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We theoretically investigate the influence of the normal state quantum geometry on the super-
conducting phase in (111) oriented oxide interfaces and discuss some of the implications for the
LaAlO3/SrTiO3 (LAO/STO) heterostructure. From a tight-binding modeling of the interface, we
derive a two-band low-energy model, allowing us to analytically compute the quantum geometry
and giving us access to the superfluid weight, as well as to showcase the role of two particular
relevant energy scales. One is given by the trigonal crystal field which stems from the local trig-
onal symmetry at the interface, and the other one is due to orbital mixing at the interface. Our
calculations indicate that the variation of the superfluid weight with the chemical potential µ is
controlled by the quantum geometry in the low-µ limit where it presents a dome. At higher values
of µ the conventional contribution dominates. In order to make quantitative comparisons between
our results and experimental findings, we rely on an experimentally observed global reduction of the
superfluid weight that we apply to both the conventional and geometric contributions. Furthermore,
an experimentally measured non-monotonic variation of µ with the gate voltage Vg is taken into
account and yields a two-dome scenario for the superconducting critical temperature as a function
of Vg. The observed dome in the low-Vg regime is explained by the non-monotonic evolution of
a dominant conventional part of the superfluid density. In contrast, the expected second dome at
larger values of Vg limit would be due to a dominant quantum-geometric contribution.

I. INTRODUCTION

Superconductivity has, since 1911, become a flagship
of condensed-matter physics. The main paradigm is
given by the Bardeen-Cooper-Schrieffer (BCS) theory [1]
which, in its standard form, describes the mechanism
whereby quasiparticles in a single, partially filled band,
pair and condense in a single collective dissipationless
state. This single-band approximation has its limits. In-
deed, since the 1950s [2, 3], it has been realized that
in a multiband situation, even in the adiabatic limit,
each band carries a signature of the other bands in the
form of two geometric contributions, namely in what
has later been identified as the Berry curvature and the
quantum metric [4]. These quantities form what we call
band/quantum geometry. In the context of superconduc-
tivity, this means that even if the Cooper pairing takes
place within a single band, it is a priori affected by the
other electronic bands of the normal state, particularly
through the normal state quantum geometry. While BCS
theory does not take these geometric effects into account,
recent studies have theoretically pointed out the rele-
vance of the quantum metric for the superfluid weight
of flat-band models [5–9], as well as of the Berry cur-
vature of Dirac-like systems [10], such as 2D transition
metal dichalcogenides.

Our study emphasizes the impact of the normal
state quantum geometry on superconductivity for (111)-
oriented oxide interfaces, and more specifically for the
LaAlO3-SrTiO3 (LAO/STO) heterostructure [11]. Let
us point out that the results which we present here may
be relevant for other materials, including other (111) ox-
ide interfaces. The LAO/STO heterostructure hosts an
electron gas (2DEG) on the STO side, confined to a few

layers in the vicinity of the interface [12]. For the (111)
interface, carriers in the 2DEG move on a honeycomb
structure with three orbitals per site and, from that point
of view, this may be seen as a three-orbital version of
graphene [13].

Starting from a tight-binding (TB) modeling of the
interface, we develop a low-energy model around the Γ
point in two steps. First, we consider the spinless case
for which the system has six bands. The dominance
in energy of intra-orbital nearest-neighbor hoppings al-
lows us to decouple the six bands into a bonding triplet
and an anti-bonding triplet of bands. Focusing on the
bonding triplet, we derive a low-energy three band model
to quadratic order in k. The latter presents two upper
bands, degenerate at the Γ point, that represent the |e±g⟩
states. The other band is lower in energy, because of the
trigonal crystal field, and represents the |a1g⟩ state. The
three bands have isotropic and quadratic dispersions but
the lowest band is significantly heavier than the other
two. The latter presents a strong peak of the quantum
metric, driven by inter-orbital nearest neighbor hoppings,
which we refer to as orbital mixing. Second, we consider
the spinful case in which a spin-orbit coupling term is
taken into account. We then have a twelve-band TB
model, from which we also derive a two-band low-energy
model. The latter reveals an isotropic Dirac cone at the
Γ point, which stems from the orbital mixing.

From the low-energy model, we can then draw a quali-
tative scenario for the chemical potential (µ) dependence
of the conventional and geometric contributions to the
superfluid weight [6, 9]. The conventional contribution is
essentially linear in µ, because of the isotropy of the dis-
persion, and the geometric contribution presents a dome
as a function of µ, since the Dirac cone produces a strong
peak in the quantum metric.
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Finally, we compare the results of the qualitative
scenario to the experimental data, in the case of the
LAO/STO interface. Taking into account thermal and
disorder effects, we compute the superfluid weight both
for the low-energy model, and the spinful TB model. In
both cases, we find the correct order of magnitude for the
superfluid weight (and the associated BKT temperature).
The most significant difference between the two models
is the value of µ below which the geometric contribution
becomes dominant. In the low-energy model, the µ func-
tional form of this quantity displays such a steep variation
that it seems hardly possible to experimentally observe
the regime when it dominates. In the spinful TB model,
bands from the anti-bonding group, though 6−7eVs away,
contribute significantly to the quantum metric of the low-
est Kramers’ partners, producing a smoother variation of
the geometric term and increasing the value of chemical
potential below which the geometrical contribution dom-
inates.

While the evolution of the superfluid weight is natu-
rally discussed in terms of the chemical potential within
a theoretical approach, experiments use the gate voltage
Vg as a tuning parameter rather than µ. Oftentimes the
variation of µ with Vg is monotonic both quantities are
related by a monotonic function but Hall transport exper-
iments [14, 15] have indicated that this is not the case for
the LAO/STO (111) interfaces, where a non-monotonic
dependence of the Hall carrier density on Vg has been
observed. Assuming that the Hall carrier density is a
monotonic function of the chemical potential, this sug-
gests that the chemical potential is non monotonic in
Vg. Taking this as an experimental fact, we then infer
a qualitative dependence of the superfluid weight (and
thus BKT temperature) on the gate voltage. The experi-
mentally observed dome is explained by the conventional
contribution and the non monotonic dependence of µ on
Vg. As Vg is further increased, we expect a saturation
effect followed by the appearance of a second supercon-
ducting dome, due purely to the geometric contribution
to the superfluid weight.

The paper is organized as follows. In section II, we
present the tight-binding model, both in the spinless and
spinful cases. In section III, we derive low-energy models
and discuss their structure, both in the spinless and the
spinful cases. We then build on the spinful low-energy
model to discuss the dependence of the superfluid weight
on the chemical potential. Finally, in section IV we make
contact with experiments for the spinful case. We numer-
ically compute the superfluid weight versus the chemical
potential, for the low-energy model and then for the full
TB model, and we discuss the extent to which the re-
sults that are obtained are consistent with the scenario
presented in section III C.

