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Abstract: According to the pioneering work of Nielsen and collaborators, the length of
the minimal geodesic in a geometric realization of a suitable operator space provides a mea-
sure of the quantum complexity of an operation. Compared with the original concept of
complexity based on the minimal number of gates required to construct the desired opera-
tion as a product, this geometrical approach amounts to a more concrete and computable
definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space.
The geometrical formulation can more easily be evaluated by considering the geometry
associated with a suitable finite-dimensional group generated by a small number of rele-
vant operators of the system. In this way, the method has been applied in particular to
the harmonic oscillator, which is also of interest in the present paper. However, subtle
and previously unrecognized issues of group theory can lead to unforeseen complications,
motivating a new formulation that remains on the level of the underlying Lie algebras for
most of the required steps. Novel insights about complexity can thereby be found in a
low-dimensional setting, with the potential of systematic extensions to higher dimensions
as well as interactions. Specific examples include the quantum complexity of various tar-
get unitary operators associated with a harmonic oscillator, inverted harmonic oscillator,
and coupled harmonic oscillators. The generality of this approach is demonstrated by an
application to an anharmonic oscillator with a cubic term.
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1 Introduction

Quantum complexity, a notion of measuring the difficulty of carrying out a complicated
task as a succession of simple operations, is an important concept in a variety of different
areas. For instance, it has surprisingly helped to study important physical problems such as
information processing by black holes. In this context, the famous Ryu-Takayanagi proposal
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[1–3] of relating entanglement entropy (between two regions in the boundary conformal field
theory) to minimal surfaces in AdS spaces proved to be extremely successful in interpreting
spacetimes as emergent from quantum entanglement. Black holes posed serious challenges
because the volume behind the horizon of the AdS black hole continues to grow for a very
long time well after the saturation of its entanglement entropy [4]. Hence, it became essential
to look for quantities that capture this long-term growth. Susskind and collaborators’ [5–7]
suggested that the growth of the volume should be dual to the quantum complexity of the
boundary field theory that led to the “Complexity=Volume” (CV) conjecture [5–7], followed
by the “Complexity=Action” (CA) conjecture, which related complexity of the field theory
to the gravitational action of the Wheeler-de-Witt patch of the bulk gravity theory [8, 9].
The most recent viewpoint of complexity is known as the “Complexity=Anything” [10, 11].

In quantum gravity, the motivation to study quantum complexity is primarily derived
from the enigmatic black hole phenomena. Nevertheless, its importance extends to nu-
merous other branches of physics, particularly those involving complex systems1. In broad
terms, a complex system is generally characterized by a high number of degrees of freedom,
non-linear interactions, and long-distance correlations. There exists a plethora of complex
systems across various disciplines of physics, ranging from strongly correlated quantum
systems to biological systems and even extending to social networks. In this discussion,
however, our focus is specifically limited to systems that demonstrate quantum properties.

The notion of quantum complexity is relatively new in physics, but in computer science
and information theory various relevant notions of complexity have been used for some time.
All of them have something to do with how a complex object is built from simple or small
constituents, and how many of these simple parts are needed to make the complex whole.
Two of the most popular notions of complexity in computer science are the Kolmogorov
complexity [13] and the stochastic complexity [14]. The Kolmogorov complexity of an
object measures the length of the shortest program required to produce it. The stochastic
complexity is applied to messages and the smallest code required to compress them. The
general notion of complexity was inherited from computer science and information theory by
quantum computation research in efforts to determine the complexity of quantum circuits.

In a groundbreaking series of papers, Nielsen and his collaborators [15–17] established
a correlation between quantum complexity and the length of the minimal geodesic in the
space of unitary operators. This geometric definition opened up an entirely new avenue of
research, leading to significant advancements in understanding the role of quantum com-
plexity in holography. Nielsen’s formulation primarily focused on determining the minimal
circuit size necessary to implement an n-qubit unitary operation, thereby determining the
complexity of specific quantum states. However, its significance in the broader context of
quantum mechanics remains largely unexplored. Several notable efforts have recently been
made to quantify the complexity of individual states [18–27]. Reference [18] was the first
paper to attempt to define complexity in quantum field theory. Specifically, they were in-
terested in the complexity of the ground state in free scalar field theory. For this purpose,

1A comprehensive review of recent advancements in quantum complexity across the field of physics is
presented in [12].
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choosing a suitable reference state is required. The approach of state complexity is then
dependent on the choice of reference state. In practice, many of these attempts are limited
by the requirement that the reference and target states be Gaussian. Several methods were
developed and extensively applied to deal with the complexity of Gaussian states, like the
covariance matrix method [19], Fubini–Study method [23]. An attempt to analyze complex-
ity for a non-Gaussian state was made in [24]. A comparative study of different approaches
to state complexity was carried out in [28]. While these achievements represent remarkable
progress, they do not provide a comprehensive understanding of the complexity associated
with quantum processes in general.

In our studies, we will be primarily interested in operator complexity, specifically in the
complexity of time evolution operators associated with certain Hamiltonians rather than
the complexity of a certain state. This article has two main motivations:

• Providing a general recipe to determine the complexity of any unitary operator with-
out needing a separate definition of reference or target states. In the literature, the
notion of operator complexity is mainly introduced by characterizing their action on
Gaussian reference and target states. These limitations make it challenging to provide
general statements on the complexity of the operator. A general state-independent
approach is expected to be more feasible in extensions of the analysis to interacting
systems or in applications to Hamiltonians beyond the quadratic level.

• Understanding how the complexity changes as a quantum system undergoes time
evolution. For this purpose, the target unitary operators, whose complexity we will
be interested in, are time-evolution operators for various systems.

The determination of the complexity of a certain state has its significance in the context
of quantum simulations, particularly in many body systems and their wave functions. An
important example is the complexity of specific states, such as the thermofield double state,
which is conjectured to be dual to an eternal black hole in anti-de Sitter space-time and may,
therefore, play a crucial role in the understanding of stationary black holes. By contrast,
the complexity of time evolution addresses the question of the least complex way of evolving
a quantum system: Is it possible to find a shorter path between two points in the evolution
other than the one generated by the Hamiltonian itself? For our exploration, we will
consider some of the widely considered models, including those considered in [18, 19, 29].
However, we will not be interested in the complexity of a particular state but rather in the
complexity of the time-evolution operator.

Nielsen’s general method, which can be applied to non-qubit systems by replacing the
unitary groups SU(N) with other suitable Lie groups, is well-suited to this purpose. If the
quantum system describes the motion of a point particle, the method requires a truncation
of the space of all unitary operators on an infinite-dimensional Hilbert space to a suitable
finite-dimensional group. In the case of the harmonic oscillator, with its wide-ranging
applications in various fields, the groups SU(1, 1) and Sp(2,R) play a prominent role (see
for instance [30] for such applications to complexity). However, unlike SU(N), these groups
are not compact, leading to mathematical subtleties that, to the best of our knowledge, have
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not been appreciated in the existing literature. We will discuss these issues in the present
paper — such as the non-existence of finite-dimensional unitary matrix representations,
non-surjectivity of the exponential map, and geodesic incompleteness of group metrics —
and analyze to what degree they can be avoided by working on an algebraic rather than
group-theoretic level whenever possible. We also demonstrate extensions of this method
that allow us to go beyond quadratic Hamiltonians, providing the first results of complexity
for anharmonic systems.

The rest of the paper is organized as follows: in Section 2 we review the essentials
of quantum complexity. We start by introducing the conventional definition of quantum
complexity described in terms of the number of universal gates in the desired quantum
circuit. We explain the significance of the geometrical definition of quantum complexity by
pointing out the drawbacks and limitations of the gate definition of quantum complexity.
We then provide a quick review of the geometrical approach to quantum complexity with
a complete recipe for a general target unitary operator. In Section 3, we briefly discuss
the essential quantities corresponding to the harmonic oscillator group as a minimal im-
plementation of the geometric method, highlighting several subtleties, and illustrate the
recipe of the geometrical framework of quantum complexity bounds in this system by an
explicit computation for the displacement operator and several examples of harmonic time
evolution operators, which was the primary motivation of the paper. In Section 4, we
show that not only the harmonic oscillator group but also the symplectic group Sp(2,R)
is efficient in determining the complexity of the harmonic oscillator, and in addition of
the inverted harmonic oscillator which cannot be described using the harmonic oscillator
group. In Section 5, we consider the case of two coupled harmonic oscillators and study
the complexity of time evolution in such coupled systems. Our final example discusses an
anharmonic oscillator with a cubic term, after which we conclude with a brief discussion of
our findings and future directions. Various calculations details are relegated to appendices.

2 Overview of quantum complexity

In this section, we briefly review Nielsen’s geometric interpretation of quantum complexity.
As discussed earlier, the notion of quantum complexity measures the minimum number of
simple operations required to carry out a complex task. In terms of unitary operators (or
quantum states), we might think of complexity as the minimum number of elementary gates
required to construct the quantum circuit that will produce the desired unitary operator
(or takes a reference state to the target state). This approach of counting gates is better
known as gate complexity.

2.1 Gate approach to quantum complexity – Gate Complexity

Consider a target state |ΨT ⟩ to be constructed from a reference state |ΨR⟩:

|ΨT ⟩ = Utarget |ΨR⟩ . (2.1)

Here, Utarget represents the unitary operator that realizes the transformation |ΨR⟩ → |ΨT ⟩.
Thus, Utarget is our target unitary operator whose complexity we are interested in. An
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actual construction of a quantum circuit would proceed by building it out of elementary
operations gi that synthesize Utarget:

|ΨT ⟩ = Utarget |ΨR⟩ = gngn−1 · · · g2g1 |ΨR⟩ . (2.2)

Out of all possible circuits built from the chosen gate set {gi}, realizing Utarget (up to a
certain level of accuracy ϵ), the circuit requiring the minimal number of gates in {gi} is
the optimal one, and this number of gates in the optimal circuit gives a measure of the
complexity of Utarget. Therefore,

Gate Complexity ≡ number of quantum gates used in the optimal circuit

that implements the desired Utarget within ϵ.

The gate approach of quantifying complexity is adapted to the question of how to build
an actual quantum circuit out of component gates, but this definition is not suitable for
quantum systems with continuous variables. One of the major drawbacks is the choice of
a set of gates. For example, if two gate sets {gi} and {mi} can realize the same Utarget,
the numbers of gates in the optimal circuit required from {gi} (n1) and from {mi} (n2)
are in general different. Therefore, a well-defined complexity of Utarget (n1 or n2) requires
an a priori choice of the gate set, {gi} or {mi}. The gate complexity is thus not uniquely
defined for a target unitary.

Another significant drawback of gate complexity is its sensitivity to the level of accuracy
(ϵ = |Utarget−gngn−1...g2g1| in some operator norm) required for the quantum circuit. Using
discrete gates to build a circuit may result in producing a unitary UA

target, which is close to
but not exactly equal to the desired Utarget. The need to use an operator norm renders this
concept of closeness non-unique. In the above example, instead of Utarget, we would apply
UA
target to an initial state of a quantum system. The dynamics produced by UA

target is not
identical to the desired dynamics, generated by Utarget, and will have some correction terms
which might play a significant role for instance in quantum computation. The correction
terms can be reduced by making UA

target as close as possible to Utarget, using smaller and
smaller ϵ, but the outcomes of the actual target operator may be different in each case.
Therefore, a dependence of complexity on the sensitivity ϵ is not desirable. This level of
non-uniqueness in the definition of quantum complexity calls for a better and more concrete
alternative. A geometrical viewpoint of quantum complexity was given by Nielsen and his
collaborators, which we discuss in the next subsection.

2.2 Geometrical approach to quantum complexity

In a series of papers, Nielsen et. al [15–17] proposed a transition from the discrete picture
of gate complexity to a continuous description, making new connections between quantum
complexity and differential geometry. They observed that determining the quantum com-
plexity of a unitary operation is closely related to the problem of finding minimal-length
geodesics in a certain curved geometry. The original motivation for introducing a geomet-
rical notion of quantum complexity was to use it as a tool to bound the value of gate
complexity. From this initial definition, it has evolved into a candidate for a fundamental
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and unique definition of quantum complexity, a viewpoint that is supported by its smaller
degree of ambiguity. Therefore, from now on, we will cease thinking of complexity geome-
try as a continuous approximation to gate complexity but rather view gate complexity as
a discrete approximation of geometric complexity.

