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Abstract. Coalgebra, as the abstract study of state-based systems,
comes naturally equipped with a notion of behavioural equivalence that
identifies states exhibiting the same behaviour. In many cases, however,
this equivalence is finer than the intended semantics. Particularly in au-
tomata theory, behavioural equivalence of nondeterministic automata is
essentially bisimilarity, and thus does not coincide with language equiva-
lence. Language equivalence can be captured as behavioural equivalence
on the determinization, which is obtained via the standard powerset
construction. This construction can be lifted to coalgebraic generality,
assuming a so-called Eilenberg-Moore distributive law between the func-
tor determining the type of accepted structure (e.g. word languages) and
a monad capturing the branching type (e.g. nondeterministic, weighted,
probabilistic). Eilenberg-Moore-style coalgebraic semantics in this sense
has been shown to be essentially subsumed by the more general frame-
work of graded semantics, which is centrally based on graded monads.
Graded semantics comes with a range of generic results, in particular
regarding invariance and, under suitable conditions, expressiveness of
dedicated modal logics for a given semantics; notably, these logics are
evaluated on the original state space. We show that the instantiation of
such graded logics to the case of Eilenberg-Moore-style semantics works
extremely smoothly, and yields expressive modal logics in essentially all
cases of interest. We additionally parametrize the framework over a quan-
tale of truth values, thus in particular covering both the two-valued no-
tions of equivalence and quantitative ones, i.e. behavioural distances.

1 Introduction

When dealing with the logical aspects of state-based systems, one is particu-
larly interested in the property of expressiveness, that is, the ability of a logic
to differentiate between states that behave in different ways. The prototypi-
cal example of this property is captured by the Hennessy-Milner theorem [14],
with modal logic distinguishing states in finitely branching transition systems
precisely up to bisimilarity. There is, however, a wide array of equivalences of
interest that are coarser than bisimilarity [12], each necessitating a different type
of logic to stay invariant under the semantics while ensuring expressiveness. A
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similar story unfolds when state-based systems are studied abstractly as coal-
gebras for a given functor that encapsulates the transition type of systems [31]:
The finest and mathematically most convenient type of equivalence is given
by coalgebraic behavioural equivalence, with much of the literature on coalge-
braic logic focusing on expressiveness with respect to this type of equivalence
(e.g. [29,32,26,22,38,11]), though this might not necessarily be the equivalence
the application demands. Consider for example nondeterministic automata, i.e.
coalgebras for the Set-endofunctor 2 × (P−)Σ . The equivalence of interest in
these systems is language equivalence, and as such is potentially much coarser
than the coalgebraic notion of behavioural equivalence, which in this case in-
stantiates to bisimilarity. A possible way to deal with this mismatch is to first
transform the nondeterministic automaton into a deterministic one, that is, a
coalgebra for the Set-endofunctor F = 2× (−)Σ , via the powerset construction,
obtaining language equivalence as behavioural equivalence in the determinized
automaton. The powerset construction generalizes to coalgebras for functors of
the form FT where F is a functor capturing the type of accepted structure (e.g.
word languages for F = 2×(−)Σ as above) and a monad T capturing the branch-
ing type of systems (T = P as above captures nondeterminism; other choices
of T capture, e.g., probabilistic or weighted branching). To be applicable, this
approach requires a so-called Eilenberg-Moore distributive law of T over F [33];
it then equips FT -coalgebras with a language-type semantics determined by F ,
to which we refer as Eilenberg-Moore semantics.

Our present aim is to obtain modal logics that are expressive and invariant
for Eilenberg-Moore semantics, and at the same time can be seen as fragments of
the standard expressive branching-time coalgebraic modal logics (in analogy to
logics for the linear-time/branching-time spectrum of labelled transition system
semantics [12], which are fragments of standard Hennessy-Milner logic). To this
end, we exploit the machinery of graded semantics [27,8], in which notions of
behavioural equivalence are modelled by mapping into a graded monad [34];
it has been shown that Eilenberg-Moore semantics can essentially be cast as
a graded semantics [24,27]. Graded semantics comes with a general notion of
invariant graded logic and a criterion for a graded logic to be expressive [27,8].

Contribution By instantiating the expressivity criterion of the graded seman-
tics framework to Eilenberg-Moore semantics, we show that it is sufficient to
provide a set of modal operators that separate the elements of FX, while the
treatment of T is automatically provided by the framework. Separation of FX
is typically easy to ensure, justifying the slogan that Eilenberg-Moore seman-
tics essentially always admits an expressive invariant logic. We parametrize our
results over the choice of a quantale that serves as a domain of both distances
and truth values, allowing an instantiation to both the two-valued setting, where
states are either equivalent or not and formulae take binary truth values, and
to quantitative settings, where similarity of states is a continuum and formulae
may take intermediate values, for instance in the real unit interval. We thus in
particular cover notions of behavioural distance (e.g. [37,2,3]), providing logics
that are expressive in the sense that the behavioural distance between states is
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always witnessed by differences in the evaluation of suitable formulae. We discuss
a range of examples, in some cases obtaining new characteristic modal logics,
e.g. for probabilistic trace equivalence of reactive probabilistic automata with
black-hole termination.

Related work There has been a fair amount of work on the coalgebraic treat-
ment of system semantics beyond branching time. Approaches using Kleisli-type
distributive laws [13] and Eilenberg-Moore distributive laws (e.g. [33,19,6,17])
are subsumed by graded semantics [24,27]. The Kleisli approach has also been
applied to infinite-trace semantics (e.g. [15,18,36,7]) and to trace semantics via
steps [30]. Klin and Rot [20] present a notion of semantics based on selecting
a modal logic, which is then expressive by definition of the semantics. For our
present purposes, the most closely related piece of previous work uses corecursive
algebras as a unifying concept subsuming the Kleisli-based, Eilenberg-Moore-
based, and logic-based approaches to coalgebraic trace semantics [30]. In par-
ticular, the comparison between the Eilenberg-Moore-based and the logic-based
semantics in this framework [30, Section 7.1] can be read as an expressiveness
criterion for logics over Eilenberg-Moore semantics. In relation to this criterion,
the distinguishing feature of our present main result lies in the concreteness of
the construction of the logic in terms of modal and propositional operators, as
well as the ease of checking our expressiveness criterion, which comes essentially
for free in all cases of interest. We note also that our criterion works in quantalic
generality, and thus applies also to notions of behavioural distance, which so far
are not covered in the approach via corecursive algebras.

Through its applicability to behavioural distances, our work relates addition-
ally to a spate of recent work on the coalgebraic treatment of characteristic logics
for behavioural distances. For the most part, such results have been concerned
mainly with branching-time distances (e.g. [22,38,21,11]).

Kupke and Rot [23] study logics for coinductive predicates, generalizing
branching-time behavioural distances. Our overall setup differs from the one
used in [23] by working with coalgebras for functors that live natively on metric
spaces, including such functors that are not liftings of a set functor.