II. TIGHT-BINDING MODEL

We first introduce the relevant TB modeling of the
(111) interface and discuss its various terms. The val-
ues of the relevant energy scales, presented in detail in
Sec. III, are mainly taken from Refs. [12, 15–18]. The
structure of the (111) oriented STO substrate is shown
in Fig. 1. The two-dimensional electron gas (2DEG) is

FIG. 1. STO side, just below the (111) LAO/STO inter-
face, adapted from [16]. Left: cubic lattice cell the corners
of which are occupied by Ti4+ ions. The gray areas indi-
cate planes normal to the (111) direction. Right: projection
onto (111) planes. Two layers of Ti4+ ions (blue and red)
form a honeycomb lattice, where the two triangular sublat-
tices are displaced by the vector a0. Lastly, aSTO = 3.905Å
and a0 =

√
2/3aSTO.

located on the STO side of the LAO/STO interface [12].
From a structural point of view, the three-dimensional
(3D) SrTiO3 crystal has a ABO3 cubic perovskite struc-
ture (left panel, Fig. 1). In the (111) orientation, see
Fig. 1, two consecutive (111) planes contain Ti ions
for one and SrO3 ionic groups for the other. Focusing
on the Ti (111) planes, the atomic arrangement consists
of layers of two-dimensional (2D) triangular lattices dis-
placed by the vector a0 (see Fig. 1). Consequently, the
Ti atoms form ABC-stacked two-dimensional 2D trian-
gular lattices in the (111) planes (see Fig. 1, left panel).
From an electronic point of view, the charge carriers hop
precisely between neighboring Ti atoms through direct
orbital overlap or via the O sites.

While the basic building block for the description of
the 2DEG would in principle contain three (ABC) layers
of Ti atoms (red, blue and green in Fig. 1), the location of
the Fermi energy for the (111) direction, as seen in Ref.
[12], allows us to reduce the model to only two layers
shown in Fig. 1 (right panel), as we have checked explic-
itly numerically in Appendix A. Indeed, for a unit trilayer
stack, the TB Hamiltonian describing the kinetics of the
2DEG parallel to the (111) interface produces nine bands
(not counting spin) organized in three groups (bonding,
non-bonding, anti-bonding). Numerical inspection, us-
ing representative values of hopping amplitudes, shows
that the energy difference between consecutive groups
is on the order of several eV such that the three non-
bonding bands which come from the third (green) layer
are several eVs away from the Fermi energy, as discussed
in Appendix A. Additionally, the dispersions of the oc-



3

cupied bonding triplet bands show very little difference
with those of a bilayer model, where only the first (blue)
and second (red) layers are considered (see Fig. 10 of
Appendix A).

We can therefore leave out the third layer and con-
sider the system shown on the right in Fig. 1, i.e. two
triangular layers (red and blue) displaced by the vector
a0 that form a honeycomb lattice characterized by the
layer/sublattice index

{
1, 2

}
. On each site, we have the

three conducting t2g Ti orbitals,
{
dyz, dxz, dxy

}
, which,

in the following, we denote
{
X,Y,Z

}
, respectively.

Accounting for spin, we then have a honeycomb lat-
tice with two spins and three orbitals per site, yielding a
twelve-band system. Next, we discuss each type of hop-
ping entering our TB model.

A. Kinetic term

The kinetic part of the model takes into account hop-
pings between the different lattice sites and orbitals.
This term describes carrier motions conserving the or-
bital character, with amplitudes t and td for nearest and
third nearest neighbors belonging to two different layers,
respectively. The general form of the kinetic term is thus
diagonal in terms of the orbitals but off-diagonal in terms
of the layers. Therefore, in the {1, 2} ⊗

{
X,Y,Z

}
basis

the kinetic term reads(
0 Hcin

H∗
cin 0

)
= τx ⊗ Re(Hcin)− τy ⊗ Im(Hcin), (1)

with Hcin = tdiag(e, f, g) in the orbital subspace. The
Pauli matrices τx and τy in Eq. (1) act on the layer
subspace. Explicit expressions for the functions e, f and
g may be found in appendix B.

B. Orbital mixing terms

While the kinetic term does not couple different or-
bitals, such couplings are generated at the interface by
orbital mixing. In appendix C, we show by symmetry
considerations that a natural choice is

τx ⊗Hom = τx ⊗ c0

 0 iδ −iα
−iδ 0 iβ
iα −iβ 0

 , (2)

where α = sin
(√

3/2kx + 3/2ky
)
, β =

sin
(√

3/2kx − 3/2ky
)
, δ = − sin

(√
3kx

)
and c0 the

strength of the orbital mixing. Here, we measure the
wave vectors in units of the inverse a−1

0 of the distance
between nearest-neighbor sites in the (111) plane (see
Fig. 1), and τx is again a Pauli matrix acting on the layer
degree of freedom. Note that with inversion symmetry,
these terms are prohibited. But in reality, interfaces
between LaAlO3 and SrTiO3 always have corrugation

[19, 20], such that inversion symmetry is broken and
orbitals that would have been orthogonal are not,
resulting in non-zero overlap and allowed interorbital
hoppings. It will give rise to an orbital Rashba effect.

C. Trigonal crystal field

Note that the (111) interface has a different point sym-
metry than the orbitals whose symmetry is governed by
the (cubic) bulk symmetry of LAO and STO. There-
fore the t2g orbitals are not orthogonal to each other in
the hexagonal lattice, resulting in a trigonal crystal field,
where the couplings have the same value because of the
hexagonal symmetry. It lifts the degeneracy between the
e±g orbitals and the a1g orbital within the conducting
t2g orbitals of Ti. This trigonal crystal field, of strength
d, thus couples the different orbitals in the same layers
so that it may be written as

Hd = −dτ0 ⊗

0 1 1
1 0 1
1 1 0

 , (3)

where τ0 is the identity matrix indicating that the trigo-
nal crystal field is diagonal in the layer index.

D. Confinement energy

Finally, we need to take into account a confinement
term that reflects the different onsite potentials for the
two sublattices, which reside in different layers. It is
equivalent to the Semenoff mass in graphene, breaking
the C6 symmetry down to C3. We have −V Λ0 for layer
1 and V Λ0 for layer 2, so that this term may be written
as τz ⊗ (−V Λ0), in terms of the 3 × 3 identity matrix
noted Λ0. While this term may be important for other
properties of the LAO/STO interface, we will see that it
does not affect those studied in this paper, and we will
later omit it when reducing the TB model to a low-energy
model.