Let us briefly review the overall idea of the geometrical method to quantum complex-
ity. In this approach, the complexity of a unitary operator U is the length of the minimal
geodesic on the unitary group manifold joining the identity to U . In the original manifes-
tation of the geometric approach, unitaries acting on n-qubit systems were investigated,
and the framework relied on the special unitary groups SU(2n). An extension of the basic
idea of the entire framework to a general unitary is initially straightforward, but it does
lead to several mathematical subtleties, some of which will be described in more detail in
the main part of our paper. For instance, a general discussion of complexity in quantum
mechanics would require differential geometry on infinite-dimensional manifolds. Properties
of geodesics are then hard to analyze, not only because solving an infinite set of coupled
differential equations is usually difficult, but also because a geodesic between two given
points is then not guaranteed to exist (since the Hopf–Rinow theorem no longer applies).
Instead, geodesic distance is defined as the infimum (not necessarily a minimum) of the
distance on the space of all possible curves connecting the two points, and there may be
no curve that has the resulting distance. For a tractable application of the method, one
should therefore, first reduce the infinite-dimensional problem to a finite-dimensional one,
depending on the target unitary of interest. Even then, properties of Lie groups may lead
to further subtleties.

Given the target unitary operator whose complexity is of interest, one may identify
a set of fundamental operators related in some way to it. In particular, the Lie algebra
generated by a suitable choice of fundamental operators of the quantum system (of which
there are finitely many ones in quantum mechanics, as opposed to quantum field theory) can
be exponentiated to a group of which the target unitary is an element. If the target unitary
is defined as the exponential of a Hamiltonian (times i), the task in this step is to find a
suitable set of other operators, including additional observables of interest such as position
and momentum, that, together with the Hamiltonian, have a closed set of commutators.
After identifying these generators of a Lie algebra, one classifies them as “easy” or “hard”
for an application in the given quantum system. For instance, the closure condition on the
brackets may require one to use additional generators that are physically less motivated
than the original observables, which accordingly would be considered “hard” to construct.
Their contributions are then suppressed in the geodesic distance by assigning large metric
components to their directions. The Lie algebra generated by all the operators, easy and
hard ones, is exponentiated to a Lie group. If the generators are self-adjoint, the Lie group
is unitary.

In order to define a geometry, one then considers a right-invariant metric that accu-
rately captures the hardness property by penalizing the directions along the hard operators
such that moving in their direction is discouraged for geodesics on the Lie group. In the
literature on quantum complexity, the set of hardness coefficients is known as the penalty
factor matrix, denoted by GIJ . The choice of the matrix GIJ is usually motivated by
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phenomenological considerations [31, 32], inspired by difficulties of performing certain op-
erations during an experiment [33]. Sometimes theoretical bias is also used in this choice.
Assuming different penalties or operational costs in different directions (GIJ ̸= δIJ) intro-
duces anisotropy in the resulting operator space geometry. The choice of the metric leads
to a notion of distance on the unitary space, which, as recalled in Appendix A, is given by:

ds2 =
1

Tr(OIO†
I)Tr(OJO†

J)

[
GIJTr[iU

−1O†
IdU ]Tr[iU−1O†

JdU ]

]
, (2.3)

where the OI represent the generators of the unitary group and U plays the role of a point
on the manifold. The trace Tr is taken in a matrix representation of the generators. For
geodesics, only the right-invariance of the line element matters, but not the specific form
on the entire group.

An efficient way of determining geodesics on Lie groups equipped with a right-invariant
metric was given by Arnold and is known as the Euler–Arnold equation [34]:

GIJ
dV J(s)

ds
= fK

IJV
J(s)GKLV

L(s), (2.4)

where fK
IJ are the structure constants of the Lie algebra, defined by

[OI ,OJ ] = ifK
IJOK . (2.5)

The components V I(s) represent the tangent vector (or the velocity) at each point
along the geodesic, defined by:

dU(s)

ds
= −iV I(s)OIU(s). (2.6)

The coupled differential equations (2.4) do not depend on the position U(s) along the
geodesic, and can therefore be solved independently of (2.6). Given a solution V I(s), a
further integration of (2.6) results in the path (or trajectory) in the group, guided by
the velocity vector V I(s). Generically, this solution can be written as the path-ordered
exponential:

U(s) = P exp

(
− i

∫ s

0
ds′ V I(s′)OI

)
, (2.7)

on which we impose the boundary conditions

U(s = 0) = I and U(s = 1) = Utarget, (2.8)

where Utarget is some target unitary whose complexity we wish to study.
In general, equation (2.4) defines a family of geodesics {V I(s)} on the unitary space.

The boundary condition U(s = 1) = Utarget filters out those geodesics that can realize the
target unitary operator by fixing the magnitude of the tangent vector V I at s = 0 (at
the identity operator). This procedure is analogous to the shooting method in which the
trajectory followed by a particle with a certain initial velocity is required to hit the target.
The initial velocity for which the target is reached is determined by the boundary condition
at s = 1.
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In general, there might be more than one value of the initial velocity for which the
point of the target unitary is reached. The complexity of the target unitary operator is
then given by the length of the shortest geodesic realizing the target unitary operator:

C[Utarget] = min
{V I(s)}

∫ 1

0
ds
√

GIJV I(s)V J(s), (2.9)

where the minimization is over all geodesics {V I(s)} from the identity to Utarget. This
equation makes use of the right-invariance of the line element.

The Euler-Arnold equations has been extensively used recently to compute the geodesics
on unitary manifolds, see Refs. [31, 34–38].

2.3 Recipe to determine complexity using the geometrical approach

In this subsection, we provide a summary in the form of a simple recipe that can be applied
to compute the complexity of an operator:

• From the operator whose complexity is to be determined, identify a basis of the
generators (OI) that form a closed commutator algebra and hence specify a Lie group.
A commutator algebra is said to be closed if taking the commutation of any two
elements produces an element that is also part of the algebra. It might be possible
that the generators of some target operators do not form a closed algebra. The
simplest example is that of a unitary operator, which is generated from non-quadratic
Hamiltonians like an anharmonic oscillator. In that case, by penalizing the generators
of higher orders, we can neglect their contribution in order to regain a closed set of
commutators. Geometrically, large penalties restrict the movement in the direction
of higher-order generators. Alternatively, the complexity resulting from a calculation
that ignores higher-order generators can be interpreted as an upper bound on the
exact complexity because it ignores possible shortcuts that might be taken in the
direction of higher-order generators. We will also encounter additional subtleties
related to group-theoretical properties of non-compact Lie groups that indicate that
the computed distances should be considered upper bounds on the complexity rather
than strict values.

• The commutators of the generators determine the structure constants of their Lie
algebra. Using the structure constants, solve the Euler–Arnold equation to get the
set of geodesics {V I(s)} in the corresponding Lie group.

• Having obtained the V I(s), use them to compute the path-ordered exponential (2.7).

• Implement the boundary conditions U(s = 0) = I and U(s = 1) = Utarget by fixing the
initial value of the components of the velocity vector V I(s) in terms of the parameters
of the target unitary. This step ensures that the geodesic characterized by those initial
values reaches the target.

• Compute the length of the geodesics for all values of the initial tangent vector deter-
mined in the previous step with respect to the chosen right-invariant metric.
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• The length of the minimal geodesic determines the complexity of the target unitary
operator.

It is worth repeating our new viewpoint that the geometrical method applied to an originally
infinite-dimensional quantum system is, in general, expected to provide an upper bound
on the complexity. Computational tractability often requires one to ignore directions in
the full group of unitaries that may seem unrelated to the problem at hand but might still
be relevant for geodesics as a shortcut between the initial and target operator. We will,
therefore, refer to our results as “complexity bounds.”

We will follow this recipe for various harmonic oscillator systems, using two different
non-compact groups that can be interpreted as containing the harmonic oscillator Hamilto-
nian as a generator. We first introduce and apply the harmonic oscillator groups, in which
the Hamiltonian is accompanied by position, momentum, and the identity, and then turn
to the symplectic group.

3 The harmonic oscillator group.

We begin with a brief review of the harmonic oscillator group. This group is based on four
generators Q, P , H and E, which satisfy the commutation relations

[Q,P ] = iE, [H,Q] = −iP, [H,P ] = iQ. (3.1)

Upon exponentiation, the generators Q, P , H, and E specify a Lie group, which is popularly
known as the harmonic oscillator group, studied extensively in [39]. If we represent the
generators Q, P , H and E as

Q = x, P = −i
∂

∂x
, H = − ∂2

∂x2
+ x2 and E = I, (3.2)

on the Hilbert space of square-integrable functions of x, they can be recognized as the
position, momentum, Hamiltonian and the identity operator of a harmonic oscillator. The
generators P , Q and E form a subalgebra isomorphic to the Heisenberg algebra.

3.1 Mathematical properties

Exponentiation of all four generators results in the harmonic oscillator group. This group
is not exponential, as shown in [39], which means that there are some group elements that
cannot be written as exp(−i(α1E + α2P + α3Q+ α4H)) with real numbers αj . By defini-
tion, the Lie group of the corresponding Lie algebra is the group generated by exp(−iα1E),
exp(−iα2P ), exp(−iα3Q) and exp(−iα4H). Trying to rewrite a generic product of these ex-
ponentials as an exponentiated sum of the generators, using the Baker–Campbell–Hausdorff
formula, may result in an infinite series of the generators that is not contained in the Lie
algebra. A generic element of the Lie group is, therefore, not guaranteed to be the ex-
ponential of some element of the Lie algebra. Mathematically, this property is related to
the fact that the harmonic oscillator group is solvable and, unlike the Heisenberg group,
not nilpotent. If complexity calculations are performed by exponentiating all elements of
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the Lie algebra and not considering products, one does not cover the full Lie group if it is
not exponential. Geodesics in the covered part of the group may then be shortened if one
makes it possible to include also the missing directions. As already mentioned, we for this
and other reasons consider our results to be upper bounds on the complexity rather than
strict values.

Another subtlety is that the harmonic oscillator algebra does not permit a finite-
dimensional representation by Hermitian matrices, which is well known from the Heisenberg
subalgebra. We will therefore use a representation- independent derivation of some relevant
properties of geodesics, based on the right-invariance of suitable line elements and deriva-
tions in the Lie algebra. However, certain topological properties of the desired Lie group,
such as periodic directions, cannot be captured in this way. Yet another subtlety then
appears, related to the possible existence of different covering groups that have the same
Lie algebra. We will make an attempt to highlight such features by carefully separating
derivations that can be performed at the Lie algebra level from those that require additional
properties of the group manifold.

From the commutation relation satisfied by the generators of the harmonic oscillator
group, it is easy to see that the non-zero structure constants fK

IJ are:

fE
QP = 1, fE

PQ = −1, fP
HQ = −1, fP

QH = 1, fQ
HP = 1, fQ

PH = −1. (3.3)

The structure constants allow us to look for directions of geodesics in the harmonic oscil-
lator group, given by components of the Euler-Arnold equation (2.4). Choosing a diagonal
penalty matrix GIJ , these equations read

GHH
dV H

ds
= (GQQ −GPP )V

PV Q, (3.4)

GPP
dV P

ds
= −GQQV

HV Q +GEEV
QV E , (3.5)

GQQ
dV Q

ds
= GPPV

HV P −GEEV
PV E , (3.6)

GEE
dV E

ds
= 0. (3.7)

As a specific example of a diagonal penalty factor matrix, we implement equal penalties
for all the generators, choosing GIJ = δIJ , such that the Euler-Arnold equations decouple:

dV H

ds
= 0, (3.8)

dV P

ds
= −V HV Q + V QV E , (3.9)

dV Q

ds
= V HV P − V PV E , (3.10)

dV E

ds
= 0, (3.11)
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to which we have complete solutions given by:

V H(s) = vH , V E(s) = vE , (3.12)

V P (s) = vP cos(s(vE − vH)) + vQ sin(s(vE − vH)), (3.13)

V Q(s) = vQ cos(s(vE − vH))− vP sin(s(vE − vH)). (3.14)

More generally, to decouple the equations, it is sufficient to have GQQ = GPP while GHH

and GEE may be chosen independently (the equations do not depend on GHH in this case,
but they do depend on GEE).

Thus we have the tangent vectors {V I(s)} along all geodesics in the harmonic oscillator
group manifold. The constants vi determine the magnitude of the velocity vectors at s = 0,
which will be fixed by the target unitary. The length of the resulting curve, starting from
the identity, equals: ∫ 1

0

√
GIJV IV Jds =

√
v2H + v2P + v2Q + v2E . (3.15)

The integrand is independent of s in this case, and therefore the information about
the path length is contained entirely in the magnitude of the tangent vector V I at the
identity given by vi. This initial magnitude is expressed in terms of the parameters of the
target unitary operator. Implementing the boundary condition U(1) = Utarget in order to
derive the vi for a specified target unitary operator requires dealing with the path-ordered
exponential (2.7), which is a notoriously tricky task. The usual way of deriving it is an
iterative approach, expressed as a Dyson series:

U(s) = I− i

∫ s

0
V I(s′)OIds

′ + (−i)2
∫ s

0
V I(s′)OIds

′
∫ s′

0
V I(s′′)OIds

′′ + · · · (3.16)

In a first approximation, we will keep only the leading order term in this series. In the
following section, we will explain the implications of neglecting the higher-order terms in
the interpretation of our results.

