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Abstract. The purpose of intrinsic decomposition is to separate an image into its
albedo (reflective properties) and shading components (illumination properties).
This is challenging because it’s an ill-posed problem. Conventional approaches
primarily concentrate on 2D imagery and fail to fully exploit the capabilities of
3D data representation. 3D point clouds offer a more comprehensive format for
representing scenes, as they combine geometric and color information effectively.
To this end, in this paper, we introduce Point Intrinsic Net (PoInt-Net), which
leverages 3D point cloud data to concurrently estimate albedo and shading maps.
The merits of PoInt-Net include the following aspects. First, the model is ef-
ficient, achieving consistent performance across point clouds of any size with
training only required on small-scale point clouds. Second, it exhibits remarkable
robustness; even when trained exclusively on datasets comprising individual ob-
jects, PoInt-Net demonstrates strong generalization to unseen objects and scenes.
Third, it delivers superior accuracy over conventional 2D approaches, demon-
strating enhanced performance across various metrics on different datasets. Code

1 Introduction

The aim of intrinsic decomposition is to separate an image into its albedo (reflective
properties) and shading components (illumination properties). Decomposing an image
into these fundamental components is a challenging problem due to its ill-posed nature,
requiring specific constraints. Geometric data, including depth and surface normals, are
used in facilitating this process [16]. Typically, these geometric cues are estimated as
part of the process of intrinsic decomposition [1, 3, 20, 30, 32, 44, 56]. However, the
success of this approach heavily depends on the accuracy of surface normal estimation
and is sensitive to the 2D nature of the data employed, indicating a lack of adaptability
across various data types. Traditional methods mainly focus on 2D images, overlooking
the full potential of 3D data representation. 3D point clouds provide a richer scene
representation by effectively integrating geometric and color information.

This paper delves into utilizing 3D point clouds for the purpose of intrinsic decom-
position. We focus on 3D point clouds obtained (1) directly from RGB-D cameras, or
(2) from 2D RGB images where the depth D map is measured by a monocular depth es-
timation technique, see Figure 1. In this way, the proposed point cloud-based network,
PoInt-Net, utilizes the 3D structure and appearance of objects or scenes to derive sur-
face geometry and extract intrinsic features. Our method offers several benefits. First,
point cloud representation naturally includes explicit 3D priors along with color details.
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https://github.com/xyxingx/PoInt-Net
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Fig. 1: Intrinsic image decomposition using a 3D point cloud representation. Our approach de-
composes the intrinsic components of an object/scene based on the point cloud representation of
its appearance from a particular viewing angle. Point clouds are generated from RGB-D images,
where the depth maps are obtained by a depth camera (e.g. Lidar or ToF) or are estimated by a
monocular depth estimation method such as [41].

Second, the intrinsic geometric information within the 3D point cloud is beneficial for
more precise shading estimation, especially in areas where abrupt depth changes typ-
ically coincide with shifts in lighting [48]. Third, point clouds accurately capture the
shape of a scene, providing superior generalization for low-level vision tasks as shown
by [49]. Advancements in depth acquisition (such as Time-of-Flight cameras) and es-
timation technologies (for example, MiDaS [41]) have substantially lowered the costs
associated with acquiring depth information necessary for constructing point clouds.

Experimental analysis demonstrates that PoInt-Net excels in both efficiency and
generalization capabilities. It outperforms existing models in shading estimation across
multiple datasets with a reduced number of parameters, and still achieves impressive
albedo outcomes. Trained exclusively on datasets containing singular objects, PoInt-Net
showcases remarkable ability for zero-shot intrinsic estimation in real-world scenarios
by using point clouds obtained from depth estimations.

The contributions of the paper are:
– By applying intrinsic decomposition to a 3D point cloud framework, our approach

innovatively merges geometric priors with sparse representations.
– Introducing PoInt-Net, a point-based intrinsic image decomposition network with

specialized subnets for light direction, shading, and albedo tasks.
– PoInt-Net operates on sparse point clouds with far fewer parameters (1/10 to 1/100

of the existing methods), excelling on diverse datasets.
– PoInt-Net facilitates zero-shot intrinsic estimation in real-world settings through

the use of point clouds derived from estimated depths.

2 Related Work

Intrinsic image decomposition (IID) is a complex, underdetermined problem that ne-
cessitates distinct constraints and priors, which can be sourced from images or supple-
mentary data. We categorize prior IID approaches according to their input needs.
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IID with image(s). One of the earliest work in 1970s [2] proposes to derive intrinsic
characteristics from images. Numerous methods since then have employed simple net-
work architectures for estimating these intrinsic characteristics [14,28,35,40,47,54,57].
[5, 7, 18, 33] exploring IID by employing perceptual priors, based on the assumption
that pronounced gradient edges denote changes in reflectance, while subtle edges sug-
gest variations in illumination. [13, 42, 45, 46] present IID techniques that utilize clus-
tering or reflectance sparsity. Exploring shading involves geometric cues, where [1]
introduces a framework that capitalizes on geometric information extracted from im-
ages. [3,20,30,44,56] divide shading estimation into two processes (estimating surface
normals and lighting) and then applying a shader for the final shading calculation. How-
ever, the success of these approaches depends on their precision in estimating surface
normals, which complicates their adaptability to different types of data, e.g., [44] is
specifically designed for facial images and [30, 56] for indoor images.

