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For arbitrary non-equilibrium transformations in complex systems, we show that the distance
between the current state and a target state can be decomposed into two terms: one corresponding to
an independent estimate of the distance, and another corresponding to interactions, quantified using
the relative mutual information between the variables. This decomposition is a special case of a more
general decomposition involving successive orders of correlation or interactions among the degrees
of freedom of the system. To illustrate its practical significance, we study the thermal relaxation of
two interacting, optically trapped colloidal particles, where increasing pairwise interaction strength
is shown to prolong the longevity of the time-dependent non-equilibrium state. Additionally, we
study a system with both pairwise and triplet interactions, where our approach identifies their
distinct contributions to the transformation. In more general setups where it is possible to control
the strength of different orders of interactions, our findings provide a way to disentangle their effects
and identify interactions that facilitate the transformation.

I. INTRODUCTION

A broad range of microscopic non-equilibrium pro-
cesses are time-dependent, where the state of the system,
described in terms of probability distributions, changes
as a function of time. Examples include the thermal re-
laxation of systems prepared in an arbitrary initial state
[1], self-assembly of biological molecules [2H4], protein
folding [, 6], several single-molecule experiments [7, [§],
and microscopic devices that are time-dependently con-
trolled [9HIT]. In all these cases, the trajectory of the
system progresses through a series of states, influenced
by interactions among the different degrees of freedom
of the system, with the environment, and external con-
trols/feedbacks [12} [13].

Several recent studies have tried to identify governing
principles for such processes in terms of the distance be-
tween the initial and final states of the system, the time
taken for the transformation, and the associated ther-
modynamic costs. These include the refinements of the
Second Law [T4HI7], optimal connections [I8-20], speed
limits [2IH24] as well as their trade-offs with the entropic
costs [23], 25H28]. However, the fundamental effects of in-
teractions among the different degrees of freedom of the
system, on the distance or time taken for non-equilibrium
transformations are relatively less understood.

In a recent development, Refs. [29, [30] made signifi-
cant progress in this direction. They demonstrated that
in systems with multiple degrees of freedom and hav-
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ing multi-partite dynamics, the estimate of irreversibil-
ity in a non-equilibrium steady state can be decomposed
into contributions from individual variables, and a series
of non-negative contributions from correlations among
variable pairs, triplets, and higher-order combinations.
Their proof is based on representing irreversibility as a
Kullback-Leibler divergence, which measures the relative
likelihood of trajectories over their time-reversed coun-
terparts.

In general, the Kullback-Leibler divergence quantifies
the distance between any two probability distributions,
and it has recently gained renewed interest in study-
ing non-equilibrium transformations and control of mi-
croscopic systems [I7, BIH33]. In certain cases, it also
provides estimates of the thermodynamic cost of the pro-
cess [12] 34, B5]. Hence, understanding how this distance
function depends on interactions is crucial, as it enables
the optimization of processes based on interactions, and
the design of more efficient and reliable non-equilibrium
controls.

Here we address this problem by implementing a de-
composition of the Kullback-Leibler divergence. This de-
composition primarily consists of two terms: one cor-
responding to an independent estimate of the distance,
representing hypothetical marginal processes which are
non-interacting, and another corresponding to interac-
tions, quantified using the relative mutual information
between the variables. This decomposition is further
shown to arise from a previously known decomposition
of the joint distribution involving successive orders of
correlation or interactions among the system’s degrees
of freedom [36H3§]. Crucially this decomposition is not
limited to multi-partite systems. Applying the decom-
position to an interacting pair of colloids that undergo
thermal relaxation, we find that increasing the strength
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of pairwise interactions generically increases the distance
between the current state and the target state, prolong-
ing the longevity of the time-dependent non-equilibrium
state. Additionally, in a three-variable case with pair-
wise and triplet interactions, our approach isolates their
distinct contributions to the transformation process. For
both systems, we also discuss the effects of external non-
conservative forces. In more general setups, where it is
possible to control the strength of different orders of in-
teractions, our results can potentially be used to separate
out their effects on the transformation process.

