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We report a lattice QCD study of the heavy-light meson-meson interactions with an explicitly
exotic flavor content bcūd̄, isospin I=0, and axialvector JP = 1+ quantum numbers in search of pos-
sible tetraquark bound states. The calculation is performed at four values of lattice spacing, ranging
∼0.058 to ∼0.12 fm, and at five different values of valence light quark mass mu/d, corresponding to
pseudoscalar meson mass Mps of about 0.5, 0.6, 0.7, 1.0, and 3.0 GeV. The energy eigenvalues in the
finite-volume are determined through a variational procedure applied to correlation matrices built out
of two-meson interpolating operators as well as diquark-antidiquark operators. The continuum limit
estimates for DB̄∗ elastic S-wave scattering amplitude are extracted from the lowest finite-volume
eigenenergies, corresponding to the ground states, using amplitude parametrizations supplemented
by a lattice spacing dependence. Light quark mass mu/d dependence of the DB̄∗ scattering length

(a0) suggests that at the physical pion mass aphys0 = +0.57(+4
−5)(17) fm, which clearly points to an

attractive interaction between the D and B̄∗ mesons that is strong enough to host a real bound state
Tbc, with a binding energy of −43(+6

−7)(
+14
−24) MeV with respect to the DB̄∗ threshold. We also find

that the strength of the binding decreases with increasing mu/d and the system becomes unbound at
a critical light quark mass m∗

u/d corresponding to M∗
ps = 2.73(21)(19) GeV.

The discovery of a doubly charmed tetraquark1, Tcc,
marks an important milestone [1] in spectroscopy of
hadrons. Phenomenologically, doubly heavy tetraquarks
in the heavy quark limit are long hypothesized to form
deeply bound states [2–12] with binding energy O(100
MeV) with respect to the elastic strong decay threshold.
While doubly bottom tetraquarks are suitable candidates
for such deeply bound states, as predicted by multiple lat-
tice QCD calculations [13–18], Tcc is found to be 360 keV
below the lowest two-meson threshold (D0D∗+). A hand-
ful of recent experimental developments involving multiple
heavy quark production such as the recent discoveries of
Ξcc [19], Tcc [1], reports of tri-J/ψ [20], associated J/ψΥ
[21], and di-Υ [22] productions, and recent proposals of
inclusive search strategies [23, 24] augment promising
prospects for the doubly heavy hadron sector in the near
future. In light of these advancements, a doubly heavy
tetraquark with a bottom and a charm quark with a va-
lence quark configuration Tbc ≡ bcūd̄ is going to be one
of the most sought-after hadron in this decade [25]. In
this work, using lattice QCD calculations, we show a clear
evidence of an attractive interaction between the D and
B̄∗ mesons that is strong enough to host a real bound
state Tbc. This finding will further boost the search for
such bottom-charm tetraquarks.

The phenomenological picture on deeply bound doubly

1 We follow the nomenclature that a “tetraquark” refers to any
bound state or resonance with dominant four-quark Fock compo-
nent, whether it is a compact four-quark object or a two-meson
molecule or a mixture of both.

heavy tetraquarks is based on a compact heavy diquark-
light antidiquark interpretation [14, 26], whereas the shal-
low binding energy of Tcc could possibly be a reflection
of its dominant noncompact molecular nature [8, 27].
Bottom-charm tetraquarks form an intermediate platform,
where there could be complicated interplay between these
pictures. A collective and refined knowledge of the low en-
ergy spectra in all these three doubly heavy systems (Tbb,
Tbc and Tcc) could culminate in a deeper understanding
of strong interaction dynamics across a wide quark mass
regime spanning from charm to the bottom quarks. The
isoscalar bottom-charm tetraquarks with quantum num-
bers [I(JP ) = 0(1+)] have been investigated previously
both using lattice [28–30] and nonlattice methodologies
[5, 6, 8, 9, 11, 12, 26, 31–40]. The predictions from nonlat-
tice approaches are quite scattered from being unbound
to deeply bound, whereas the difference in conclusions
from the three existing lattice QCD investigations[28–30]
call for more detailed efforts in this regard.
In this work, we perform a lattice QCD simulation of

coupled DB̄∗ and B̄D∗ two-meson channels2 that are
the relevant lowest two strong decay thresholds, in the
order of increasing energies, EDB̄∗ = MB̄∗ + MD and
EB̄D∗ =MB̄ +MD∗ , where Mh is the mass of the hadron
h. The extracted finite-volume ground state energies are
utilized to constrain the continuum extrapolated elastic

2 We work in the isosymmetric limit with no QED effects and mu =
md. Hence we choose to call the degenerate (D+B−, D0B̄0)
threshold as DB̄, and equivalently for others like DB̄∗, B̄D∗ and
D∗B̄∗.
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DB̄∗ scattering amplitudes following the Lüscher’s finite-
volume prescription [41, 42]. The light quark mass mu/d

dependence of the extracted amplitudes suggests a binding
energy of −43(+6

−7)(
+14
−24) MeV for the bcūd̄ tetraquark pole

with respect to EDB̄∗ at the physical point mphys
u/d .