IID with image(s) and additional input. RGB-D images are used for the purpose of
IID. [1, 11, 19, 22] show that incorporating extra geometric cues (such as depth and
surface normals) to refine the shading components results in enhanced decomposition
outcomes. [26] proposes a model for IID using a sequence of RGB-D video frames. Re-
cently, [43] leverages the LiDAR intensity to separate the reflectance from an image. In
addition to RGB-D data type, [25] uses multi-view stereo to reconstruct 3D points and
surface normals to estimate the intrinsic components. [52] employs a Neural Radiance
Field (NeRF) [34] to obtain the intrinsic components in an implicit representation. [50]
utilizes multi-view constraints and semantic labels to derive intrinsic properties from a
NeRF. The inclusion of additional input aids models in understanding the geometric re-
lationships between pixels. Nonetheless, the above approaches encounter two primary
challenges: 1) it lacks computational efficiency for RGB-D image-based decomposition
because of the expensive 3D operations involved; 2) it suffers from limited generaliza-
tion capabilities in multi-view-based approaches as the Neural Radiance Fields (NeRF)
are prone to overfitting specific scenes.

In contrast to previous RGB-D methods, our approach utilizes point cloud represen-
tation for estimating intrinsic components, without explicitly estimating surface nor-
mals. This strategy leads to enhanced robustness in decomposition, yielding a point-
based operation network for intrinsic image decomposition, which improves accuracy
and reduces computational costs.

3 Point Cloud Intrinsic Representation
In this section, we introduce a new intrinsic representation technique utilizing point
clouds. Section 3.1 details the intrinsic decomposition process grounded in the render-
ing model. Section 3.2 revisits the intrinsic decomposition from the perspective of a
point cloud representation.

3.1 Intrinsic Decomposition

For a given point x, the reflected radiance L is defined by [21]:

L(x, ωo) =

∫
ωi∈Ω+

fr(x, ωi, ωo)Li(x, ωi)(N · ωi)dωi, (1)
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Fig. 2: Our proposed framework for intrinsic point cloud decomposition starts by transforming
the RGB-D representation into a point cloud representation. (a) The point cloud representation is
used as input to train two separate components: the shading and the albedo estimations. The shad-
ing estimation is supported by the DirectionNet (Light Direction Estimation Net), which takes (a)
as input and and outputs surface light direction estimates (c). Surface normals (d) are calculated
using local neighborhoods within (a). The Shader (Learnable Shader) then uses the concatenated
vectors of (c) and (d) to generate the final shading estimation (e). The albedo estimation is ob-
tained by the AlbedoNet (Point-Albedo Net) which extracts invariant reflectance (b) from (a)
based on the Lambertian assumption. Finally, by multiplying (b) and (e), the reconstructed image
(f) is generated. Please refer to the supplementary for a more detailed explanation.

where ωi is the light angle from the upper hemisphere Ω+, ωo is the viewing angle, N
is the surface normal, Li(x, ωi) is the position of the lighting angle and its direction,
and fr is the surface reflectance, modeled by a Bidirectional Reflectance Distribution
Function (BRDF) [37].

Given a viewing angle, assuming that the surface is Lambertian, the diffuse appear-
ance Idiffuse is given by:

Idiffuse =
∫
ωi∈Ω+

fr(ωi)Li(ωi)(N · ωi)dωi. (2)

Conventionally, ρd

π denotes the reflectivity of the surface (albedo), where fr(ωi) =
ρd

2π .
Therefore, if the illumination is uniform, the model is defined by:

Idiffuse =
ρd
π

· (N · Lin), (3)

where, Lin represents the visible incident light. The aim of intrinsic decomposition is
to disentangle the albedo A = ρd

π and shading S = (N · Lin) from the appearance
Idiffuse, where (·) is the dot product.

3.2 Intrinsic Appearance of Point Clouds

According to Equation (2), the appearance of an object under a given lighting condition
is represented by a RGB image I = [Ir, Ig, Ib] ∈ RU×V×3. Additionally, its corre-
sponding depth map is given by D ∈ RU×V×1. Depth data can be acquired from a
depth camera, such as LiDAR, or it can be estimated from 2D images using a monocu-
lar depth estimation method, e.g., [41].
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The RGB image and its associated depth map are converted into a colored point
cloud representation, P = {pi|i ∈ 1, . . . , n}. Each point pi is represented as a vector
of [x, y, d, r, g, b] values:

pi =

(
(u− cx)d

fx
,
(v − cy)d

fy
, d, r, g, b

)
, (4)

where, fx and fy are the focal lengths, and (cx, cy) is the principal point.
Given a dataset of M point clouds, P = {P1,P2, ...,PM}, its intrinsic components

are defined by: 1) Albedo A = {A1,A2, ...,AM}, 2) Shading S = {S1,S2, ...,SM}, 3)
Surface normal N = {N1,N2, ...,NM}, and 4) Light source position L = {L1,L2, ...,LM}.

Albedo contains the reflectance information. Hence, a direct point based mapping
(fα : P → A) is employed to decompose the reflectance from input point cloud.

Shading depends on the object geometry, viewing and lighting conditions. Thus,
instead of directly learning the shading, a point-light direction net (fθ : P → L) is
used to estimate the light direction from the point cloud representation. Then, a point-
learnable shader (fσ : L,N → S) is trained to generate the rendering effects based
on the surface normals (from input point cloud) and light direction estimation (from
point-light direction net).

Adopting point cloud representation for intrinsic decomposition is beneficial due to
several reasons: 1) It naturally integrates depth and RGB information into a cohesive
structure. 2) It facilitates the derivation of surface normal data, ascertainable through
local neighborhood analysis. 3) It provides a resilient framework capable of withstand-
ing errors in depth measurements, as our additional ablation study indicates that minor
inaccuracies in certain points have a negligible impact on the overall representation.

