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ABSTRACT
Semi-supervised semantic segmentation (SSS) is an important task
that utilizes both labeled and unlabeled data to reduce expenses
on labeling training examples. However, the effectiveness of SSS
algorithms is limited by the difficulty of fully exploiting the po-
tential of unlabeled data. To address this, we propose a dual-level
Siamese structure network (DSSN) for pixel-wise contrastive learn-
ing. By aligning positive pairs with a pixel-wise contrastive loss
using strong augmented views in both low-level image space and
high-level feature space, the proposed DSSN is designed to maxi-
mize the utilization of available unlabeled data. Additionally, we
introduce a novel class-aware pseudo-label selection strategy for
weak-to-strong supervision, which addresses the limitations of
most existing methods that do not perform selection or apply a
predefined threshold for all classes. Specifically, our strategy se-
lects the top high-confidence prediction of the weak view for each
class to generate pseudo labels that supervise the strong augmented
views. This strategy is capable of taking into account the class im-
balance and improving the performance of long-tailed classes. Our
proposed method achieves state-of-the-art results on two datasets,
PASCAL VOC 2012 and Cityscapes, outperforming other SSS al-
gorithms by a significant margin. The source code is available at
https://github.com/kunzhan/DSSN.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.
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Figure 1: Illustration of the motivation. (a) demonstrates the
proposed dual-level contrastive structure for exploiting the
maximum potential of unlabelled samples. (b) depicts the
structure of the vanilla contrastive learning. (c) compares the
threshold selection strategies of the proposed class-aware
pseudo-label generationmethod and the classical approaches
of utilizing a threshold for all classes.

1 INTRODUCTION
Deep learning methods for supervised segmentation have shown
remarkable performance. However, they heavily rely on a large
amount of annotated images, which is labor cost and time-consuming.
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Alternatively, semi-supervised semantic segmentation (SSS) offers a
viable solution to address this fundamental weakness by exploiting
the readily available unlabeled data to improve model performance.

Existing semi-supervised learning methods typically use unla-
beled samples in two ways: pseudo supervision [1, 27] and consis-
tency regularization [20, 28, 31]. Pseudo supervision is to generate
pseudo labels for the unlabeled images and gradually incorporates
them into the training process to supervise model learning. For
example, preliminary works [17, 24] in SSS tend to utilize the gen-
erative adversarial networks [6] as auxiliary supervision for un-
labeled images. Consistency regularization promotes agreement
among model predictions on unlabeled samples that are subjected
to various perturbations, thus improving model generalization by
ensuring that different views of the same unlabeled image are con-
sistent. Modern SSS algorithms combine pseudo supervision and
consistency regularization into a two-view network architecture,
where one view generates pseudo labels to supervise the other view
for prediction consistency. For instance, the intuition of CPS [3] is
that using one view generates pseudo labels of unlabeled images to
expand the training set of the other view. PseudoSeg [37] generates
pseudo labels in a weak augmented view to supervise the other
strong augmented view. PS-MT [22] employs higher-confidence
pseudo labels than CPS by averaging the predictions of two views.
To search for high-quality pseudo labels, CCT [26] employs a fixed
threshold for all classes and pixels with confidence scores above the
threshold to participate in network updates. In CCT [26], it mainly
uses consistency learning between one weak view and two strong
augmented views of a high-level feature.

However, many existing SSS algorithms do not fully exploit the
potential of unlabelled data. To address this issue, we propose a
Dual-level Siamese structure network (DSSN) to fully exploit fea-
ture diversities. In addition to the two strategies commonly used in
most algorithms, we introduce a new variant of contrastive learn-
ing. Fig. 1(b) illustrates a typical structure of the vanilla contrastive
learning, which excels at providing extraordinary generalization
abilities for unlabeled samples [4, 13]. Specifically, the proposed
DSSN simultaneously employs pixel-wise contrastive learning and
two-level strong augmented views. Accordingly, contrastive ob-
jectives in terms of image-level and feature-level augmentations
are introduced to guide the network training. Such structure guar-
antees fully exploiting the potential of unlabeled data. As shown
in Fig. 1(a), at the image level, two different views of unlabeled
samples are obtained with different strong augmentations, and a
pixel-wise contrastive objective is added to train DSSN using the
corresponding predictions. At the feature level, high-level latent
features from the encoder produce two strong augmented views
and also conduct a contrastive loss. This DSSN design enables us
to fully exploit the available unlabeled data.