In recent work by König and (some of) the present authors [4,5], expressive
logics for coalgebraic trace-type behavioural distances have been approached
by setting up Galois connections between logics and distances. This concept is
highly general (and in fact not even tied to models being coalgebras) but requires
a comparatively high amount of effort for concrete instantiations. Moreover, its
focus is on fixpoint characterizations of logical distance rather than on expres-
siveness w.r.t. a given notion of behavioural distance, and in fact the behaviour
function inducing behavioural distance is defined directly via the logic.

2 Preliminaries

We assume basic familiarity with category theory (e.g. [1]). In the following, we
recall requisite definitions and facts on universal coalgebra, quantales, and lifting
functors to categories of monad algebras.



4 J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, K. Messing

2.1 Universal Coalgebra

State-based systems of various types, such as non-deterministic, probabilistic,
weighted, or game-based transition systems, are treated uniformly in the frame-
work of universal coalgebra [31]. The branching type of a system is encapsulated
as a functor G : C → C on a suitable base category C, for instance on the cate-
gory Set of sets and maps. A G-coalgebra (C, c) then consists of a C-object C,
thought of as an object of states, and a morphism c : C → GC, thought of as
a transition map that assigns to each state a structured collection of successor
states, with structure determined by G. For instance, on C = Set, a P-coalgebra
for the covariant powerset functor is just a nondeterministic transition system,
while a G-coalgebra for the functor G given by GX = 2 ×XΣ , with Σ a fixed
alphabet, is a deterministic automaton (without initial state), assigning to each
state a finality status and a tuple of successors, one for every letter in Σ.

A morphism h : (C, c) → (D, d) of G-coalgebras is a C-morphism h : C → D
that is compatible with the transition maps in the sense that d · h = Gh · c.
States x, y ∈ C in a coalgebra (C, c) are behaviourally equivalent if there exist a
G-coalgebra (D, d) and a morphism h : (C, c) → (D, d) such that h(x) = h(y).
For instance, two states in a labelled transition system (i.e. a coalgebra for
G = P(Σ × (−)) where Σ is the set of labels) are behaviourally equivalent iff
they are bisimilar in the usual sense.

The (initial ω-segment of) the final chain of G is the sequence (Gn1)n<ω

of C-objects. Given a G-coalgebra (C, c), we have the canonical cone of
maps cn : C → Gn1, defined by c0 being the unique map C → 1 and by
cn+1 = C

c−→ GC
Gcn−−→ Gn+11. When C is a concrete category over Set, states

x, y ∈ C are termed finite-depth behaviourally equivalent if cn(x) = cn(y) for
all n ∈ N. For finitary set functors, finite-depth behavioural equivalence and
behavioural equivalence coincide [39].

2.2 Quantales

We use (symmetrized) quantale-enriched categories as a joint generalization of
equivalence relations and pseudometric spaces; this enables us to cover both two-
valued and quantitative semantics and logics uniformly in one framework. In a
nutshell, a quantale is a monoid in the category of complete join semilattices.
Explicitly, this notion expands as follows:

Definition 1. A (commutative unital) quantale V = (V,⊗, k,≤) consists of a
set V that carries both the structure of a complete lattice (V,≤) and the structure
of a commutative monoid (V,⊗, k) such that for all v ∈ V , the operation −⊗ v
is join-continuous; that is,(∨

i∈I ui

)
⊗ v =

∨
i∈I (ui ⊗ v)

where we use
∨

to denote joins.
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By the standard equivalence between join preservation and adjointness for func-
tions on complete lattices, it follows that for every b ∈ V , the map −⊗ b has a
right adjoint [b,−], with defining property

a⊗ b ≤ c ⇔ a ≤ [b, c]

As first observed by Lawvere [25], metric spaces can be seen as enriched cate-
gories, which leads to the notion of categories enriched in a quantale V, or briefly
V-categories, as a generalized notion of (pseudo-)metric space:

Definition 2. A V-category is a pair (X, dX) consisting of a set X and a func-
tion dX : X ×X → V such that for all x, y, z ∈ X we have dX(x, y)⊗dX(y, z) ≤
dX(x, z), as well as k ≤ dX(x, x). A V-category (X, dX) is symmetric if
dX(x, y) = dX(y, x) for all x, y ∈ X, and separated if k ≤ dX(x, y) implies
x = y. A function f : X → Y is a V-functor between V-categories (X, dX) and
(Y, dY ) if dX(a, b) ≤ dY (f(a), f(b)) for all a, b ∈ X.

We fix a quantale V for the rest of the technical development. We write DPMetV
for the category of V-categories and V-functors, which we view as generalized di-
rected pseudometric spaces, with distance values in V. Further, we write PMetV
for the full subcategory of symmetric V-categories, viewed as generalized pseu-
dometric spaces, and MetV for the full subcategory of symmetric and sepa-
rated V-categories, viewed as generalized metric spaces. The quantale V it-
self has the structure of an object in DPMetV , where d(x, y) = [x, y] for all
x, y ∈ V. It may also be viewed as an object in MetV through symmetrization:
dsym(x, y) = [x, y] ∧ [y, x]. In this way, we will often use V as the codomain of
evaluation morphisms of our logics. We will focus on the following two examples:

Example 3. 1. The lattice 2 = {⊥,⊤} carries a quantale 2 = (2,∧,⊤,≤).
In this case, [b, c] is just the Boolean implication b → c. The category PMet2
is isomorphic to the category of setoids, i.e. of equivalence relations and
equivalence-preserving maps, while the category Met2 is isomorphic to the cate-
gory of sets and functions. We use this quantale to cover two-valued equivalences,
used in situations where one is only interested in determining whether states be-
have in precisely the same way or not.

2. We use the quantale [0, 1]⊕ = ([0, 1],⊕, 0,≥), where ⊕ is truncated addi-
tion (a⊕b = min(a+b, 1)), to cover cases where one wishes to measure differences
in the behaviour of states in a continuous manner. In this case, [−,−] is trun-
cated subtraction ([b, c] = max(c−b, 0)). Indeed, taking [−, 1] as negation makes
[0, 1]⊕ into an MV-algebra, providing a domain of truth values for multi-valued
Łukasiewicz logic. The category Met[0,1]⊕ is isomorphic to the usual category of
1-bounded metric spaces and non-expansive maps [25], while PMet[0,1]⊕ is iso-
morphic to the category of pseudometric spaces (that is, distinct elements may
take distance 0). Note that the ordering on the set [0, 1] is reversed compared
to its natural ordering. This is necessary, since otherwise ⊕ does not distribute
over the empty join.
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We will use the concept of initiality (in the concrete case of V-categories) to
describe the fact that a set of morphisms is large enough to witness the distances
in its domain. Later, expressivity demands that the set of evaluation morphisms
of formulae form an initial source.