4 Point Based Intrinsic Decomposition

In this section, a novel point based intrinsic decomposition technique is proposed. Sec-
tion 4.1 provides the technical details of the network architecture and Section 4.2 intro-
duces the learning strategy to train the network.

4.1 Point Intrinsic Net

Our proposed network, PoInt-Net, consists of three key components: 1) the Point Albedo-
Net, which is designed to capture the properties of surface materials, 2) the Light Direc-
tion Estimation Net, tasked with identifying lighting conditions to support the albedo
estimation of the point cloud, and 3) the Learnable Shader, a module that combines
the deduced light direction with surface normals to generate the shading map. The ap-
proach most similar to ours is [20]. However, it needs ground-truth normal information
to initialize and is limited by its generalization capabilities to individual objects.

Figure 2 shows the architecture of the proposed network and the specifics of its
forward connections. The design of the three sub-networks is largely consistent, with
minor variations such as the activation functions used. Specifically, all three sub-nets
are adopted from [38], and employ Multi-Layer Perceptrons (MLPs) for point-feature
extraction and decoding, with the aim of solving the point-to-point relationship.
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Point albedo-net inputs a 6-D point cloud, which includes color data and spa-
tial coordinates, and generates surface reflectance estimates. The Rectified Linear Unit
(ReLU) is employed as the activation function to yield scaled output colors.

Light direction estimation Net takes the same input as Point Albedo-Net, and pre-
dicts point-wise surface light directions. ReLU is used as the activation function in most
of the layers. The final two layers use the hyperbolic tangent function (Tanh) to ensure
that all light directions are estimated.

Surface normal calculation computes the surface normal from the given point
cloud through several steps: 1) identifying neighboring points and calculating the co-
variance matrix, 2) computing the eigenvectors of the covariance matrix, and 3) select-
ing the normal vector associated with the smallest eigenvalue.

Learnable shader takes concatenated vectors of surface normal information (de-
rived from the input point cloud) and surface light direction estimation as input, and
produces a point-wise shading map as output.

Our choice of module configuration is based on empirical evidence: 1) Module Spe-
cialization.: Given PointNet’s limitations as an relatively weaker encoder, we use three
specialized modules for separate estimation of albedo, lighting, and shading. Which
also guarantees the robustness in the generalization. 2) Input Integration. We found
that concatenating surface normals with lighting, rather than multiplying them, yields
improved outcomes.

4.2 Joint-learning Strategy

A two-step training strategy is employed to arrive at an end-to-end intrinsic decom-
position learning pipeline. First, in terms of shading estimation, the Light Direction
Estimation Net and Learnable Shader are trained using the ground-truth light position
L and shading map S. Then, for albedo estimation, the parameters in these two sub-nets
are preserved and frozen, while the Point Albedo-Net is constrained by the ground-truth
albedo A and the final reconstructed image Î (multiplied by the estimated albedo map Â
and the estimated shading map Ŝ). During training, the mean square error is used. The
loss function3, for stage one, is:

Lshading =
1

M

M∑
(|L − L̂|2 + |S − Ŝ|2). (5)

For stage two, a number of loss functions are used. To address reflectance changes, a
color cross ratio loss inspired by [17] is taken, formulated as follows:

Lccr = |MRG −MR̂Ĝ|+ |MRB −MR̂B̂ |+ |MGB −MĜB̂ |, (6)

where {MRG,MRB ,MGB}, {MR̂Ĝ,MR̂B̂ ,MĜB̂} are the cross color ratios from the
ground-truth albedo and the estimated albedo respectively. Please refer to supplemental
for the details of the cross color ratios calculation. Similar to [14], the gradient differ-
ence is considered and is formulated by:

Lgrad = |∇A −∇Â|22. (7)

3 For datasets without light source labels, the loss function only contains the shading map Ŝ.
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Hence, the reconstruction loss is applied to constrain the estimated albedo:

Lrec =
1

M

M∑
(|A − Â|2 + |I − Î|2). (8)

The final loss function is given by:

Lalbedo = Lrec + Lgrad + Lccr, (9)

where {̂·} represents the estimated values, and M is the number of input point clouds
in the mini-batch. Adam [23] is employed as the optimizer.

5 Experiments

This section outlines the experimental framework used to assess the effectiveness of our
proposed approach.

Dataset. Five publicly accessible datasets are employed in the assessment:
– ShapeNet-Intrinsic [20]: Based on ShapeNet [10], albedo and shading are generated

by the Blender-cycle. The dataset contains ground-truth depth, normal, and light
position information. We follow the same dataset split as Liu et al. [31].

– MIT-Intrinsic [18]: For this real-world dataset, albedo and shading under different
illumination conditions are provided. Depth information, calculated by [1], is used.
The train and test split are kept the same as proposed by [1].

– MPI-Sintel [8]: This synthetic dataset provides albedo, shading, and depth informa-
tion. We use the same training and test splits as those employed by existing methods
to assess our approach.

– Inverender [53]: This synthetic dataset includes ground-truth albedo and normals.
To evaluate the performance of our method, we adhere to the same training and test
splits established by previous methods [50, 52].

– IIW [6]: A real-world image dataset comprising a wide variety of scenes and light-
ing conditions, along with the weighted human disagreement rate (WHDR) label.

Moreover, we employ various images sourced from the internet to demonstrate our
capability to generalize to real-world scenarios.

Depth acquisition. For depth information, we utilize ground-truth depth from the
datasets where available. In cases without ground-truth depth, including certain datasets
[6,52] and real-world images, we apply the mono-depth estimation method [41] to gen-
erate relative depth information for point cloud construction.