E. Spinless six-band model

With these four terms, the six-band TB model is writ-
ten, in {1, 2} ⊗

{
X,Y,Z

}
, as

H6 =

(
−V I3 +Hd Hcin +Hom
H∗

cin +Hom V I3 +Hd

)
. (4)

A more convenient basis is the trigonal basis in which
the trigonal crystal field term is diagonal. The latter is
detailed in appendix E. Hereafter, we discuss the band
structure described by H6 in the trigonal basis. We now
add spin to our problem.
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F. Spin-orbit coupling

The spin-orbit coupling (SOC) term is identical for the
two layers, and thus naturally diagonal in the layer sub-
space. In the {↑, ↓} ⊗ {X,Y,Z} basis, it reads [21]

HSOC = −λσx ⊗ Λ7 + λσy ⊗ Λ5 − λσz ⊗ Λ2, (5)

where the Λ-matrices denote the Gell-Mann matrices, ex-
plicited in appendix D. The energy scale λ is given by
λ ≃ 8meV [15].

G. Spinful twelve-band model

The spinless Hamiltonian H6 is identical for each spin,
the corresponding term in the {↑, ↓}⊗ {1, 2}⊗

{
X,Y,Z

}
basis, will be σ0⊗H6. We thus finally obtain our twelve-
band TB model, as

H12 = σ0 ⊗H6 − λσx ⊗ τ0 ⊗ Λ7 + λσy ⊗ τ0 ⊗ Λ5

− λσz ⊗ τ0 ⊗ Λ2, (6)

where the last three terms correspond to τ0 ⊗HSOC.

III. LOW-ENERGY MODEL

We now aim to derive a low-energy expression from the
TB model. We first discuss the problem without spin,

and derive a low-energy three-band model, valid for each
spin orientation. We then add the and find that the low-
energy limit leads to a two-band model. To do so, we only
apply momentum independent unitary transformations,
that leave the quantum geometry invariant.

A. Spinless problem

Numerical diagonalization shows that the low-filling
regime occurs near the Γ point. Moreover, in the vicinity
of the latter, there are two groups of three bands sep-
arated by several eV. This is because the gap between
the two groups at the Γ point is 2(2t + td) ∼ 6.5eV,
and the kinetic energy is clearly the largest energy scale.
Therefore, for low fillings, it appears possible to reduce
the above six-band expression to two effective three-band
models, one for each group. To make a similar structure
appear explicitly in H6, we apply the following unitary
transformation

U = Ul ⊗ Λ0 =
1√
2

(
−1 1
1 1

)
⊗ Λ0, (7)

which maximally entangles the two layers, in a symmetric
|sl⟩ and an anti-symmetric combination |al⟩. The six-
band Hamiltonian is then transformed to

U†H6U =

(
Hd −Hom − Re(Hcin) −V I3 + iIm(Hcin)
−V I3 − iIm(Hcin) Hd +Hom + Re(Hcin)

)
. (8)

Numerical inspection confirms that the diagonal blocks
pertain to the two groups. Thus, we may focus on the
lower diagonal block, which corresponds to the symmetric
entanglement of the two layers, and take it as a low-
energy three-band model that reads

H3 = Hd +Hom + Re(Hcin). (9)

A discussion of the validity of this approximation, done
in appendix F, shows that with a precision of a few meV,

this three-band approximation is valid over an area cen-
tered at Γ and covering approximately ten percent of the
Brillouin zone (BZ). To be consistent with this approxi-
mation, we need to expand H3 to quadratic order in k.

1. Quadratic three-band model

In appendix G, we show that to quadratic order, we
have

H3 = −(2t+ td)
(
1− 1

4
k2

)
Λ0 +

d− teff(k
2
x − k2y) −2teffkxky ickx

−2teffkxky d+ teff(k
2
x − k2y) icky

−ickx −icky −2d

 , (10)

with teff = (t − td)/8 and c = 3c0/
√
2. Note that H3

is expressed in the trigonal basis (see appendix E). The
trigonal crystal field lifts the threefold degeneracy at the
Γ point (between a1g and e±g states). The linear and
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quadratic terms arise from the orbital mixing and kinetic
terms, respectively. Inspection of Eq. (10), reveals that
the a1g state is only coupled to the e±g states through the
orbital mixing contribution, which generates its quantum
geometry.
H3 can then be exactly diagonalized, and we find the

following eigenvalues for the last term:

ϵ1 = d+ teffk
2, ϵ2 = d+

(
c2

3d
− teff

)
k2, (11)

and

ϵ3 = −2d− c2

3d
k2, (12)

to quadratic order in the wave-vector components. The
values taken hereafter are those corresponding to Refs.
[12, 15–18], i.e. t = 1.6 eV, td = 70 meV, V = 100 meV,
d = 3 meV. Additionally, we estimate c0 = 40 meV. We
thus find an isotropic electron-like band structure.

We point out that these results may apply to other
(111) oxide interfaces. In Section IV, we discuss the rel-
evance of our results to the experimental context, illus-
trated with the case of the LAO/STO (111) interface.
The lowest energy band (ϵ3) is substantially flatter than
the other two. Indeed, its band mass can be computed
to be

mB =
ℏ2

2a20

(
2t+ td

4
− c2

3d

)−1

≃ 21m0, (13)

with m0 ≃ 9.1 × 10−31 kg the rest mass of an electron.
This band presents a peak in its quantum metric at the
value given by g3,µµ(Γ) = c20/9d ≃ 90a20.

Note that going beyond the low-energy model, which is
obtained using a quadratic order expansion in k, we find
that the interorbital contributions to cubic order, give
rise to an orbital Rashba effect which moves the minimum
away from the Γ point and therefore the actual band mass
differs from Eq. (13). We then plot this band structure
and contrast it with the one we get from the TB form
of the kinetic and orbital mixing terms in Fig. 2. The
band structure of the full TB model in the full Brillouin
Zone (BZ) is shown in Appendix H. We indeed get the
aforementioned precision of a few meVs. Note that the
offset of 2 meV between the TB and low-energy bands as
seen in Fig. 2, is due to the fact that V does not enter the
low-energy expression of the Hamiltonian. Such a global
shift does not have a physical relevance on the quantum
geometry and superfluid weight as it can be compensated
by a redefinition of the chemical potential with respect
to the Γ point value of the lowest band. We then get
a lower band that is substantially flatter than the other
ones and that is close in energy to a level crossing at the
Γ point.

B. Spinful problem

We now derive a low-energy model starting from the
spinful Hamiltonian H12.