II. RESULTS

We begin by considering a system whose state is de-
scribed using the variable 2, € R, and probability dis-
tribution P(x;). We have dropped the explicit depen-
dence on ¢ for simplicity of notation. Note that one of the
elements of vector x; can also be an external control or a
feedback protocol. Let us now consider a scenario where
the probability distribution P(x;) dynamically evolves
from an initial distribution P;(x;,) to a final / target dis-
tribution Pr(x;,) in a time-dependent manner. At any
given time ¢, the distance of the instantaneous distribu-
tion P(x;) to the target distribution can be computed in
terms of the Kullback-Leibler (KL) divergence between
the two distributions as [39],

Dia(Plo||Py(en) = [ Pl g(gj). W

Next, assume we know the marginal distributions,
Pl (x}) = [, P(x;), where _; corresponds to all vari-

ables except xi. One can obtain an independent distance
in terms of these marginals as,

Do = [ Ph(allog 205,
i

The sum of the independent distances over all variables,
Dipa. = ZZ Dfnm provides an estimate of the distance
that one would have got if the variables were indepen-
dently measured. By examining the difference D — Dyyq.,
we find,
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where I(x;) is the mutual information of the current
state, generalized to N variables (also referred to as the
total correlation [40]), and I} (x) is the cross mutual in-
formation of the target state, where the average is com-
puted with respect to the current state.

Eq. is our first key observation: the distance be-
tween any two distributions can be decomposed into two
terms: a term coming from the marginal probabilities
and another coming from interactions between the local
variables, t.e.,

D = Drpa. + D1t 4)

where Dy = I(®;) — I}(2), appears as the relative
mutual information between the current state and the
target state. Note that the sign of this interaction term
could be positive or negative, depending on the choice of
the final distribution and the nature of interactions. Eq.
also has a simple information theoretic interpretation:
Interactions contribute to the distance only if the mutual
information of the current state differs from the cross
mutual information of the target state. This means, there
could be instances where accurate distance measurements
can be solely obtained from the marginal statistics, even
when the local variables are correlated.

In a similar spirit, one can argue that the total distance
further breaks down into contributions from interactions
among subsets of k < N variables. However, the choice
of this decomposition is not necessarily unique. Here
we consider one such decomposition, which is due to the
generalized Kirkwood superposition approximation [36-
38, A1), 42]. In the following, we briefly describe it for
conciseness.

Assume that we know all the (N — 1) order marginal
distributions,
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where the integration is done over the variable that is
not in the subset {z1,...zy-1}. The Kirkwood super-
position approximation provides an estimate to the joint
probability distribution Py_1(x:) ~ P(x;) in terms of
these marginals, as [30] [38],
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where the product is over all marginal densities PJ ob-
tained for a subset of variables of size & < N — 1 (see
Appendix A for the approximations to order 3. See also
Ref. [37], where the first few terms of this approximation
is derived explicitly using the Mobius inversion duality
between multivariable entropies and multivariable inter-
action information [43], which allows a series expansion
of KL divergence in the number of interacting variables.).

By successively applying the Kirkwood approximation
to the RHS of Eq. @, we can get an estimate of the joint
distribution P(x;) in terms of marginals of any order
k < N. We refer to the resulting k—th order approxima-
tion as Py (x;). In particular, for k = 1, we will arrive at
the product of single-variable marginals [37, [42]. While
lacking appropriate normalization of probability density



functions for terms beyond the first order, prior studies
have found meaningful applications of this approxima-
tion. These include quantifying higher-order mutual in-
formation to measure frustration [44] and assessing the
impact of higher-order correlations on configurational en-
tropy changes in biologically relevant processes [42} 45].
Its utility in efficiently sampling equilibrium distributions
is also established [36]. Inspired by these studies, we use
the Kirkwood approximation to obtain an estimate of the
distance that is accurate to k-th order interactions, as,
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Due to the expansion in Eq. @, D®) s fully determined
in terms of marginal probabilities upto order k. For k =
1, we recover DW = Dpa. We can also safely define
DW) = D. Tt is then natural to compare D®*) with
DE=D 1f D) = D*=1 it implies that the kth-order
dynamics is redundant, as it does not contribute to the
total distance. However, if that is not the case, then the
kth-order dynamics contribute, and we can separate the
contribution as,