Label Symbol a [fm] N3
s ×Nt Msea

ps

S1 0.1207(11) 243 × 64 305
S2 0.0888(8) 323 × 96 312
S3 0.0582(4) 483 × 144 319
L1 0.1189(9) 403 × 64 217

TABLE I. Relevant details of the lattice QCD ensembles used.
The lattice spacing estimates are measured using the r1 pa-
rameter [43]. L1 refers to large spatial volume, and S1, S2,
and S3 refer to small spatial volumes.

Lattice setup: We use four lattice QCD ensembles (see
Table I for relevant details) with Nf = 2+1+1 dynamical
Highly Improved Staggered Quark (HISQ) fields gener-
ated by the MILC collaboration [43]. The charm and
strange quark masses in the sea are tuned to their respec-
tive physical values, whereas the dynamical light quark
masses correspond to sea pion masses as listed in Table
I. We utilize a partially quenched setup on these configu-
rations with valence quark fields up to the charm quark
masses realized using an overlap fermion action as in Refs.
[44, 45]. We employ a nonrelativistic QCD (NRQCD)
Hamiltonian [46] for the bottom quark. Following the
Fermilab prescription [47], the bare charm [48, 49] and
bottom [50] quark masses on each ensemble are tuned
using the kinetic mass of spin averaged 1S quarkonia

{aM Q̄Q

kin = 3
4aMkin(V ) + 1

4aMkin(PS)} determined on
the respective ensembles. The bare strange quark mass
is set by equating the lattice estimate for the fictitious
pseudoscalar s̄s meson mass to 688.5 MeV [51].

For the valence mu/d, we investigate five different cases:
three unphysical quark masses [corresponding to approx-
imate pseudoscalar meson masses Mps ∼0.5, 0.6, and
1.0 GeV], the strange quark mass [Mps ∼0.7 GeV] and
the charm quark mass [Mps ∼3.0 GeV]. We evaluate the
finite-volume spectrum for all these five quark masses on
all four ensembles, investigate the scattering of D and
B̄∗ mesons in all five cases and then extract the mu/d

(otherwise Mps) dependence of the scattering parameters.
Interpolators and measurements: The finite-volume

spectrum is determined from Euclidean two-point corre-
lation functions Cij(t), between interpolating operators
Oi,j(x, t) with desired quantum numbers, given by

Cij(t) =
∑
x

〈
O†

j(0)Oi(x, t)
〉
≈

∑
n

Zn†
j Zn

i e
−Ent. (1)

Here En is the energy of the nth state and Zn
i = ⟨0| Oi |n⟩

is the operator-state overlap between the sink opera-
tor Oi and state n. We use O and Z to represent the

source operator and overlaps to distinguish them from
that for the sink as we follow a wall-source to point-
sink construction in our Cij evaluations. This is well-
established procedure in ground state energy determi-
nation, despite the non-Hermitian setup in Eq. (1) (see
Refs. [14, 16, 28, 29, 52, 53] for details). We use the
following set of linearly independent, yet Fierz related
[54], operators,

O1(x) = [ū(x)γib(x)][d̄(x)γ5c(x)]

−[d̄(x)γib(x)][ū(x)γ5c(x)]

O2(x) = [ū(x)γ5b(x)][d̄(x)γic(x)]

−[d̄(x)γ5b(x)][ū(x)γic(x)] (2)

O3(x) = (ū(x)TΓ5d̄(x)− d̄(x)TΓ5ū(x))(b(x)Γic(x)).

O1 and O2 are two-meson operators of the type DB̄∗

and B̄D∗, respectively. O3 is a diquark-antidiquark type
operator. Here Γk = Cγk with C = iγyγt being the charge
conjugation matrix and the diquarks (antidiquarks) in the
color antitriplet (triplet) representations. Other high lying
two-meson (D∗B̄∗) and three-meson (DB̄π) interpolators
are ignored in this analysis as they are sufficiently high in
energy to have any effects on the extracted ground states.
Bilocal two-meson interpolators with nonzero internal
meson momenta are also not considered, which would be
an important step ahead [55]. We also compute two-point
correlation functions for B̄, B̄∗, D, and D∗ mesons, using
standard local quark bilinear interpolators (q̄ Γ Q) with
spin structures Γ ∼ γ5 and γi for pseudoscalar and vector
quantum numbers, respectively.