FIG. 2. Energy dispersions near Γ, in the kx = ky direction.
Each color corresponds to one of the three bands, blue is the
lowest band, red is the second lowest and green the third low-
est band. Dashed lines correspond to the dispersions coming
from the low-energy model, Eq. (10). Solid lines come from
the full Tight-binding Hamiltonian, Eq. (4).

1. Derivation of the low-energy model

We start by applying, once again, the unitary matrix
U given in Eq. (7) , and we use the matrix P to express
the orbital part in the trigonal basis. The SOC term
is left unchanged by U , while the σ0 ⊗ H6 term gets us
two copies of Eq. (8). We then make the same approx-
imation, and by switching the layer and spin degrees of
freedom, we get a Hamiltonian which is the counterpart
of the bonding and anti-bonding groups of the spinless
case, only now with one copy for each spin as well as the
accompanying SOC. We then restrict H12 to the bonding
subspace, i.e. the symmetric combination of the two lay-
ers |sl⟩, and then get a six-band Hamiltonian H̃6, written
as

H̃6 = σ0 ⊗H3 +HSOC, (14)

where HSOC is expressed in the trigonal basis, and H3

is given by Eq.(10). Further manipulation detailed in
appendix I, using the experimentally relevant simplifying
approximation λ = 3d, yields the two-band Hamiltonian
H2 = h0(k)σ0 + h(k) · σ, with

h0(k) = −2t− td +
(
1− 3

√
3
)
d+

2t+ td
4

k2, (15)

and

h(k) =
c0
2

(
− 2kx, kx +

√
3ky, kx −

√
3ky

)
. (16)

Note that the spin-orbit coupling mixes all three bonding
spinless bands, producing three Kramers pairs of energy
branches separated by an energy gap at the Γ point. The
low-energy model focuses on the lowest Kramers pairs.
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2. Dispersions

The dispersions are given by

ϵ± = −2t− td +
(
1− 3

√
3
)
d±

√
3

2
c0k+

2t+ td
4

k2. (17)

As in the spinless case, we compare the dispersions of the
latter with those of the full TB model H12 in Fig. 3.

FIG. 3. Energy dispersions of the low-energy two-band model
H2 overlaid with the two lowest band of the full TB model
H12, near Γ and in the kx = ky direction. The energy is
defined with respect to the crossing point of the solid lines.

3. Quantum/band geometry

a. Quantum metric The quantum metric is the
same for the two bands, being equal to [6]

gµν =
k2δµν − kµkν

4k4
. (18)

b. Berry curvature As for the Berry curvature, the
upper and lower parts of the Dirac cone yield opposite
δ(k) contributions at the contact point. Note that in the
full model, there are two sources of Berry curvature. One
is, as we just mentioned, the spin-orbit coupling, which
results in the mentioned Dirac cone. The other is the
mixing of the lowest band with the others which drives
a Berry curvature the order of unity in a20, as mentioned
in Sec. IVC.

C. Superfluid weight in the low-energy model

During the past decade, a significant number of papers
have discussed the role of the normal-state quantum met-
ric on the superconducting state [6, 8, 9]. It was found
that the tensor relating the supercurrent to the electro-
dynamic perturbation of a superconductor produces two
types of terms. One type is the well-known BCS con-
tribution (see Ref. [22], for example), and the other
is a geometric contribution which stems from interband

couplings when the normal-state electronic structure in-
volves several bands. In the isolated band limit, and in
two-band models, this geometric contribution directly in-
volves the normal-state quantum metric [6].

Initially, the theory was developed for flat bands where
the conventional contribution vanishes and the geomet-
ric contribution then dominates. While we do not have
flat bands, the Dirac cone structure of our low-energy
model gives a strong quantum metric near the Γ point.
It thus seems relevant to investigate whether the normal-
state quantum metric produces a sizeable effect on the
superconducting state through this geometric superfluid
weight. In the following two sections, we discuss the two
contributions in the context of our low-energy model. We
begin with a qualitative discussion aimed at explaining
generic scenarios for the Berezinskii-Kosterlitz-Thouless
(BKT) temperature versus the gate voltage Vg. For the
superconducting state, we assume a conventional s-wave
pairing, which can accommodate the disordered nature
of oxide interfaces. As for the value of the s-wave gap,
it has been measured to be ∆ = 40µeV at optimal dop-
ing for the (001) LAO/STO interface [23], and a similar
value for the (111) interface was reported in Ref. [24].

1. BKT Temperature

In addition to the superfluid weight (which has the di-
mension of an energy in 2D), we consider the associated
Berezinskii-Kosterlitz-Thouless (BKT) temperature, us-
ing the (isotropic) Nelson-Kosterlitz criterion [6],

TBKT =
π

8kB
D(TBKT), (19)

where D(T ) is the superfluid weight at temperature T .
The BKT temperature TBKT is the temperature above
which vortex-antivortex pairs start to unbind and thus
destroy superconductivity. It is smaller than the critical
temperature calculated in the framework of a mean-field
approach. For TBKT not too close to Tc, we may approxi-
mate D(TBKT) by D(T = 0). This defines a “mean-field”
BKT temperature which is larger than the actual one
and may thus give an upper bound estimate,

TBKT =
π

8kB
D(T = 0). (20)

2. Conventional contribution

The conventional contribution to the superfluid weight,
at T = 0, is given by [6, 22]

Dµν,conv =

∫
Socc(µ)

D2k
∆2

E3
(∂µϵ)(∂νϵ), (21)

where Socc(µ) denotes the set of occupied states in the
BZ at the chemical potential µ. D2k is the integration
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measure for the hexagonal BZ. For isotropic linearly dis-
persing bands, Eq. (21) gives Dµν,conv = δµνDconv with
Dconv ∝

√
∆2 + µ2 [6], where ∆ is the s-wave supercon-

ducting gap. In appendix J, we show that a similar re-
sult holds for a general isotropic quadratic band. Conse-
quently, the conventional superfluid weight is essentially
proportional to the chemical potential µ for µ ≳ ∆.

3. Geometric contribution

a. General expression The geometric contribution
at T = 0 for a two-band Hamiltonian of the form
h0σ0 + h · σ, is given by [6]

D±
geom,µν = ±

∫
Socc(µ)

D2k
4∆2

E±

h

µ− h0
gµν , (22)

and more generally the geometric contribution is linked
to the quantum metric in the so-called isolated limit [6],
noting that Eq. (22) does not rely on it. Furthermore,
note the additional factor of two with respect to the ex-
pression given in Ref. [6]. This is because the definition
of the metric in Ref. [6] is twice the usual one [4, 25].

b. Qualitative µ dependence Because of the Dirac
cone at the Γ point, the quantum metric of the two low-
est bands in our model will exhibit a strong peak. Even
in the spinless case, the lowest band is accompanied by
a strong peak at the Γ point. We therefore consider the
case where the bands exhibit a peaked quantum metric
around where the zero of the chemical potential is de-
fined, hereafter called the zero-filling point.