DY) = D) — p-) ®

This yields the full decomposition of the total distance
into interactions of different orders as,
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where DI(1112 = DInd.-

Note that the decomposition above is similar in spirit
to the decomposition of irreversibility for multi-partite
systems (see Refs. [29, [30]), breaking down the distance
between two distributions into contributions from indi-
vidual elements in the system, interactions between pairs
of elements, interactions among triplets, and so on. How-
ever, the derivation of Eq. @D does not assume multi-
partite dynamics. Additionally, individual terms in the
expansion, D) can be negative. In practice, D*) can
be computed from the knowledge of the full joint distri-
bution or empirically obtained distributions, where only
a collection of k variables are measured simultaneously.

To demonstrate the usefulness of the decomposition,
we first consider the problem of thermal relaxation
of two identical, interacting colloidal particles in two
spatially separated quadratic potential wells, as shown
in Fig. These colloidal particles are prepared in an
equilibrium state at temperature Ty and then let to relax
in an aqueous solution at temperature 7. This model
has been extensively studied both theoretically [46/48]
and experimentally [49, 50]. The dynamics is governed
by the Langevin equations:

#(t) = Hu(=kiz + f1(t)) + Hiz2(—kay + f2(t))

§(0) = Hay(—kaz + Fu(0) + Han—kay + fo(8)), ")

where z(t) and y(t) are the relative positions of these par-
ticles with respect to the center of their respective traps
at different times. The parameters k; and ks denote the
optical stiffness of the two traps. The constants Hy; =
Hyy = 1/(6mna) = 1/ and His = Hy = 1/(4mnR),
where R is the center - center distance between the two
traps and a is the radius of the particle, are the low-
est order components, in 1/R, of the Oseen Tensor [51]
for motions in the longitudinal directions. Here + is the
viscous drag coefficient. The value of R determines the
interaction between the colloidal particles. As R — oo,
the interaction between the colloidal particles vanishes
and our system turns to a non-interacting system. The
terms fi(t) and f2(t) are the random Brownian forces
which are delta correlated in time.

Given that the system is initially prepared in a state
different from its thermal equilibrium state in the new
environment, it exists in a non-equilibrium state charac-
terized by a certain distance from its eventual thermal
state. Quantifying this distance in terms of Kullback-
Leibler divergence has gained significant interest in recent
times, primarily in the context of non-trivial thermal re-
laxation behaviours such as Mpemba effects [35], [52H56] or
the study of asymmetries of thermal relaxation [57H61].
In these cases, Dk, (P(x)||Prq(:)) is also the same as
the excess free energy of the state P(a;) which vanishes
as the system equilibrates (see Refs. [35] [57] for a simple
derivation).

For the model we consider, leveraging the fact that it
is a linear system of stochastic differential equations, it is
possible to analytically compute the instantaneous prob-
ability distribution P(x;) in terms of all the parameters
in the system, for any value of time ¢ (See Appendix B).
Using these solutions, it can be verified that the variables
x and y are anti-correlated for any ¢ > 0. The strength
of correlations increases when R decreases. Further, at
equilibrium (in the ¢ — 0 and ¢t — oo limit), the correla-
tions vanish.