As a final step, we should then look at the group manifold and determine if topological
properties imply that the same target unitary can be reached in multiple ways, in which
case we would identify the shortest possible connection with the complexity bound. Such
considerations cannot be performed at the Lie algebra level and depend on the specific
choice of a target unitary.

Furthermore, let us note that the complexity bound is not invariant under a canonical
transformation of the classical pair (Q,P ) even if it simply rescales the variables by a
constant, such as Q 7→ λQ and P 7→ P/λ. At the quantum level, such a transformation
redefines the penalty coefficients of Q and P and therefore changes the complexity bound.

3.2 Computation of complexity of various target unitary operators

We now discuss the methodology of solving equation (2.6) subject to the boundary con-
ditions (2.8). To begin with, we should find a sufficiently generic expression for elements
of the harmonic oscillator group. At this initial step, the non-exponential nature of the
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group is already relevant. If the Lie algebra has a matrix or operator representation of N
Hermitian generators ÔI satisfying

[ÔI , ÔJ ] = ifK
IJÔK , (3.17)

a large number of elements of the corresponding Lie group are obtained as

U = exp

(
− i

N∑
I

αIÔI

)
(3.18)

with N real numbers αI . The Lie group is generated by all elements of the form U , taking
all possible products, but it may contain other elements not included in the image of the
exponential map. If the image is the whole group, the Lie group is called exponential, which
is the case in several well-known examples, including connected compact Lie groups (such
as SU(N)) and nilpotent Lie groups (such as the Heisenberg group). If the Lie algebra is
nilpotent, for instance, the Baker–Campbell–Hausdorff formula can always be used to bring
a product of elements U to the form of a single exponentiated sum of generators because
iterating the commutator then, by definition, always produces zero after a finite number of
iterations. The harmonic oscillator group, however, is not nilpotent but solvable, and it is
not exponential, as shown in [39].

Nevertheless, we will use the form written in (3.18), which is sufficient for a large set of
target unitaries, although not all possible ones. Throughout the central part of this paper,
we will assume group elements of the form U because it greatly simplifies computations. For
comparison, we provide a detailed example using a product of exponentiated generators for
the generic element in Appendix B. In general, our results then provide upper bounds on the
complexity but not necessarily its actual value because the geodesic distance through the
image of the exponential map could be further shortened by moving through its complement
in the full Lie group.

3.2.1 Euler–Arnold equations and solutions

Having obtained the V I(s) for the Harmonic oscillator group by solving the Euler–Arnold
equation, the next step is to use the obtained V I(s) in the Dyson series, whose leading
order term can be written as:

−i

∫ s

0
V I(s′)OIds

′ = −i

∫ s

0

(
vHH + (vP cos(s(vE − vH)) + vQ sin(s(vE − vH)))P

+ (vQ cos(s(vE − vH))− vP sin(s(vE − vH)))Q+ vEE

)
= −i

({
1

vE − vH
(vQ − vQ cos(s(vE − vH)) + vP sin(s(vE − vH))

}
P

+

{
1

vE − vH
(−vP + vP cos(s(vE − vH)) + vQ sin(s(vE − vH)))

}
Q

+ svHH + svEE

)
.
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Keeping only up to the leading order term in the Dyson series, the path-ordered expo-
nential can be approximately written as:

U(s) ≈ exp

(
− i

({
1

vE − vH
(vQ − vQ cos(s(vE − vH)) + vP sin(s(vE − vH))

}
P

+

{
1

vE − vH
(−vP + vP cos(s(vE − vH)) + vQ sin(s(vE − vH)))

}
Q

+ svHH + svEE

))
. (3.19)

Let us rewrite the above equation as:

U(s) ≈ exp

(
− i(α1(s)E + α2(s)P + α3(s)Q+ α4(s)H)

)
, (3.20)

where the αI are:

α1(s) = svE , (3.21)

α2(s) =
1

vE − vH

(
vQ − vQ cos(s(vE − vH)) + vP sin(s(vE − vH))

)
, (3.22)

α3(s) =
1

vE − vH

(
− vP + vP cos(s(vE − vH)) + vQ sin(s(vE − vH))

)
, (3.23)

α4(s) = svH . (3.24)

In principle, the complete s-dependent unitary with a given tangent direction should
be the path-ordered exponential (which involves taking into account all the terms in the
Dyson series), and is not necessarily equal to the simple exponential as written in equation
(3.20). In writing U(s) as the simple exponential (by considering only the leading order
term in the Dyson series), we are implicitly assuming that the deviations between the simple
exponential and the path-ordered one remain small for sufficiently short geodesic distances.
As we will see, the expressions are equal for our leading-order results in the case of harmonic
oscillators, but not necessarily when we introduce additional terms by perturbation theory.

Imposing the boundary condition at s = 1, setting U(s = 1) = Utarget, allows us to
determine the geodesic constants vI in terms of the target operator quantities. In the fol-
lowing sections, we consider various target unitary operators for the purpose of illustration
and computing their complexities or upper bound on complexities.

3.2.2 Displacement operator

We illustrate the methodology by explicitly computing the complexity of an operator con-
structed out of the harmonic oscillator group generators, the displacement operator

Utarget = exp(αa† − α∗a), (3.25)

for a complex number α. The a† and a are creation and annihilation operators, satisfying
the standard commutation relation [a, a†] = I.
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In terms of the generators of the harmonic oscillator group, this operator takes the
form:

Utarget = exp

(
α√
2
(Q− iP )− α∗

√
2
(Q+ iP )

)
= exp

(
1√
2
(α− α∗)Q− i√

2
(α+ α∗)P

)
= exp

(
i
√
2(Im(α)Q− Re(α)P )

)
. (3.26)

Matching the boundary conditions, we obtain:

exp

(
− i{α1(1)E + α2(1)P + α3(1)Q+ α4(1)H}

)
= exp

(
i
√
2(Im(α)Q− Re(α)P )

)
.

(3.27)

Comparing the coefficients of the generators on both sides, we find:

α1(1) = 0 and α4(1) = 0, (3.28)

α2(1) =
√
2Re(α) = −

vP sin(vE − vH) + vQ cos(vE − vH)− vQ
vE − vH

, (3.29)

α3(1) = −
√
2Im(α) = −

vP (− cos(vE − vH)) + vQ sin(vE − vH) + vP
vE − vH

. (3.30)

The first equation requires vE = 0 and vH = 0, such that we have to take the appropriate
limit of vE − vH → 0 when we evaluate the other two equations. Using

lim
vE−vH→0

1− cos(vE − vH)

vE − vH
= 0, (3.31)

and

lim
vE−vH→0

sin(vE − vH)

vE − vH
= 1, (3.32)

we obtain:

vP = −
√
2Re(α), and vQ =

√
2Im(α). (3.33)

Therefore, the complexity bound of the displacement operator is given by:

C[D] =
√
v2E + v2P + v2Q + v2H =

√
2|α|. (3.34)

3.2.3 Complexity of the time evolution operator

In our main examples, we consider the unitary operator produced by exponentiation the
harmonic oscillator Hamiltonian:

Hω =
P 2

2m
+

mω2

2
Q2. (3.35)

We first assume that m = ω−1, which happens to simplify the resulting complexity bound.
Classically, this relationship can always be achieved by a canonical transformation: Q 7→
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√
mωQ, P 7→ P/

√
mω. However, as already mentioned, such a transformation upon quan-

tization changes the penalty factors and, therefore the complexity bound.
In terms of the generators of the harmonic oscillator group, the Hamiltonian Hω with

m = ω−1 can be written as:

Hω = ωH. (3.36)

The associated unitary operator is:

Uω(t) = exp

(
− iωtH

)
. (3.37)

Imposing the boundary condition U(s = 1) = Uω(t), we have:

exp

(
− i{α1(1)E + α2(1)P + α3(1)Q+ α4(1)H}

)
= exp

(
− iωtH

)
, (3.38)

and therefore:

vE = 0,
1

vE − vH

(
vQ − vQ cos(vE − vH) + vP sin(vE − vH)

)
= 0, (3.39)

1

vE − vH

(
− vP + vP cos(vE − vH) + vQ sin(vE − vH)

)
= 0, vH = ωt. (3.40)

We obtain the solutions:

vE = 0, vP = 0, vQ = 0, vH = ωt. (3.41)

The corresponding length of a curve from the identity to the harmonic oscillator evolution
operator with m = ω−1 is given by:

L[Utarget](ω, t) =
√

v2E + v2P + v2Q + v2H = ωt. (3.42)

This value may be improved further as a complexity bound because of possible periodic
directions in the group manifold. If this length would always equal the complexity, the latter
would grow linearly in time, which should not be the case according to previous derivations,
such as [30]. Periodicity properties cannot be determined solely at the Lie algebra level
because they depend on topological properties of the Lie group and the specific covering
space suitable for physical properties of the system. In the present case, we know that
the harmonic oscillator Hamiltonian corresponding to our H has spectrum n + 1/2 with
integer n. Therefore, if the finite-dimensional Lie group used here is embedded in the
infinite-dimensional Hilbert space of quantum mechanics, exp(−iωtH) as a function of ωt
has a period of 4π. The length L[Utarget](ω, t), therefore, equals ωt only as long as it is
less than half the period, in which case there is no shortcut to the same target unitary.
For 2π < ωt < 4π, however, the target unitary can be reached in a shorter distance by
moving in the opposite direction, and for ωt = 4π, the target unitary equals the identity
and has zero complexity. This process can be repeated for larger values of ωt, resulting in
the complexity bound

C[Utarget](ω, t) =
√

v2E + v2P + v2Q + v2H = |ωt− 4π⌊(ωt+ 2π)/(4π)⌋|. (3.43)
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Figure 1. Complexity of the time evolution operator of a harmonic oscillator.

The plot of this function is shown in Fig. 1.
It is worth emphasizing that up to the value of the period, our result agrees with

the complexity of the harmonic oscillator derived in Ref. [30]. In that article, the period
T = 2π/ω of the classical harmonic oscillator was used. However, as indicated here, the
actual quantum periodicity for the infinite-dimensional Hilbert space of the full quantum
harmonic oscillator is doubling that period due to the presence of the 1/2 term in its
spectrum, corresponding to the non-zero ground state energy.

Furthermore, the specific solutions of the Euler-Arnold equations considered here are
also periodic. However, this property is independent of the Lie group or the embedding
in the full space of unitaries, and, therefore, cannot be considered an indicator of the
periodicity of the complexity.

3.2.4 Harmonic oscillator with an additional linear potential

As a combination of two different generators, we now consider the time evolution operator
of the harmonic oscillator with an added linear potential as the target unitary operator,
given by:

Hλ = ω

(
P 2

2
+

Q2

2

)
+ λQ, (3.44)

if we still assume m = 1
ω . Classically, the added term merely shifts the origin of the

harmonic oscillator because the potential equals 1
2ωQ

2 + λQ = 1
2ω(Q + λ/ω)2 − 1

2λ
2/ω2.

As an expression in the harmonic oscillator algebra, however, the constant terms require
the generator E, and since the product EQ is not defined in the Lie algebra, the quadratic
completion cannot be done at this level. Within the truncated setting, the complexity
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bound of a harmonic oscillator with an additional linear term therefore need not equal the
complexity bound of an individual oscillator just computed.

The time evolution operator in this case is:

Utarget(t) = exp(−iHλt) = exp

(
− i

{
ω

(
P 2

2
+

Q2

2

)
+ λQ

}
t

)
, (3.45)

or

Utarget = exp(−i(ωH + λQ)t), (3.46)

in terms of the generators of the Harmonic oscillator group. Substituting the boundary
condition that U(s = 1) = Utarget, we have:

exp

(
− i{α1(1)E + α2(1)P + α3(1)Q+ α4(1)H}

)
= exp(−i(ωH + λQ)t), (3.47)

which implies the conditions:

vE = 0,
1

vE − vH

(
vQ − vQ cos(vE − vH) + vP sin(vE − vH)

)
= 0, (3.48)

1

vE − vH

(
− vP + vP cos(vE − vH) + vQ sin(vE − vH)

)
= λt, vH = ωt. (3.49)

The generator H still belongs to the periodic direction in the group, with the period of
4π for vH if the group is to be embedded in the full space of unitaries. Within a period, there
are now values, specifically given by vH = 2πn, with n ∈ Z, for which the conditions have
no solutions because the first equation in (3.49) then reads 0 = λt. Here, we encounter
another subtlety: A metric on a non-compact group manifold is not guaranteed to be
geodesically complete. There are then pairs of endpoints for which the geodesic equation
has no solutions, as seen here in a specific example. Formally, the geodesic distance between
these points is then infinite, and while it may be finite if the endpoints are moved slightly,
the divergence shows, again, that the result can only be considered an upper bound on the
complexity. This notion of interpreting geodesic distance as the upper bound on complexity
was previously done in [40, 41]. The solutions

vQ =
1

2
vHλt cot(vH/2), (3.50)

and
vP =

1

2
vHλt, (3.51)

where vH is periodic as in (3.43) explicitly show the divergence of vQ at vH = 2πn, with
n ∈ Z, and so does the complexity bound:

C[Utarget](ω, λ, t) ≤ vH

√
1 +

λ2t2

4 sin2(vH/2)
, (3.52)

with vH as in (3.43). So that in the λ → 0 limit the bound reduces to ωt, as expected.
Examples of the bound are shown in Figure 2.
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Figure 2. Complexity bound of the time evolution operator of a harmonic oscillator with an
additional linear term in Q.