Definition 4. A source A of V-functors fi : (X, dX) → (Yi, dYi) is initial if
dX(x, y) =

∧
i∈I dYi

(fi(x), fi(y)) for all x, y ∈ X.

2.3 Lifting Functors to Eilenberg-Moore Categories

Recall that a monad (T, µ, η), denoted just T by abuse of notation, on a
base category C consists of a functor T : C → C and natural transformations
µ : TT ⇒ T , as well as η : Id ⇒ T (the multiplication and unit of T ) satisfying
natural laws. Monads on Set may be thought of as encapsulating algebraic theo-
ries, with TX being terms over X modulo provable equality, µ collapsing layered
terms into terms, thus abstracting substitution, and η converting variables into
terms. We call a monad T affine [16] when T preserves the terminal object, that
is T1 ∼= 1. For instance, the distribution monad D, given by DX being the set

{f : X → [0, 1] | f(x) = 0 for almost all x ∈ X,
∑

x∈X f(x) = 1}

of finitely supported probability distributions on X, is affine. Monads induce a
natural notion of algebra: A monad algebra or Eilenberg-Moore algebra (A, a)
for T consists of a C-object A and a morphism a : TA → A making the left and
middle diagrams below commute.

A TA

A

ηA

idA

a

TTA TA

TA A

Ta

µA a

a

TA TB

A B

Tf

a b

f

A C-morphism f : A → B is a morphism between algebras f : (A, a) → (B, b)
if the right diagram commutes. We write EM(T ) for the category of Eilenberg-
Moore algebras for T and their morphisms. We denote the functor that takes
a C-object A to the free T -algebra (TA, µ) over A by L : C → EM(T ). This
functor is left adjoint to the forgetful functor R : EM(T ) → C that takes algebras
(A, a) to their carrier A. The category EM(T ) has all limits that C has [1,
Proposition 20.12]. We occasionally need the n-fold power (A, a)n of an algebra
(A, a), whose carrier is the C-object An. We denote its algebra structure by
a(n) : T (An) → An.

Coalgebraic determinization [33] is concerned with coalgebras for functors of
the form G = FT where T is a monad, thought of as capturing the branch-
ing type of systems, and F is a functor determining the system semantics. As
indicated in the introduction, the basic example is given by nondeterministic
automata over an alphabet Σ, which are coalgebras for the set functor G = FT
with FX = 2×XΣ and T = P, while F -coalgebras are deterministic automata.
The coalgebraic generalization of the powerset construction that determinizes
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nondeterministic automata relies on having a suitable type of distributive law
between F and T :

Definition 5. An Eilenberg-Moore distributive law, or just EM law, of a monad
(T, µ, η) over a functor F is a natural transformation ζ : TF ⇒ FT such that
the following diagrams commute:

F TF

FT

Fη

ηF

ζ

TTF TFT FTT

TF FT

µF

Tζ ζT

Fµ

ζ

It is well-known (cf. [28]) that EM laws ζ : TF ⇒ FT are in 1-1 correspon-
dence with liftings F̃ of the functor F to the Eilenberg-Moore category EM(T ).
Given ζ, the functor F̃ maps the T -algebra (A, a) to (FA,Fa · ζA). As a result,
every FT -coalgebra c : X → FTX can be determinized in the presence of an
EM law [33], yielding an F̃ -coalgebra c# : TX → FTX in EM(T ) as follows:

TX
Tc−−→ TFTX

ζTX−−−→ FTTX
FµX−−−→ FTX

Taking a more abstract perspective, c# is the adjoint transpose of c under L ⊣ R.
We say that states c, d ∈ C are EM-equivalent if ηC(c), ηC(d) ∈ TC are be-
haviourally equivalent in the F̃ -coalgebra (TC, c#). We refer to this equivalence
as EM semantics; when this equivalence can be captured as the kernel of a suit-
able map (in this case, the map assigning to each state its accepted language),
we also refer to this map as the EM semantics. We will later encounter situations
where the codomain of the semantics carries a generalized metric structure, in
which case we will also subsume the induced generalized pseudometric on C
under the moniker ‘EM semantics’.

The standard powerset construction for determinizing nondeterministic au-
tomata is recovered by the following EM law:

Example 6. In Set (i.e. Met2), let T = P be the powerset monad and F =
2×−Σ . The determinization (PC, c#) of an FT -coalgebra (C, c) w.r.t. the EM
law ζ : TF ⇒ FT defined by

ζ(t) =
(∨

(v,f)∈t v, λa.{f(a) | (v, f) ∈ t}
)

for t ∈ P(2 × XΣ) is precisely the powerset construction. Thus, the language
semantics of nondeterministic automata is an instance of EM semantics.

Example 7. More generally, let F = A × −Σ where Σ is discrete, let T be a
monad on Set, and suppose that A carries a T -algebra structure a : TA → A.
Define a natural transformation δ : T (−Σ) ⇒ (T−)Σ by δ(t)(σ) = T (λf.f(σ))(t).
We then have an EM law ζ : T (A × −Σ) ⇒ A × (T−)

Σ given (componentwise)
by

π1 · ζX = (T (A×XΣ)
Tπ1−−→ TA

a−→ A)

π2 · ζX = (T (A×XΣ)
Tπ2−−→ T (XΣ)

δ−→ (TX)Σ).
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The arising EM semantics assigns to each state x a map Σ∗ → A, which may
be thought of as assigning to each word w ∈ Σ∗ the degree (a value in A) to
which x accepts w.

3 Graded Semantics and Graded Logics

Graded semantics [27,8] uniformly captures a wide range of semantics on vari-
ous system types and of varying degrees of granularity as found, for instance, on
the linear-time/branching-time spectrum of labelled transition system seman-
tics [12]. Here, we are interested primarily in applying general results provided
by the framework of graded semantics to the setting of EM semantics, which is,
in essence, subsumed by graded semantics [24,27]. We recall the basic definition
of graded semantics as such, and then give a new perspective on a general notion
of characteristic modal logics for graded semantics, so-called graded logics.

3.1 Graded Semantics

The concepts central to graded semantics are those of graded monads and graded
algebras. These are very similar to those of monads and monad algebras as
recalled in Section 2.3 but, in the mentioned analogy with universal algebra,
equip operations and terms with a depth that, in the application to system
semantics, records the depth of look-ahead; that is, the depth corresponds to
the (exact) number of transition steps considered. We briefly review the formal
definitions.