Using the exact solutions for the distributions,
we can further compute the distance function
Dxi, (P(x)||Peg(®)). In particular, when t = 0,
we get the distance between the initial equilibrium
system at temperature T and the final equilibrium
system at temperature 7', which can be used to compare
initial states and pick the equivalent ones that are
equidistant [57H59] [6T] from the final thermal state. For
our model, this initial distance function is found to only
depend on the ratio Ty /T and is given by,

Dy, (P (@) I|1PE,(2)) = =1+ % +log Tzo (11)
Thus, if we consider an ensemble of systems with different
values of R, a fixed initial temperature, and an ambient
temperature, all of them will have the same distance to
the final thermal state at ¢ = 0. For a particular choice
of parameters, we show this initial distance function in
Fig.[Ip. The rest of the plots in this paper correspond to
the point Typ/T = 2.5 in this curve, which has the initial
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FIG. 1. a) Schematics of two identical, hydrodynamically coupled colloidal particles in two spatially separated quadratic
potential wells of stiffness k1 and k2. b) The distance between the initial equilibrium system at temperature T and the final
equilibrium system at temperature 7. We consider a particular parameter choice Tp/T = 2.5, as marked. The other parameter

choices are: k1 =1; ko =2;v=1;,n=1; kg = 1.
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FIG. 2. a) The total distance function D = Dkr, (P(z¢)||Peq(x:)) as well as the independent distance Diynq. for different values
of R and ¢, for fixed values of initial and final temperatures as well as other model parameters. We find that D > Dyq. for all
values of R and ¢. b) The total distance function D = Dxy, (P(x¢)||Peq(z+)) for two values of the separation R ( Top: R =0.1
and Bottom: R = 0.5) between the two optical traps. We find that the system at small separation takes longer to thermalize.

distance Dy, (PETgl(m)||PETq(m)) — 0.5837.

For arbitrary times, the distance functions
Dy, (P(a:t)||PETq(act)) will in general depend on the the
parameter R. Furthermore, using explicit analytical
solutions of P(x;) and its marginals, we can separately
compute the independent distance, interaction distance
as well as the distance function in the non-interacting
limit of R — oo. Since our system consists of only
two interacting particles, the decomposition in Eq.

(ED only has two terms, namely DI(rllg Dipg. and

Dl(flz = DIUt~ =D - DInd‘v given bY7
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In Figure [2] we present our central findings. Figure [Zh
illustrates the plots of D and Dryq., for various values of
R and t, while keeping other model parameters fixed. At
t = 0, all states are equidistant from the final thermal
state, as expected. We also find that Dy, = 0 for any
fixed value of R. This means the initial distance function
can entirely be determined by the marginal statistics of

x and y. However, for ¢ > 0, and any value of R we
observe that D > Dr,q., which means interactions posi-
tively contribute to the total distance. Specifically, when
the two traps are brought closer, the value of D increases
for all ¢t. Refer to Figure @b for a demonstration of this
behavior with two different values of R.

In Figure [3h, we plot the interaction distance Dry. for
varying time ¢ and different values of R. As R decreases,
the interaction distance contribution Di, increases. Fi-
nally, in Figure[3p, we compare the total distance D with
the distance computed for the non-interacting case, de-
noted as Dyon—interacting = liMp—y00c D. We observe that
Dion—interacting < D for all values of R and ¢. Moreover,
this bound saturates in the limit R — oo.