Analysis: The correlation matrices C evaluated for the
basis in Eq. (2) are analyzed following a variational pro-
cedure [56] by solving the generalized eigenvalue problem
(GEVP), C(t)vn(t) = λn(t)C(t0)vn(t). The eigenvalues
in the large time limit represent the time evolution the
low lying eigenenergies En as limt→∞ λn(t) ∼ Ane

−Ent.
The corresponding eigenvectors vn(t) are related to the
operator-state-overlaps Zn

i .
Eigenenergy extraction proceeds via fitting the eigen-

value correlators, λn(t), or the ratios Rn(t) =
λn(t)/Cm1(t)Cm2(t), with the expected asymptotic expo-
nential behaviour. Here, Cmi is the two-point correlation
function for the meson mi. R

n(t) is empirically known
to efficiently mitigate correlated noise between the prod-
uct of two single hadron correlators and the interacting
correlator for the two-hadron system [57]. Note that the
automatic cancellation of the additive quark mass offset,
inherent to NRQCD formulation, is an added advantage
in using Rn(t) for the fits. The systematics associated
with the chosen time interval for fitting are assessed by
varying the lower boundary of the time interval, tmin,
with a fixed upper boundary, tmax, chosen considering
the noise level. In Figure 1, we present a representative
plot showing this tmin dependence of the energy splittings
(∆En) determined from the fits to λn(t) and Rn(t), respec-
tively. The energy differences are evaluated from λn(t)
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using the relation ∆En = En −Mm1
−Mm2

, whereas the
fits to Rn(t) directly yield the respective estimates. We
choose the optimal tmin values where the two different
procedures found to agree asymptotically in time. We
also perform additional checks considering an alternative
quark smearing with different smearing widths to affirm
our energy estimates, see Appendix A. Our final results
are based on fitting the ratio correlators Rn(t).
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FIG. 1. tmin dependence of the ∆E0 fit estimates determined
from the fits to λ0 and R0(t) for the case Mps ∼ 700 MeV in
the finest ensemble. Here the superscript 0 refers to the lowest
eigenenergy.
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FIG. 2. The GEVP eigenenergies in finite-volume for isoscalar
axialvector bcūd̄ channel on the L1 ensemble. Five panels show
the results obtained at various pseudoscalar meson masses
(Mps) 0.5, 0.6, 0.7, 1.0, and 3.0, respectively.

Finite-volume eigenenergies: In Figure 1, we present
the finite-volume GEVP eigenenergies, in lattice units, for
the isoscalar axialvector bcūd̄ channel. The results shown
are for the L1 ensemble at the five different mu/d values
corresponding to Mps ∼ 0.5, 0.6, 0.7, 1.0, and 3.0 GeV.
Note that these estimates include the additive offsets re-
lated to the NRQCD-based bottom quark dynamics. The
non-interacting two-meson energy levels corresponding to
DB̄∗ and B̄D∗ thresholds are indicated as dotted hori-
zontal line segments and those related to B̄∗D∗ threshold
by dashed lines for each Mps. The lowest eigenenergy or
the ground state energy is dominated by the Z0

1 factor
corresponding to O1, that is related to the DB̄∗ threshold
and is determined unambiguously by the operator O1, see
Ref. [58] for details. The most important observation
is a clear trend for negative energy shifts in the ground
state energies, which can be observed in all the cases,
indicating a possible attractive interaction between the
D and B̄∗ mesons [59]. A similar pattern of low lying

eigenenergies and ground state negative energyshifts are
also observed in other ensembles, see details in Ref. [58].
We expect that for our choice of interpolating operators
and the accessible values of t, E0 will be an accurate
estimate of E0, whereas our setup is unable to accurately
estimate excited-state energies. This means the excited
eigenenergies presented in Figure 1 may not correspond
to the higher lying elastic excitations of the DB̄∗ channel.
The location of lowest two non-interacting finite-volume
levels related to the DB̄∗ channel along with the ground
state eigenenergies are presented in Appendix B. Hence
we focus only on the ground state energies (E0 ∼ E0) for
the rest of the analysis.
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FIG. 3. The ground state energies in units of EDB̄∗ on all
ensembles (see Table I for color-symbol conventions) for all
Mps values (different vertical panels).