Given that most real-world datasets exhibit imbalanced or long-
tailed label distributions [23], we propose a class-aware pseudo
label generation (CPLG) strategy that selects class-specific high-
confidence pseudo labels from weak views to supervise the strong
views. Our CPLG strategy differs from previous approaches [11, 26],
which apply a fixed threshold to all categories. By treating each
class differently, our method aims to improve the performance of
long-tailed categories. Without any selection, low-quality pseudo

labels generated from the weak augmented view are used to super-
vise the strong augmented view, which could negatively affect the
model training. Using a constant threshold for all classes may result
in long-tailed classes being poorly trained, as their confidence may
be lower than the threshold and thus not involved in training. Us-
ing a fixed threshold may also result in useful pseudo-labels being
ignored in some classes that fall below the predefined threshold.
For each class has pseudo labels, we select top high-confidence
pixels in each class since most segments in an image are imbalances
and also it is imbalances in the whole dataset. A schematic illustrat-
ing this strategy is presented in Fig. 1(c). This approach increases
the contribution of long-tailed classes and addresses the learning
difficulties of different classes.

In summary, DSSN makes the following contributions:
(1) DSSN offers a novel approach to leverage unlabeled data in

training SSS models by utilizing dual-level pixel-wise contrastive
learning. This approach is a valuable addition to the existing tech-
niques of exploiting unlabeled data, such as pseudo-supervision
and consistency regularization.

(2) DSSN’s design enables the maximal utilization of available
unlabeled data. The dual-level structure is not only utilized in con-
trastive learning but also in weak-to-strong pseudo-supervision.

(3) We introduce a novel class-aware pseudo-label selection strat-
egy for weak-to-strong supervision, known as CPLG. This strategy
effectively improves the performance of long-tailed classes.

2 RELATEDWORK
SSS has two mainstream methods, pseudo supervision and consis-
tency regularization. Preliminary works [17, 24] use the generative
adversarial networks [6] to generate pseudo supervision. Specifi-
cally, consistency regularization methods encourage consistency
prediction of unlabeled samples with various perturbation. The
CutMix-Seg [11] approach incorporates the CutMix [35] augmen-
tation into semantic segmentation in order to supply consistency
restrictions on unlabeled data and also revealed Cutout [8] and
CutMix [35] are critical to the success of consistency regulariza-
tion. Alternatively, CCT [26] proposes a feature-level perturbation
and a cross-consistency training method that enforce consistency
between the main decoder predictions and auxiliary decoders. By
using two segmentation models with the same structure but dif-
ferent initialization, GCT [19] conducts network perturbation and
promotes consistency between the predictions from the two models.
In the meantime, CPS [3] constructs two parallel networks to pro-
vide cross-pseudo labels for one another. DMT [10] re-weights the
loss on different regions based on the disagreement of two different
initialized models. Self-training by pseudo labeling is a classic tech-
nique that dates back about a decade, taking the most likely class as
a pseudo label and training models on unlabeled data is a common
method for achieving minimum entropy. Concurrently ST++ [34]
also demonstrates that employing suitable data perturbations on
unlabeled samples is really quite beneficial for self-training. Uni-
match [33] explores the effectiveness of weak-to-strong supervision,
leveraging dual strong augmentations.

Contrastive learning is one of the alternative methods that stands
out. RoCo [21] and U2PL [30] use InfoNCE loss [25] on the predicted
logits, but they not use Siamese structure network as shown in
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Fig. 1(b). DSSN obtains better performance than them, which can
be seen in the experiment section.

3 METHOD
3.1 Preliminaries
Following SSS works [3, 21, 34], we use both a small fraction of
labeled data D𝑙 = {(𝑋𝑖 , 𝑻𝑖 )}𝑀𝑖=1 and a large fraction of unlabeled
data D𝑢 = {𝑋𝑖 }𝑁+𝑀

𝑖=1+𝑀 . 𝑋𝑖 denotes an image, and 𝑻𝒊 represents
its ground-truth label if 𝑋𝑖 is a labeled image. 𝑁 and 𝑀 indicate
the number of labeled and unlabeled images, respectively, where
𝑁 ≫ 𝑀 in most cases. To facilitate the calculation of loss functions,
we represent each pixel in an image as a vector 𝒙 since a pixel
has values in different channels. Thus, in subsequent sections, we
represent each pixel as a vector 𝒙 with 𝒕 as its one-hot ground-
truth label. Given an image 𝑋 = [𝒙𝑖 ] with the size of 𝑊 × 𝐻

where𝑊 and 𝐻 are the width and height, we denote the pixel by
𝒙𝑖 , 𝑖 ∈ {1, ...,𝑊 ×𝐻 }. The latent high-level feature 𝒛 corresponding
to 𝒙 is obtained by an encoder 𝑓 (𝒙 |𝜃 ) where 𝜃 is the learnable
parameters of the encoder.We yield the predicted logits𝒉 by feeding
the latent representations 𝒛 into a decoder 𝑔(𝒛 |𝜑) where 𝜑 is the
learnable parameters of the decoder. Finally, a softmax layer is added
to obtain the ultimate probability for each class, i.e.,𝒚 = softmax(𝒉).