Metrics and visual comparison For quantitative evaluation, we employ three com-
monly used metrics: Mean Square Error (MSE), Local Mean Squared Error (LMSE),
and Structural Dissimilarity (DSSIM). These metrics are our standard evaluation crite-
ria, unless specified otherwise. For fair qualitative comparison, visualization images for
all benchmarks are objectively selected, sourced directly from the publications of the
methods being compared or acquired from their official implementations.
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Fig. 3: Comparison to state-of-the-art method USI3D (fine-tuned version) [31] and ablation study
on the ShapeNet-intrinsic dataset. Zoom to see details.

Pretrained on ShapeNet-Intrinsic dataset. Due to the limited size of the intrinsic de-
composition datasets, such as MIT-intrinsic [18] with only 20 objects and MPI-Sintel
[8] with hundreds of images, employing pre-trained models is a common practice. For
instance, [12, 40] use pre-trained weights from ImageNet [24]. Similarly, [13] pre-train
on the NED dataset [4], while [20], [31], and [5] use ShapeNet for pre-training. In our
comparative tables, we indicate which models have undergone pre-training and specify
the datasets utilized for this pre-training. In this way, fairness and clarity is ensured in
our evaluation.

5.1 Evaluation on IID datasets

MSE(10−2) LMSE(10−2) DSSIM(10−2)
Albedo Shading Average Total Total

CGIntrinsics [29] 3.38 2.96 3.17 6.23 -
Fan et al. [14] 3.02 3.15 3.09 7.17 -
Ma et al. ∗ [33] 2.84 2.62 2.73 5.44 -
USI3D∗ [31] 1.85 1.08 1.47 4.65 -

Ours (w/o. shader) 0.48 0.57 0.53 1.15 4.93
Ours 0.46 0.38 0.42 1.00 4.15

∗ Unsupervised methods but finetune on the dataset.

Table 1: Results and ablation study for
ShapeNet-Intrinsic [20].

ShapeNet-Intrinsic Table 1 shows a
quantitative comparison of PoInt-Net
with the latest open source methods [14,
29, 31, 33]. Our results clearly indicate
that our approach significantly surpasses
existing methods across all three met-
rics. To provide specific values, PoInt-Net
achieves an MSE of 0.0046 for albedo and
0.0038 for shading, with an LMSE of 1.00
and a DSSIM of 0.0415. This exceptional
performance is attributed to our method’s
capacity to capture and utilize intricate re-

lationships among intrinsic properties, leading to a more robust and dependable estima-
tion.

Qualitative results of the method are shown in Figure 3, where USI3D [31] (fine-
tuned version) is used as a reference. PoInt-Net generates a shading map by utilizing
surface light direction and normal information, effectively separating shading from the
composite image. This process results in realistic and consistent shading in the output
images, closely reflecting the underlying surface geometry. Particularly noticeable is
the clear distinction between shading and surface in darker areas of objects, underscor-
ing the method’s efficacy and robustness in generating high-quality, visually appealing
outputs that faithfully represent intrinsic properties of objects.
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Input PIE-Net w/o. Shader Ours Ground Truth PIE-Net Ours Ground Truth

AlbedoShading

Fig. 4: Qualitative results on the MIT-intrinsic benchmark [18]. Comparison to the state-of-the-
art method PIE-Net [13]. Ablation study on shader is conducted.

MSE(10−2) LMSE(10−2) DSSIM(10−2)
Albedo Shading Albedo Shading Albedo Shading

SIRFS [1] 1.47 1.83 4.16 1.68 12.38 9.85
Zhou et al. [54] 2.52 2.29 - - - -
Shi et al. [47] 2.78 1.26 5.03 2.40 14.65 12.00
DI [35] 2.77 1.54 5.86 2.95 15.26 13.28
Ma et al. ∗ [33] 3.13 2.07 1.16 0.95 - -
Janner et al. ∗ [20] 3.36 1.95 2.10 1.03 - -
CGIntrinsics [29] 1.67 1.27 3.19 2.21 12.87 13.76
USI3D∗† [31] 1.57 1.35 1.46 2.31 - -
FFI-Net† [40] 1.11 0.93 2.91 3.19 10.14 11.39
PIE-Net† [13] 0.28 0.35 1.36 1.83 3.40 4.93

Ours† 0.89 0.34 0.97 0.37 4.39 3.02
∗ Unsupervised methods but finetuned on the dataset.
† Using pre-trained parameters.

Table 2: Results for MIT Intrinsic.

MIT-intrinsic In addition to the
synthetic dataset, this section en-
compasses an evaluation on the
MIT-intrinsic dataset to assess the
proposed method’s ability to gen-
eralize to real-world scenarios.
The results obtained from the
MIT-intrinsic dataset are consis-
tent with those from the synthetic
dataset, validating the method’s ef-
ficacy and robustness across varied
datasets.

Table 2 reports the quantitative
results. PoInt-Net produces state-of-the-art shading results on the MIT-intrinsic dataset
for all metrics. Moreover, our approach obtains the best LMSE and the second-best
performance for the albedo output in terms of MSE and DSSIM metrics. Note that [13]
employs an extra input to provide additional information for albedo estimation.

The visualization results are given in Figure 4. Our method outperforms the lat-
est state-of-the-art method [13] in accurately distinguishing the markings on the frog’s
back. This success is due to PoInt-Net’s incorporation of surface light direction estima-
tion and surface normal calculation, which contribute to the production of high-quality
shading outcomes.

Note: Ground-truth depth information is not included in the MIT-intrinsic dataset.
To this end, depth information is used and computed by the method of [1]. Although
depth estimations frequently contain noise, such as outliers and invalid points, PoInt-
Net consistently learns intrinsic features even when the input data includes noise. This
underscores its robustness to imperfect depth information.