So far, we looked at how the interaction parameter R
affects the non-equilibrium transformation. It is natu-
ral to ask if additional external controls can be intro-
duced in this problem, which affects the rate of trans-
formation, preserving the initial and target states, at a
fixed R. Interestingly, such a possibility does exist. One
can introduce an additional external force of the form
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FIG. 3. a) The interaction distance Diys. for different values of time ¢ and separation R. We find that as we decrease R and
bring the two particles closer to each other, the interaction distance Diys. increases. b) The total distance D compared with
the distance computed for the non-interacting case Dnon—interacting = limpr—oo D, for different values of R. As expected, we
find that Dypon—interacting < D for all values of R and t, saturating the bound in the R — oo limit.
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FIG. 4. a) The total distance function D as well as the independent distance Ding. for different values of strength of the
external driving, a and t, for a fixed value of R and other model parameters. b) The interaction distance Dy, for different
values of time ¢ and « for the parameter choice in (a). We find that all the distance functions decrease in value for any ¢ with
increasing «. The other parameter choices are: k1 =1; ko =2; v =1, n=1; kg = 1.
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FIG. 5. a) The confining potential in Eq. for a,...,d = 1 and & = 7. b) The total distance function D =
Dy, (P(x¢)||Peq(2t)) for two values of the parameter a (o = 0 and « = 10). We find that the system with larger value
of a takes longer to relax to the stationary state. The distance functions are computed by numerically integrating the Langevin
equation in Eq. with time-step dt = 0.01, and constructing histograms at different times using 10° copies of trajectories.
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FIG. 6. a) The distance functions for different orders of interaction: DO — Drna., D(2), and D® = D, as well as b) the
contributions to total distance arising solely from pairwise and triplet contributions, DI(EE and Dl(izl, for o = 0 (dot-dashed lines)
and a = 10 (solid lines). We find that the contributions from interactions, especially triplet interactions, are significantly higher
(note the logarithmic scale used for the y axis) when a = 10 as compared to the case with e = 0. The distance functions are
computed by numerically integrating the Langevin equation in Eq. with time-step dt = 0.01, and constructing histograms

at different times using 10° copies of trajectories.

Fo(x) = a[—%y, %x], which can be shown to preserve
the form of the stationary state of Eq. for any fixed
R, at the cost of making them non-equilibrium with a
non-vanishing probability flux and positive entropy pro-
duction rate [62]. The parameter o can be used to control
the strength of this external driving. Once again, the re-
sulting system can be analytically solved and the explicit
dependence of the distance functions on the parameter o
can be obtained. The results are shown in Fig. [4] for a
particular choice of R and other system parameters. We
find that, as compared to the o = 0 case, both the to-
tal distance D as well as the interaction distance Dry;.
is decreased for any value of ¢ as « is increased. This
behaviour can further be attributed to the decrease in
transient correlations between x and y with increasing o
(see Fig. |z| in Appendix B).

While we have considered a specific form of detailed
balance breaking in this example, it’s worth noting that
for the general class of driven Ornstein-Uhlenbeck pro-
cesses, as demonstrated in Ref. [63], the non-detailed
balance part can always be isolated, regardless of the
choice of force and diffusion matrices. This facilitates the
construction of a potential function corresponding to the
Boltzmann distribution, which remains unaffected by the
non-detailed balance contributions. Our formalism can
be straightforwardly extended to these cases as well.

As previously discussed, our general framework ex-
tends to interactions beyond second order. To demon-
strate this, we now consider a system having three de-
grees of freedom @ = [z, y, z| (see also Appendix C), hav-
ing the following coupled Langevin dynamics:

z=(—I+aZ)ViV(z,y,z)+€t), (13)

where
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We visualize this potential in Fig. . The term €(t)
corresponds to Gaussian white noise with (€(t)) = 0 and

correlations (e(t)e(s)) = 2D§(t—s). The matrices Z and
D are given by,

(14)
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For arbitrary initial conditions and non-zero values of
the constant «, and 6 € (0, 5 ), the system develops both
pairwise and triplet correlations. Most of these correla-
tions will be transient, vanishing as the system reaches
the stationary state (see Fig. [8|in Appendix C. 1). Since
the matrix Z is skew-symmetric, once again, the sta-
tionary state will be non-equilibrium but will have the
same form as the Boltzmann-Gibbs distribution with the
potential energy function V' [62]. Thus, the relaxation
process starting from an initial stationary distribution
prepared at temperature Ty to a final stationary distri-
bution at temperature T, with and without a non-zero
a, will be equidistant quenches at t = 0.