The 1/E(k) factor in Eq. (22) enhances the contribu-
tion at the Fermi contour, making it dominant. Focusing
on this contribution, we can propose a scenario explain-
ing the emergence of a dome in the geometric superfluid
weight when the metric has a peak at the zero-filling
point. We sketch this scenario in Fig. 4.

At low µ, the band starts to be filled around Γ. The
Fermi contour is thus at the top of the peak, but it is also
narrow, such that Dgeom is low. However, as the filling
increases, the Fermi contour gets wider while still being
high and thus Dgeom becomes larger. This is the low-µ
regime, shown in Fig. 4a.

The chemical potential µ then reaches a value where
the trade-off between the height and the extent of the
Fermi contour is optimal, and Dgeom reaches its maximal
value. This is the intermediate-µ regime in Fig. 4b.

Beyond the latter, the Fermi contour still gets wider
but not enough to compensate the smaller values of gµν ,
resulting in a decrease of Dgeom. This is the high-µ
regime in Fig. 4c.

4. Qualitative µ-dependence of the BKT temperature

Following the above discussion, we sketch the qualita-
tive evolution of the BKT temperature given by Eq. (20)
as shown in Fig. 5.

FIG. 4. Emergence of a dome in the geometric superfluid
weight from the Fermi contour contribution (in red) in Eq.(22)
and its corresponding location in the dome (red dot). (a) Low-
µ regim. (b) Intermediate-µ regime. (c) High-µ regime

.

FIG. 5. Qualitative dependence of the geometric contribution,
with a dome behavior, and the conventional contribution,
with a linear behavior, to the BKT temperature of Eq.(20).

In order to showcase the role of the geometric part,
Fig. 5 is a plot of the conventional and geometric con-
tributions in a situation when both quantities are of the
same order. We show below that this is the case for the
low-energy and full TB model.
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IV. RELATING THE SUPERFLUID WEIGHT
TO THE EXPERIMENTAL DATA

A. Thermal and disorder effects

Experimental studies of the superconducting transition
in (001) and (111) oriented LAO/STO interfaces indicate
that the BKT scenario is indeed relevant [24, 26–28]. The
superfluid weight is proportional to the superfluid car-
rier density ns. Temperature effects could be included
through the temperature dependence of the SC gap and
the Fermi factor [29], however disorder effects would also
need to be properly included, a task beyond the scope of
the present work. Microwave measurements of the Lon-
don penetration depth by Lesne et al. [28] show that the
value of ns at TBKT is one order of magnitude smaller
than it is at "zero temperature". These experiments con-
tain both disorder and thermal effects. Therefore, one
way to take these factors into account would be apply-
ing such a renormalisation to the superfluid density and
thus to the superfluid weight. While we do not provide
a full-fledged theory of the origin of this reduction of the
superfluid density, we take it as an experimental fact,
and hereafter we qualitatively renormalize both the con-
ventional and geometric contributions to the superfluid
weight by a factor 1/10.

B. Superfluid weight from the low-energy model

We now numerically compute both contributions of the
superfluid weight for the low-energy model, using Eq.
(22). The result is plotted in Fig. 6, and is indeed con-
sistent with the analysis made in Sec.III C. Note that the
chemical potential is defined with respect to the Dirac
point of the low-energy model.

FIG. 6. Conventional (orange) and geometric (blue) contri-
butions to the superfluid weight from the low-energy model
of Eqs.(15,16) using Eq.(22). The chemical potential µ is de-
fined with respect to the Dirac point of the low-energy model.
TBKT is defined in Eq.(20).

The conventional contribution is essentially linear in
the chemical potential µ. Note that it is non-zero below
the Dirac point because the minimum of the lower band
is located away from the Γ point, as seen in Fig. 3. Notice
the small dip seen near µ = 0 in Fig. 6, which might be
due to a reduction of the density of states, because of the
Dirac point.

The evolution of the geometric contribution is consis-
tent with the scenario depicted in Sec.III C and Fig. 4.
Because of the Dirac point, the quantum metric exhibits
a strong (in fact divergent) peak at Γ, ie µ = 0 in Fig.
6. For µ < 0, the Fermi contour is at the bottom of the
metric’s peak, so the geometric contribution is low. But
then as µ gets closer to zero, the Fermi contour moves
to a higher position on the metric’s peak. The metric
diverges at the degeneracy point so that the geometric
contribution diverges at µ = 0. For µ > 0, the Fermi
contour gradually moves to the bottom of the peak, and
the geometric contribution goes back to zero. All this
happens on a scale of 1meV around the Dirac point, as
seen in Fig. 6. We note that the variation of the geomet-
ric contribution is so steep around µ = 0 that one would
need to get to very low values of µ in order to reach the
regime where the geometric contribution dominates.

C. Superfluid weight from the tight-binding model

FIG. 7. Conventional (orange) and geometric (blue) contri-
butions to the superfluid weight from the spinful TB model.
The chemical potential µ is defined with respect to the Dirac
point of the spinful TB model.

As a test of the accuracy of the low-energy model, we
can also compute the superfluid weight from the spinful
TB model, as shown in Fig. 7. The chemical potential µ
is defined with respect to the Dirac point of the spinful
TB model. We see that our qualitative arguments of sec-
tion III C hold here as well. The geometric contribution
shows a divergent behaviour in the µ ≪ 1meV regime,
and precipitously drops to zero when we increase µ. The
conventional contribution is linear in the chemical po-
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tential. One difference between Fig. 7 and the superfluid
weight of the low-energy model is that the two contri-
butions become equal for a larger value of µ. This may
be due to the fact that bands in both the anti-bonding
group, despite being 7eV higher in energy, and the other
bonding bands have a non-negligible overlap with the two
bands of interest. Note that this is also the case for the
Berry curvature, where this overlap between the lowest
and the highest bands generates a Berry curvature of or-
der a20.

D. Gate voltage dependence: Two-dome scenario

We have discussed the qualitative dependence of the
BKT temperature [Eq.(20)] on the chemical potential.
However, the experimentally observed superconducting
dome [11, 14, 30–32] is measured when one tunes the gate
voltage Vg or the conductivity of the interface. There
are strong indications [14, 15] suggesting that the (Hall)
carrier density (or the chemical potential) has a non-
monotonic dependence on Vg or on the conductivity.
Therefore, there is no simple correspondence between the
superconducting domes that result from changing µ and
the phase diagram that one obtains upon changing Vg.
Based on the dependence of the Hall number on Vg, and
that of µ on the carrier density, we propose that the vari-
ation of µ with Vg is as depicted in Fig. 8a.