Given a labeled image, we use a supervised cross-entropy loss,

Lsup = −
∑︁
𝑖

∑︁
𝑗∈C

𝑡𝑖 𝑗 log𝑦𝑖 𝑗 (1)

where C = {1, . . . ,𝐶} and 𝐶 is the total number of classes. For a
unlabeled image, a simple way to generate their pseudo labels 𝒕𝑖 is
to apply a one-hot operation to the predictions, i.e., 𝒚𝑖 . For the 𝑖-th
pixel of an unlabeled image, we represent the predicted probability
of the 𝑖-th pixel belonging to the 𝑗-th class as 𝑦𝑖 𝑗 . Specifically, we
use the following operation to generate pseudo labels:

𝑐 = arg max
𝑗∈C

(𝑦𝑖 𝑗 ), (2)

𝑡𝑖 𝑗 =

{
1, if 𝑗 = 𝑐

0, otherwise
(3)

where 𝑐 denotes the maximal probability within the class 𝑗 ∈ C,
the 𝒕𝑖 = [𝑡𝑖 𝑗 ] is the one-hot pseudo label.

3.2 Dual-Level Contrastive Learning
To fully exploit the potential of available unlabeled data, we propose
to use DSSN for extracting pixel-wise contrastive positive pairs in
different abstraction levels. The low-level image is subjected to
two-view strong augmentations,

𝒙𝑙𝑠1𝑖 = AugL𝑠 (𝒙𝑖 ), (4)

𝒙𝑙𝑠2𝑖 = AugL𝑠 (𝒙𝑖 ) (5)

where 𝒙𝑙𝑠1
𝑖

denotes the strong augmented low-level pixel in the
first view. The output, AugL𝑠 (·), is random. AugL𝑠 (·) generates
varying outputs using the same input to augment the data diversity.
This increases the diversity, resulting in an improvement in the
robustness and generalization ability of the training model.

We use two-view augmented images to obtain its decoded logits,

𝒉𝑙𝑠1𝑖 = 𝑔(𝑓 (𝒙𝑙𝑠1𝑖 |𝜃 ) |𝜑) . (6)

𝒉𝑙𝑠2𝑖 = 𝑔(𝑓 (𝒙𝑙𝑠2𝑖 |𝜃 ) |𝜑) . (7)

Analogous to [16], we apply the contrastive objective, i.e., Lcl
to pairwise pixels for learning better representations:

Lcl = − 1
|P |

∑︁
(𝑖,𝑖 ) ∈P

log𝑑 (𝒉𝑙𝑠1𝑖 ,𝒉𝑙𝑠2𝑖 )

− 1
|N |

∑︁
(𝑖, 𝑗 ) ∈N

log
(
1 − 𝑑 (𝒉𝑙𝑠1𝑖 ,𝒉𝑙𝑠2𝑗 )

)
(8)

where 𝑑 (·, ·) is a similarity score of a pair of logits. 𝒉𝑙𝑠1
𝑖

and 𝒉𝑙𝑠2
𝑖

are
belong to positive pairs (𝑖, 𝑖) ∈ P while 𝒉𝑙𝑠1

𝑖
and 𝒉𝑙𝑠2

𝑗
are negative

pairs (𝑖, 𝑗) ∈ N ,∀ 𝑖 ≠ 𝑗 . We use P and N to denote the sets of
positive and negative pairs, respectively.

Inspired by BYOL [12], we only use the positive pairs. The simi-
larity 𝑑 (·, ·) of positive logits is defined by a Gaussian function,

𝑑 (𝒉𝑙𝑠1𝑖 ,𝒉𝑙𝑠2𝑖 ) = exp
(
−
𝒉𝑙𝑠1𝑖 − 𝒉𝑙𝑠2𝑖

2
2

)
. (9)

The similarity defined by Eq. (9) implies the similarity is 1 if the
pairwise logits are the same while it tends to 0 if their distance is
far from each other. From a different perspective, the error ∥𝒉𝑙𝑠1

𝑖
−

𝒉𝑙𝑠2
𝑖

2
2 of two-view logits is governed by the Gaussian distribution

due to the central limit theorem [29], so we also obtain Eq. (9).
Substituting Eq. (9) into Eq. (8) obtains the following loss.