MPI-Sintel Unlike object-wise datasets, the MPI dataset provides color information for
each pixel. To ensure a fair evaluation, we adopt the approach outlined in [14], which
employs scale-invariant MSE (si-MSE) and local scale-invariant MSE (si-LMSE).

We conduct a comparative analysis of our approach against several state-of-the-art
methods (Table 3). Our method surpasses others in terms of si-LMSE for albedo and
shading, as well as si-MSE for albedo. Notably, methods like [1, 11, 22] also require
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Fig. 5: Visual results (image split) for the MPI Sintel dataset [8]. Comparison to state-of-art-
methods Fan et al. [14] and LapPyrNet [12]. The method of Chen et al. [11] is provided as
reference, since it uses RGB-D images as input.

si-MSE(10−2) si-LMSE(10−2) DSSIM(10−2)
Albedo Shading Average Albedo Shading Average Albedo Shading Average

Retinex [18] 6.06 7.27 6.67 3.66 4.19 3.93 22.70 24.00 23.35
Lee et al. [26] 4.63 5.07 4.85 2.24 1.92 2.08 19.90 17.70 18.80
SIRFS [1] 4.20 4.36 4.28 2.98 2.64 2.81 21.00 20.60 20.80
Chenet al. [11] 3.07 2.77 2.92 1.85 1.90 1.88 19.60 16.50 18.05
DI [35] 1.00 0.92 0.96 0.83 0.85 0.84 20.14 15.05 17.60
DARN [27] 1.24 1.28 1.26 0.69 0.70 0.70 12.63 12.13 12.38
Kimet al. [22] 0.70 0.90 0.70 0.60 0.70 0.70 9̧.20 10.10 9.70
Fanet al. † [14] 0.69 0.59 0.64 0.44 0.42 0.43 11.94 8.22 10.08
LapPyrNet† [12] 0.66 0.60 0.63 0.44 0.42 0.43 6.56 6.37 6.47
USI3D∗† [31] 1.59 1.48 1.54 0.87 0.81 0.84 17.97 14.74 16.35

Ours 0.57 0.71 0.64 0.29 0.38 0.34 8.74 8.83 8.79
∗ Unsupervised methods but finetuned on the dataset.
† Using pre-trained parameters.

Table 3: Numerical results for MPI-Sintel (image split).
.

RGB-D data to train their model. Furthermore, PoInt-Net demonstrates competitive
performance for si-MSE shading and ranks second-best in DSSIM, highlighting its ef-
fectiveness in handling complex scenes with diverse lighting conditions. Notably, we
do not compare with PIE-Net [13], due to it only reports results of scene split.

The qualitative results, presented in Figure 5, highlight PoInt-Net’s ability to gener-
ate high-quality results, particularly in terms of sharpness. This characteristic is advan-
tageous for a point-based intrinsic network, where intrinsic features are processed on a
point-by-point basis. In comparison to [11], which also utilizes depth information for
intrinsic decomposition, PoInt-Net consistently demonstrates improved reflectance and
shading estimation. This improvement can be attributed mainly to the adoption of point
cloud representation. For more results, please refer to the supplementary material.

Inverender Recent advancements in NeRF methods have extended their functional-
ities to encompass scene intrinsic decomposition. In our evaluation, we contrast our
approach with contemporary NeRF methodologies that similarly offer intrinsic decom-
position capabilities (Table 4).

By leveraging a pre-trained PoInt-Net, our approach effectively estimates reflectance
for the Inverender dataset, achieving improved intrinsic image decomposition results
comparable to NeRFactor [52]. This highlights our model’s zero-shot estimation capa-
bility. Additionally, when fine-tuned on the Inverender dataset, PoInt-Net outperforms
all competing methods, including NeRF-based techniques trained to over-fit a single
scene (Figure 6). For more visual comparisons, please refer to the supplemental.
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NeRFactor Inverender

Ours Ground Truth

Fig. 6: Visual comparison with the NeRF based
methods.

Method PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓
NeRFactor [52] 19.9167 0.9156 0.1354 0.0059 0.0210
PhySG [51] 23.3748 0.9231 0.1092 0.0034 0.0396
Inverender [53] 26.3078 0.9380 0.0572 0.0022 0.0226
Intrinsic-NeRF [50] 24.2642 0.9371 0.0880 0.0021 0.0173
IIW [6] 22.0284 0.9307 0.0847 0.0099 0.0120
CGIntrinsic [28] 20.1583 0.9209 0.0996 0.0129 0.0141
USI3D [31] 20.7571 0.9267 0.0887 0.0079 0.0149
Li et al. [30] 16.8167 0.8224 0.1661 0.0075 0.0089
PIE-Net [13] 18.8119 0.7870 0.2319 0.0163 0.0194
Ours (zero-shot) 22.4548 0.8986 0.1052 0.0059 0.0071
Ours (finetuned) 29.0404 0.9426 0.0543 0.0014 0.0015

Table 4: Numerical results for Inverender
dataset (reflectance).
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Fig. 7: Visual comparison on the IIW dataset [6]. Our results are generated using the same model
that we released for review (only trained on single-level objects). Results of [14] are taken from
their paper (trained on IIW dataset with edge guidance).

5.2 Real-world Generalization Performance

The real-world decomposition is conducted to further evaluate the generalization capa-
bility of our method.

IIW dataset. Figure 7 provides visual results on the IIW dataset, using our model (only
trained on a single object level dataset). The comparison is conducted with the visual
results provided by [14] and estimated by [31]. Our method shows comparable results
on the scene-level dataset without prior learning. Notably, our method effectively re-
constructs the shape of objects, such as the red door in the background, which previous
work [14] struggled to accomplish.