As a result, introducing an extra direction associated with the generator Q can poten-
tially lead to increased complexity, possibly even approaching infinity. From a mathematical
perspective, such a scenario cannot be excluded when dealing with non-compact groups.
Nevertheless, it is important to note that infinite complexity values are not expected to
arise in physical situations. Such extreme values would violate Lloyd’s computational bound
[8, 42], making them highly unlikely to be encountered. In our context, non-compact groups
can lead to geodesic incompleteness such that there may be no finite-length geodesic be-
tween a given pair of two points. Interpreting our results as upper bounds on the complexity
rather than precise values, which is also indicated by the truncations we use of the original
infinite-dimensional group of unitary operators as well as the non-exponential nature of the
groups used here, is consistent with both the mathematical and physical viewpoints. This
question will be discussed in more detail in our conclusions.

3.2.5 Geodesic equation for general frequencies

So far, we have restricted our attention to harmonic oscillators with the condition m = ω−1.
At the quantum level, as already noted, it is not possible to use a canonical transformation
in order to bring any harmonic oscillator to this form because this step would modify the
penalty factors. Alternatively, the harmonic oscillator algebra can be generalized to include
an arbitrary Hamiltonian with a generic frequency ω as well as an independent mass m by
using:

H =
1

2

P 2

m
+

1

2
mω2Q2, (3.53)

as a generator, together, with the previous Q, P , and E. The structure constants are now
modified because the relevant commutation relations are: [H,Q] = −iP/m and [H,P ] =

imω2Q.
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As a consequence, the Euler–Arnold equations take the modified form:

GHH
dV H

ds
= (mω2GQQ −m−1GPP )V

PV Q, (3.54)

GPP
dV P

ds
= −mω2GQQV

HV Q +GEEV
QV E , (3.55)

GQQ
dV Q

ds
= m−1GPPV

HV P −GEEV
PV E , (3.56)

GEE
dV E

ds
= 0. (3.57)

If we continue to use the penalty factor matrix GIJ = δIJ , these equations do not decouple,
and they are non-linear and much harder to solve.

Another possibility to change the frequency is to add a term quadratic in Q to the
harmonic oscillator Hamiltonian, instead of a linear term as in the preceding example. This
term is not contained in the harmonic oscillator algebra, but it can be included in a sp(2,R)
algebra, which we will describe in detail in the next section.

4 Harmonic oscillator complexity from the sp(2,R) Lie algebra

The quadratic nature of the harmonic oscillator Hamiltonian makes it possible to view it
as a generator of various Lie algebras. Let us again consider the Hamiltonian:

Ĥ =
P 2

2m
+

1

2
mω2Q2, (4.1)

with independent mass and frequency.
A natural set of operators that form a closed Lie algebra includes 1

2 P̂
2, 1

2Q̂
2 and their

commutator. This observation suggests using the generators:

K1 =
Q̂2

2
, (4.2)

K2 =
P̂ 2

2
, (4.3)

K3 =
1

2
(Q̂P̂ + P̂ Q̂), (4.4)

which satisfy the following commutation relations:

[K1,K2] = iK3 [K3,K1] = −2iK1, [K3,K2] = 2iK2. (4.5)

Since these three operators form a closed Lie algebra, given by sp(2,R), they specify
a Lie group, Sp(2,R) or one of its covering groups, part of which can be parameterized by
the group elements

U(s) = exp(−i(γ1(s)K1 + γ2(s)K2 + γ3(s)K3)). (4.6)

(The Lie group SU(1, 1), which has been used in the past for this system, is a different
real form.) According to [43], the Lie group Sp(2,R) is not exponential, but the projective
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version, isomorphic to SO(2, 1) of which Sp(2,R) is a 2-fold covering, is. A large part of
Sp(2,R), but not all of it, can therefore be parameterized by exponentiated sums of the
generators.

The structure constants associated with the Lie algebra (4.5) are:

f3
12 = 1, f1

31 = −2, f2
32 = 2. (4.7)

In consequence, the Euler–Arnold equations (choosing GIJ = δIJ as before) can be written
as:

dV 1

ds
= V 2V 3 + 2V 1V 3, (4.8)

dV 2

ds
= −V 1V 3 − 2V 2V 3, (4.9)

dV 3

ds
= −2(V 1)2 + 2(V 2)2. (4.10)

The system at hand consists of three coupled non-linear differential equations. We can
significantly simplify these equations by choosing an alternative basis of the Lie algebra,
which is given by:

J1 = K3 =
1

2
(QP + PQ), (4.11)

J2 = K1 −K2 =
1

2
(Q2 − P 2), (4.12)

J3 = K1 +K2 =
1

2
(Q2 + P 2), (4.13)

with commutation relations:

[J1, J2] = −2iJ3, [J2, J3] = 2iJ1, [J3, J1] = 2iJ2. (4.14)

In this form, the Euler-Arnold equations (still with GIJ = δIJ) reduce to:

dV 1

ds
= −4V 2V 3, (4.15)

dV 2

ds
= 4V 1V 3, (4.16)

dV 3

ds
= 0, (4.17)

for which the solutions are given by:

V 1(s) = v1 cos(4sv3)− v2 sin(4sv3), (4.18)

V 2(s) = v2 cos(4sv3) + v1 sin(4sv3), (4.19)

V 3(s) = v3. (4.20)

Keeping up to leading-order terms in the Dyson series, the path-ordered exponential
can be approximately written as:

U(s) ≈ exp(−i(γ1(s)J1 + γ2(s)J2 + γ3(s)J3)), (4.21)
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where:

γ1(s) =
1

4v3

(
− v2 + v2 cos(4sv3) + v1 sin(4sv3)

)
, (4.22)

γ2(s) =
1

4v3

(
v1 − v1 cos(4sv3) + v2 sin(4sv3)

)
, (4.23)

γ3(s) = sv3. (4.24)

4.1 Time evolution operator of the harmonic oscillator – revisited

Employing the sp(2,R) algebra, let us now revise the geometric complexity of the time
evolution operator generated by the harmonic oscillator Hamiltonian (4.1). Again, we first
choose m = ω−1, so that:

H = ω

(
Q2

2
+

P 2

2

)
= ωJ3. (4.25)

In consequence, the target unitary operator is:

U(s = 1) = Utarget = exp(−iωtJ3), (4.26)

where U(s = 1) can be found by substituting the solutions (4.24) in (4.21):

exp(−i(γ1(1)J1 + γ2(1)J2 + γ3(1)J3)) = exp(−iωtJ3). (4.27)

which implies the conditions:

γ1(1) = 0, γ2(1) = 0, γ3(1) = ωt. (4.28)

Employing Eqs. (4.22,4.23,4.24) this leads to:

v3 = ωt, v1 = 0, v2 = 0. (4.29)

The final step requires consideration of periodicity properties in possible exponenti-
ations of the Lie algebra sp(2,R). The immediate choice, Sp(2,R), would represent the
generator J3 by the matrix:

J3 =

(
1 0

0 −1

)
, (4.30)

such that

exp(−iωtJ3) =

(
e−iωt 0

0 eiωt

)
, (4.31)

as also used in [30]. However, the resulting period of 2π in ωt obtained for exp(−iωtH)

is not compatible with the spectrum n+ 1/2 of Ĥ in the full infinite-dimensional space of
unitaries. As an abstract group, Sp(2,R) has infinitely many covering groups, including
a 2-fold covering which results in a compatible period of 4π in ωt. This covering group
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is the metaplectic group Mp(2,R), but it is not a matrix group and does not have finite-
dimensional matrix representations. Therefore, it is not possible to obtain the period of
4π from a matrix calculation, following the methods of [30], but it is consistent within our
treatment based mainly on the Lie algebra plus a final periodicity condition that requires
only abstract group properties but no matrix representation. The resulting complexity
bound is the same as in (3.43),

C[UH.O.](ω, t) =
√

v2E + v2P + v2Q + v2H = |ωt− 4π⌊(ωt+ 2π)/(4π)⌋|, (4.32)

with a period of 4π in ωt.

4.2 Time evolution operator of the inverted harmonic oscillator

The same method allows us to consider the time evolution operator of the inverted harmonic
oscillator as the target unitary,

HIHO =
P 2

2m
− 1

2
mΩ2Q2. (4.33)

This model was also considered in [44, 45] from the perspective of complexity. Again for
the sake of simplicity, we assume m = Ω−1. In that case the Hamiltonian in terms of the
generators of the group Sp(2,R) can be written as

HIHO =
Ω

2
(P 2 −Q2) = −ΩJ2, (4.34)

such that

Utarget = U(s = 1) = UIHO = exp

(
iΩJ2

)
. (4.35)

The equation

exp(−i(γ1(1)J1 + γ2(1)J2 + γ3(1)J3)) = exp

(
iΩtJ2

)
, (4.36)

implies

γ1(1) = 0, γ2(1) = −Ωt, γ3(1) = 0. (4.37)

Using equation (4.24), we obtain

v3 = 0, v2 = −Ωt, v1 = 0, (4.38)

with

lim
v3→0

1− cos(4v3)

4v3
= 0, and lim

v3→0

sin(4v3)

4v3
= 1. (4.39)

The resulting complexity bound equals:

C[UI.H.O] ≤
√
v21 + v22 + v23 = |Ωt|. (4.40)

Since J2 does not correspond to a periodic direction in Sp(2,R) or its covering groups, there
is no periodicity condition on the complexity, which instead grows linearly in time.
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4.3 Harmonic oscillator with an additional Q2 term in the Hamiltonian.

Within Sp(2,R), we can change the frequency of the harmonic oscillator Hamiltonian by
adding an additional quadratic potential, which in contrast to the harmonic oscillator group
is now one of the generators. If we still assume m = ω−1 for the original Hamiltonian, adding
a quadratic term with a free coefficient, as in

HH.O.λ = ω

(
P 2

2
+

1

2
Q2

)
+ λQ2, (4.41)

allows us to interpret this system as having independent mass m = ω−1 and frequency:

ω̄ =

√
ω + 2λ

m
= ω

√
1 + 2

λ

ω
. (4.42)

In terms of the generators Ji, the new Hamiltonian can be written as

HH.O.λ = ωJ3 + λ(J2 + J3) = (ω + λ)J3 + λJ2. (4.43)

Therefore, the target unitary operator is:

Utarget = exp(−i{(ω + λ)J3 + λJ2}t). (4.44)

Identifying the two expressions:

exp(−i(γ1(1)J1 + γ2(1)J2 + γ3(1)J3)) = exp(−i{(ω + λ)J3 + λJ2}t), (4.45)

implies the boundary conditions:

γ1(1) = 0, γ2(1) = λt, γ3(1) = (ω + λ)t, (4.46)

which lead to:

γ1(1) =
1

4v3

(
− v2 + v2 cos(4v3) + v1 sin(4v3)

)
= 0, (4.47)

γ2(1) =
1

4v3

(
v1 − v1 cos(4v3) + v2 sin(4v3)

)
= λt, (4.48)

γ3(1) = v3 = (ω + λ)t. (4.49)

The periodicity argument is now more complicated for general λ because a full repre-
sentation of the Hamiltonian operator on the infinite-dimensional Hilbert space of quantum
mechanics shows that Utarget should have period 4π in ω̄t. However, the linear combina-
tion (4.43) in terms of sp(2,R) generators does not exponentiate to a periodic expression
because it contains J2, and the coefficient of J3 which does belong to a periodic direction
in the group has coefficient ω + λ ̸= ω̄. A reliable periodicity argument can be given only
approximately for small λ, in which case the J2-contribution to the Hamiltonian has a small
coefficient, and ω + λ ≈ ω̄. Periodicity in the J3-direction then approximates the period of
4π in the full representation, and we can solve the equations by:

v1 = 2v3λt, and v2 = 2v3λt cot(2v3), (4.50)
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Figure 3. Complexity bounds on time evolution of a harmonic oscillator with quadratic term in
Q.

where:
v3 = |(ω + λ)t− 4π⌊((ω + λ)t+ 2π)/(4π)⌋|, (4.51)

for minimized geodesics. The complexity bound is the given by:

C[Utarget](ω, λ, t) ≤
√

v21 + v22 + v23 = v3

√
1 +

4λ2t2

sin2(2v3)
. (4.52)

Since
√
1 + 2λ/ω < 1 + λ/ω for λ ̸= 0, the complexity bound in the first branch of

|ω̄t| < 2π is greater than ω̄t. The fact that we are using two generators, H and Q2, in order
to construct the Hamiltonian means that both penalty factors are relevant. The complexity
bound is, therefore, greater than expected for an individual oscillator of frequency m = ω−1,
for which the additional Q-term is not needed.