In Figure 3, we present the ground state energy es-
timates, in units of EDB̄∗ , at various Mps and for all
the ensembles. These estimates are evaluated as En =
∆En +MD + M̃B̄∗ , where ∆En is the estimate from fit

to Rn(t), M̃B̄∗ =MB̄∗ −0.5M
b̄b

lat +0.5M
b̄b

phys accounts for

the NRQCD additive offset, and M
b̄b

lat(M
b̄b

phys) refers to
the spin averaged mass of the 1S bottomonium measured
on the lattice (experiments). The eigenenergies clearly
show a trend of decreasing energy spitting, hence decreas-
ing interaction strength, with increasing Mps. Another
interesting feature to note here is the nonzero lattice spac-
ing (a) dependence of the ground state energies on similar
volume ensembles (S1, S2, S3), which we account for
through an a dependence in the parametrized amplitude
as discussed below.

In Figure 3, we also indicate the branch point location
of the left hand cut (lhc) arising out of an off-shell pion
exchange process for different Mps by horizontal dashed
lines. Recent developments point to the importance of
lhc effects on virtual subthreshold poles related to the
Tcc tetraquark [60]. Such effects on bound states are
the subject of future studies where one could successfully
solve the relevant three particle integral equations. This
is beyond the scope of this work and we ignore such effects
in our analysis.

DB̄∗ scattering amplitude: Assuming these energy split-
tings in ground states are purely described by elastic
scattering in the DB̄∗ system, we utilize them to con-
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strain the associated S-wave scattering amplitude follow-
ing Lüscher’s finite-volume prescription [41, 42]. For the
low energy scattering of D and B̄∗ mesons, where other
multi-particle thresholds are sufficiently high [61], in the
S-wave leading to the total angular momentum and parity
JP = 1+, the scattering phase shifts δl=0(k) are related to
the finite-volume energy spectrum through kcot[δ0(k)] =
2Z00[1; (

kL
2π )

2)]/(L
√
π). Here, k(Ecm =

√
s) is the mo-

mentum (energy) in the center of momentum frame such
that 4sk2 = (s− (MD +MB̄∗)2)(s− (MD −MB̄∗)2). We
follow the procedure outlined in Appendix B of Ref. [62]
to constrain the amplitude. A sub-threshold pole in the
S-wave scattering amplitude t = (cotδ0 − i)−1 occurs
when kcotδ0 = ±

√
−k2 for scattering in S-wave.

We parametrize the elastic DB̄∗ scattering amplitude
in terms of the scattering length a0 in an effective range
expansion near the threshold, supplemented by a lattice
spacing dependence. This is required to incorporate the
cut-off effects observed in the ground state energy esti-
mates. We find that a linear functional form given by
kcotδ0 = A[0] + aA[1], where A[0] = −1/a0, accommodate
the a dependence of the kcotδ0 estimates. We present the
fit results for A[0] = −1/a0 in Figure 4 (circle symbols)
as a function of Mps involved. Alternative fitting choices
with a leading quadratic dependence or using only data
from non-charm Mps are consistent with results in Figure
4, see details in Supplemental material [58].

The sign of A[0] = −1/a0 determines the fate of the
near-threshold pole, if there exists one. A negative (posi-
tive) value of A[0](a0) indicates that the interaction po-
tential is strong enough to form a real bound state[63].
After considering all possible systematics, we find that
for all the non-charm light quark masses, A[0] is negative,
which indicates an attractive interaction strong enough
to host a real bound state. On the contrary, at the charm
point, despite the unambiguous negative energy shifts in
the ground states, the attraction is weak to host any real
bound state as suggested by the positive value of kcotδ0
in the continuum limit. This observation goes in line with
the phenomenological expectation for doubly heavy four
quark (QQ′l1l2) systems with ml1 = ml2 that the binding
increases with increased relative heaviness of the heavy
quarks with respect to its light quark content[14, 26, 64].

Now we investigate the light quark mass (mu/d) orMps

dependence of the fitted parameters. To this end, we
consider three different parametrizations: a linear depen-
dence (fl(Mps) = αc + αlMps) to probe the heavy light
quark mass case, a leading M2

ps dependence (fs(Mps) =
βc+βsM

2
ps) to assess the chiral behaviour, and a quadratic

dependence (fq(Mps) = θc + θlMps + θsM
2
ps) to quantify

the associated systematics. In Figure 4, we show the fit
results for this Mps dependence in colored bands. The
two stars represent A[0] at the physical Mps (equivalently

the physical scattering length aphys0 ) and the critical Mps

at which A[0] changes its sign or above which the sys-
tem becomes unbound. It is indeed desired to have more

points in the intermediate mass regime between the charm
and the strange quark masses to further constrain the

0.00 0.04 0.08 0.12 0.16 0.20
0.08

0.06

0.04

0.02

0.00

0.02

0.04

(
a 0

E D
B

*
)