L𝑙𝑠
cl =

1
𝑊 × 𝐻

∑︁
𝑖

𝒉𝑙𝑠1𝑖 − 𝒉𝑙𝑠2𝑖

2
2 (10)

where we only use pixel-wise positive pairs.
For the high-level feature contrastive learning, we obtain the

high-level latent feature with the encoder,

𝒛ℎ𝑤𝑖 = 𝑓 (AugL𝑤 (𝒙𝑖 ) |𝜃 ) (11)

whereAugL𝑤 (·) is a weak augmentation for the low-level pixel. The
high-level feature is subjected to two-view strong augmentations,

𝒛ℎ𝑠1𝑖 = AugH𝑠 (𝒛ℎ𝑤𝑖 ), (12)

𝒛ℎ𝑠2𝑖 = AugH𝑠 (𝒛ℎ𝑤𝑖 ) (13)

We use the two-view augmented features to obtain its decoded
logits, 𝒉ℎ𝑠1

𝑖
= 𝑔(𝒛ℎ𝑠1

𝑖
|𝜑) and 𝒉ℎ𝑠2

𝑖
= 𝑔(𝒛ℎ𝑠12

𝑖
|𝜑) . Then, we use them

to construct the contrastive loss,

Lℎ𝑠
cl =

1
𝑊 × 𝐻

∑︁
𝑖

𝒉ℎ𝑠1𝑖 − 𝒉ℎ𝑠2𝑖

2
2 . (14)

3.3 Weak-to-Strong Pseudo Supervision
To leverage the four predictions generated by a strongly augmented
image, we feed the corresponding weakly augmented image into
DSSN. Next, we use the prediction of the weak view to generate
its pseudo label and supervise the four strong views. Given our
dual-level structure, weak-to-strong pseudo supervision is also
performed in both levels. Specifically, we use the pseudo labels of
the weak view, denoted as 𝒕 , to supervise the predictions of the
strong views, denoted as 𝒚,.
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Figure 2: The overview of DSSN . Dual-level contrastive learning and weak-to-strong pseudo supervision.

The weak pseudo supervisions are obtained by

𝒚𝑙𝑤 = softmax(𝑔(𝑓 (𝒙 |𝜃 ′) |𝜑 ′)) (15)

𝒚ℎ𝑤 = softmax(𝑔(𝒛ℎ𝑤 |𝜑)) (16)

where (𝜃 ′, 𝜑′) of the teacher are updated from the student (𝜃, 𝜑)
by the exponential moving average (EMA)

(𝜃 ′, 𝜑′) = 𝛼 (𝜃 ′, 𝜑′) + (1 − 𝛼) (𝜃, 𝜑) (17)

where 𝛼 is a momentum parameter, with 𝛼 ∈ [0, 1].
The pseudo labels 𝒕𝑙𝑤 and 𝒕ℎ𝑤 of 𝒚𝑙𝑤 and 𝒚ℎ𝑤 are calculated by

using Eqs. (2) and (3), respectively.
The output probability of the strong augmented views,𝒚𝑙𝑠1

𝑖
,𝒚𝑙𝑠2

𝑖
,

𝒚ℎ𝑠1
𝑖

, and 𝒚ℎ𝑠2
𝑖

, are attained by the softmax layer.
The weak-to-strong pseudo-supervision loss functions are

L (𝑙 )
w2s = −

∑︁
𝑖

∑︁
𝑗

𝑚𝑙𝑤
𝑖 𝑗

(
𝑡𝑙𝑤𝑖 𝑗 log𝑦𝑙𝑠1𝑖 𝑗 + 𝑡𝑙𝑤𝑖 𝑗 log𝑦𝑙𝑠2𝑖 𝑗

)
(18)

L (ℎ)
w2s = −

∑︁
𝑖

∑︁
𝑗

𝑚ℎ𝑤
𝑖 𝑗

(
𝑡ℎ𝑤𝑖 𝑗 log𝑦ℎ𝑠1𝑖 𝑗 + 𝑡ℎ𝑤𝑖 𝑗 log𝑦ℎ𝑠2𝑖 𝑗

)
(19)

where𝑚𝑖 𝑗 is a class-wise binary mask to select the pixel with high-
confidence score and we show how to obtain it in the next section.

3.4 Class-aware pseudo-label generation
As shown in Fig. 1(c), we show the class-aware pseudo-label gen-
eration (CPLG). For the 𝑖-th pixel, it has different probabilities
belonging to different classes. 𝑦𝑖 𝑗 denotes the probability of the 𝑖-th
pixel belonging to the 𝑗-th class. We observe all pixels in the same
class, i.e., in the same channel of network output.