Going beyond the range of small λ, we can consider two instructive special cases.
First, applying our result to λ = −ω/2, we have the Hamiltonian for a free particle of mass
m = ω−1. The complexity bound in this case is:

C[Utarget](m
−1,−(2m)−1, t) ≤

√
v21 + v22 + v23 = v3

√
1 +

t2

m2 sin2(2v3)
, (4.53)

where
v3 =

1

2
|ωt− 8π⌊(ωt+ 4π)/(8π)⌋|. (4.54)

In the limit of λ → −ω, the Hamiltonian describes the inverted Harmonic oscillator. Equa-
tion (4.51) then implies that v3 → 0, which in (4.52) results in the complexity bound:

C[Utarget](ω,−ω, t) ≤ |ωt|, (4.55)
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consistent with our previous result for this system, equation (4.40). In this limit, the
periodicity argument simplifies because J3 disappears from the Hamiltonian (4.43), and
only the non-compact J2 remains. The complexity bound is, therefore, reliable even though
λ = −ω is not small.

5 Coupled harmonic oscillators

A model of two coupled oscillators was considered in [18], but with a coupling term different
from what we consider here. More importantly, the previous paper was interested in the
complexity of the ground state of this Hamiltonian, as briefly reviewed here. The authors
of [18] were interested in the complexity of:

ΨT =
(ω1ω2 − β2)1/4√

π
exp

(
− ω1

2
x21 −

ω2

2
x22 − βx1x2

)
, (5.1)

referred to as the target state, relative to the reference state:

ΨR =

√
ω0

π
exp

(
− ω0

2
(x21 + x22)

)
. (5.2)

Once the target and the reference states are fixed, the next step involves identifying
simple gates used to construct the unitary (or quantum circuit) that can implement the
transformation ΨT = UΨR. They chose the following simple gates:

H = eiϵx0p0 , Ja = eiϵx0pa , Ka = eiϵxap0 , Qab = eiϵxapb , Qaa = e
ϵ
2 eiϵxapa . (5.3)

Out of the chosen gates, it was realized that Qab and Qaa would suffice for their purpose,
considering the target state they were interested in, acting on a generic wave function as
follows:

Q11Ψ(x1, x2) = eϵ/2Ψ(eϵx1, x2), Q21Ψ(x1, x2) = Ψ(x1 + ϵx2, x2) . (5.4)

These two gates played a crucial role in the circuits they constructed. However, finding
the optimal circuit is necessary to determine the complexity. Nielsen’s geometric approach
was then utilized to complete this step. To apply Nielsen’s geometric approach, it is nec-
essary to understand that both the target and the reference states are Gaussian, such that
Gaussian wave functions represent the endpoints of any curve connecting the two states.
Furthermore, the scaling and entangling gate actions preserve the Gaussian structure of
the wave functions. Thus, it was concluded that the circuit constructed out of the Q gates
forms a representation of GL(2,R). Hence, finding the optimal circuit required finding the
shortest geodesic in the space of GL(2,R) transformations. Of course, there is some arbi-
trariness in the obtained complexity, as it is dependent on the choice of the reference state
and the choice of gates.

As a first step towards understanding the quantum complexity of the time evolution
operator of a simple interacting system in a state-independent way, we consider the case
of two coupled harmonic oscillators with time-independent coupling. Although the model
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considered here is quite similar to what was considered in [18], our interest lies in the
complexity of the time evolution operator. Our results then tell us how the complexity
changes with time as the system evolves. As the Hamiltonian of such a system, we choose:

HC.O =
P 2
1

2m1
+

P 2
2

2m2
+

1

2m1
ω2
1Q

2
1 +

1

2m2
ω2
2Q

2
1 + µ2(Q1Q2 + P1P2). (5.5)

For the sake of simplicity, we again assume ωi = m−1
i , for i = 1, 2, which simplifies the

Hamiltonian to:

HC.O = ω1

(
P 2
1

2
+

Q2
1

2

)
+ ω2

(
P 2
2

2
+

Q2
2

2

)
+ µ2(Q1Q2 + P1P2), (5.6)

and defines the target unitary operator:

Utarget = exp(−iHC.Ot). (5.7)

A natural choice of generators that form a closed Lie algebra for the target unitary
operator (5.7) is T1 = H1 = 1

2(Q
2
1 + P 2

1 ), T2 = H2 = 1
2(Q

2
2 + P 2

2 ), T3 = 1
2(Q

2
1 − P 2

1 ),
T4 = 1

2(Q
2
2 − P 2

2 ), T5 = (Q1P1 + P1Q1), T6 = (Q2P2 + P2Q2), T7 = (Q1Q2 + P1P2),
T8 = (Q1P2 + P1Q2) T9 = (Q1Q2 − P1P2), T10 = (Q1P2 − P1Q2). The generators form
a ten-dimensional Lie algebra isomorphic to sp(4,R), which can be derived in the same
way as used for second-order central moments in [46]. For our target unitary operator, it
is sufficient to consider the subalgebra formed by the four generators T1, T2, T5 and T10,
which we relabel as Mi:

M1 = H1, M2 = H2, M3 = Q1Q2 + P1P2, M4 = P1Q2 −Q1P2. (5.8)

Their commutation relations are:

[M1,M2] = 0, [M1,M3] = −iM4, [M1,M4] = iM3, (5.9)

[M2,M3] = iM4, [M2,M4] = −iM3, [M3,M4] = −2iM1 + 2iM2. (5.10)

It follows that M1 + M2 commutes with all other generators in this subalgebra, while
M1 −M2 together with M3 and M4 obey the commutation relations of su(2):

[M1 −M2,M3] = −2iM4, [M1 −M2,M4] = 2iM3, [M3,M4] = −2i(M1 −M2) . (5.11)

The Lie algebra is, therefore, a direct product of the Abelian u(1) with the su(2)-
subalgebra of sp(4,R). Compactness and periodicity properties of possible exponentiations
are simpler for this algebra than in the case of sp(2,R) or the full sp(4,R). (The universal
covering group of sp(4,R) has been studied, for instance in [47].) In particular, the Abelian
generator M1 + M2 = H1 + H2, which has an integer spectrum in quantum mechanics,
should exponentiate to an operator with period 2π, and M1 −M2 has the same period.

In terms of the new generators, the target unitary operator is given by:

Utarget = exp

(
− i(ω1M1 + ω2M2 + µ2M3)t

)
. (5.12)
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The Euler-Arnold equations are:

dV 1

ds
= f4

13V
3G44

G11
V 4 + f3

14V
4G33

G11
V 3 = −G44

G11
V 3V 4 +

G33

G11
V 3V 4, (5.13)

dV 2

ds
= f4

23V
3G44

G22
V 4 + f3

24V
4G33

G22
V 3 =

G44

G22
V 3V 4 − G33

G22
V 3V 4, (5.14)

dV 3

ds
= f4

31V
1G44

G33
V 4 + f4

32V
2G44

G33
V 4 + f1

34V
4G11

G33
V 1 + f2

34V
4G22

G33
V 2

=
G44

G33
V 1V 4 − G44

G33
V 2V 4 − 2

G11

G33
V 4V 1 + 2

G22

G33
V 4V 2, (5.15)

dV 4

ds
= f3

41V
1G33

G44
V 3 + f3

42V
2G33

G44
V 3 + f1

43V
3G11

G44
V 1 + f2

43V
3G22

G44
V 2

= −G33

G44
V 1V 3 +

G33

G44
V 2V 3 + 2

G11

G44
V 3V 1 − 2

G22

G44
V 3V 2. (5.16)

As before, we will consider the case of all generators with equal penalties, GIJ = δIJ .
Then the Euler-Arnold equations reduce to:

dV 1

ds
= 0, (5.17)

dV 2

ds
= 0, (5.18)

dV 3

ds
= −V 1V 4 + V 2V 4, (5.19)

dV 4

ds
= V 1V 3 − V 2V 3. (5.20)

The equations can easily be solved by:

V 1(s) = v1, V 2(s) = v2, V 4(s) = v4 cos(s(v1 − v2)) + v3 sin(s(v1 − v2)),

V 3(s) = v3 cos(s(v1 − v2))− v4 sin(s(v1 − v2)), (5.21)

and the length of the geodesics characterized by the vi equals:∫ 1

0

√
GIJV IV Jds =

√
v21 + v22 + v23 + v24. (5.22)

Another interesting and physically justifiable case of the penalty factor matrix is moti-
vated by the specific setting of two coupled harmonic oscillators. Out of the four generators,
M1 and M2 consist of terms associated with only one individual oscillator, while the gener-
ators M3 and M4 involve terms that act on both oscillators. It is natural to assign higher
penalties to generators that involve two oscillator terms compared to the terms that act on
only one of them. We may, therefore, choose:

G11 = G22 := q, and G33 = G44 := p (p > q). (5.23)
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With this choice, the Euler–Arnold equations are given by:

dV 1

ds
= 0, (5.24)

dV 2

ds
= 0, (5.25)

dV 3

ds
=

(
1− 2q

p

)
V 1V 4 −

(
1− 2q

p

)
V 2V 4, (5.26)

dV 4

ds
= −

(
1− 2q

p

)
V 1V 3 +

(
1− 2q

p

)
V 2V 3, (5.27)

and can be solved as:

V 1(s) = v1, (5.28)

V 2(s) = v2, (5.29)

V 3(s) = v3 cos

(
s(p− 2q)(v1 − v2)

p

)
+ v4 sin

(
s(p− 2q)(v1 − v2)

p

)
, (5.30)

V 4(s) = v4 cos

(
s(p− 2q)(v1 − v2)

p

)
− v3 sin

(
s(p− 2q)(v1 − v2)

p

)
. (5.31)

Equal penalty factors clearly correspond to the limit p = q = 1. In the more general
setting of q ̸= p, the length of the geodesics characterized by the vi is given by:∫ 1

0

√
GIJV IV Jds =

√
q(v21 + v22) + p(v23 + v24). (5.32)

Substituting the obtained V I(s) and keeping only the leading order term in the Dyson
series, U(s) can be written as:

U(s) ≈ exp(−i(β1(s)M1 + β2(s)M2 + β3(s)M3 + β4(s)M4)), (5.33)

where the βI are as follows

β1 = sv1, (5.34)

β2 = sv2, (5.35)

β3 =
1

(p− 2q)(v1 − v2)

(
− pv4 + pv4 cos

(
s(p− 2q)(v1 − v2)

p

)
+ pv3 sin

(
s(p− 2q)(v1 − v2)

p

))
(5.36)

β4 =
1

(p− 2q)(v1 − v2)

(
pv3 − pv3 cos

(
s(p− 2q)(v1 − v2)

p

)
+ pv4 sin

(
s(p− 2q)(v1 − v2)

p

))
. (5.37)

The final condition U(s = 1) = Utarget implies:

exp(−i(β1(1)M1 + β2(1)M2 + β3(1)M3 + β4(1)M4)) = exp(−i(ω1M1 + ω2M2 + µ2M3)t),

(5.38)
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such that:

β1(1) = ω1t, β2(1) = ω2t, β3(1) = µ2t, β4(1) = 0. (5.39)

These equations are solved by:

v1 = ω1t, (5.40)

v2 = ω2t, (5.41)

v3 = µ2t
p− 2q

2p
(v1 − v2) cot

(
p− 2q

2p
(v1 − v2)

)
, (5.42)

v4 = µ2t
p− 2q

2p
(v1 − v2) . (5.43)

Using

v1M1 + v2M2 =
1

2
((v1 + v2)(M1 +M2) + (v1 − v2)(M1 −M2)) , (5.44)

and the 2π-periodicity in the exponentiated M1 +M2 and M1 −M2, we need a period of
4π for v1 − v2 and v1 + v2. Therefore:

v1 ± v2 = |(ω1 ± ω2)t− 4π⌊((ω1 ± ω2)t+ 2π)/(4π)⌋|. (5.45)

Finally, the complexity bound is given by:

C[Utarget](ω1, ω2, µ, t) ≤
√

v21 + v22 + v23 + v24 (5.46)

=

√
1

2
((v1 + v2)2 + (v1 − v2)2) + µ4t2

(p− 2q)2

4p2
(v1 − v2)2

sin2((p− 2q)(v1 − v2)/(2p))
.