Due to its non-linearity, tackling this system analyt-
ically is challenging. Therefore, we analyze it numeri-
cally, and consider the relaxation process corresponding
to % = 10. We provide the corresponding algorithm as
a supplementary material [64]. The results are shown
in Figure fb. We observe that the configuration with
external driving (o = 10) for which transient correla-
tions develop, takes longer to relax to the stationary state



as compared to the configuration without any driving
(o = 0). We can further use Eq. (6) through Eq. (9)
to compute the distance functions for different orders of
interaction: D) = Dipa., D(Q), and D®) = D, as well as
the contributions arising solely from pairwise and triplet

contributions, Dl(iz and Dﬁz This is demonstrated in
Figs. [h and [6b. As expected, we find that the con-
tributions to total distance from interactions, especially
triplet interactions, are significantly higher when o = 10
as compared to the case with a = 0.

III. CONCLUSION

In summary, we have shown that, in arbitrary non-
equilibrium transformations, the distance between the
current state and a target state can be decomposed into
two terms: one corresponding to an independent esti-
mate of the distance, representing hypothetical marginal
processes which are non-interacting, and another corre-
sponding to interactions, quantified using the relative
mutual information between the variables. The inter-
action term can further be decomposed into contribu-
tions from interactions between pairs of elements, in-
teractions among triplets, and so on. The results are
demonstrated by considering, a) the example of the ther-
mal relaxation of two interacting optically trapped col-
loidal particles, and b) a three dimensional system driven
by non-conservative forces. In both cases, it is ob-
served that increasing the interaction strength enhances
transient correlations, increasing the separation between
the time-dependent non-equilibrium state and the target
state. Moreover, for fixed values of interaction parame-
ters, our formalism separates out the contributions to the
total distance, at any time, arising from different orders
of interactions between the variables. The results also
show that introducing additional non-conservative driv-
ing forces provides an extra degree of control over the
transformation process.

Our results suggest that harnessing local interactions
could have applications in controlling and taming the
time evolution of systems towards desired states. In se-
tups where it is possible to control the strength of dif-
ferent orders of interactions, our findings offer a possi-
ble way to disentangle their effects on the transforma-
tion process, and to identify the ones that can assist the
transformation. As mentioned, our decomposition of the
distance function is not necessarily unique but merits fur-
ther investigation in interacting systems with many de-
grees of freedom. Further research could also delve into
specific applications in non-equilibrium control problems
[19, B2, 65H67] where understanding these effects could
be valuable, or resource theories [68], where maintain-
ing non-equilibrium states for extended periods could be
beneficial.
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Appendix A: Kirkwood approximation upto order
k=3

Here we provide the form of Eq. @ for Kk = 1,2 and
3 (see the main text for notations). Let P(x) be a joint
distributions of N variables. The corresponding k = 1
approximation is just the product of the single variable
marginals, given as,

log P1 = log HP1 (z;) (A1)
The k& = 2 approximation is:
Po(x;,x;
1 : J
og Py(x) = log H Pren) (A2)
i>7
The k& = 3 approximation is:
B Ps(x;,xj,x,)P1(xk)P1(x
log P3(x) = log |:H7;>j>k s(pz(ii,wz))p;((z’;)@k)( i) (A3)

Higher order approximations can be similarly obtained
by applying Eq. @

Appendix B: Exact calculation for the system of
interacting colloids

Here, we describe the calculation of the distance func-
tions for the model of interacting colloids. We follow the
notations in Ref. [69]. To begin with, we rewrite Eq.
as a matrix equation,

() = —Ar(t) + €(t) (B1)



with (e(t)e(s)) = 2DJ(t — s) where
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For the case with non-equilibrium driving, we consider
the case where

k1 ko + ko
K1 o 2
— 4R
A=| 4 7y T (B3)
4mnR ¥ vy

Now to find the probability distribution of the system
at any time, first, we write a Fokker - Planck equation
equivalent to our Langevin equation as

O 1p(t,7lty, o))

0Pt 0) 5~ D (g i,y
J

ot — (97“1‘
i,

(B4)

where P(t,r|to, o) is the conditional probability that the

system is in a position r at time t, given that it was at

ro at time tg.