1

aphys
0

M *
ps

M 2
ps/E 2

DB *

fs [ 2/dof 4.1/6]
fq [ 2/dof 2.4/4]
fl [ 2/dof 2.3/6]

FIG. 4. Continuum extrapolated kcotδ0 or A[0] = −1/a0
estimates of the DB̄∗ system as a function of M2

ps in units of
EDB̄∗ . The dotted vertical line close to the y-axis indicates
Mps =Mphys

π . The two star symbols represent the amplitude
at Mps =Mphys

π and the critical Mps =M∗
ps above which the

system becomes unbound.

dependence. Yet, our fits demonstrate near independence
in the fit forms as can be observed from the consistency
between the error bands from different fit forms.
Based on the fit form fs(Mps) in the chiral regime,

we find that the scattering length of the DB̄∗ system at
the physical light quark mass (mphys

u/d ), corresponding to

Mps =Mphys
π , to be

aphys0 = 0.57(+4
−5)(17) fm. (3)

The asymmetric errors indicate the statistical uncertain-
ties, whereas the second parenthesis quotes the systematic
uncertainties with the most dominant contribution arising
from the chiral extrapolation fit forms. The positive value
of the scattering length at Mps = Mphys

π , at the level
of 3σ uncertainty, is an unambiguous evidence for the
strength of the DB̄∗ interaction potential to host a real
bcūd̄ tetraquark bound state Tbc with binding energy

δmTbc
= −43(+6

−7)(
+14
−24) MeV, (4)

with respect to EDB̄∗ . The first parenthesis indicates
the statistical errors and the second one quantifies vari-
ous systematic uncertainties added in quadrature. The
pseudoscalar meson mass, corresponding to the criti-
cal light quark mass, where a0 diverges, is found to be
M∗

ps = 2.73(21)(19) GeV. This critical point also signifies
that QCD dynamics within such exotic systems is such
that at a heavy light quark mass the system of quarks
perhaps reaches the unitary gas limit, as indicated by the
divergent scattering length [65]. For Mps ≥M∗

ps, the Tbc
system remains unbound.
Systematic uncertainties: Our lattice setup together

with the bare bottom and charm quark mass tuning proce-
dure has been demonstrated to reproduce the 1S hyperfine
splittings in quarkonia with uncertainties less than 6 MeV
[50, 53]. We observe the effects of such a mistuning of
either of the heavy quark mass on the energy splittings we
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extract are very small compared to the statistical errors.
Additionally, our strategy of evaluating the energy differ-
ences and working with mass ratios has also been shown
to significantly mitigate the systematic uncertainties re-
lated to heavy quark masses [52, 53]. This is observed to
be the case in this study as well, leading to transparent
signals for the ground state energy as shown in Figures
1, 1, and 3. Our fitting procedure involves careful and
conservative determination of statistical errors, and un-
certainties related to the excited-state-contamination and
fit-window errors. Additional checks using alternative
quark smearing procedures also agree with our energy
estimates, see Appendix A. The amplitude determination
and followed extrapolations are performed with results
from varying the fit-windows to evaluate the uncertainties
propagated to our final results. The uncertainties related
to the fit forms used in chiral extrapolations are observed
to be the most dominant, as is evident from Figure 4. We
assume the partially quenched setup involving ensembles
with different sea pion masses, we utilize, have negligible
effects on the energy splittings we extract for the explicitly
exotic Tbc tetraquark, similar to what was observed for
heavy hadrons in Refs. [66, 67]. Uncertainty related to
scale setting is also found to be negligible in comparison
to the statistical uncertainties in the energy splittings.

Summary: We have performed a lattice QCD simulation
of coupled DB̄∗-B̄D∗ scattering with explicitly exotic
flavor bcūd̄ and I(JP ) = 0(1+). Following a rigorous
extraction of finite-volume eigenenergies and continuum
extrapolated elastic DB̄∗ scattering amplitudes for the
five light quark masses studied, we determine the light
quark mass dependence of the elastic DB̄∗ scattering
length a0. We observe unambiguous negative energy
shifts between the interacting and non-interacting finite-
volume energy levels. Our estimate for aphys0 (Eq. (3)) is
positive, indicating an attractive interaction between the
D and B̄∗ mesons, which is strong enough to host a real
bound state with binding energy δmTbc

= −43(+6
−7)(

+14
−24)