FIG. 8. (a) Proposed dependance of the chemical potential on the gate voltage. (b) Correspondence between the qualitative µ
and Vg dependencies of the geometric and conventional contributions.

The scenario depicted in Fig. 8 may be understood as
follows. The initial value of the chemical potential (at
Vg = 0) is at a point where the conventional contribution
dominates, indicated by (1). At first, increasing the gate
voltage also increases the chemical potential so that the
BKT temperature also increases. This is the underdoped
regime from (1) to (2). It is followed by the optimal dop-
ing region near (2), starting around the top of the dome.
Further increase of the gate voltage leads to a decrease
of the chemical potential, due to the non-monotonic re-
lation between Vg and µ, and therefore to lower values of
the BKT temperature, in the overdoped regime, from (2)
to (3).

The resulting qualitative gate-voltage dependence of
the BKT temperature (Eq.(20)) is then sketched in Fig.
9.

We can draw further conclusions from this scenario.
The experimentally observed dome happens in a regime
when the conventional contribution dominates. But if we
follow the experimental evidence indicating that µ de-

FIG. 9. Schematic view of the proposed qualitative evolution
of the BKT temperature as a function of the gate voltage.

creases as Vg increases, we could reach the low-µ regime
at higher Vg and reveal the dome due to the geometric
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contribution. In other words, the measured domes would
be caused by the non-monotonic variation of the chemi-
cal potential with respect to the gate voltage such that
there should be a secondary superconducting dome, com-
ing from the geometric contribution, for higher values of
the gate voltage. The evolution of the critical tempera-
ture (or superfluid density, BKT temperature) would be
similar to that sketched in Fig. 9, as long as only the
lowest energy band contributes to the superfluid conden-
sate.

According to our picture, the two superconducting
domes that one expects upon increasing the gate volt-
age have thus different origins. The first one corresponds
to the regime when the conventional superfluid weight
dominates and the second one to the regime when the
geometric weight dominates.

V. CONCLUSION

Our study underscores the impact of the normal state
quantum geometry on the superconducting state of the
(111) LaAlO3/SrTiO3 interface. Building upon a tight-
binding modeling of the interface, we developed a two-
band low-energy model around the Γ point. This low-
energy model reveals an isotropic Dirac cone at the Γ
point, driven by the orbital mixing. From the low-energy
model, we then drew a qualitative scenario for the chem-
ical potential (µ) dependence of the conventional and
geometric contributions to the superfluid weight. The
conventional contribution is suggested to be linear in µ,
because of the dispersion’s isotropy. We also argued that
the strong peak in the quantum metric coming from the
Dirac cone results in a dome-shaped behavior of the ge-
ometric contribution as a function of µ.

Finally, we probed the relevance of our scenario to ex-
periments in the case of the LAO/STO interface. We first
effectively took into account thermal and disorder effects
by renormalizing the superfluid weight. Then, we numer-
ically computed the superfluid weight from the two-band
low-energy model and the spinful TB model. In both
cases, we find the right order of magnitude for the su-
perfluid weight (and the associated BKT temperature).
The most significant difference between the two models is
the value of µ below which the geometric contribution be-
comes dominant. In the low-energy model, the geometric

contribution exhibits a very narrow peak around µ = 0
and therefore the regime where it dominates would seem
hard to observe, in practice. In the spinful TB model,
bands from the anti-bonding group, despite being 6 − 7
eVs higher up, and other bonding bands, contribute sig-
nificantly to the quantum metric of the lowest Kramers’
partners, thereby making the geometric contribution less
steep and increasing the value of chemical potential below
which the geometric contribution dominates. We then
argue that, despite its simplicity, our low-energy model
captures the evolution of the superfluid weight reason-
ably well.

Experiments tune the 2DEG with a gate voltage Vg,
so that we aimed to qualitatively describe the behaviour
of the superfluid weight as a function of said Vg. Hall
transport experiments [14, 15] find a non-monotonic de-
pendence of the Hall carrier density on Vg. Assuming
that the Hall carrier density is monotonic in the chem-
ical potential, this means that the chemical potential is
non-monotonic in Vg. Taking this as an experimental
fact, we then inferred a qualitative dependence of the su-
perfluid weight (and thus BKT temperature) on the gate
voltage. The experimentally observed dome is suggested
to come from the conventional contribution and the non-
monotonic dependence of µ on Vg. Extrapolating further,
we also suggest the saturation of the dome mentioned
earlier and the appearance of a second superconducting
dome, due purely to the geometric contribution to the
superfluid weight.

Given the ubiquituousness of quantum geometry, this
hidden influence on the superconducting state might be
apparent in other classes of materials. Finally, this pos-
itive effect of the normal-state quantum metric on su-
perconductivity needs to be contrasted with a previous
theoretical discussion [10] suggesting a negative impact
of the normal-state Berry curvature on superconductiv-
ity. This could suggest a normal state curvature-metric
competition towards superconductivity.
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Appendix A: Bilayer model

Here, we explain in more detail the choice shown in Fig.
1 to only include two layers of Ti atoms in the TB model.
As said in the main text, one should a priori consider
three layers, so a nine band TB model (without spin). In
Fig. 10 we show a comparison of the band dispersions
obtained from the bilayer TB model (on the left) and a
similarly obtained nine band trilayer TB model.

First, we see that the bonding and anti-bonding triplets
are not visibly modified by the addition of the third layer.
Furthermore, the three additional bands are approxi-
mately at zero energy, and therefore several eVs away
from the band we are concerned about, in the bonding
triplet. Second, also the eigenstates of the bonding triplet
should not be modified by the additional bands because,
again, of their energy difference. Finally, from Eq.(A1),
we also see that following the same argument, the quan-
tum geometric tensor [4] should not be modified by the

additional bands.

Qn
µν =

∑
m̸=n

⟨un| ∂µH |um⟩ ⟨um| ∂νH |un⟩
(En − Em)2

. (A1)

In conclusion, we can reasonably discard the third layer
and consider a bilayer model of Ti atoms, as shown in
Fig. 1.