Examples are shown in Figs. 4 and 5. For ω1 = ω2, the result simplifies to

CUtarget](ω, ω, µ, t) ≤
√

1

2
(v1 + v2)2 + µ4t2, (5.47)

and is independent of q and p. Here,

v1 + v2 = 2|ωt− 2π⌊(ωt+ π)/2π⌋| . (5.48)

6 Anharmonic oscillator with the cubic term

With an additional ingredient in the motivation of penalty factors, our methods can be
applied even to anharmonic systems. As an example, we choose the Hamiltonian:

HA.HO = ω

(
P 2

2
+

Q2

2

)
+ λQ3. (6.1)

In this case, the generators can be considered to be the original:

M1 =
1

2
Q2 +

1

2
P 2, M2 =

1

2
Q2 − 1

2
P 2, M3 =

1

2
(QP + PQ), (6.2)
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Figure 4. Behavior of complexity bounds for the time evolution operator of two coupled oscillators
as a function of time for different values of the penalty factor p. The frequencies of the two oscillators
are fixed at ω1 = 2 and ω2 = 1, and the coupling constant is fixed at µ = 3. The penalty factor q

is fixed at 1.
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Figure 5. Behavior of complexity bounds for the time evolution operator of two coupled oscillators
as a function of time for different values of the coupling constant µ. The frequencies of the two
oscillators are fixed at ω1 = 2 and ω2 = 1. The plots have been made by choosing p = 10 and q = 1.

already used for the harmonic oscillator, together with:

M4 = Q3, M5 = P 3, M6 = Q2P +QPQ+ PQ2, M7 = QP 2 + PQP + P 2Q, (6.3)

and so on with higher powers in Q and P .
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In terms of these generators, the Hamiltonian (6.1) can be written as:

HA.HO = ωM1 + λM4, (6.4)

defining the target unitary:

Utarget = exp(−i(ωM1 + λM4)t). (6.5)

The generators M2 and M3 do not appear in commutators of the other ones, M1, M4,
M5, M6, M7. They are, therefore, not required for Euler–Arnold equations with the desired
target unitary. Commutators of the latter generators are given by:

[M1,M4] = −i(PQ2 +QPQ+Q2P ) = −iM6, (6.6)

[M1,M6] = −2i(P 2Q+ PQP +QP 2) + 3iQ3 = −2iM7 + 3iM4, (6.7)

[M1,M7] = 2i(Q2P +QPQ+ PQ2)− 3iP 3 = 2iM6 − 3iM5, (6.8)

[M1,M5] = i(QP 2 + PQP + PQ2) = iM7, (6.9)

[M4,M5] = 3i(Q2P 2 + PQ2P + P 2Q2), (6.10)

[M4,M6] = 9iQ4, (6.11)

[M4,M7] = 6iQ3P + 6iPQ3 + 3iQPQ2 + 3iQ2PQ, (6.12)

[M5,M6] = O(M4
I ), (6.13)

[M5,M7] = O(M4
I ), (6.14)

[M6,M7] = O(M4
I ), (6.15)

where the higher-order terms in the last three equations require the introduction of ad-
ditional independent generators. Using those new generators in commutators with the
original ones requires even higher orders. Iterating this procedure does not result in a
finite-dimensional closed algebra suitable for this system.

Using suitable penalty factors, we can nevertheless propose a method to deal with target
unitary operators whose generators are not part of a finite-dimensional closed commutator
algebra. Illustrating the general method for the example just introduced, our proposal
consists of two steps:

• Step 1 : The generators of order higher than that appearing in the target unitary
operators are assigned prohibitively large penalties, such that geodesics will not move
in their direction on the operator space. We can neglect their contribution to the
Euler–Arnold equation and the resulting complexity.

For example, in the commutator algebra shown above, we will assign prohibitive
penalties to the generators with quartic or higher powers, such as Q4, Q2P 2, and PQ3.
For purposes of geodesic distance, their contributions to the algebra are therefore
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neglected. Under this assumption, the Euler–Arnold equations can be written as:

dV 1

ds
≈ −G66

G11
V 4V 6 − 2

G77

G11
V 6V 7 + 3

G44

G11
V 4V 6

+ 2
G66

G11
V 7V 6 − 3

G55

G11
V 7V 5 +

G77

G11
V 5V 7, (6.16)

dV 4

ds
≈ G66

G44
V 1V 6, (6.17)

dV 5

ds
≈ −G77

G55
V 1V 7, (6.18)

dV 6

ds
≈ 2

G77

G66
V 1V 7 − 3

G44

G66
V 1V 4, (6.19)

dV 7

ds
≈ −2

G66

G77
V 1V 6 + 3

G55

G77
V 1V 5. (6.20)

• Step 2 : The generators of higher order have comparatively much higher penalties,
i.e., the generators M4, M5, M6, and M7 which are of cubic order have sufficiently
large penalties compared to M1, which is quadratic.

A large penalty factor, such as G66, means that a geodesic will not move in the cor-
responding direction, and therefore the component V 6 remains small. We can then ignore
products of the prohibited components even if they are multiplied by a large penalty factor,
such as (G66/G11)V

6V 7, as well as terms with a single factor of a prohibited component as
long as it is not multiplied by a large penalty factor, such as (G55/G11)V

5V 7. Following
this procedure, the equations simplify slightly to:

dV 1

ds
≈ −G66

G11
V 4V 6 +

G77

G11
V 5V 7, (6.21)

dV 4

ds
≈ G66

G44
V 1V 6, (6.22)

dV 5

ds
≈ −G77

G55
V 1V 7, (6.23)

dV 6

ds
≈ 2

G77

G66
V 1V 7 − 3

G44

G66
V 1V 4, (6.24)

dV 7

ds
≈ −2

G66

G77
V 1V 6 + 3

G55

G77
V 1V 5, (6.25)
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if M6 and M7 have prohibitive penalties. If M5 has a prohibitive penalty as well, we obtain

dV 1

ds
≈ −G66

G11
V 4V 6, (6.26)

dV 4

ds
≈ G66

G44
V 1V 6, (6.27)

d(G55V
5)

ds
≈ −G77V

1V 7, (6.28)

d(G66V
6)

ds
≈ 2G77V

1V 7 − 3G44V
1V 4, (6.29)

d(G77V
7)

ds
≈ −2G66V

1V 6 + 3G55V
1V 5. (6.30)

Similarly, if M4 has prohibitive penalties, we can ignore the term V 4V 6 and simplify
the Euler–Arnold equations further. We will consider the penalties G44 = G55 = G66 =

G77 = p ≫ G11. In that case, the Euler–Arnold equations simplify to:

dV 1

ds
≈ 0, (6.31)

dV 4

ds
≈ V 1V 6, (6.32)

dV 5

ds
≈ −V 1V 7, (6.33)

dV 6

ds
≈ 2V 1V 7 − 3V 1V 4, (6.34)

dV 7

ds
≈ −2V 1V 6 + 3V 1V 5. (6.35)

The solutions of the equations can be written as:

V 1(s) = v1, (6.36)

V 4(s) =
1

4
v4(3 cos(sv1) + cos(3sv1)) +

1

4
v5(3 sin(sv1)− sin(3sv1))

+
1

4
v6(sin(sv1) + sin(3sv1)) +

1

4
v7(cos(sv1)− cos(3sv1)), (6.37)

V 5(s) =
1

4
v4(sin(3sv1)− 3 sin(sv1)) +

1

4
v5(3 cos(sv1) + cos(3sv1))

+
1

4
v6(cos(sv1)− cos(3sv1)) +

1

4
v7(− sin(sv1)− sin(3sv1)), (6.38)

V 6(s) = −3

4
v4(sin(sv1) + sin(3sv1)) +

3

4
v5(cos(sv1)− cos(3sv1))

+
1

4
v6(cos(sv1) + 3 cos(3sv1)) +

1

4
v7(3 sin(3sv1)− sin(sv1)), (6.39)

V 7(s) =
3

4
v4(cos(sv1)− cos(3sv1)) +

3

4
v5(sin(sv1) + sin(3sv1))

+
1

4
v6(sin(sv1)− 3 sin(3sv1)) +

1

4
v7(cos(sv1) + 3 cos(3sv1)). (6.40)
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Proceeding as before, we would keep only up to the leading order term in the Dyson
series, which helps us to write the path-ordered exponential as follows:

U(s) ≈ exp(−i(γ1(s)M1 + γ4(s)M4 + γ5(s)M5 + γ6(s)M6 + γ7(s)M7)), (6.41)

where the following formulas give the γI functions:

γ1(s) = sv1, (6.42)

γ4(s) =
1

12v1

(
9v4 sin(sv1) + v4 sin(3sv1)− 3(3v5 + v6) cos(sv1) + (v5 − v6) cos(3sv1)

+ 3v7 sin(sv1)− v7 sin(3sv1) + 8v5 + 4v6

)
, (6.43)

γ5(s) =
1

12v1

(
3(3v4 + v7) cos(sv1) + (v7 − v4) cos(3sv1) + 9v5 sin(sv1)

+ v5 sin(3sv1) + 3v6 sin(sv1)− v6 sin(3sv1)− 8v4 − 4v7

)
, (6.44)

γ6(s) =
1

4v1

(
(3v4 + v7) cos(sv1) + (v4 − v7) cos(3sv1) + 3v5 sin(sv1)− v5 sin(3sv1)

+ v6 sin(sv1) + v6 sin(3sv1)− 4v4

)
, (6.45)

γ7(s) =
1

4v1

(
3v4 sin(sv1)− v4 sin(3sv1)− (3v5 + v6) cos(sv1) + (v6 − v5) cos(3sv1)

+ v7 sin(sv1) + v7 sin(3sv1) + 4v5

)
. (6.46)

Upon implementing the boundary condition at s = 1 by setting U(s = 1) equal to the
target unitary operator written in (6.5), we obtain:

γ1(1) = ωt, γ4(1) = λt, γ5(1) = 0, γ6(1) = 0, γ7(1) = 0. (6.47)

Our treatment of higher-order contributions by suppressing them through large penalty
factors also simplifies the periodicity argument. The commutators of M1 through M7 with
neglected fourth-order terms take the form of a semidirect product of the Lie algebra sp(2,R)
spanned by M1, M2 and M3 with an Abelian 4-dimensional Lie algebra spanned by M4

through M7. The precise form of the semi-direct product can be determined by the same
methods used in [46] for the algebra formed by Poisson brackets of third-order central
moments: It is given by sp(2,R)⋉R4 where sp(2,R) acts on R4 according to the spin-3/2
representation of sp(2,R). Imposing periodicity can then be done by the same arguments
used for a harmonic oscillator, based on properties of sp(2,R), requiring 4π-periodicity of
v1 in ωt:

v1 = |ωt− 4π⌊(ωt+ 2π)/(4π)⌋| . (6.48)
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With this result, the other coefficients are:

v4 =
3λv1t cos(v1) cot(v1/2)

2(1 + 2 cos(v1))
, (6.49)

v5 = 0, (6.50)

v6 =
3v1λt

2
, (6.51)

v7 =
3v1λt sin(v1)

2(1 + 2 cos(v1))
. (6.52)

The initial velocity components v4 and v7 diverge at ωt = ±2nπ
3 , which means that

the complexity bound also diverges at these points. Since we are using a compact group
for this system, it is exponential, and we are not missing parts of the manifold. The right-
invariant metric used here does not seem to be complete. Around a divergence, neglecting
higher-order terms in the full algebra may not be justified because, compared with an
infinite distance, they could certainly contribute to geodesics even if they are subject to
prohibitive penalties. If one removes suitable regions around the divergences, the finite
geodesic distances are reliable as upper bounds on the complexity.

The complexity bound of the time evolution operator keeping up to cubic order terms
can therefore be written as:

C[UA.HO] ≤
∫ 1

0
ds
√

GIJV I(s)V J(s)

=

∫ 1

0
ds
√

G11(V 1)2 + p((V 4)2 + (V 5)2 + (V 6)2 + (V 7)2)

=

∫ 1

0
ds

(
1

2

[
4G11v

2
1 + p cos(4sv1)

(
−3v24 + 2v4v7 − 3v25 + 2v5v6 + v26 + v27

)
+ 4p sin(4sv1)(v5v7 − v4v6) + p

(
7v24 − 2v4v7 + 7v25 − 2v5v6 + 3

(
v26 + v27

)) ]1/2)
.

(6.53)

The integrand is no longer constant, but it can be integrated upon using A+B cos(x)+

C sin(x) = A +
√
B2 + C2 sin(x + ϕ) with sinϕ = B/

√
B2 + C2 and

∫ √
a+ b sin ydy =

−2
√
a+ bE(14(π − 2x)|2b/(a + b)) with an elliptic function of the second kind. Here, we

have:

A = 2G11v
2
1 +

p

2
(7v24 − 2v4v7 + 7v25 − 2v5v6 + 3(v26 + v27)), (6.54)

B =
p

2
(−3v24 + 2v4v7 − 3v25 + 2v5v6 + v26 + v27), (6.55)

C = 2p(v5v7 − v4v6), (6.56)

x = 4sv1, (6.57)

– 35 –



with the above identification, a and b can be written as:

a = A = 2G11v
2
1 +

p

2
(7v24 − 2v4v7 + 7v25 − 2v5v6 + 3(v26 + v27)) (6.58)

b =
√

B2 + C2 =
p

2

√(
−3v24 + 2v4v7 − 3v25 + 2v5v6 + v26 + v27

)2
+ 16(v4v6 − v5v7)2 .