Definition 8 (Graded Monad). A graded monad M on a category C con-
sists of a family of functors Mn : C → C for n ∈ N, a natural trans-
formation η : Id ⇒ M0 (the unit), and a family of natural transformations
µn,k : MnMk ⇒ Mn+k for all n, k ∈ N (the multiplication) such that for all
n, k,m ∈ N the following diagrams commute:

Mn

M0Mn Mn MnM0

MnηηMn
idMn

µ0,n µn,0

MnMkMm MnMk+m

Mn+kMm Mn+k+m

Mnµ
k,m

µn,kMm µn,k+m

µn+k,m

Definition 9 (Graded semantics). A graded semantics (α,M) for an endo-
functor G : C → C consists of a graded monad M on C and a natural trans-
formation α : G ⇒ M1. If (C, c) is a G-coalgebra, then we define the n-step
behaviour c(n) : C → Mn1, for n ∈ N, by

c(0) = (X
M0!·η−−−−→ M01) c(n+1)(X

α·c−−→ M1X
M1c

(n)

−−−−→ M1Mn1
µ1n

−−→ Mn+11).
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We think of c(n) as assigning to a state in C its behaviour after n steps. We
illustrate this more concretely in Example 12. We are mainly interested in the
case where the base category C is a category of generalized (directed) pseudo-
metric spaces (Section 2.2). In this case, a graded semantics induces a notion of
behavioural distance:

Definition 10 (Behavioural distance). When C is DPMetV (or PMetV ,
MetV), then we define the behavioural distance of two states x, y ∈ C of a
G-coalgebra (C, c) under a graded semantics (α,M) to be

db(x, y) =
∧

n∈N dMn1(c
(n)(x), c(n)(y)).

Remark 11. In case V = 2 (Example 3.1), behavioural distance is two-valued,
and thus in fact constitutes either a preorder (if C is DPMetV) or an equivalence
(if C is PMetV).

Example 12. We recall two basic examples of graded monads [27] and associ-
ated graded semantics, capturing branching-time semantics and EM semantics,
respectively. In both cases, it happens that α is identity; this need not always
be the case, however [8].

1. Any functor F induces a graded monad MF where the functor parts Mn =
Fn are given via repeated application of F and both multiplication and unit
are identity. The arising graded semantics of F -coalgebras is branching-time
semantics, specifically finite-depth behavioural equivalence (which coincides with
behavioural equivalence if F is finitary).

2. Any EM law ζ : TF ⇒ FT induces a graded monad Mζ where Mn = FnT .
The unit of Mζ is the unit of T . We define an iterated distributive law
ζ(n) : TFn ⇒ FnT by putting

ζ(0) = id and ζ(n+1) = TFn+1 ζFn

−−−→ FTFn Fζ(n)

−−−−→ F (n+1)T.

The multiplications of the graded monad Mζ are then given
by µm,n = Fn+mµ · Fmζ(n)T . The arising graded semantics is essentially
EM semantics, in the sense that the latter is obtained by erasing further
information by postcomposing the maps c(n) : C → FnT1 (in the notation
of Definition 9) with Fn! where ! is the unique map T1 → 1. In particular,
the EM semantics and the graded semantics introduced by an EM law for T
agree exactly if T is affine (Section 2.3). Otherwise, the information erased
by Fn! essentially concerns the possibility of executing certain words, without
regard to their acceptance [24, Section 5]. For a concrete example where T
is affine, consider T = D (the distribution monad, cf. Section 2.3) and
FX = [0, 1] × XΣ , with an EM law ζ as per Example 7. Then FT -coalgebras
are reactive probabilistic automata, and for a state x in an FT -coalgebra,
c(n)(x) ∈ FnD1 ∼= Fn1 ∼= [0, 1]Σ

<n

assigns to each word of length < n over Σ
its probability of being accepted.

Note that 1. is the special case of 2. where T = Id .
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We will in fact be interested exclusively in graded monads that are, in the
universal-algebraic view [27,8], presented by operations and equations of depth
at most 1, which intuitively means that identifications among behaviours do
not depend on looking more than one step ahead. Categorically, this notion is
captured as follows [27, Proposition 7.3]:

Definition 13. We say that a graded monad is depth-1 if for all n ∈ N, µ1,n is
a coequalizer in the following diagram:

M1M0MnX M1MnX M1+nX.
µ1,0Mn

M1µ
0,n

µ1,n

Example 14. All graded monads described in Example 12 are depth-1.

The semantics of modalities in graded logics will rely on a graded variant of the
notion of monad algebra:

Definition 15 (Graded algebra). Let M be a graded monad in C, and
n ∈ N ∪ {ω}. A graded Mn-algebra A = ((Ak)k≤n, (a

m,k)m+k≤n) consists of a
family of C-objects Ak and morphisms am,k : MmAk → Am+k satisfying the
following conditions: For m ≤ n, we have a0,m · ηAm

= idAm
and additionally, if

m+ r + k ≤ n, then the left diagram below commutes:

MmMrAk MmAr+k

Mm+rAk Am+r+k

Mmar,k

µm,r
Ak am,r+k

am+r,k

MmAk MmBk

Am+k Bm+k

Mmfk

am,k bm,k

fm+k

A homomorphism of Mn-algebras A and B is a family of maps fk : Ak → Bk such
that the above right diagram commutes for all m+ k ≤ n. For all n ∈ N ∪ {ω},
the collection of Mn-algebras and their morphisms forms a category Algn(M).

The category Alg0(M) is the Eilenberg-Moore category EM(M0) for the (non-
graded) monad (M0, η, µ

0,0). The semantics of modalities in graded logics will
involve a special type of M1-algebras [8]:

Definition 16 (Canonical algebras). For i ∈ {0, 1}, let (−)i : Alg1(M) →
Alg0(M) be the functor taking an M1-algebra A = ((Ak)k≤1, (a

m,k)m+k≤1) to
the M0-algebra (Ai, a

0,i). We say that an M1-algebra A is canonical if it is free
over (−)0, i.e. if for all M1-algebras B and M0-homomorphisms f : (A)0 → (B)0
there is a unique M1-homomorphism g : A → B such that (g)0 = f .

Lemma 17. ([8, Lemma 5.3]) An M1-algebra A is canonical iff the following
diagram is a coequalizer diagram in the category of M0-algebras:

M1M0A0 M1A0 A1
µ1,0

M1a
0,0

a1,0
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Combining Definition 13 with Lemma 17 immediately gives us the following
fact [8], which is a crucial ingredient for invariance of graded logics:

Proposition 18. If M is a depth-1 graded monad, then for every n ∈ N and
every object X, the M1-algebra with carriers MnX, Mn+1X and multiplications
as algebra structure is canonical.

3.2 Graded Logics as a Fragment of Branching-Time Logic

We proceed to recall the general framework of (branching time) coalgebraic
modal logic [29,32] and show that graded logics [27,8] are naturally viewed as a
fragment of coalgebraic modal logic.