MeV. We find that the strength of interaction is such that
this bcūd̄ tetraquark becomes unbound at M∗

ps, which is
close to the ηc meson mass.
In this work, we make several important steps ahead

to arrive at robust inference on the nature of interaction
between the D and B̄∗ mesons. Our main strategy has
been to determine the signature of scattering length in
DB̄∗ interactions at the physical pion mass aphys0 . Our

results indicate that aphys0 is positive, which suggests that
attractive DB̄∗ interactions are strong enough to host a
real bound state. Further theoretical investigations are
desired to reduce the uncertainties in the binding energy
of Tbc with respect to EDB̄∗ . Fully dynamical simulations
on several more ensembles, with different volumes and
improvized fermion actions, high statistics studies with
lighter mu/d, etc. are a few other improvisations that
can further constrain the relevant scattering amplitude.
Additionally, future works involving Hermitian correlation

matrices at rest as well as in moving frames and those us-
ing bilocal two-meson interpolators with nonzero relative
meson momenta aimed at reliable excited state extraction
would be a few important steps ahead [55, 62, 68, 69]. We
hope that our observations and inferences in this work
will motivate more theoretical efforts and experimental
searches for such states.
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Appendix A: Ground state energy plateau.- In this work
we have utilized a wall-source point-sink setup to con-
struct the necessary two-point correlation functions. The
use of such an asymmetric setup implies the effective
energies aEeff = [ln(C(t)/C(t+ δt))]/δt could approach
their asymptotic values as rising-from-below, due to the
nonpositive definite nature of the coefficients in a spec-
tral decomposition, in contrast to a falling-from-above
behaviour in a symmetric setup. In Figure 5, we show
the effective mass in wall-source point-sink setup with the
brown-circle (R2 = 0) which rises from below.

To avoid any ambiguity in selecting the plateau regions
of effective masses of such correlators, we also employ
a wall-source box-sink setup [29], which asymptotically
approaches the symmetric limit. In the symmetric limit,
the effective masses are expected to follow a conventional
falling-from-above feature, modulo the statistical noise.
To this end, we vary the smearing radius R to investigate
the time dependence of effective mass plateaus in the
approach to the symmetric limit. In Figure 5, we present
a comparison of the effective energy (top) and effective en-
ergy splittings (bottom) determined using different quark
sink smearing procedures for the case of Mps ∼ 700 MeV
on the finest ensemble. Clearly the rising-from-below
behaviour is gradually disappearing in the approach to
the symmetric limit. It is also evident that the results at
the large time limit from point-sink and box-sink are very
much consistent with each other affirming our assessment
on effective mass plateau in choosing a fit range. Such a
behavior of effective masses with varying smearing radii
was also observed in Ref. [29]. In the large time limit,
where the signal quality is still good, all of sink smearing
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cases suggest consistent negative energy shifts. This is
evident from the large time behaviour of energy splittings
presented in the bottom panel of Figure 5, where the cor-
related statistical noise, not related to the excited state
contamination, is suppressed between the numerator and
denominator in the ratio correlators Rn(t).

The agreement of energy splitting estimates from fits
to Rn(t) with those evaluated from separate fits to the
GEVP eigenvalue correlators λn(t) and the single-meson
correlators CD/B̄∗ at large times (see Figure 1) already
rules out the usual concern of accidental partial cancel-
lation of excited state contaminations in Rn(t). The
consistency at large times between ground state energy
plateaus from different sink-smearing radii observed in top
panel of Figure 5 further affirms the reliable isolation of
the ground state plateau. Note also that the magnitude of
such cancellations and the ground state saturation times
could be different in different lattice QCD ensembles. All
the ground state estimates for noncharm Mps values in
our study are determined from the time intervals approxi-
mately between 1.5(2) fm [tmin] to 2.3(2) fm [tmax]. The
consistent ground state saturation times across different
ensembles with different specifications further imply the
reliability of our ground state saturation, despite our
asymmetric setup.
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FIG. 5. Comparison of effective energy (top) and effective
energy splitting (bottom) for the ground state as determined
using three different smearing radii applied on the quark fields
at the sink timeslice. The legend indicates the smearing radius
squared in units of the lattice spacing [29]. The blue horizontal
band indicates the final fit estimate for the energy and energy
splitting. The results presented are for the case Mps ∼ 700
MeV on the finest ensemble.