Appendix B: Expression of the kinetic terms

Hoppings are between two neighboring layers, with am-
plitude t for π-hoppings and td for δ-hoppings between
blue and red sites (Fig. 1). The origin of the basis lattice
vectors is chosen at the center of an hexagon. e, f and g
have the following expressions [16, 33],
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FIG. 10. Comparison between the bilayer (left) and trilayer (right) TB models.
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with r =
td
t
. (B1)

As example, we schematize the case of the dxy orbitals
corresponding to the hopping term g in Fig. 11, and
we derive g. First, consider the hopping pictured on the

FIG. 11. Diagram of the inter-layer and intra-orbital hop-
pings for the dxy orbitals. On the left, the 3D cubic lattice
and the dxy orbitals of the Ti atoms. Hopping paths and cor-
responding amplitudes are shown as green color lines. On the
right, the associated projection in the (111) orientation.

right of Fig. 11, going from the top red atom to the
neighbouring left blue atom, with an amplitude of t. As
seen in Fig. 11, the associated overlap in the cubic lat-
tice is a π-overlap through the intermediate O site. The
amplitude of this hopping is t = 1.6eV. The associated
phase is exp(−ik ·a2) with a1 = (−

√
3/2, 3/2), by equiv-

alence with the red atom in the same motif. The similar

hopping to the right also has amplitude t and is associ-
ated to the phase exp(−ik · a1) with a1 = (

√
3/2, 3/2).

The other hopping from the top red atom to the lower
blue atom is, as seen on the left of Fig. 11, the result of
the direct overlap of the d orbitals of the two atoms. It
is therefore a δ-hopping, associated with an energy am-
plitude td = 70meV. As for its phase, it does not come
with a phase shift, as the two atoms are part of the same
motif. This way, and shifting every term by exp(iky) so
that the origin is at the central green atom, the interlayer
dxy − dxy hopping term is given by

g = −te−i/2(−
√
3kx+ky) − te−i/2(

√
3kx+ky) − tde

iky

= −2te−iky/2 cos

(√
3

2
kx

)
− tde

iky . (B2)

Appendix C: Derivation of the orbital mixing term

In the orbital basis, Hom can be written as A⊗B with
A and B acting in the layer and orbital subspaces respec-
tively. The orbital mixing term consists of the interlayer
and interorbital couplings so the diagonal elements of A
and B must vanish. The hexagonal lattice structure seen
in Fig. 1 has the C3v symmetry. In order to respect the
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latter, we assume that all the couplings have the same
magnitude in energy and that those between layer 1 to
layer 2 are the same as those from layer 2 to layer 1.
Therefore we can write

A⊗B = c0

(
0 a
a 0

)
⊗

 0 b1 b2
b3 0 b4
b5 b6 0

 , (C1)

where the coefficients are complex, and of modulus 1 in
order to have the same magnitude c0 in energy. They
are further constrained by the fact that the term must
be Hermitian. Using (A ⊗ B)† = A† ⊗ B†, this means
that we must have a∗ = a, b3 = b∗1, b5 = b∗2 and b6 = b∗3.
We choose a = 1, such that

A⊗B = c0τx ⊗

 0 b1 b2
b∗1 0 b3
b∗2 b∗3 0

 . (C2)

We then introduce (ϕi, ψi) such that bi(k) = cos(ϕi(k))+
i sin(ψi(k)). We look for ϕi and ψi that are linear com-
binations of kx and ky, which is natural for TB models.
These hoppings are also antisymmetric under an inver-
sion operation r 7−→ −r [19], which adds the constraint
bi(−k) = −bi(k) since in exp(ik · r) doing r 7−→ −r is
equivalent to k 7−→ −k. Hence, cos(ϕi(k)) = 0. Writ-
ing the allowed hoppings between the red and blue sites
explicitly (Fig. 1) with the above requirements then
gives bi(k) = i sin(ψi(k)) = i sin(αikx + βiky), with
ψi(k) = αikx + βiky. Next, the orbital mixing term
needs to obey the C3v symmetry, i.e. a 2π/3 rotation
with an axis perpendicular to the (111) plane and a mir-
ror symmetry parallel to the (112) orientation. The 2π/3
rotation transforms r = (x, y, z) into r′ = (z, x, y) in
the original cubic unit cell. Therefore the orbitals are
transformed as (dyz, dxz, dxy) 7−→ (dxy, dyz, dxz). In or-
der to obey this C3 symmetry, we must therefore have
b1(k

′) = b3(k), b2(k′) = b∗1(k) and b3(k
′) = b∗2(k) with

k′ = (−1/2kx −
√
3/2ky,

√
3/2kx − 1/2ky). The mirror

operation maps r = (x, y, z) to r′ = (y, x, z) and k =
(kx, ky) to k′ = (−kx, ky), so that the orbitals transform
as (dyz, dxz, dxy) 7−→ (dxz, dyz, dxy). In order to obey this
symmetry, we must have b1(k′) = b∗1(k), b2(k′) = b3(k)
and b3(k

′) = b2(k). These constraints on the bis put
constraints on the coefficients (αi, βi) by taking the low-
k limit and identifying the kx and ky components (this
is allowed since the constraints must be valid for all k).
The resulting system of equations puts five independent
constraints such that β1 = 0, (α2, β2) = (1/2α1,

√
3/2α1)

and (α3, β3) = (−1/2α1,
√
3/2α1). We then recover Eq.

(2) with α1 = −
√
3.

Appendix D: Gell-Mann matrices

Λ1 =

0 1 0
1 0 0
0 0 0

 , Λ2 =

0 −i 0
i 0 0
0 0 0


Λ3 =

1 0 0
0 −1 0
0 0 0

 , Λ4 =

0 0 1
0 0 0
1 0 0


Λ5 =

0 0 −i
0 0 0
i 0 0

 , Λ6 =

0 0 0
0 0 1
0 1 0


Λ7 =

0 0 0
0 0 −i
0 i 0

 , Λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (D1)

Appendix E: Trigonal basis

Let U be the following unitary transformation in the
{1, 2} ⊗

{
X,Y,Z

}
basis

U = τ0 ⊗ P, P =

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

 . (E1)

In this basis, the trigonal crystal field becomes diagonal,

P †dHdP =

d 0 0
0 d 0
0 0 −2d

 . (E2)

The first two-fold degenerate eigenvalues represent the
e+g and e−g orbitals while the third one represents the
a1g orbital. They are separated by an energy gap of
3d ≃ 10 meV. The kinetic term is transformed as

Hcin = t


e+f
2

e−f

2
√
3

− e−f√
6

e−f

2
√
3

e+f+4g
6 − e+f−2g

3
√
2

− e−f√
6

− e+f−2g

3
√
2

e+f+g
3

 , (E3)

while the orbital mixing term becomes

Hom = c0

 0 iD −iA
−iD 0 iB
iA −iB 0

 , (E4)

with 
A = − 1√

6

(
α+ β − 2δ

)
B = 1√

2

(
α− β

)
D = 1√

3

(
α+ β + δ

)
.