Syntactically, a logic is a triple L = (Θ,O, Λ) where Θ is a set of truth
constants, O is a set of propositional operators, each with associated finite arity,
and Λ is a set of modal operators, also each with an associated finite arity. The
set of formulae of L is given by the grammar

ϕ ::= θ | p(ϕ1, . . . , ϕn) | λ(ϕ1, . . . , ϕm)

where p ∈ O is n-ary, λ ∈ Λ is m-ary and θ ∈ Θ.
Semantically, formulae are interpreted in coalgebras of some functor

G : C → C, taking values in a truth-value object Ω of C. We assume that C
has finite products and a terminal object. The semantics of a formula ϕ in a
G-coalgebra (C, c) is a morphism JϕKc : C → Ω. The semantics is parametric in
the following components:

– For each θ ∈ Θ a C-morphism θ̂ : 1 → Ω.
– For each p ∈ O with arity n a C-morphism JpK : Ωn → Ω
– For each λ ∈ Λ a C-morphism JλK : G(Ωn) → Ω

The semantics of formulae is then defined inductively:

– For θ ∈ Θ we define JθKc = C
!−→ 1

θ̂−→ Ω
– For p ∈ O we define Jp(ϕ1, . . . , ϕn)Kc = JpK · ⟨Jϕ1Kc, . . . , JϕnKc⟩
– For λ ∈ Λ we define Jλ(ϕ1, . . . , ϕm)Kc = JλK ·G⟨Jϕ1Kc, . . . , JϕmKc⟩ · c

The following definition of logical distance quantifies over all formulae ϕ of uni-
form depth, meaning that all occurrences of truth constants in ϕ are under the
same number of nested modal operators. This is a mild restriction; in fact, for
the above version of coalgebraic logic, truth constants can always be modelled
as 0-ary propositional operators, for which there is no uniformity restriction.
Uniform depth does come to play a role once we talk about graded logics, where
propositional operators are additionally required to be gM0-algebra homomor-
phisms, while truth constants are not. If M0 is affine, then all C-morphisms
1 → A into M0-algebras A are M0-algebra homomorphisms.

For the rest of the paper, assume that C is one of MetV , PMetV or
DPMetV ; in particular, the truth value object Ω carries the structure of a
V-category.
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Definition 19. The logical distance of states x, y ∈ C in a G-coalgebra (C, c)
under the logic L is

dL(x, y) =
∧

n∈N,ϕ∈Ln
dΩ(JϕKc(x), JϕKc(y))

where Ln is the set of all uniform depth-n L formulae. We say that L is invariant
for (α,M) if db ≤ dL and expressive if db ≥ dL.

It is straightforward to show that the logic defined above is invariant under
behavioural equivalence, i.e. the graded equivalence induced by MG (Exam-
ple 12.1). We want to identify logics that are invariant not only under behavioural
equivalence, but under an arbitrary graded semantics. To this end, we define
graded logics:

Definition 20. Let (α,M) be a graded semantics for G and o : M0Ω → Ω an
M0-algebra structure on Ω. A logic L is a graded logic (for (α,M)) if the following
hold:

1. For every n-ary p ∈ O, the morphism JpK is an M0-algebra homomorphism
(Ω, o)n → (Ω, o).

2. The semantics of λ ∈ Λ factors as JλK = f · αΩn such that the tuple
(Ωn, Ω, o(n), o, f) constitutes an M1-algebra. More concretely, this means
that it satisfies f · µ1,0 = f ·M1o

(n) (we refer to this property as coequaliza-
tion), as well as f · µ0,1 = o ·M0f (homomorphy), or written diagrammati-
cally:

M1M0Ω
n M1Ω

n Ω
M1o

(n)

µ1,0
f

M0M1Ω
n M0Ω

M1Ω
n Ω

M0f

µ0,1 o

f

In many examples (including those discussed in this work), the factorization
in Condition 2 is simplified by the fact that α = id, and just requires that
(Ωn, Ω, o(n), o, JλK) is an M1-algebra. For readability, we restrict the technical
development to unary modalities from now on; treating modalities of arbitrary
arity is simply a matter of adding indices. In examples, modalities will have arity
either 1 or 0.

Proposition 21. Let L be a graded logic for the semantics (α,M) on
G : C → C and (C, c) a G-coalgebra. For two states x, y ∈ C we have that
db(x, y) ≤ dL(x, y).

Proof (Sketch). The proof is based on showing, by induction on ϕ, the stronger
property that the evaluation functions JϕKc of depth-n formulae ϕ factor through
M0-homomorphisms

JϕKM : Mn1 → Ω, (1)

as used in earlier formulations of the semantics [8,9], with canonicity of Mn1
(Lemma 17) being the key property in the step for modalities.
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The proof uses uniformity to enable the factorization of formula evaluation via
a single Mn1, which in general is possible only for uniform-depth formulae. In
general, non-uniform depth formulae of graded logics fail to be invariant. We
provide an example for this fact in the appendix. Recall that when M0 is affine,
then uniform depth is not an actual restriction. Having established invariance,
we next generalize the expressivity criterion for graded logics [8] to our present
quantitative setting:

Definition 22. A graded logic L consisting of Θ, O, Λ is depth-0 separating if
the family of maps {o ·M0θ̂ : M01 → Ω | c ∈ Θ} is initial. Moreover, L is depth-
1 separating if for all canonical M1-algebras A and initial sources A of M0-
homomorphisms (A0, a

0,0) → (Ω, o), closed under the propositional operators
in O, the set

Λ(A) := {JλK(f) : A1 → Ω | λ ∈ Λ, f ∈ A}

is initial, where JλK(f) is the by canonicity unique morphism such that
JλK(f) · a1,0 = JλK ·M1f .

Essentially, the above conditions encapsulate what is needed to push initiality
through an induction on the depth of formulae. We thus obtain

Theorem 23. Suppose that a graded logic L is both depth-0 separating and
depth-1 separating. Then L is expressive.

4 Graded Semantics via Coalgebraic Determinization

From now on, fix a C-endofunctor F , a monad T on C, and an EM law
ζ : TF ⇒ FT . The objective of this section is to show that behavioural equiva-
lences, respectively metrics, on a determinized coalgebra agree with the equiv-
alences/metrics induced by the graded semantics (Lemma 27), and that graded
logics for FT may be reduced to coalgebraic logics for F . We recall the notion
of predeterminization under a graded semantics [10] and show that this is the
same concept as determinization under an EM law, under the condition that the
monad T is affine.

Let M be a graded monad. We have a functor E : Alg0(M) → Alg1(M) that
takes an M0-algebra A to the free M1-algebra over A with respect to (−)0 (which
is then canonical, cf. Definition 16). This gives rise to a functor

M1 = (Alg0(M)
E−→ Alg1(M)

(−)1−−−→ Alg0(M)),

which intuitively takes an M0-algebra of behaviours to the M0-algebra of be-
haviours having absorbed one more step. Since (M0X,M1X,µ0,0

X , µ0,1
X , µ1,0

X ) is
canonical (Proposition 18), we have M1(M0X,µ0,0) = (M1X,µ0,1), or stated
slightly differently, if we denote the free-forgetful adjunction on Alg0(M) by
L ⊣ R, then M1 = RM1L. For a graded semantics (α : G → M1,M) and a coal-
gebra c : C → GC, we have C

α·c−−→ M1C = RM1LC. The adjunction then yields
a unique morphism c† : LC → M1LC, defining a form of determinization under
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the graded semantics, similar to the generalized powerset construction. Specifi-
cally, if M01 = 1, then for x, y ∈ C, η(x) and η(y) are behaviourally equivalent
in c† iff x and y are identified under the graded semantics (α,M). We show next
that

Lemma 24. If M = Mζ then M1 = F̃ .