First, we find the pixel class-wisely that has the largest probabil-
ity in the 𝑗-th class,

𝑦max
𝑗 = max

𝑖
(𝑦𝑖 𝑗 ) ,∀ 𝑗 ∈ C . (20)

Second, we establish a class-wise threshold 𝜏 𝑗 by multiplying the
maximum probability by 𝑟%. Pixels exceeding this class-wise thresh-
old are selected. Additionally, we restrict the maximum probability
by 𝜏low and exclude pixels with a low maximum probability since

they indicate lower prediction confidence. Thus, the class-wise
threshold 𝜏 𝑗 is determined by

𝜏 𝑗 =

{
𝑦max
𝑗

· 𝑟%, if 𝑦max
𝑗

> 𝜏low

𝑦max
𝑗

, otherwise
(21)

where the ratio 𝑟 and the low bound 𝜏low are parameters.
Third, we select pixels in each class by 𝜏 𝑗 , i.e., pixels exceeding

𝜏 𝑗 are selected:

𝑚𝑖 𝑗 =

{
1, if 𝑦𝑖 𝑗 > 𝜏 𝑗

0, otherwise .
(22)

The generation of the pseudo label is straightforward by using
Eqs. (2) and (3). The refined class-aware pseudo labels are attained
by multiplying them, i.e.,𝑚𝑖 𝑗 𝑡𝑖 𝑗 , as used in Eqs. (18) and (19). Our
CPLG strategy considers the learning status and difficulties of dif-
ferent classes by adjusting thresholds for each class. As a result,
we select useful pixels with low thresholds for training, which
enhances the accuracy of challenging classes.

3.5 Overall Algorithm
Fig. 2 illustrates how we combine two distinct learning strategies
for the unlabeled images: contrastive learning and weak-to-strong
pseudo supervision.

In this section, we present the DSSN algorithm, which is illus-
trated in Algorithm 1. It takes a small fraction of labeled data and
a large fraction of unlabeled data as input to train the model. The
supervised loss between the model prediction on labeled data and
the ground truth is computed using Eq. (1). Subsequently, the low-
level and high-level contrastive learning losses are calculated us-
ing Eqs. (10) and (14), respectively. We then compute the weak-to-
strong pseudo-supervision loss using Eqs. (18) and (19). The overall
loss term is formulated as follows:

L = Lsup + 𝛾1
(
L𝑙𝑠
cl + Lℎ𝑠

cl

)
+ 𝛾2

(
L (𝑙 )
w2s + L (ℎ)

w2s

)
, (23)

where 𝛾1 and 𝛾2 are the trade-off weight. Finally, we update the
student model and the teacher model by using the error back-
propagation algorithm and EMA, respectively.
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Algorithm 1 The DSSN algorithm.

1: Input: D = {D𝑢 ,D𝑙 }, and batch size 𝑏.
2: Output: (𝜃 ′, 𝜑′) .
3: Initialization: 𝑒𝑝𝑜𝑐ℎ = 0, 𝑒𝑝𝑜𝑐ℎmax, and (𝜃, 𝜑) .
4: while 𝑒𝑝𝑜𝑐ℎ ≤ 𝑒𝑝𝑜𝑐ℎmax do
5: for mini-batch samples in D do
6: Feed the samples into DSSN for forward propagation ;
7: Update Lsup by Eq. (1) ;
8: Update L𝑙𝑠

cl and Lℎ𝑠
cl by Eqs. (10) and (14) ;

9: Update L (𝑙 )
w2s and L (ℎ)

w2s by Eqs. (18) and (19) ;
10: Update L by Eq. (23) ;
11: Update (𝜃, 𝜑) by back propagation of

∑
𝑏 L ;

12: Update (𝜃 ′, 𝜑′) by Eq. (17) ;
13: 𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1 ;
14: end for
15: end while

4 EXPERIMENTS
In this section, we first present the details of the experiments. Sec-
ond, we compare the proposed DSSN method to the recent state-
of-the-art (SOTA) approaches to the SSS task. Third, we conduct
extensive ablation experiments to demonstrate the effectiveness
and robustness of the proposed method.

4.1 Experimental setup
Datasets. We evaluate the proposed method on two classical se-
mantic segmentation datasets, i.e., PASCAL VOC 2012 [9] and
Cityscapes [5]. In particular, PASCAL VOC 2012 [9] has 20 classes of
objects and 1 class of background. The standard training, validation
and test sets consist of 1,464, 1449 and 1,456 images, respectively.
Following the previous work [3, 19, 34], we also use augmented set
SBD [14] (9,118 images) and original training set (1,464 images) as
our full training set (10,582 images). The labels from the SBD [14]
dataset are noise-prone and of low quality. Cityscapes [5] has 19
semantic classes and is mostly intended for understanding urban
scenes. It consists of 500 validation images, 1,525 test images, and
2,975 training images. All of the images have well-annotated masks.
For a fair comparison with the benchmarks, we follow the partition
procedure of CPS [3]. Specifically, the training set is divided into
two partitions by randomly sampling 1/2, 1/4, 1/8, and 1/16 of the
total set as the labeled samples and the remaining images as the
unlabeled for the blended set.