(6.59)

Substituting y = x + ϕ, the complexity bound can be explicitly evaluated, as used in
the plot for Fig. 6.

In the harmonic limit λ → 0 (with G11 = 1 as used earlier), we have:

C[UA.HO]

∣∣∣∣
λ→0

= |ωt− 4π⌊(ωt+ 2π)/(4π)⌋| (6.60)

in agreement with our direct derivation for the harmonic oscillator. In this limit, the initial
velocities v4, v6, and v7 go to zero, and the only contribution comes from v1.
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Figure 6. Complexity of the time evolution operator of an anharmonic oscillator.

7 Discussion and Comments

The geometrical approach to quantum complexity is intriguing because it expresses a com-
plicated optimization problem with a standard procedure of finding the geodesic distance
between two given points in a suitable curved space, as proposed in [15–17]. In the applica-
tion of geodesic distance to complexity, the two endpoints are represented by the identity
and a target unitary operator, respectively, embedded in a suitable geometrical formulation
of the group of unitary operators on a Hilbert space. On a given Lie group equipped with a
right-invariant metric, the problem of finding geodesics, whose lengths then determine the
complexity of operations, is reduced to solving the Euler–Arnold equations.

Initial subtleties that immediately arise in an infinite-dimensional setting can be evaded
by using a truncation of the full group of unitary operators to a suitable finite-dimensional
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subgroup that includes operators of interest, including the target unitary as well as addi-
tional basic operations that form a closed group together with the target unitary. In this
spirit, we have revisited the question of the quantum complexity of the harmonic oscillator
within various finite-dimensional groups, which had already been discussed in other papers,
in order to understand its properties and with an aim toward possible generalizations to
related evolution operators. In this process, we found and highlighted several additional
mathematical subtleties, even in a finite-dimensional construction that require a proper
consideration of interesting properties of the group theory. In particular, the question of
properly embedding the finite-dimensional truncation in the full group of unitary operators,
which had not been considered before, requires information about topological properties of
Lie groups and their covering groups.

We studied the harmonic oscillator from the perspective of two different Lie groups, the
solvable harmonic oscillator group and the semisimple Sp(2,R). Our results qualitatively
agree with previous work, showing a piecewise linear oscillating behavior of the quantum
complexity of the evolution operator. However, based on the condition that the finite-
dimensional group should be embeddable in the full infinite-dimensional group of unitary
operators with the well-known spectrum for the evolution operator of the harmonic oscil-
lator, we concluded that the period of oscillations should be doubled. This condition takes
into account the half-integer nature of the ground-state energy. The correct group is, there-
fore not directly Sp(2,R) but rather its 2-fold covering, the metaplectic group Mp(2,R).
This group is not a matrix group, and therefore previous methods which explicitly used
finite-dimensional matrix representations cannot be applied. Our methods, by contrast,
work mainly at an algebraic level and bring in group-theoretical properties only in the
final step in order to determine the periodicity properties. Our new methods, therefore,
present crucial generalizations and clarifications even for the well-studied harmonic oscilla-
tor. While doubling the period does not change the short-term behavior of the complexity
while the evolution operator is still close to the identity, it can have large effects after several
periods of the system.

We modified the original Hamiltonian by adding terms linear or quadratic in the posi-
tion operator, which can be done without enlarging the original finite-dimensional groups.
Classically, such a procedure merely shifts the origin of the oscillator or changes the fre-
quency, but there are stronger effects in quantum mechanics. In particular, rewriting the
added operator as a shift in one of the real-valued parameters might require operations
that are not contained in the finite-dimensional group chosen for calculations, or the addi-
tion might implicitly change penalty factors assigned to operations by choosing a specific
right-invariant metric on the group. As we found, the quantum complexity may well de-
pend on such innocuous-looking modifications. In particular, such terms might change the
piecewise linear nature of the complexity of a harmonic oscillator. The inverted harmonic
oscillator can be treated with similar methods. Since its Hamiltonian corresponds to a non-
compact direction in the finite-dimensional group used here, the complexity is not periodic
and increases linearly, as seen in previous work.

We generalized the methods in two ways: by using larger but still finite-dimensional
groups and estimating the complexity of two coupled oscillators and of an anharmonic os-
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cillator. We were able to formulate these problems within subgroups with easily identifiable
periodicity properties. In all cases, we encountered additional subtleties because the groups
involved are not exponential, and because the right-invariant metrics motivated by physical
arguments are not guaranteed to be geodesically complete. These properties, together with
the overall truncation to a finite-dimensional group, imply that a given calculation does
not take into account directions in the full infinite-dimensional group of unitary operators
through which a geodesic might be able to take a shortcut. Such results can therefore
be considered only upper bounds on the quantum complexity rather than strict values.
This caveat applies in particular to divergences of length that could be implied by geodesic
incompleteness.

We encountered non-exponential groups and possible geodesic incompleteness because
useful groups for bosonic oscillator systems are not compact. This property is different for
fermionic oscillators, which lead to orthogonal groups generated by fermion bilinears. Some
of the derivations may, therefore simplify for fermions, which we are planning to analyze in
future work.
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A Line element

In order to derive the expression for a right-invariant line element on a Lie group with
generators OI , we first compute the differential:

dU = −iOIUdxI , (A.1)

of a group element U = exp(−ixIOI) that exponentiates a fixed generator OI (no summa-
tion over I). The line element requires us to solve for dxI , for which we first multiply (A.1)
with U−1 from the right:

idUU−1 = OIdx
I . (A.2)

The generator OI does not have an inverse, but if we use a matric representation of
the Lie algebra, we can first multiply by O†

I , take a trace in the representation, and divide
the equation by the resulting number:

dxI =
1

Tr[OIO†
I ]

[
Tr[idUU−1O†

I ]

]
. (A.3)

(If the trace happens to be zero, it effectively puts a prohibitive penalty on the corresponding
generator.)
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The generator OI commutes with U , and any ordering could have been chosen on
the right of (A.1). The way in which we wrote (A.1) is suitable for the construction
of a right-invariant line element by transporting the resulting dxI to generic group ele-
ments: The product dUU−1 is right-invariant because for any constant g in the Lie group,
d(Ug)(gU)−1 = dUU−1. After such a right translation on the group, the ordering is rele-
vant because d(Ug) is no longer guaranteed to commute with (Ug)−1, unlike dU and U−1

for our specific U .
After the right transportation, we can use (A.3) at any group element U . Using the

penalty matrix GIJ , the line element on the entire group then takes the form:

ds2 = GIJdx
IdxJ = GIJ

1

Tr[OIO†
I ]

[
Tr[idUU−1O†

I ]

]
1

Tr[OJO†
J ]

[
Tr[idUU−1O†

J ]

]
= GIJ

1

Tr[OIO†
I ]

1

Tr[OJO†
J ]

[
Tr[iU−1O†

IdU ]

][
Tr[iU−1O†

JdU ]

]
, (A.4)

where we brought dU to the right using cyclic commutation in the trace.

B Using a generic element of the suitable group to compute complexity

In this appendix, we show that instead of trying to write down the Dyson series for the
path-ordered exponential, we can make use of the differential equation (2.6) it satisfies
in order to derive the complexity. In fact, this method is usually adopted in the circuit
complexity literature. Let us explain the steps usually followed, taking the example of the
model of two coupled oscillators studied in [18]. It was realized that for the given purpose,
it is necessary to look for geodesics in the GL(2,R) group. One may choose an explicit
parametrization of a general element U ∈ GL(2,R), equation (3.18) of [18], and a suitable
finite-dimensional matrix representation of the generators. However, in general, there may
be obstacles to finding a finite-dimensional matrix representation of the generators, for
instance, for certain universal covering groups. In this appendix, we, therefore, use an
algebraic method based on a suitable parametrization of a general element of the desired
group without using any matrix representation of the generators.

We will explicitly calculate the complexity of the displacement operator using the prod-
uct form (disentangled form) of the generic element of the Harmonic oscillator group. To
remind, our intention is to solve:

dU(s)

ds
= −iV I(s)OIU(s), (B.1)

subject to the boundary conditions:

U(s = 0) = I, and U(s = 1) = Utarget. (B.2)

To solve the above equation, we discussed that we need to introduce a generic element of
the Lie group under consideration, and there are two ways to represent the generic element:

U(s) = exp(−i

n∑
i=1

βi(s)Ôi) =

N∏
i=1

exp(−iαi(s)Ôi). (B.3)

– 39 –



In the main text, we have worked with the form exp(−i
∑n

i=1 βi(s)Ôi). Here we do the
computation for the product form, i.e. we take:

U(s) =
N∏
i=1

exp(−iαi(s)Ôi). (B.4)

For the Harmonic oscillator group with generators H, P , Q and E, the generic element
can be written as:

U(s) = exp(−iα1(s)E) exp(−iα2(s)P ) exp(−iα3(s)Q) exp(−iα4H). (B.5)

Substituting the above equation in B.1, the LHS can be written as:

dU(s)

ds
= −i

[
exp{−iα1(s)E} exp{−iα2(s)P} exp{−iα3(s)Q}

(
exp{−iα4(s)H}α′

4(s)H

)
+ exp{−iα1(s)E} exp{−iα2(s)P}

(
exp{−iα3(s)Q}α′

3(s)Q

)
exp{−iα4(s)H}

+ exp{−iα1(s)E}
(
exp{−iα2(s)P}α′

2(s)P

)
exp{−iα3(s)Q} exp{−iα4(s)H}

+

(
exp{−iα1(s)E}α′

1(s)E

)
exp{−iα2(s)P} exp{−iα3(s)Q} exp{−iα4(s)H}

]
,

(B.6)

whereas the RHS (for GIJ = δIJ) can be written as:

−iV I(s)OIU(s) = −i

(
vHH +

{
vP cos(s(vE − vH)) + vQ sin(s(vE − vH))

}
P

+

{
vQ cos(s(vE − vH))− vP sin(s(vE − vH))

}
Q+ vEE

)
U(s). (B.7)

Before proceeding, let us make a simplification by realizing the action of the generator
E. The generator E being a non-trivial center, commutes with all other generators, and its
role is just to produce a phase factor when applied to states. Therefore to simplify, we can
choose vE = 0 for which eqn B.7 becomes:

−iV I(s)OIU(s) = −i

(
vHH +

{
vP cos(s(vH))− vQ sin(s(vH))

}
P (B.8)

+

{
vQ cos(s(vH)) + vP sin(s(vH))

}
Q

)
U(s). (B.9)

To equate the coefficients of the generators in B.6 and B.7 and derive the differential
equations for the s dependent parameters αi’s, we have to express B.6 in way such that it
resembles B.7 in its form i.e it should be written as ( )× U(s). For that purpose, let us
begin by writing equation B.6 as:

dU(s)

ds
= −i

[
Term1 + Term2 + Term3 + Term4

]
, (B.10)
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where Term 1, Term 2, Term 3, and Term 4 are as follows:

Term1 = exp{−iα1(s)E} exp{−iα2(s)P} exp{−iα3(s)Q}
(
exp{−iα4(s)H}α′

4(s)H

)
,

(B.11)

Term2 = exp{−iα1(s)E} exp{−iα2(s)P}
(
exp{−iα3(s)Q}α′

3(s)Q

)
exp{−iα4(s)H},

(B.12)

Term3 = exp{−iα1(s)E}
(
exp{−iα2(s)P}α′

2(s)P

)
exp{−iα3(s)Q} exp{−iα4(s)H},

(B.13)

Term4 =

(
exp{−iα1(s)E}α′

1(s)E

)
exp{−iα2(s)P} exp{−iα3(s)Q} exp{−iα4(s)H}.

(B.14)

Let us start the simplification with the easiest case, which is Term 4. We can easily
shift the generator E to the left of exp{−iα1(s)E} as E commutes with it. Thus, Term 4
can be written as:

term4 = α′
1(s)E exp{−iα1(s)E} exp{−iα2(s)P} exp{−iα3(s)Q} exp{−iα4(s)H}

= α′
1(s)EU(s). (B.15)

Now let us consider Term 3. Again, since P commutes with exp{−iα2(s)P}, we can shift
P to the left of the exponential i.e. we can rewrite Term 3 as:

Term3 = α′
2(s)

(
exp{−iα1(s)E}P

)
exp{−iα2(s)P} exp{−iα3(s)Q} exp{−iα4(s)H}

= α′
2(s)

(
[exp{−iα1(s)E}, P ] + P exp{−iα1(s)E}

)
exp{−iα2(s)P}

exp{−iα3(s)Q} exp{−iα4(s)H}. (B.16)

So, we have to evaluate the commutator of exp{−iα1(s)E} with P . Since E commutes
with P , all the higher orders of E will also commute with P , therefore:

[exp{−iα1(s)E}, P ] = 0, (B.17)

and in consequence:

Term3 = α′
2(s)P exp{−iα1(s)E} exp{−iα2(s)P} exp{−iα3(s)Q} exp{−iα4(s)H}

=

(
α′
2(s)P

)
U(s). (B.18)

Now let us try to simply Term 2:

Term2 = exp{−iα1(s)E} exp{−iα2(s)P}
(
exp{−iα3(s)Q}α′

3(s)Q

)
exp{−iα4(s)H}

= α′
3(s) exp{−iα1(s)E}

(
exp{−iα2(s)P}Q

)
exp{−iα3(s)Q} exp{−iα4(s)H}.