Proof. Let (A, a) be a T -algebra. Then F̃ (A, a) = (Fa, Fa · ζA). On the other
hand, by Lemma 17, the 1-part of the canonical algebra of M1(A, a) is given by
the following (split) coequalizer:

FTTA FTA FA
FµA

FTa

Fa

FηTA
FηA

Commutativity of all relevant paths is obvious from the algebra and monad
axioms, implying that the diagram is a coequalizer diagram by virtue of being
a split coequalizer. Then (A,FA, a, Fa · ζA, Fa) defines a canonical M1-algebra
where coequalization, as well as canonicity (due to Lemma 17), are by the above
coequalizer, and homomorphy instantiates to the outer paths of the following
diagram:

TFTA FTTA FTA

TFA FTA FA

ζTA

TFa

Fµ

FTa Fa

ζA Fa

Commutativity of the outer rectangle follows from the fact that the left square
commutes by naturality of ζ and the right square commutes by virtue of (A, a)
being a T -algebra. Taking the 1-part of this canonical algebra then leaves us with
(Fa, Fa · ζA). On morphisms h : (A, a) → (B, b), the lifting F̃ acts by sending h
to Fh. Commutativity of the relevant diagram making Fh a T -algebra morphism
between FA and FB is easily checked, as is the fact that (h, Fh) constitutes a
morphism between the canonical M1-algebras.

Lemma 25. Let (C, c) be an FT -coalgebra and c† the predeterminization under
the graded semantics Mζ . Then c# = c†.

Proof. This follows from the fact that c# can equivalently be defined as the
adjoint transpose of c under the free-forgetful adjunction of EM(T ) [33]. Then
c# and c† agree by definition.

Definition 26. Let T : C → C be a monad and H : EM(T ) → EM(T )
a functor on the corresponding Eilenberg-Moore category. Further, let
c : ((A, dA), a) → H((A, dA), a) be an H-coalgebra. The finite-depth behavioural
distance of two states x, y ∈ A is given by dH(x, y) =

∧
i∈N dHi1(fi(x), fi(y)),

where the fi : A → Hi1 are the projections into the final H-chain.

Lemma 27. Let (α : G → M1,M) be a graded semantics on C with M0 affine,
and let (C, c) be a G-coalgebra. Then dM1(η(x), η(y)) = db(x, y) for all x, y ∈ C.
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Proof. One shows by induction on n that fn · η = c(n) for all n, where affinity is
needed for the base case n = 0.

Remark 28. In the case where the graded monad is Mζ , if T is affine, then the
final chain of M1 lives over the final chain of F . In particular, if F is finitary
and V = 2, then finite-depth behavioural equivalence agrees with behavioural
equivalence, for both F -coalgebras and M1-coalgebras.

Remark 29. As noted in Example 12.2, finite-depth behavioural distance in
EM(T ) may be coarser than the graded semantics but may then be canonically
recovered from the graded semantics.

From now on, we notationally conflate modalities λ ∈ Λ and their interpreta-
tions JλK : FTΩ → Ω. The following result completely characterizes the modal
operators of graded logics for the semantics (id ,Mζ):

Theorem 30. Let λ : FTΩ → Ω be a modal operator for a graded logic with
truth value object (Ω, o). Then λ = evλ · Fo for some algebra homomor-
phism evλ : F̃ (Ω, o) → (Ω, o). On the other hand, every algebra homomorphism
F̃ (Ω, o) → (Ω, o) yields a modal operator in this way.

As our second main result, we next show that a logic is depth-1 separating for
the semantics of Mζ if the F -algebra part of its modal operators is expressive for
F . This criterion is typically very easy to establish and can be shown for general
classes of functors, which is what we mean by our slogan that expressive graded
logics for EM semantics come essentially for free.

Theorem 31. Let L = (Θ,O, Λ) be a graded logic for Mζ and L′ = (Θ,O, Λ′)
the (graded) logic for MF with Λ′ = {f : FΩ → Ω | f · Fo ∈ Λ}. Then L is
depth-1 separating for Mζ if L′ is depth-1 separating for MF .

Proof. Let A be a canonical M1-algebra. Since M1 = F̃ , we know that A has the
form (A0, FA0, a

0,0, Fa0,0 ·ζ, Fa0,0). For a homomorphism h : (A0, a
0,0) → (Ω, o)

of T -algebras and λ ∈ Λ where λ = f · Fo, λ(h) is, by definition, the unique
morphism that makes the outer rectangle in the following diagram commute:

FTA0 FTΩ

FΩ

FA0 Ω

FTh

Fa0,0

Fo

f

λ(h)

Fh

The top square commutes since it is just F applied to the homomorphism
square of h. Since a0,0 is a split epimorphism (by virtue of being an algebra
for a monad), Fa0,0 is also a split epimorphism. Therefore, λ(h) = f · Fh. Let
A ⊆ EM(T )((A0, a

0,0), (Ω, o)) be a separating set of algebra homomorphisms;
we have to show that Λ(A) is separating. But since λ(h) = f · Fh for all h ∈ A
and λ = f ·Fo ∈ Λ, we have Λ′(A) = {f ·Fh | f ∈ Λ′, h ∈ A} = Λ(A), and Λ′(A)
is spearating by depth-1 separation for L′.
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5 Examples

In our central examples, F takes the form V × (−)Σ while T varies. In
these cases, we always have a set of separating modalities: We have the set
Λ′ = {evσ | σ ∈ Σ} ∪ {ev⊤} of modalities for F , where evσ : V × VΣ → V is a
unary operator defined by (v, f) 7→ f(σ), and ev⊤ : V×1Σ → V is the 0-ary oper-
ator defined by (v, f) 7→ v. For a monad T and an algebra structure o : TV → V,
the semantics of each evλ ∈ Λ′ extends to a modal operator ⟨λ⟩ for FT , given
by ⟨λ⟩ = evλ · Fo. We thus have coalgebraic logics L′ = (∅, ∅, Λ′) for F and
L = (∅, ∅, Λ) for FT .

Lemma 32. Let F = V × −Σ. Let T be a monad and F̃ : EM(T ) → EM(T ) a
lifting of F . Moreover, suppose that V carries a T -algebra structure o : TV → V.
Then, for every evλ ∈ Λ′, the semantics evλ is a homomorphism of algebras
F̃ (V, o) → (V, o)

Proof. Since the evλ are just product projections, this follows from the fact that
the forgetful functor U : EM(T ) → C creates limits [1, Proposition 20.12].

Corollary 33. Let ζ be defined as in Example 7. The logic L as defined above
is a graded logic for the graded semantics (id ,Mζ).