Implementation details. Following the previous benchmarks
CPS [3], we adopt DeepLab v3+ [2] based on ResNet [15] as the
segmentation network for a fair comparison. The backbone i.e.,
ResNet, is initialized with the weights pre-trained on ImageNet [7].
The segmentation heads are randomly initialized. During training,
each mini-batch contains eight labeled and eight unlabeled images.
The stochastic gradient descent (SGD) optimizer is used, and the
initial learning rates are set to 0.002 and 0.005 for the PASCAL
VOC 2012 and Cityscapes, respectively. In accordance with other
works [3, 26], we employ the following polynomial to decrease the
learning rate while training: (1 − 𝑒𝑝𝑜𝑐ℎ/𝑒𝑝𝑜𝑐ℎmax)0.9. The model
is trained for 100 epochs on PASCAL VOC 2012 and 240 epochs for
Cityscapes. For weak augmentations, we adopt the same operation

as ST++[34], where the training images are random flipping and
resizing (between 0.5 and 2.0 times), followed by a random crop
operation to the resolutions of 513 × 513 and 801 × 801 for the
two datasets, respectively. We employ several strong augmentation,
including random color-jitter, grayscale, Gaussian blur, etc. For
strong feature augmentation, we apply a random dropout of 50% on
features from the encoder. The unsupervised trade-off weights 𝛾1
and 𝛾2 are set as 0.01 and 0.25. In CPLG, 𝑟 is set to 96% and 𝜏low is
0.92, respectively.

Additionally, we also apply CutMix [35] data augmentation to
the student model images. The EMA smoothing factor 𝛼 is set as
0.996. We follow U2PL [30], the supervised loss is cross-entropy on
PASCAL, and for Cityscapes the cross-entropy loss is replaced by
the online hard example mining loss.

Evaluation.We use the mean of Intersection-over-Union(mIoU)
for the validation set to evaluate the segmentation performance
for both datasets. Following the previous works [3, 34], we employ
the sliding evaluation to examine the efficacy of our model on the
validation images from Cityscapes with a resolution of 1024×2048.

Table 1: Comparison with SOTAs with ResNet-101. Labeled
images are from the original high-quality original training
set of PASCAL VOC 2012.

Method 1/16(92) 1/8(183) 1/4(366) 1/2(732) Full(1464)

Baseline 44.10 52.30 61.80 66.70 72.90
CutMix-Seg [11] 52.16 63.47 69.46 73.73 76.54
PseudoSeg [37] 57.60 65.50 69.14 72.41 73.23
PC2Seg [36] 57.00 66.28 69.78 73.05 74.15
CPS [3] 64.07 67.42 71.71 75.88 -
ReCo [21] 64.78 72.02 73.14 74.69 -
PS-MT [22] 65.80 69.58 76.57 78.42 80.01
ST++ [34] 65.20 71.00 74.60 77.30 79.10
U2PL [30] 67.98 69.15 73.66 76.16 79.49
PCR [32] 70.06 74.71 77.16 78.49 80.65
GTA-Seg [18] 70.02 73.16 75.57 78.37 80.47
Unimatch [33] 75.20 77.20 78.80 79.90 81.20
DSSN 75.24 76.75 78.68 80.61 81.18

4.2 Comparison to SOTA Methods
To demonstrate the superiority of our proposed DSSN method, we
conduct a comparison with the current state-of-the-art methods
across various settings. All results are reported on the validation set
for both PASCAL VOC and Cityscapes datasets. Additionally, we
present the corresponding baseline at the top of the table, represent-
ing the results of purely supervised learning trained on the same
labeled data. To ensure a fair comparison, all methods employed
the DeepLab v3+ architecture.

PASCAL VOC 2012.We report results of our experiments on
the PASCAL VOC 2012 validation dataset in Tables 1 and 2, where
we evaluate the mean Intersection over Union (mIoU) for different
proportions of labeled samples. Additionally, we present the corre-
sponding baseline at the top of the table, representing the results
of purely supervised learning trained on the same labeled data.



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Zhibo Tian, Xiaolin Zhang, Peng Zhang, & Kun Zhan

Table 2: Comparison with the state-of-the-art methods on blended PASCAL VOC 2012 under different partition protocols.