(E5)



14

Appendix F: Validity of the quadratic three-band
approximation

We now discuss the validity of the three-band approxi-
mation. Doing so amounts to neglecting the off-diagonal
blocks in Eq. (8) which contain the confinement energy
and the imaginary part of the kinetic term. From Ref.
[34], the effect of such off-diagonal terms is in O

(
||E||2
gap

)
,

where E is the off-diagonal perturbation. The numer-
ically observed gap (with our choice of parameters) is
around 6 − 7 eV. The biggest contribution of the two
terms is at zeroth and first order in k, i.e. in terms of
scalar quantities, we have E ∼ V ± itk to linear order.
Therefore the intrinsic error of the three-band approxi-
mation is roughly given by

V 2 + t2k2

6.5eV
≃ (1.5 + 400k2)meV. (F1)

This means that if we want a precision on the order of 1
meV, we find that the approximation holds until k ∼ 0.1,
so about a tenth of the BZ. This is indeed what we find
when we compare the band structure with and without
the off-diagonal blocks. More precisely, the confinement
energy globally shifts every band by 1 to 2 meV while the
imaginary part of the kinetic term breaks the isotropy of
the band structure obtained within the low-energy model
and gives rise to the C3 symmetric structure of ellipses
seen in experimental studies (see Ref. [16] for example).

So the validity of the low-energy model is restrained to
the first tenth of the BZ around the Γ point. Knowing
this, what is the natural order of expansion we can do
to the low-energy model ? The relevant terms will be
the ones above or around our precision of a few meVs.
For the orbital mixing term, the first two corrections are
linear and cubic in k. We then have c0k ∼ 4 meV and
c0k

3 ∼ 0.04 meV for k ∼ 0.1, so we only take the linear
term. As for the kinetic term, the first two corrections are
of order tk2 and tk4. This gives tk2 ∼ 10 meV and tk4 ∼
0.1 meV, we therefore only keep the quadratic term. In
conclusion, we can thus expand our three-band model to
quadratic order while being coherent with the three-band
approximation.

Appendix G: Quadratic expansion of H3

Here, we derive the quadratic expansion of H3 in Eq.
(10). We remind the reader that the matrices are written
in the trigonal basis. For the orbital mixing term, we
have

Hom =

 0 0 ickx
0 0 icky

−ickx −icky 0

+O(k3), (G1)

with c = (3/
√
2)c0. For the kinetic term, we have

Re(Hcin) = −t(2 + r)

(
1− 1

4
k2

)
Λ0 + t

− 1
8 (1− r)(k2x − k2y) − 1

4 (1− r)kxky
1

2
√
2
(1− r)kxky

− 1
4 (1− r)kxky

1
8 (1− r)(k2x − k2y)

1
4
√
2
(1− r)(k2x − k2y)

1
2
√
2
(1− r)kxky

1
4
√
2
(1− r)(k2x − k2y) 0

+O(k4),

(G2)

where we separated the traceful and traceless parts usinga 0 0
0 b 0
0 0 c

 =
a+ b+ c

3
Λ0 +

a− b

2
Λ3 +

a+ b− 2c

2
√
3

Λ8,

(G3)

in terms of the Gell-Mann matrices. Now, if we define
teff = (t− td)/8, we indeed find Eq. (10), neglecting the
quadratic terms whenever there already exists a linear
term.

Appendix H: Band structure of Eq. (4)

An important issue for our discussion here, from the
electronic point of view, is the absence of other electron or
hole pockets in the first BZ that would provide other and
possibly different metallic and superconducting proper-
ties of the system. We therefore plot the dispersion of
the lowest three bands in the entire BZ (see Fig. 12),
where we clearly see that the band minima are situated
at the Γ point and that there are no other pockets in the
BZ for our range of chemical potential. Note that Fig.12
was obtained using the spinless TB Hamiltonian, but the

result also holds for the spinful TB Hamiltonian, there is
no electron pocket other than the one we consider at the
Γ point.

Appendix I: Derivation of the spinful two-band
low-energy model

We begin things at Eq.(14),

H̃6 = σ0 ⊗H3 +HSOC, (I1)
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FIG. 12. Lower triplet of the TB model in Eq. (4). (a) Lowest band in the full BZ. (b) Second lowest band in the full BZ. (c)
Third lowest band in the full BZ.

where we also apply Us = (σ0−iσy)/
√
2 on the spin part,

so that HSOC reads

HSOC = iλσx ⊗

 0 − 1√
3

2√
6

1√
3

0 0

− 2√
6

0 0

+ iλσy ⊗

 0 1√
3

1√
6

− 1√
3

0 1√
2

− 1√
6

− 1√
2

0

− iλσz ⊗

 0 1√
3

1√
6

− 1√
3

0 − 1√
2

− 1√
6

1√
2

0

 . (I2)

We then use that fact that close to the Γ point, the exact
eigenbasis should not be far from the one exactly at the
Γ point. Consequently, we exactly diagonalize H̃6(Γ), for
the particular case λ = 3d. This choice is in line with the
experimentally determined values of the parameters and
happens to greatly simplify the resulting expressions. We
thus determine the eigenstates of the two lowest energies,
which we denote as |u1⟩ and |u2⟩. We then define a two-
band Hamiltonian H2 in the latter’s basis, ie

H2 =

2∑
i,j=1

⟨ui|H̃6|uj⟩|ui⟩⟨uj | (I3)

This way we get to Eqs.(15,16).

Appendix J: Calculation of Dconv for a general
quadratic and isotropic band dispersion.

Let us consider a general isotropic and quadratic band
ϵ = ϵ0 + αk2. Then, we can readily show that Dconv

xx =
Dconv

yy = Dconv and Dconv
xy = 0. We also see that

Socc(µ) = B
(
0;
√
µ/α

)
. We then have

Dconv =
1

2

∫
Socc(µ)

∆2[
∆2 + (αk2 − µ)2

]3/2 4α2k2D2k

∝ 2α2

(2π)2

∫ 2π

0

∫ √
µ/α

0

∆2[
∆2 + (αk2 − µ)2

]3/2 k3dkdθ
=

2α2

2π

∫ √
µ/α

0

∆2[
∆2 + (αk2 − µ)2

]3/2 k3dk
=
α2

π

1

2α2

∫ µ

0

∆2[
∆2 + (ϵ− µ)2

]3/2 ϵdϵ
=

1

2π

(√
∆2 + µ2 −∆

)
. (J1)
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