Lemma 34. The logic L′ as defined above is depth-1 separating for the graded
semantics (id ,MF ).

Proof. By Proposition 18, canonical M1-algebras have the form A =
(A0, FA0, id , id , id). Let A be a canonical M1-algebra and A an initial source
A0 → V; we then need to show that the lower edges in the following diagram
collectively form an initial source, where f ranges over A:

FA0 FV

FA0 V
id

Ff

evλ

evλ(f)

Since the modal operators evλ are precisely the projections of the product FV,
they constitute an initial source; moreover, again since F is a product, it pre-
serves initial sources, so the source of all Ff is initial. Thus, Λ(A) is a composite
of initial sources, hence itself initial.

Words in Σ∗ can be viewed as formulae of L in the obvious way. The evaluation
JϕKc then captures the notion of acceptance in the automaton given by the FT -
coalgebra (C, c). Logics in general however allow to express far more interesting
statements, since on the one hand formulae may specify words only up to a
suffix, and on the other hand the logic may include propositional operators. We
consider a few concrete examples:
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Example 35 (Deadlock-free nondeterministic automata). We take
V = 2, and work in the category Met2 of sets and functions. Concretely, this
means that all objects carry the discrete equivalence relation, and initiality of a
source is joint injectivity. If T is the nonempty powerset monad P+, then coal-
gebras c : C → 2× (P+C)Σ are deadlock-free nondeterministic automata. With
the algebra structure o : P+2 → 2 defined by o(X) = ⊤ if ⊤ ∈ X and o(X) = ⊥
otherwise, we can construct a distributive law ζ as in Example 7. Since, by
Lemma 34, L is depth-1 separating for 2 × −Σ , we have that by Theorem 31
the logic L is expressive for (id,Mζ). We can add disjunction as a propositional
operator, preserving invariance of the logic, since disjunction preserves joins (i.e.
is a homomorphism of P+-algebras).

Example 36 (Reactive probabilistic automata). For V = [0, 1]⊕, we con-
sider reactive probabilistic automata. Let T be the (finitely supported) probabil-
ity distribution monad D on PMet[0,1]⊕ , which equips the set of distributions
with the Kantorovich metric (e.g. [2]). We put Ω = [0, 1], equipped with the
symmetrized metric d(x, y) = |x−y|. We have an algebra o : D[0, 1] → [0, 1] tak-
ing expected values: o(µ) =

∑
v∈[0,1] vµ(v). The construction in Example 7 then

yields a semantics where, intuitively, the first component of F determines the
probability of a state to accept. Upon reading a letter a, the automaton moves
to a random successor state according to the probability distribution on states
associated with a. The evaluation JϕKc(x) is then the expected probability of the
state x ∈ C of an automaton (C, c) accepting the word corresponding to ϕ. The
distance of two states x, y ∈ C is the supremum in difference of acceptance across
all words in Σ∗. Again we have expressivity of L by combining Lemma 34 and
Theorem 31. The logic remains invariant w.r.t. the semantics when extended with
propositional operators that are homomorphisms [0, 1]n → [0, 1] of D-algebras,
which in this case means they are affine maps, such as convex combinations or
fuzzy negation x 7→ 1− x.

Example 37 (Reactive probabilistic automata with black hole termi-
nation). Going beyond the leading example F = V × (−)Σ , we add explicit
failure in the vein of [35] to reactive probabilistic automata: We now take V = 2,
and again view Met2 as the category of sets and functions (Example 35). Let
Ω = [0, 1], equipped with the D-algebra structure o : D[0, 1] → [0, 1] that takes
expected values. We obtain a distributive law D(2×−+1)Σ ⇒ 2× ((D−)+1)Σ

by composing the distributive law from Example 7 with the law λ : D(−+1) ⇒
(D−)+1 that maps µ ∈ D(X +1) to ∗ iff µ(∗) ̸= 0, and to µ otherwise, where ∗
denotes the unique element of 1. The semantics for this type of automaton is
like that of probabilistic automata, with the exception that if a run leads to
the “state” ∗ with non-zero probability, then the automaton immediately gets
stuck and rejects the word. For the logic, we consider the same operators as in
the previous examples, with the modification that evσ(v, f) = ⊥ if f(σ) = ∗.
Additionally we introduce the modal operator evσ̄, which carries the semantics
evσ̄(v, f) = ⊤ if f(σ) = ∗ and evσ̄(v, f) = ⊥ otherwise. It is straightforward
to check that these operations define D-algebra homomorphisms, making them
valid modalities according to Theorem 30.
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To verify expressivity, it is sufficient by Theorem 31 to prove separation
of elements of 2 × (X + 1)Σ , so let A be an initial set of morphisms of type
X → 2. Given s, t ∈ 2 × (X + 1)Σ such that d(s, t) = ⊥, we need to find evλ

and h ∈ A (or just evλ if evλ is 0-ary) such that evλ(h)(s) ̸= evλ(h)(t). If
s = (v, f) and t = (w, g) differ in their first component v ̸= w, we can choose
ev⊤. If the elements differ in one of the other components σ, we distinguish
cases: If x = f(σ) ̸= ∗ ̸= g(σ) = y, then there is h ∈ A separating x from
y, thus evσ(h)(x) ̸= evσ(h)(y). Otherwise, if f(σ) = ∗ ̸= g(σ), we can choose
evσ̄ to separate s and t, and similarly for the symmetric case. We thus obtain
expressiveness in the two-valued sense, i.e. the logic distinguishes non-equivalent
states. Like in the previous example, the logic remains invariant when extended
with propositional operators that are affine maps [0, 1]n → [0, 1].

6 Conclusion

We have discussed characteristic logics for system semantics arising via deter-
minization in the coalgebraic powerset construction, so-called Eilenberg-Moore
semantics, which relies on a distributive law of a functor representing the lan-
guage type of a system over a monad representing the branching type [33].
Leading examples are languages semantics for various forms of automata. As
our main technical tool, we have exploited that Eilenberg-Moore semantics may
be cast as an instance of graded semantics, which provides generic mechanisms
for designing invariant modal logics and establishing their expressiveness. Our
first main result establishes an overview of all graded modalities available for
Eilenberg-Moore semantics, showing that these are canoincally obtained from
modalities for the language type and a single modality for the branching type.
Our second main result shows that expressivity of such a logic follows from
branching-time expressivity of the same collection of operators with respect to
the language type. Our results are stated in quantalic generality, allowing for
instantiation to both two-valued and quantitative types of semantics and logics.

An important next step in the programme of developing graded logics into a
verification framework is the question of how graded semantics relates to fixpoint
logics. While we have focused on Eilenberg-Moore semantics in the present work,
graded semantics does also subsume Kleisli-style trace semantics [13], which
poses additional challenges for the design of characteristic modal logics, in par-
ticular in the quantitative setting.
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A Proofs for Section 3 (Graded Semantics and Graded
Logics)

Proposition 21. Let L be a graded logic for the semantics (α,M) on
G : C → C and (C, c) a G-coalgebra. For two states x, y ∈ C we have that
db(x, y) ≤ dL(x, y).

