridization ∆.
Therefore, we choose the frequency-grid parameter A as
multiples of ∆ and ωmax = 100A. With a fixed maximal
frequency ωmax, the variable A determines the interval
[−Ωmax,Ωmax] used to construct the frequency grid via
Eq. (G2). Our choices for A are given in Tab. I.

Σ K1 K2,ω K2,ν K3,ω K3,ν

A/∆ 10 5 15 20 10 10

Table I: Frequency-grid parameter A for Eq. (G2).
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Figure 20: Convergence w.r.t. frequency resolution for
the static susceptibilities as in Fig. 8 from parquet solvers
in the KF and the MF for u=0.75 (a setting where K2

and K3 are relevant). The numbers of frequency points
for K1 and K2 are chosen proportional to NK3

. In the
MF, we used NK3

= 33, 49, 73, 129, 257, 513, 701, 801, in
the KF NK3

= 33, 51, 75, 125. The KF and MF results
agree very well; the shaded region marks 1‰ deviation.

It is also possible to adapt the frequency-grid param-
eter A automatically. Interpolating the vertex linearly,
we can approximate the error by the maximal curvature
in the space of the linearly sampled auxiliary variable Ω.
Hence, we can use the curvature as an error function to
optimize the parameter A in Eq. (G2). The direction-
dependent curvature of a multi-variate function f is en-
coded in the Hessian, Hij = ∂i∂jf(x). We can efficiently
compute a scalar measure for the curvature via the Frobe-
nius norm of the Hessian, giving

∥H∥2F =
∑
i,j

|Hi,j |2 = TrH2 =
∑
i

|λi|2, (G3)

where λi are the eigenvalues of H. An approximation
of the partial derivatives can be obtained with the finite
differences method. However, for the studied parameter
regime of the AM, we found (using Brent’s method [121]
as the minimizer) that optimizing the grid parameters
A did not make a big difference compared to a simple
rescaling according to Tab. I. To verify convergence in
the number of sampling points, we compared the static
susceptibilities between implementations in the KF and
the MF and found agreement up to 1‰, see Fig. 20.

To solve the fRG equations (19) we employ a Runge–
Kutta solver with adaptive step size control (Cash–
Carp). The step size is chosen according to an er-
ror estimate and tolerance (here: relative error ϵrel =
10−6). Furthermore, we reparametrize the flow parame-
ter Λ(t) = fA=5(t) to provide a good first guess for the
step sizes, using the same function fA(t) as for frequen-
cies ω, Eq. (G2), with A=5. It provides large steps for
high Λ and small steps for small Λ for equidistant t. As
initial condition of ΣΛi and ΓΛi at large Λi, we use the
converged parquet solution. As discussed in Sec. III, the
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NK1 NK2 NK3

fRG 401 201 101
PA 401 201 51–101
PT2 801 0 0
K1SF 401 0 0

Table II: Number of frequency points for different dia-
grammatic classes and methods. We use the same num-
ber of points for Σ as for K1. In most PA computations,
NK3 = 51, except for the largest values of u, which re-
quired NK3 =101 for converging the parquet solver.

PA gives good results in the perturbative regime.
To solve the self-consistent parquet equations fPA in

Eqs. (20), which constitute a fixed-point equation for the
state Ψ = (Σ,Γ), i.e., Ψ = fPA(Ψ), we perform fixed-
point iterations until the result meets a tolerance crite-
rion, here ∥Ψ− fPA(Ψ)∥∞ < 10−6∥Ψ∥∞. For intermedi-
ate to higher u ≳ 1, it proves beneficial to stabilize the
algorithm with a partial update scheme, i.e.,

Ψ← (1−m) ·Ψ+m · fPA(Ψ) (G4)

with mixing factor 0 < m ≤ 1 (here typically m = 0.5).
For faster convergence in the vicinity of the fixed point,
we use Anderson acceleration [122, 123].

Appendix H: Numerical costs

The numerically most complex objects in all calcula-
tions are the K3 components of the two-particle reducible
vertices, as they depend on three continuous frequency
arguments independently. The numerical cost of a par-
quet or fRG computation is therefore O(N3

K3
), where

NK3
is the number of grid points per frequency used for

K3. This applies to memory (as all this data has to be
stored) and to computation time (as BSEs or fRG flow
equations are evaluated for all external arguments). We
give in Tab. II the number of frequency points used for
each diagrammatic class. The self-energy was resolved on
a grid with the same number of points as the K1 class.

The numerical cost is further determined by the accu-
racy (or the convergence criteria) chosen for the iterative
parquet solver or the Runge–Kutta solver in fRG flow
(see App. G). Finally, the accuracy of the integrator also
affects the numerical cost strongly (see again App. G).
Our most costly computations were 150 iterations of the

parquet solver with NK3
= 101 (required for convergence

in the region u ≲ 1). On the KCS cluster at the LRZ,
equipped with chips of the type Intel® Xeon® Gold 6130
CPU @ 2.10GHz capable of hyper-threading, one such
computation took about two days on 32 nodes, running
32 threads each.
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u

1.6

1.8

2.0

χ̃
′ m

(0
)

fRG (KF, NK3 = 101)

fRG (KF, NK3 = 125)

fRG (MF, NK3 = 257)

fRG (MF, NK3 = 513)

Figure 21: Static magnetic susceptibility of the sAM ob-
tained with fRG. Compared to Fig. 8, there is an addi-
tional KF (MF) line with higher (lower) resolution. The
MF result appears converged in NK3

; the KF result is
slightly improved by increasing NK3

from 101 to 125.

Appendix I: Convergence of χ̃m(0)

Figure 21 shows the static magnetic susceptibility of
the sAM obtained with fRG, zooming into the regime
u ≳ 1 (where deviations between MF and KF results
become noticeable) and scrutinizing convergence w.r.t.
frequency resolution. Compared to Fig. 8, there is an
additional KF (MF) line with higher (lower) resolution,
as determined by the number of frequency points used
to resolve the K3 class, NK3

(cf. Fig. 20). The MF re-
sult appears converged in NK3

, whereas the KF result is
slightly improved by increasing NK3

. The improvement
is minor, however, and does not justify the additional
numerical cost: The computation for NK3

= 125 con-
sumed roughly 30,000 CPUh, while the computation for
NK3

= 101 took only half that time. Nevertheless, one
should keep in mind that these computations yield a full
parameter sweep in u and are thus more economical than
individual PA computations. Further analysis, including
line plots through all vertex components and asymptotic
classes, is provided in the data set attached to this paper.
This analysis shows that the resolution of fine structures
in some Keldysh components of the K3 class could still
be improved using even higher values of NK3 .
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