The Fokker - Planck equation is exactly solvable,

and the solution is found to be

Lir—e=(=10)Ap 1T ==1(t—tg) [r—e (t=10)Apg)

P(t,rlto, mo) = V/(2m)% det B(t—to) ’
(B5)

where the covariance matrix is

B(t) = B(00) —e A B(oo) e, (B6)
and 3(o0) is found by solving the below matrix equation
A3 (00) + E(00)AT = 2D (B7)

If the matrix A is positive definite, it is guaranteed that
the system will reach a stationary Gaussian distribu-
tion at ¢t — oo, which will have the covariance matrix
371(00). For our model, we obtain,

kpT
w5 ). (3s)
ka

In terms of this matrix, we can obtain the equilibrium
distribution of the system as,

! e~3®= ()® ()
(27)? det X(0)

Pgq(x) =

Increasing a

o <xOY©® >

FIG. 7. Figure showing the dependence of the z, y cor-
relations on « as a function of time ¢t for a fixed value
of R. The other parameter choices are: k1 = 1; ke =
2; v =1; n =1; kg = 1. The values of a considered are
a=0,0.05,0.1,0.15.

Note that this distribution explicitly depends on the tem-
perature T. When we set T' = T, we get the equilibrium
distribution at temperature Ty. Furthermore, the time-
dependent distribution corresponding to the thermal re-
laxation from a distribution at an initial temperature Ty
to an ambient temperature 7" can be obtained by per-
forming the integration,

Play) = / P (a0) P(t, 4 to, o) (B10)

where P(t, x¢|to, o) is given by Eq. (B5). The results in
this manuscript are obtained by first explicitly evaluating
this integral to get P(x;) and computing the relevant
distance functions in terms of that.

B. 1: The correlations between = and y

Figure [7] shows the correlations between z and y vari-
ables as a function of ¢ for a fixed R and varying values
of a.

Appendix C: Example of a system with pairwise and
triplet interactions

As an example of a system with third order interac-
tions, we consider a system with three degrees of freedom
(x, y, z) having a confining potential:

Y2 2

V(z,y,z) = ax’™ — bx'* + e+ d%,

"\ [cosf —sinf o (*

y' ] \sinf cosf y)’
where the rotation matrix is used to couple the x and y
degrees of freedom. The parameters a, ..., d needs to be

chosen such that the overall potential is confining. We set
all these parameters to 1 such that the confinement along

(C1)



the z’ direction corresponds to a double-well potential.
Next, we consider the overdamped Langevin dynamics of
this system:

z=(-I+aZ)ViV(z,y,z)+€t), (C2)
where I is the identity matrix and Z is any skew-
symmetric matrix which will lead to a non-conservative
driving. Interestingly, it can be shown that this addi-
tional driving does not change the stationary state of the
system from the Boltzmann distribution [62]. Here, the
parameter o determines the strength of this driving. The
noise correlations are given by (e(t)e(s)) = 2Dd(t — s)
where,

kT 0
¥
D=| 0o *L 0o |. (C3)
0 o0 &L
3
In particular, we choose
0 01
Z=|0 00, (C4)
-100

which effectively couples the z,y degrees to z, leading to
new pair-wise and triplet interactions. A scenario where
the effects of the interactions can be seen is when you con-
sider a thermal relaxation dynamics, where we prepare
the system at an arbitrary initial temperature Ty and let
it relax to the steady state at an ambient temperature
T. In addition, if we choose a non-zero «, transient cor-
relations develop between all the three variables. Similar
to the two-particle case, the choice of o does not affect
initial and final distributions, ensuring that the distance
function at t = 0 remains independent of . This facili-
tates the comparison of initially equivalent states.

C. 1: The correlations between z, y and z

Figure |8 shows various correlations between x, y and
z variables as a function of ¢ for two different values of «
and other parameters fixed.
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