Method
ResNet-50 ResNet-101

1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291) 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
Baseline 61.20 67.30 70.80 74.75 65.6 70.40 72.80 76.65
MT [28] 66.77 70.78 73.22 75.41 70.59 73.20 76.62 77.61
CutMix-Seg [11] 68.90 70.70 72.46 74.49 72.56 72.69 74.25 75.89
CCT [26] 65.22 70.87 73.43 74.75 67.94 73.00 76.17 77.56
GCT [19] 64.05 70.47 73.45 75.20 69.77 73.30 75.25 77.14
CPS [3] 71.98 73.67 74.90 76.15 74.48 76.44 77.68 78.64
ST++ [34] 72.60 74.40 75.40 - 74.50 76.30 76.60 -
U2PL [30] 72.00 75.10 76.20 - 74.43 77.60 78.70 -
PS-MT [22] 72.83 75.70 76.43 77.88 75.50 78.20 78.72 79.76
Unimatch [33] 75.80 76.90 76.80 - 78.10 78.40 79.20 -
DSSN 76.74 77.81 78.27 78.32 78.50 79.58 79.45 79.96

Table 3: Comparison with state-of-the-art on Cityscapes, ∗ means the reproduced results in U2PL [30].

Method
ResNet-50 ResNet-101

1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488) 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
Baseline 63.30 70.20 73.10 76.60 66.30 72.80 75.00 78.00
MT [28] 66.14 72.03 74.47 77.43 68.08 73.71 76.53 78.59
CutMix-Seg [11] - - - - 72.13 75.83 77.24 78.95
CCT [26] 66.35 72.46 75.68 76.78 69.64 74.48 76.35 78.29
GCT [19] 65.81 71.33 75.30 77.09 66.90 72.96 76.45 78.58
CPS ∗ [3] - - - - 69.78 74.31 74.58 76.81
ST++ [34] - 72.70 73.8 - - - - -
U2PL [30] 69.03 73.02 76.31 78.64 70.30 74.37 76.47 79.05
PS-MT [22] - 75.76 76.92 77.64 - 76.89 77.60 79.09
Unimatch [33] 75.00 76.80 77.50 78.60 76.60 77.90 79.20 79.50
DSSN 75.41 77.31 78.05 78.73 76.52 78.18 78.62 79.58

Figure 3: The proposed DSSN method effectively utilizes un-
labeled images, as demonstrated by its performance on the
Cityscapes dataset with a 1/30 data split and ResNet-50. Com-
pared to SOTAs, DSSN outperforms them significantly.

Table 1 presents results on the classic PASCAL VOC 2012 dataset.
It shows our method significantly outperforms current state-of-the-
art methods. When employing ResNet-101 as the backbone, DSSN
attains a 5.18% performance gain on the 1/16(92) split which surpass
the performance obtain by the (1/3)183 data split in the prior study.
Even with more labeled data, the performance differences become
less evident; however, the proposed method still demonstrates per-
formance improvements of 2.21% with 1/2 fine annotations over
the previous SOTAs.

Table 2 illustrates the results on blender PASCAL VOC 2012
Dataset. Our method shows significant improvement on the 1/16,
1/8, 1/4, and 1/2 splits with ResNet-50, compared to the baseline,
with improvements of 15.51%, 10.1%, 6.73%, and 3.57%, respectively.
Similarly, with ResNet-101, our method achieves improvements
of 12.9%, 9.18%, 6.65%, and 3.01% under the same partitions. Es-
pecially, our method shows significant improvements when the
ratio of labeled data becomes smaller, such as under 1/8 or 1/16
partition protocols. In particular, when the labeled data is extremely
limited,e.g., on the 1/16 partitions, our method achieves remark-
able increases of 15.51% and 12.9% compared to the baseline with
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Table 4: Ablation of contrastive learning and CPLG.

L𝑙𝑠
cl + Lℎ𝑠

cl CPLG mIoU

% % 76.12
% ! 78.33
! % 78.70
! ! 79.58

Table 5: Ablation of low- and high-level contrastive learning.

L𝑙𝑠
cl Lℎ𝑠

cl mIoU

% % 78.33
% ! 78.90
! % 79.19
! ! 79.58

ResNet-50 and ResNet-101 as the backbone networks, respectively.
Furthermore, our method demonstrates a considerable improve-
ment over the previous state-of-the-art PS-MT [22], achieving a
margin of 3.88% with ResNet-50 as the backbone, and 1.7% under
the 1/8 partition protocol.

Cityscapes. In Table 3, we can see that our method consistently
outperforms the supervised baseline by a significant margin, achiev-
ing improvements of 12.11%, 7.11%, 4.95%, and 2.13%with ResNet-50
under 1/16, 1/8, 1/4, and 1/2 partition protocols, respectively. Simi-
larly, with ResNet-101, our method shows improvements of 10.22%,
5.38%, 3.62%, and 1.58% under 1/16, 1/8, 1/4, and 1/2 partition proto-
cols, respectively. Furthermore, our method outperforms all other
state-of-the-art methods across various settings. Specifically, un-
der 1/8, 1/4, and 1/2 partitions, DSSN achieves a 1.55%, 1.13%, and
1.09% improvement over the previous state-of-the-art PS-MT [22]
using ResNet-50, and a 1.29%, 1.02%, and 0.49% improvement using
ResNet-101, respectively.