The IIW dataset introduces WHDR as a performance metric, relying on human
judgment scores to assess the accuracy of intrinsic image decompositions. Nevertheless,
recent literature has raised doubts regarding the WHDR score’s reliability in accurately
gauging the performance of intrinsic decomposition methods [9, 15, 16, 36], e.g., [36]
achieves a WHDR of 25.7% by simply re-scaling the value of the original image into
[0.55,1]. In line with [9], we adjust our estimated reflectance by 0.5, yielding a com-
parable outcome, even when compared to models trained directly on the IIW dataset
(Table 5).
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Bell et al. [6] PIE-Net [13] Careaga et al. [9] USI3D [31] Fan et al. [14] IRISFormer [56] Ours Ours′

WHDR(%) 20.6 21.3 24.9 18.6 14.7 12.0 26.7 17.3
Trained on IIW × × × ✓ ✓ ✓ × ×
Type of the trained data S S S S S S O O

Table 5: Results for the IIW dataset [6]. The letter ’S’ and ’O’ represent the scene-level and
object-level datasets, respectively. Ours ′ indicates the rescaled estimation, in line with [9].

Point Cloud 
Representation

Image from Internet Our Est. AlbedoPoint Cloud USI3D Est. Albedo PIE-Net Est. Albedo

Fig. 8: Real-world intrinsics estimation comparison. USI3D [31] and PIE-Net [13] are trained
or finetuned on large scene level datasets. Although our model is exclusively trained on datasets
featuring single objects, our approach demonstrates the capability to accurately compute intrinsic
properties for previously unseen objects and scenes. Notably, red arrows emphasize our excep-
tional estimation performance.

Figure 8 demonstrates PoInt-Net’s generalization to real-world images, randomly
sourced from the internet. The point clouds are generated based on estimated depth
maps obtained from [41]. We employ the state-of-the-art unsupervised model [31] (fine-
tuned on scene level datasets, e.g., CGI [28]& IIW [6]) as a reference. Even though
PoInt-Net is trained on a dataset focused on single objects (as described in Section 5.1),
it shows the capability to accurately estimate surface reflectance and shading not only
for single objects but also for complex scenes, as evidenced by its performance in re-
gions such as the shadow area between the sofa and the wall. For further details and
results, please refer to the supplementary materials.

5.3 Point Cloud Matters

To demonstrate the effectiveness of point cloud representation in the task of intrinsic
decomposition, we use deep CNNs (used in [30]) and Vision Transformers (ViT, used
in [13,56]) as backbones and carefully design two alternative frameworks with a similar
structure as our PoInt-Net. The same training strategy is applied, i.e, pre-training on the
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MSE (10−2) Model Data
Backbone Albedo Shading Size (MB) Format

DeepCNN [30] 1.36 0.67 ∼200 RGB
ViT [13, 56] 1.15 0.66 ∼1450 RGB
DeepCNN [30] 1.14 0.59 ∼200 RGB-D
ViT [13, 56] 1.58 1.06 ∼1450 RGB-D

Ours 0.89 0.34 ∼20 PC

Table 6: Evaluation of different data modali-
ties on MIT-Intrinsic dataset, all pre-trained on
ShapeNet-Intrinsic dataset.

MSE (10−2) Data
Method Albedo Shading Format

Janner et al. [20] 3.03 (0.30)↓ 1.77 (0.18)↓ RGB-D
LapPyrNet [12] 1.72 (0.05)↓ 1.03 (0.21)↓ RGB-D
Fan et al. [14] 1.53 (0.04)↓ 0.81 (0.07)↓ RGB-D

Ours 0.89 0.34 PC

Table 7: Evaluation of adding depth as extra in-
put on MIT-Intrinsic dataset, all pre-trained on
ShapeNet-Intrinsic dataset. (·) ↓ indicates error
decreasing.

ShapeNet-Intrinsic dataset [20] and fine-tuning on MIT-Intrinsic dataset [18]. Table 6
shows the point cloud representation superiority in intrinsic estimation with even fewer
parameters. Interestingly, a few weeks before our paper submission, a parallel work
in robotic learning [55] showcases a notable trend, "Point cloud-based methods, even
those with the simplest designs, frequently surpass their RGB and RGB-D counterparts
in performance." Although we are working on different subjects, a similar trend is also
observed in our case. We argue that the community should not overlook the uniqueness
of point cloud representation.

5.4 Ablation Study

Learnable shader. As discussed in Section 3.2, shading depends on the surface geome-
try. Table 1 illustrates the significant impact of the shader in improving shading quality
numerically. Additionally, Figures 3 and 4 demonstrate how the shader aids PoInt-Net
in differentiating between invariant and ambient colors. This distinction is notably visi-
ble in areas such as the face and cloud segments of the "Sun" from MIT-Intrinsic, which
have historically presented difficulties for numerous learning methods [4, 13, 14].

Using depth information. We recognize the necessity of depth information in our
methodology, which brings up issues regarding the equitable comparison with earlier
intrinsic image decomposition (IID) techniques, especially given that only a select few
incorporate depth and their implementations are not openly accessible. To ensure fair-
ness in our assessment, we included depth information as an extra input in three publicly
accessible IID frameworks [12, 14, 20] (excluding PIE-Net [13] due to its unavailabil-
ity of training code). Table 7 demonstrates that, with depth information, performance
of existing methods increased, yet not to the same level of performance as ours. This
result further emphasizes the uniqueness and effectiveness of our proposed PoInt-Net.