Appendix B: Elastic DB̄∗ excitations.- Gaining access
to higher lying elastic excitations in the DB̄∗ channel is

an important step ahead towards constraining the energy
dependence of the amplitude over a long energy range.
However, within the wall-smearing setup, all the nonzero
momentum excitations are significantly suppressed. This
suppression is exact in a free theory, and is empirically
confirmed from the early plateauing and from the quality
of signals in the interacting theory. While this suppression
is advantageous in ground state energy determination (see
Refs.[14, 16, 28, 29, 52, 53] for details), the suppressed
coupling to the nonzero momentum excitations implies
that the access to higher two-meson elastic excitations
with nonzero relative meson momenta are restricted in the
wall-smearing setup. This implies other methodologies
that facilitate the use of bilocal two-meson interpolators
with separately momentum projected mesons are neces-
sary in future studies [55, 71, 72]3. In this respect, it
is informative to know the location of the lowest non-
interacting level with nonzero relative meson momenta
and whether it is close enough to influence the ground
state energies in any substantial way. Considering this,
in Figure 6 we present the ground state eigenenergies
along with the DB̄∗ threshold and the next lowest elastic
DB̄∗ excitation with nonzero relative meson momentum
determined using the continuum dispersion relation that
is assumed in the finite-volume quantization condition
[41, 42]. Clearly, the location of this first non-interacting
elastic excitation is sufficiently high to have any nonnegli-
gible effects on the extracted the ground state energies.
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FIG. 6. The ground state energy eigenvalues in the back-
ground of lowest two non-interacting DB̄∗ finite-volume levels
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FIG. 1. Low-lying finite-volume eigenenergies for isoscalar axialvector bcūd̄ channel on the four ensembles studied. The near
degenerate eigenlevels are slightly shifted horizontally for clarity.

In this section, we present the finite-volume GEVP eigenenergies of the isoscalar axialvector bcūd̄ channel that we
extract on all four ensembles listed in Table I of the main article, at the five different mu/d values corresponding to
Mps ∼ 0.5, 0.6, 0.7, 1.0, and 3.0 GeV. The eigenenergies shown in lattice units include the additive offsets related to
the NRQCD-based dynamics of heavy bottom quarks. The non-interacting two-meson energy levels corresponding to
DB̄∗ and B̄D∗ thresholds are indicated as dotted horizontal line segments for each lattice and each Mps. The D

∗B̄∗

threshold in each case is also shown in the figure by dashed lines. Note that the use of wall-smearing setup restricts
any direct access to the elastic two-meson excitations with nonzero relative meson momenta. This means although a
reliable ground state extraction could be made, the excited eigenenergies may not represent the real elastic excitations.

II. OPERATOR-STATE OVERLAPS

In Figure 2, we present the modulus of normalized sink operator-state overlaps |Z̃n
i |, normalized such that its largest

value for any given operator Oi across all the eigenenergies {n} is unity [74, 75]. Z̃n
i quantifies the relative relevance of

any given operator across all the eigenenergies. The |Z̃n
i | values are presented for all Mps cases on the L1 ensemble.

Each square marker corresponds to the |Z̃n
i | for a given operator Oi on to a given eigenenergy n. Each horizontal panel

stands for an Mps indicated on the right-hand side, whereas the vertical lines in each horizontal panel part |Z̃n
i | for

different operators indicated on the top panel. The x-axis ticks refer to the three finite-volume eigenenergies we have
extracted. O1, the two-meson operator related to DB̄∗ threshold, can be seen to have the largest overlap with the
ground state and has significantly small overlaps with the excited eigenenergies. O2, the two-meson operator related
to B̄D∗ threshold, has the largest overlap with the first excited eigenenergy and a very small overlap with the ground
state. O2 also have nonnegligible overlap factors with the second excited eigenenergy indicating B̄D∗-type two-meson
Fock component, which decreases with increasing Mps. On the other hand, O3, the diquark-antidiquark type operator,
have substantial overlap factors with all eigenenergies at the two lightest Mps values, whereas with an increased Mps

its largest overlap is with the second excited eigenenergy. Note that O3 is Fierz related to two-meson interpolators
[54], and the large Z̃n

3 values of O3 for all n could be related to this underlying connection between two-meson and
diquark-antidiquark operators.

A summary from the above observations on overlap factors is as follows. O1 predominantly determines the ground
state, whereas it has significantly small coupling with the excited eigenenergies. Similar patterns of overlap factors are
also observed for other ensembles, all of which indicate that O1 predominantly determines the ground state. The two
excited eigenenergies have strong two-meson and diquark-antidiquark Fock components in the two lightest Mps values.
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FIG. 2. Modulus of normalized sink operator-state overlaps |Z̃n
i | for an eigenenergy indicated by n = 0, 1, 2 and an operator

represented by Oi, where i = 1, 2, 3 on the L1 ensemble. The errors in the normalized overlap factors are smaller than the
symbols and hence are suppressed.

One could also evaluate and investigate the normalized source operator-state overlaps from the left eigenvectors of C in
Eq. (1) in the main draft, which also leads to the same conclusions.