(B.19)

– 41 –



We manipulate the term
(
exp{−iα2(s)P}Q

)
to shift the generator Q to the left of

the exponential. For this purpose, let us write
(
exp{−iα2(s)P}Q

)
as:

(
exp{−iα2(s)P}Q

)
=

(
exp{−iα2(s)P}Q

)
exp{iα2(s)P} exp{−iα2(s)P}︸ ︷︷ ︸

Identity operator

=

(
exp{−iα2(s)P}Q exp{iα2(s)P}︸ ︷︷ ︸

Apply Baker-Campbell Hausdorff

)
exp{−iα2(s)P}. (B.20)

Applying Baker-Campbell-Hausdroff (BCH) lemma:

eλBAe−λB = A+ λ[B,A] +
λ2

2!
[B, [B,A]] + ... (B.21)

we can write the term (exp{−iα2(s)P}Q exp{iα2(s)P}) as:

(
exp{−iα2(s)P}Q exp{iα2(s)P}

)
= Q− α2E. (B.22)

Therefore, Term 2 can be written as:

term2 = α′
3(s)e

−iα1(s)E

(
Q− α2(s)E

)
e−iα2(s)P e−iα3(s)Qe−iα4(s)H

= α′
3(s)Q U(s)− α′

3(s)α2(s)E U(s). (B.23)
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Finally, let us simplify Term 1:

Term1 = exp{−iα1(s)E} exp{−iα2(s)P} exp{−iα3(s)Q}
(
exp{−iα4(s)H}α′

4(s)H

)
= α′

4(s) exp{−iα1(s)E} exp{−iα2(s)P}
(
exp{−iα3(s)Q}H

)
exp{−iα4(s)H}

= α′
4(s)e

−iα1(s)Ee−iα2(s)P

(
exp{−iα3(s)Q}H

)
eiα3(s)Qe−iα3(s)Q︸ ︷︷ ︸

Identity operator inserted

exp{−iα4(s)H}

= α′
4(s) exp{−iα1(s)E} exp{−iα2(s)P}

(
exp{−iα3(s)Q}H exp{iα3(s)Q}︸ ︷︷ ︸
Apply Baker-Campbell Hausdorff formula

)
exp{−iα3(s)Q} exp{−iα4(s)H}

= α′
4(s) exp{−iα1(s)E} exp{−iα2(s)P}

(
H + α3(s)P +

α3(s)
2

2
E

)
exp{−iα3(s)Q} exp{−iα4(s)H}

= α′
4(s) exp{−iα1(s)E} exp{−iα2(s)P}H exp{−iα3(s)Q} exp{−iα4(s)H}

+ α′
4(s) exp{−iα1(s)E} exp{−iα2(s)P}α3(s)P exp{−iα3(s)Q} exp{−iα4(s)H}

+ α′
4(s) exp{−iα1(s)E} exp{−iα2(s)P}α3(s)

2

2
E exp{−iα3(s)Q} exp{−iα4(s)H}

= α′
4(s) exp{−iα1(s)E}

(
H − α2(s)Q+

α2(s)
2

2
E

)
exp{−iα2(s)P} exp{−iα3(s)Q} exp{−iα4(s)H}

+ α′
4(s)α3(s)PU(s) + α′

4(s)
α3(s)

2

2
EU(s)

= α′
4(s)HU(s)− α′

4(s)α2(s)QU(s) +
1

2
α′
4(s)α2(s)

2EU(s)

+ α′
4(s)α3(s)PU(s) +

1

2
α′
4(s)α3(s)

2EU(s)

=

(
α′
4(s)H − α′

4(s)α2(s)Q+
1

2
α′
4(s)α2(s)

2E

+ α′
4(s)α3(s)P +

1

2
α′
4(s)α3(s)

2E

)
U(s). (B.24)

The above form of dU(s)/ds is exactly what was required. Now we one simply match
the coefficients of the corresponding generators on both sides and arrive at the following
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differential equations of the αi’s. The terms in B.10 can be written as:

Term1 =

(
α′
4(s)H − α′

4(s)α2(s)Q+
1

2
α′
4(s)α2(s)

2E

+ α′
4(s)α3(s)P +

1

2
α′
4(s)α3(s)

2E

)
U(s), (B.25)

Term2 =

(
α′
3(s)Q− α′

3(s)α2(s)E

)
U(s), (B.26)

Term3 = α′
2(s)P U(s), (B.27)

Term4 = α′
1(s)E U(s). (B.28)

In consequence, Eq. B.10 can be written as:

dU(s)

ds
= −i

[
α′
4(s)H − α′

4(s)α2(s)Q+
1

2
α′
4(s)α2(s)

2E + α′
4(s)α3(s)P

+
1

2
α′
4(s)α3(s)

2E + α′
3(s)Q− α′

3(s)α2(s)E + α′
2(s)P + α′

1(s)E

]
U(s)

= −i

[
α′
4(s)H +

{
α′
4(s)α3(s) + α′

2(s)

}
P +

{
− α′

4(s)α2(s) + α′
3(s)

}
Q

+

{
α′
1(s)− α′

3(s)α2(s) +
1

2
α′
4(s)α3(s)

2 +
1

2
α′
4(s)α2(s)

2

}
E

]
U(s). (B.29)

Equating the coefficients of the generators from B.29 and B.7, we get the following:

α′
1(s) = α2(s)vP sin(svQ) + α2(s)vQ cos(svQ) +

α2(s)
2vQ

2
−

α3(s)
2vQ

2
, (B.30)

α′
2(s) = vP cos(svQ)− vQ sin(svQ) + α3(s)(−vQ), (B.31)

α′
3(s) = vP sin(svQ) + vQ cos(svQ) + α2(s)vQ, (B.32)

α′
4(s) = vH . (B.33)

The solutions of the above equations are as follows:

α1(s) =
1

2

(
1

2
sin(2svQ)

(
C2
1 + 2s(C1vP − C2vQ)− C2

2 + s2
(
v2P − v2Q

))
+ (C1 + svP )(C2 + svQ) cos(2svQ) + s(C1vQ − C2vP )

)
+ C3, (B.34)

α2(s) = C1 cos(svQ)− C2 sin(svQ) + svP cos(svQ)− svQ sin(svQ), (B.35)

α3(s) = C1 sin(svQ) + C2 cos(svQ) + svP sin(svQ) + svQ cos(svQ), (B.36)

α4(s) = svH + C4. (B.37)

Imposing the boundary condition U(s = 0) = I, the constants Ci’s can be fixed to be:

C1 = 0, C2 = 0, C3 = 0, C4 = 0. (B.38)
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which simplifies the solution as follows:

α1(s) =
1

4
s2
((
v2P − v2Q

)
sin(2svQ) + 2vP vQ cos(2svQ)

)
, (B.39)

α2(s) = s(vP cos(svQ)− vQ sin(svQ)), (B.40)

α3(s) = s(vP sin(svQ) + vQ cos(svQ)), (B.41)

α4(s) = svH . (B.42)

Now let us compute the complexity of the displacement operator as an illustration.
The displacement operator in terms of the generators of the Harmonic oscillator group has
been written in Eq. 3.26:

Utarget = D̂ = exp(
√
2Re(α)Q+

√
2Im(α)P ). (B.43)

Looking at Utarget, we immediately realize that it is not given in the form that we desire
i.e., we have to disentangle the operator and express it as a product of the exponentials of
the generators. Since the generators of Q and P commute with the commutator of Q and
P (which is E), it is not difficult to see that D̂ can be written as:

D̂ = exp(
√
2Im(α)P +

√
2Re(α)Q)

= exp(
√
2Im(α)P ) exp(

√
2Re(α)Q) exp(−Re(α)Im(α)[P,Q])

= exp(
√
2Im(α)P ) exp(

√
2Re(α)Q) exp(−Re(α)Im(α)(−iE)). (B.44)

In the above derivation, we have used the fact that if two operators A and B commutes
with the commutator of A and B, then we can write (from the BCH formula):

exp(A+B) = exp(A) exp(B) exp(−1

2
[A,B]). (B.45)

However, before comparing D̂ with U(s = 1), we have to take into consideration the
ordering of the generators, which should be identical to the ordering used while defining
the generic element. In the generic element written in B.5, we see that the generator E was
at the beginning. Hence we have to reorder the exponentials in D̂. Since E commutes with
both Q and P , it can be shifted. Hence, D̂ can be written as:

D̂ = exp(iRe(α)Im(α)E) exp(
√
2Im(α)P ) exp(

√
2Re(α)Q). (B.46)

Therefore, we get the following:

U(s = 1) = D̂

= exp(−iα1(1)E) exp(−iα2(1)P ) exp(−iα3(1)Q) exp(−iα4(1)H) (B.47)

= exp(iRe(α)Im(α)E) exp(
√
2Im(α)P ) exp(

√
2Re(α)Q), (B.48)

from which we obtain the four conditions:

α1(1) = −Re(α)Im(α), α2(1) = i
√
2Im(α), α3(1) = i

√
2Re(α), α4(1) = 0. (B.49)
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From the above conditions, we find that:

vH = 0, vP = i
√
2Im(α), vQ = i

√
2Re(α). (B.50)

Therefore, the complexity of the displacement operator can be written a:

C[D̂] =
√
v2P + v2Q + v2H = 2|α|, (B.51)

which is exactly what we found in Sec. 3.2.2.

C Commutation relations of the generators associated with the coupled
harmonic oscillator

As discussed in the main text (see Sec. 5), a basis of generators associated with a coupled
harmonic oscillator that forms a closed Lie algebra are:

T1 = H1 =
1

2
(Q2

1 + P 2
1 ), (C.1)

T2 = H2 =
1

2
(Q2

2 + P 2
2 ), (C.2)

T3 =
1

2
(Q2

1 − P 2
1 ), (C.3)

T4 =
1

2
(Q2

2 − P 2
2 ), (C.4)

T5 = (Q1P1 + P1Q1), (C.5)

T6 = (Q2P2 + P2Q2), (C.6)

T7 = (Q1Q2 + P1P2), (C.7)

T8 = (Q1P2 + P1Q2), (C.8)

T9 = (Q1Q2 − P1P2), (C.9)

T10 = (Q1P2 − P1Q2). (C.10)

The commutation relations satisfied by the generators are as follows:

[T1, T2] = 0, [T1, T3] = −iT5, [T1, T4] = 0, [T1, T5] = iT3, [T1, T6] = 0,

[T1, T8] = iT9, [T1, T10] = −iT7, [T1, T7] = iT10, [T1, T9] = −iT8,

[T2, T3] = 0, [T2, T4] = −iT6, [T2, T7] = −iT10, [T2, T9] = −iT8,

[T2, T8] = iT9, [T2, T10] = iT7, [T2, T6] = iT4, [T2, T5] = 0,

[T3, T4] = 0, [T3, T5] = iT1, [T4, T5] = 0, [T3, T6] = 0, [T4, T6] = iT2,

[T3, T7] = iT8, [T4, T7] = iT8, [T3, T8] = iT7, [T4, T8] = iT7,

[T3, T9] = −iT10, [T4, T9] = iT10, [T3, T10] = −iT9, [T4, T10] = iT9,

[T5, T1] = −iT3, [T6, T2] = −iT4, [T5, T3] = −iT1, [T6, T4] = −iT2, [T5, T6] = 0,

[T5, T7] = −2iT9, [T6, T7] = −2iT9, [T5, T8] = −2iT10, [T6, T8] = −2iT10,

[T5, T9] = −2iT7, [T6, T9] = −2iT7, [T5, T10] = −2iT8, [T6, T10] = −2iT8,
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[T7, T1] = −iT10, [T7, T2] = iT10, [T7, T3] = −iT8, [T7, T4] = −iT8,

[T7, T5] = 2iT9, [T7, T6] = 2iT9, [T7, T8] = 2iT3 + 2iT4, [T7, T9] = −iT6 − iT5,

[T7, T10] = 2iT1 − 2iT2, [T8, T9] = −2iT1 − 2iT2, [T8, T10] = −iT6 + iT5,

[T9, T10] = 2iT3 − 2iT4.
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