Depth quality. We assess the impact of depth quality in controlled conditions. PoIntNet
demonstrates robust performance even with moderately noisy depth information. How-
ever, in highly noisy scenarios, there may be a decline in shading performance of up to
50%, while albedo performance remains relatively stable, with a decrease of less than
10%. These outcomes underscore the effectiveness of our method’s design and are con-
sistent with the fundamental principle of image formation, where shading is influenced
by geometry. Please refer to supplemental for more details.
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Backbone selection. PoInt-Net processes the point cloud by using multiple MLP lay-
ers. We acknowledge that, there are many powerful point-based backbones, such as
Point++ [39]. We chose the relatively sampler backbone as it provides a good trade-
off between computational efficiency and the ability to perform low-level vision tasks
effectively, as evidenced in [48]. Please refer to supplemental for more details.
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Fig. 9: Model size (MB) vs. MSE (×102) on shading
for the MIT-intrinsic dataset. Our method is very effi-
cient, outperforming the state-of-the-art model with just
1/100 of the model size and achieving 5 times the accu-
racy of a model with a similar size.

Model size of networks. As de-
picted in Figure 9, our method ex-
cels in intrinsic estimation perfor-
mance despite having a compact
model size. The reported model
size is in accordance with its of-
ficial pre-trained model specifica-
tions. Overall, our approach main-
tains a smaller model size com-
pared to others that incorporate ad-
ditional components like a map-
ping module [31], an adversarial
network [57], a multi-scale CNN
[12], and a transformer [13] in
their network architecture.

6 Conclusion

We introduced point intrinsic rep-
resentation and PoInt-Net for 3D-
based intrinsic decomposition. PoInt-
Net employs a point cloud repre-
sentation to efficiently decompose surface light direction, reflectance, and shading
maps, outperforming larger models on the MIT-intrinsic dataset while being highly effi-
cient. Our experiments across different scenarios highlight its robustness and zero-shot
generalization ability. Extra evaluation on the data modality evidenced point cloud as a
valuable data format for intrinsic decomposition.

Limitations and Future Work. Although PoInt-Net demonstrates stability with non-
Lambertian scenes and multiple light sources, explicitly investigating such complex
scenarios in the future is essential to extend the versatility of our approach. Additionally,
our method works with a 3D point cloud derived from a 2D image, such conversion is
not able to perform spatial relations like occlusion. Creating 3D dataset containing point
clouds and intrinsic components will benefit the research in the future. Finally, some of
our generalization results are only evaluated visually, due to the unavailability of either
ground-truth or proper evaluation metrics. A quantitative evaluation process is needed
in our future research.
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Fig. 10: DSSIM (left plot) and LMSE (right plot) on Shapenet-Intrinsic dataset vs. percent of
pixels affected by noise. "Inacc." denotes inaccurate depth distribution, and "Hole" refers to the
deletion in the depth. "R" represents reflectance, and "S" is for shading.

A Ablation Study

A.1 Depth quality

Depth information plays a critical role in our method, particularly in shading estima-
tion. To assess how our method performs under varying depth quality, we conducted a
quantitative study focusing on two common types of depth inconsistencies:

– Inaccurate Depth: Here, we simulate depth inaccuracy by adding random values
to a number of pixels. This introduces a type of noise that mimics the effect of
depth imprecision.

– Holes in Depth: For this scenario, we randomly set a number of pixels to zero. This
action creates ’holes’ in the depth data, replicating instances where depth informa-
tion is missing or unreliable.

The number of pixels affected can be adjusted to various scales, simulating different
levels of noise intensity. This allows for a more comprehensive evaluation of how our
method is effected by depth inaccuracies ranging from minor to severe.

Figure 10 demonstrates albedo and shading performance under varying noise lev-
els. Our method maintains stability with incomplete depth (e.g., holes). Yet, inaccurate
depth significantly disrupts intrinsic estimation. Specifically, Shading estimation per-
formance (LMSE) may decrease by 50% under inaccurate depth.
Discussion Since our method is robust to noisy depth. The inclusion of depth data does
not pose a considerable limitation to our method. Our approach requires only an RGB
image alongside its estimated depth, providing adaptability across a diverse range of
application scenarios. Please refer to Section F to check our method’s performance on
complex scenes.
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CNN Transformer NeRF Ours
[3, 5, 14, 30] [13, 56] [50, 52]

Real-world generalize some of them ✓ × ✓
Model size >100MB >1GB - 20MB
Training Time > 5 h > 1 d > 1 d < 1.5 h
Diverse input size × × - ✓

Table 8: Comparison with various IID methods using different backbones.
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Fig. 11: The sub-net of PoInt-Net is based on a modified PointNet [38] architecture. For internal
connections, refer to Figure 2 in the main paper. Three colors represent input/output for three
subnets.

A.2 Backbone selection

Technically, several backbones can process RGB-D images. Table 8 summarizes their
capabilities for IID. Our point cloud-based IID estimates real-world intrinsics with a
smaller model size and shorter training time. Transformers and CNNs are not able to
handle multiple size of images and are limited by the training time. NeRF based meth-
ods show good results yet lack of generalization ability.

B Details of Point Cloud Generation

Building Point Cloud. We generate the point cloud based on a pair of RGB image and its
corresponding depth information. Normal information is pre-computed from the point
cloud, which can be performed online or in advance for faster training and inference.

Camera Intrinsic Matrix. In Equation (4), the camera intrinsic matrix is employed to
translate the point cloud from RGB-D image, i.e., images I = [Ir, Ig, Ib] ∈ RU×V×3

and depth map D ∈ RU×V×1. For the MPI-Sintel dataset, we use the intrinsic matrix
provide from the dataset. For other datasets, we use a default setting for the intrinsic
matrix, where as the focal lengths and principal point are set as ( 12U,

1
2V ), respectively.