We evaluate DSSN using ResNet-50 on a 1/30 data split, which
contained only 100 labeled images. As illustrated in Fig. 3, DSSN
outperforms the current state-of-the-art significantly. This result
indicates that our method effectively utilizes the unlabeled data
through contrastive learning and the class-aware pseudo-label selec-
tion strategy (CPLG). Besides, although ReCo [21] and U2PL[30] try
to construct positive and negative pairs to use contrastive learning,
the result shows our DSSN outperform them significantly.

Upon comparing performance on classic PASCAL VOC 2012 and
blended training set, we observe that the quality of labeled samples
is important. For example, DSSN achieves an exceptional perfor-
mance of 80.61% by utilizing only 732 high-quality labels. However,
even with significantly more labels (5291) from the blended dataset,
a comparable score of 80.61% cannot be achieved.

4.3 Ablation Studies
In this subsection, we discuss the contribution of each component to
our framework using ResNet-101 and a 1/8 labeled ratio on PASCAL
VOC 2012 dataset.

Figure 4: Comparsion CPLG to the fixed threshold.

Figure 5: The mIoU of four long-tailed classes.

Effectiveness of theDSSN components.We conduct a step-by-
step ablation study of each component to comprehensively assess
their effectiveness. Table 4 presents the results of our study.Without
our proposed dual-Level contrastive learning and CPLG, applying
a plain consistency method yields an accuracy of 76.12%. However,
employing dual-level contrastive learning leads to an accuracy of
78.33%, while the proposed CPLG results in 78.70%. Combining
both dual-level contrastive learning and CPLG produces the high-
est accuracy of 79.58%, demonstrating the effectiveness of each
component in the proposed DSSN method.

Effectiveness of contrastive Learning. In our study, we in-
corporate both low-level and high-level contrastive learning in our
dual-level contrastive learning approach. Table 5 presents the re-
sults of our study. Without the use of both low-level contrastive and
high-level contrastive, the accuracy was 78.33%. Using low-level
contrastive alone results in a 0.57% improvement, while using high-
level contrastive alone improves the accuracy by 0.86%. Notably,
using both low-level and high-level contrastive further improves
the accuracy by 1.25%, which shows the efficacy of our method.
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Figure 6: Visualization on PASCAL VOC 2012. Columns from
left to right denote the input images, the ground-truth, DSSN
without/with contrastive learning, respectively.

Effectiveness of CPLG. As discussed in §3.4, the CPLG strat-
egy considers difficulties of different classes and long-tailed classes,
instead of using a fixed threshold during the pseudo-label gener-
ation. To test our method against a fixed threshold, we conduct
experiments using a fixed threshold. Fig. 4 shows that our strategy
outperforms using a fixed threshold of 0.96 and 0.92 since we set 𝑟
to 0.96 and 𝜏low to 0.92 in CPLG. This finding further highlights the
effectiveness of our proposed DSSN method. We chose these spe-
cific thresholds because, following our experiments, we establish
0.92 as the lowest threshold and used 0.96 as the factor for the max-
imum probability value. Additionally, Fig. 5 presents mIoU values
of classes with long tails and those that are hard to learn during
training, which demonstrates the effectiveness of CPLG strategy.

Qualitative Results. In Figs. 6 and 7, we present the qualita-
tive results of our study on the PASCAL VOC 2012 validation set.
DSSN is based on the DeepLab v3+ with ResNet-101 network and a
1/8 ratio. The integration of contrastive learning into our method
improve the performance of our model for contour and ambiguous
regions, while also enhancing the accuracy of some scenarios, as
illustrated in Fig. 6. Furthermore, our proposed CPLG achieved sub-
stantial precision in certain classes that are typically challenging
to learn, as illustrated in Fig. 7.

Figure 7: Visualization on PASCAL VOC 2012, from left to
right, we show the raw images, the ground-truth, DSSN with-
out/with CPLG, respectively.

5 CONCLUSION
In this paper, we introduce DSSN, a novel method that utilizes
pixel-wise contrastive learning to address the SSS problem. DSSN
is equipped with a dual-level structure that can effectively leverage
unlabeled data. In DSSN, both contrastive learning and weak-to-
strong consistency learning are utilized to maximize the utilization
of available unlabeled data. Furthermore, we propose a class-aware
pseudo label selection strategy that generates high-quality pseudo
labels and significantly improves performance on long-tailed classes
without incurring additional computation. DSSN achieves state-of-
the-art performance on two benchmarks, and the effectiveness of
our proposed novelties is confirmed by the ablation study.
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