Proof. We define an evaluation of formulae on the semantic objects as mor-
phisms JϕKM : Mn1 → Ω, and show that JϕKc = JϕKM · c(n). Let x, y ∈ C
be states of a coalgebra (C, c). The claim then follows from the fact that
db(x, y) ≤ dMn1(c

(n)(x), c(n)(y)) and the JϕKM are V-functors. We define the
semantics J·KM:

– JθKM = M01
M0θ̂−−−→ M0Ω

o−→ Ω for θ ∈ Θ

– Jp(ϕ1, . . . , ϕn)KM = JpK · ⟨Jϕ1KM, . . . , JϕnKM⟩ for p ∈ O n-ary
– JλϕKM = f(JϕKM) for λ ∈ Λ (we continue to restrict to unary modalities)

where f in the clause for modal operators comes from canonicity of
(Mn,Mn+1, µ

0,n, µ0,n+1, µ1,n) (Proposition 18), that is, f(⟨Jϕ1KM, . . . , JϕmKM⟩)
is the, by freeness unique, morphism that makes the following square commute:

M1Mn1 M1(Ω)

Mn+11 Ω

M1JϕKM

µ1n f

f(JϕKM)

(2)

It is straightforward to show by induction on the depth of ϕ that the morphism
JϕKM defines a homomorphism of M0-algebras from (Mn1, µ

0,n) to (Ω, o), which
is needed for JλϕKM to be defined.

Now fix a coalgebra (C, c) and a uniform-depth formula ϕ of L. We prove the
claim that JϕKc = JϕKM · c(n) by structural induction on ϕ.

For the case of ϕ = θ ∈ Θ we have, by unrolling definitions, that JθKc = θ̂·!X
and JϕKM · c(n) = o ·M0θ̂ ·M0!X · ηX , which are the outer paths in the following
diagram:

X 1 Ω

M0X M01 M0Ω Ω

!

ηX η1

θ̂

ηΩ
id

M0! M0θ̂ o

The squares commute due to naturality of η, while commutativity of the triangle
is implied by o being an M0-algebra. The step for formulae of the form ϕ =
p(ϕ1, . . . , ϕn) is immediate from definitions. For ϕ = λϕ′ with ϕ′ of uniform
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depth n, we have

JϕKc = JλK ·GJϕ′Kc · c
= f · αΩ ·GJϕ′Kc · c
= f ·M1Jϕ′Kc · αX · c (naturality of α)

= f ·M1Jϕ′KM ·M1c
(n) · αX · c (IH)

= f(Jϕ′KM) · µ1n ·M1c
(n) · αX · c (2)

= JϕKM · c(n+1)

Details for failure of invariance of non-uniform depth fomulae As a
counterexample, consider the Kleisli-style graded monad, i.e. Mn = TFn where
the monad part T = P, functor FX = X ×X, and the Kleisli distributive law
ζ : FT → TF given by ζ(A,B) = X × Y for A,B ⊆ X. These data induce
a minimal form of tree-shaped-trace semantics: For a state x in a TF -coalgebra
(C, c), c(n)(x) ∈ TFn1 = P1 records whether the complete binary tree of depth n
can be executed at x. We define a graded logic L over (Ω, o), where Ω = {⊥,⊤}
and o : PΩ → Ω takes suprema. The logic contains a truth constant ⊤, where
⊤̂ : 1 → Ω is the constant map to ⊤. We also have a binary modal operator ♢,
with J♢K : P(Ω2 × Ω2) → Ω defined as J♢K(S) = o(Pπ1(S)) ∧ o(Pπ4(S)) where
πi is the i-th projection of Ω2 × Ω2 ∼= Ω4; that is, ♢(ϕ1, ϕ2) evaluates to ⊤, if
there is a successor pair whose first component satisfies ϕ1 and whose second
component satisfies ϕ2. We define a TF -coalgebra ({x, y, z}, c) where c(x) =
{(z, z)}, c(y) = {(x, z)}, and c(z) = ∅. Then x and y disagree on the non-
uniform formula ♢(♢(⊤,⊤),⊤), even though x and y are equivalent under the
graded semantics.

Theorem 23. Suppose that a graded logic L is both depth-0 separating and
depth-1 separating. Then L is expressive.

Proof. We utilize the semantics J−KM, defined in the proof of Proposition 21. It
suffices to show that the family of maps

{JϕKM : Mn1 → Ω | ϕ is a uniform depth-n L formula}

is initial for each n. We proceed by induction on n. The base case n = 0 is
immediate by depth-0 separation. For the inductive step, let A denote the set
of evaluations Mn1 → Ω of depth-n formulas. By the induction hypothesis, A is
initial. By definition, A is closed under propositional operators in O. By depth-1
separation, it follows that set

{JλK(JϕK) : Mn+1 → Ω | λ ∈ Λ, ϕ a uniform depth-n formula}

is initial, proving the claim.
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B Proofs for Section 4 (Graded Semantics via
Coalgebraic Determinization )

Theorem 30. Let λ : FTΩ → Ω be a modal operator for a graded logic
with truth value object (Ω, o). Then λ = evλ · Fo for some algebra homomor-
phism evλ : F̃ (Ω, o) → (Ω, o). On the other hand, every algebra homomorphism
F̃ (Ω, o) → (Ω, o) yields a modal operator in this way.

Proof. Since λ is an M1-algebra structure and thus satisfies the coequaliza-
tion property, it factors through the coequalizer of µ1,0

Ω : M1M0Ω → M1Ω
and M1o : M1M0Ω → M1Ω, which, by definition, is given by M1(Ω, o) =
(FΩ,Fo · ζΩ), as displayed in the following diagram:

FTTΩ FTΩ Ω

FΩ

FµΩ

FTo
Fo

λ

evλ

To show that evλ is a homomorphism of T -algebras consider the following dia-
gram:

FTΩ Ω

FΩ

FTTΩ FTΩ

TFΩ

TFTΩ TΩ

Fo

λ

evλ

Fµ

FTo

Fo

Tevλ

ζΩ

Tλ

TFo

ζTΩ

o

The outer square commutes by homomorphy of λ. The top triangle commutes
by coequalization, as does the bottom triangle, since it is just T applied to
the top triangle. The left top square commutes since o is a T -algebra structure
and the left bottom square commutes by naturality of ζ. It follows that the
right hand square precomposed with TFo commutes. TFo is a split coequalizer,
and therefore an epimorphism. Therefore by canceling TFo we have that the
right hand square commutes, which is precisely the condition for evλ to be a
homomorphism of T -algebras.

Conversely, given a morphism evλ : F̃ (Ω, o) → (Ω, o) it is straight forward to
check that λ = evλ · Fo satisfies the laws necessary to make it an M1-algebra
main structure.
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