C Point Intrinsic Net: Architecture

Figure 11 demonstrates the detailed architecture of the subnet of PoInt-Net. The input
feature Pinput ∈ RU×V×6 is first extracted by MLPs, and Max Pooling is employed
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to extract the significant global feature Pglobal ∈ R1×1024. To maintain the ability in
solving local information, the global feature is then repeated to the same number as the
input points, and then concatenate with the inter-midden feature Pmid ∈ RU×V×64 to
get the local feature Plocal ∈ RU×V×1088. Finally, the output Poutput ∈ RU×V×3 is
obtained by MLPs which act as channel wise decoder. Since the three subnets share the
similar network architecture, we use different color of the arrow to indicate the different
input for the different nets, the color refer to the same color used in the Figure 2 of the
main paper.
Discussion Our choice of module configuration is based on empirical evidence: 1) Mod-
ule Specialization.: Given PointNet’s limitations as anrelatively weaker encoder, we use
three specialized modules for separate estimation of albedo, lighting, and shading. 2)
Input Integration. We found that concatenating surface normals with lighting, rather
than multiplying them, yields improved outcomes. These insights will be added into
the revision.

D Cross Color Ratios Loss Calculation

In paper, we propose the cross color ratios (CCR) loss to address the reflectance changes.
Where the CCR {MRG,MRB ,MGB} is calculated as:

MRG =
Rp1Gp2

Rp2Gp1
,MRB =

Rp1Bp2

Rp2Bp1
,MGB =

Gp1Bp2

Gp2Bp1
, (10)

where the {Rp1, Gp1, Bp1} and {Rp2, Gp2, Bp2} represent the R,G,B value at the two
adjacent points p1 and p2, respectively.

E Implementation Details

Environment Setting. PoInt-Net is developed using the PyTorch framework, enabling
it to run on both CPU and GPU platforms. During evaluation, our method runs on a
single NVIDIA 1080Ti GPU, with inference times dependent on the image size. For a
512×512 image, the average inference time is ∼ 10 frames per second. It’s important
to note that this inference time is achieved without any pruning techniques applied.

Training Details. For single object datasets, the point cloud is sampled by voxel down-
sampling where the voxel size is set to 0.03. For scene datasets, the point cloud is
resized to 64× 64 points by average downsampling. The batch size is set based on the
GPU memory accordingly. Adam [23] is employed as the optimizer. The learning rate
is 3× 10−4. All networks are trained till convergences.

F More Results: Intrinsic Decomposition

Real World. The use of monocular depth estimation in PoInt-Net allows for effective
decomposition of intrinsic properties in real-world scenes. Figure 12 showcases addi-
tional visual results across various environments, both indoor and outdoor. PoInt-Net
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Indoor Scenes

Input Estimated Albedo Estimated Shading Input Estimated Albedo Estimated Shading

Outdoor Scenes

Dark Outdoor Scene Low Resolution Outdoor Scene

Fig. 12: Visualization results across different shapes, scenes, and domains in the real world. Our
method consistently estimates the reasonable results. Note: our method is only trained on single-
object level datasets.

consistently delivers reliable reflectance and shading estimates. Notably, it performs
well even in challenging conditions like dark or low-resolution outdoor scenes, accu-
rately decomposing invariant colors and shading.

As discussed in the paper, PoInt-Net is trained on single-object level datasets, i.e.,
ShapeNet-Intrinsic and MIT-Intrinsic. However, our method still achieves impressive
intrinsic decomposition results across various shapes, scenes, and domains. These find-
ings suggest that PoInt-Net is capable of solving intrinsic decomposition tasks at a very
low-level, highlighting its robustness and versatility.

ShapeNet-Intrinsic. We present additional results on the ShapeNet dataset in Figure
13. These results showcase PoInt-Net’s ability to estimate surface light direction, with
direct shading results displayed in the second column of the figure.

MIT-Intrinsic. Figure 14 presents additional results on the MIT-Intrinsic dataset, in-
cluding ablation study results for the shader. The findings demonstrate that the shader
significantly enhances PoInt-Net’s ability to distinguish between invariant color and
illumination.

MPI-Sintel. Figure 15 presents extensional results that provide evidence for PoInt-
Net’s ability to handle complex scenes during intrinsic decomposition training. The
findings suggest that the architecture of PoInt-Net is capable of undertaking such tasks
effectively.

Inverender. Figure 16 shows the additional results of the reflectance estimation on the
Inverender dataset.
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Input Direct Shading Estimated Shading Ground Truth Estimated Albedo Ground Truth

Fig. 13: Qualitative results on ShapeNet-Intrinsic dataset. The Direct shading is computed by
surface normal and surface light direction.

Input Estimated Albedo Ground Truth Estimated Shading Ground TruthW/O. Shader

Fig. 14: Qualitative results on MIT-Intrinsic dataset. The ablation study on the shader (W/O.
Shader) is applied.

IIW-Dataset. Figure 17 provides more visual results of the intrinsic estimation on IIW
dataset [6].
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Input Output Ground Truth

Temple_2_frame_040

Bandge_1_frame_021

Sleeping_1_frame_047
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Fig. 15: Visual results on MPI-Sintel dataset.
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Image Est. Albedo Ground Truth

Fig. 16: Qualitative results on Inverender dataset.

Image Est. Albedo Est. Shading

Fig. 17: Qualitative results on IIW dataset. Note: Our method is not trained on IIW dataset.
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