III. OPERATOR BASIS DEPENDENCE
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FIG. 3. Operator basis dependence of the low lying eigenenergies of the L1 ensemble and Mps ∼700 MeV for all possible
operator basis that can be built out of the three operators utilized in this work.

In Figure 3, we show the operator basis dependence as determined for Mps ∼ 700 MeV in the L1 ensemble, for
various operator basis build out of O1, O2, and O3 operators as defined in Eq. (2) of the main draft. The digital
indexing on the x-axis tick labels refers to various operator basis in the order {O1,O2,O3}, with an overline on the
third index as a visual aid within the plot to highlight the diquark-antidiqaurk interpolator. 1 (0) indicates an operator
is included in (excluded from) the basis. The horizontal lines refer to the DB̄∗, B̄D∗ and B̄∗D∗ thresholds. The gray
horizontal bands refer to the two lowest levels in the full basis indicated by 111. A level below the threshold appears
only when O1 is present in the basis. The first excited eigenenergy in the full basis 111 is faithfully reproduced in
those bases where O2 is included. O3 alone does not precisely determine any level among the GEVP eigenenergies
using full basis. Similar observations are also made on other ensembles. In summary, the ground state in the full basis
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111 is reliably determined with O1 and is unaffected by the inclusion of O2 and O3 operators.

Mps [GeV] χ2/d.o.f Linear χ2/d.o.f Quadratic

A[0]/EDB̄∗ A[1]/EDB̄∗ A[0]/EDB̄∗ A[2]/EDB̄∗

0.5 2.1/2 −0.05(1) 0.17(+13
−11) 2.1/2 −0.045(6) 0.9(+7

−6)

0.6 0.5/2 −0.044(+9
−8) 0.10(+9

−9) 0.5/2 −0.040(+6
−5) 0.6(5)

0.7 3.0/2 −0.042(+8
−6) 0.09(+6

−7) 3.7/2 −0.037(+5
−4) 0.5(+3

−4)

1.0 2.9/2 −0.043(4) 0.11(+5
−5) 2.9/2 −0.038(+3

−3) 0.8(3)

3.0 3.6/2 0.006(+6
−5) −0.20(+4

−5) 3.6/2 −0.002(+4
−3) −1.2(+2

−3)

TABLE I. Results from amplitude fits at different light quark mass cases indicated in terms of Mps in the first column. The
amplitude is approximated to be determined by the scattering length, with a linear or quadratic lattice spacing dependence as
discussed in the main draft. The optimized parameter values in the table are presented in units of energy of the DB̄∗ threshold,
EDB̄∗ . The A[0] parameter in either parametrization is negative of the inverse scattering length in the continuum limit.
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FIG. 4. Left: kcotδ0, in units of the elastic threshold EDB̄∗ , versus a (lattice spacing) for all Mps values. We follow the
marker/color coding in Table I of the main draft for the data points referring to the simulated data. The colored/gray bands
indicate the fit results with linear and quadratic lattice spacing dependence, respectively. Right: kcotδ0 versus k2 for all Mps

values studied in units of the elastic threshold EDB̄∗ . The dashed orange (cyan) curve indicates the constraint for the existence
of a sub-threshold pole in the scattering amplitude. The horizontal bands are the continuum extrapolated estimates of kcotδ0 for
the respective Mps. The black dashed vertical lines in the plots on the right indicate the location of the branch point associated
with the left hand cut arising from the DB̄π channel.

IV. RESULTS ON SCATTERING AMPLITUDE

In Table I, we tabulate the results from different amplitude fits that were performed. In Figure 4, we present the
quality of these fits by comparing the fit results with the data points (see the figure caption for details). On the left of
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Figure 5, we present the light quark mass dependence in the chiral regime determined from continuum extrapolated
elastic DB̄∗ scattering amplitudes following a linear and quadratic lattice spacing dependence. We present the final
estimate (black star) from the linear fit form considering the presence of heavy quarks in our system, whereas the
difference in the fit results are accounted in the systematics quoted in the main draft. On the right of Figure 5, we
present a comparison of the light quark mass dependence in the chiral regime between the fit involving all Mps datasets
and the fit involving the lightest four Mps datasets. Either fitting procedures can be seen to be consistent with our
final estimate in the chiral limit is shown by black star.
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FIG. 5. Left: Comparison of light quark mass dependence of scattering amplitudes in the chiral regime determined from a linear
(red band) and quadratic (green band) dependence of kcotδ0 on the lattice spacing. Right: Comparison of light quark mass
dependence of scattering amplitude kcotδ0 in the chiral regime determined using the results from all five light quark masses (red
band) and the results from four light light quark masses (black). The results in the physical limit in either cases can be seen to
be consistent with the main result indicated by the star symbol.
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