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A SAMPLING LOVÁSZ LOCAL LEMMA FOR LARGE DOMAIN SIZES

CHUNYANG WANG, YITONG YIN

Abstract. We present polynomial-time algorithms for approximate counting and sampling solutions to

constraint satisfaction problems (CSPs) with atomic constraints within the local lemma regime:

?�2+>@ (1) . 1.

When the domain size @ of each variable becomes sufficiently large, this almost matches the known lower

bound ?�2 & 1 for approximate counting and sampling solutions to atomic CSPs [BGG+19, GGW22],

thus establishing an almost tight sampling Lovász local lemma for large domain sizes.
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1. Introduction

Constraint satisfaction problems (CSPs) are ubiquitous in Computer Science, and their solution
spaces have been a subject of great research interest. A CSP is represented by a collection of constraints
defined on a set of variables, where a solution is an assignment of variables such that all constraints are
satisfied. A cornerstone tool in studying CSP solution spaces is the Lovász local lemma [EL75], which
establishes the following sufficient condition for the existence of a CSP solution by interpreting the
space of assignments as a product probability space and the violation of each constraint as a bad event:

(1) e?(� + 1) ≤ 1,

where ? stands for the maximum violation probability of each constraint, and � stands for the depen-
dency degree, given by the maximum number of other constraints that a constraint can share variables
with. �is condition (1) was later shown to be essentially tight [She85]. Subsequent work on the al-
gorithmic Lovász local lemma seeks to constructively find a CSP solution by efficient algorithms. �is
has led to a long line of research [Bec91, Alo91, MR99, CS00, Sri08, Mos09, MT10], culminating in al-
gorithms for efficiently finding a CSP solution up to the condition in (1). Together, these contributions
establish a sharp threshold for the existence/construction of CSP solutions.

On the other hand, a considerable amount of work has been focused on the counting/sampling Lovász

local lemma [BGG+19, HSZ19, Moi19, GLLZ19, FGYZ21a, FHY21, JPV21a, JPV21b, HSW21, GGW22,
QWZ22, FGW22, HWY22, HWY23a, QW24], which aims to characterize a local lemma type regime
under which the problem of (approximately) counting or (almost uniformly) sampling CSP solutions is
tractable. Hardness results in [BGG+19, GGW22] have shown that this counting/sampling variant of
LLL requires a strictly stronger condition ?�2 . 1, where . hides lower-order factors and constants.
�is holds true even when restricted to some canonical sub-classes of CSPs, such as :-CNFs or hyper-
graph colorings. Regarding upper bounds, the current state-of-the-art [HWY23a] shows that count-
ing/sampling CSP solutions is efficiently solvable under the condition ?�5 . 1. However, the correct
threshold for the counting/sampling LLL is not yet clear. �e following question is fundamental to our
understanding of the critical phenomenon for counting and sampling CSP solutions:

Is ?�2 . 1 the correct threshold for the counting/sampling Lovász local lemma?

Despite numerous works on the topic and successive improvements on the algorithmic threshold,
current techniques have encountered barriers towards closing such gaps due to their reliance on a
“freezing” paradigm. Originally introduced by Beck [Bec91] to handle the non-self-reducibility of the
local lemma regime, the “freezing” paradigm ensures that a local lemma type condition is invariantly
satisfied under arbitrary pinnings produced in the process of incrementally constructing a satisfying
CSP solution, which imposes slackness in the local lemma regime. As a result, the best upper bound
obtained using this paradigmwas ?�4 . 1 [Sri08, Alo91, MR99], where the extra �3 factor came from
the use of a structure called {2, 3}-tree.

In the realm of the counting and sampling Lovász local lemma, Beck’s technique is highly prevalent.
Moitra’s seminal work [Moi19] on counting :-SAT solutions introduced the method of “mark/unmark”,
where a local lemma type condition is preserved under arbitrary pinning of marked variables. �is
“mark/unmark” method also introduced slackness in the local lemma regime, and can be viewed as a
static version of the “freezing” paradigm. Subsequently, this static version of “freezing”was generalized
to non-static se�ings [GLLZ19, JPV21b, HWY22, HWY23a, HWY23b], and also enabled the develop-
ment of several Markov chain Monte Carlo approaches [FGYZ21a, FHY21, JPV21a, HSW21, GGGHP22,
CMM23] for fast sampling. To this day, the current best regime ?�5 . 1 for sampling general CSPs
still relies on the idea of “freezing”. �e slackness in this case arises from the use of a structure called
generalized {2, 3}-trees [HWY22, HWY23a], which is similar to the source of slackness in [Sri08].

�ese advancements suggest a barrier in the current approach to counting and sampling LLL. Novel
techniques are required to establish a tight counting and sampling Lovász local lemma.

1.1. Our results. In this work, we establish the tractability of approximate counting and sampling
solutions to atomic constraint satisfaction problems within an improved local lemma regime. As the
domain size of each variable increases, this condition approaches ?�2 . 1, providing a positive answer
the major open question on counting and sampling LLL, particularly for large domain sizes.
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A CSP instance (or a CSP formula) is denoted by Φ = (+,Q, C). Here, + is a set of = = |+ | variables;
each variable E ∈ + is endowed with a finite domain &E , altogether Q ,

⊗
E∈+ &E; and C is a set of

constraints, where each constraint 2 ∈ C is a function 2 :
⊗

E∈vbl(2) &E → {True, False} defined on

a subset of variables, denoted by vbl(2) ⊆ + . A CSP formula Φ = (+,Q,C) is called atomic if each
constraint 2 ∈ � is violated by exactly one assignment in the domain of 2, i.e., |2−1(False) | = 1. �e
atomicity of constraints is typical for many classical constraint satisfaction problems, including :-CNF
and hypergraph colorings1, and is a natural assumption in previous studies of LLL [AI14, HV15, Kol16,
HS17a, HS17b, HS19, AIS19, Har21, FHY21, JPV21a, HSW21].

Given a CSP formula Φ = (+,Q, C), we use P to denote the uniform (product) distribution over all
possible assignments in Q. �e following parametersΦ can be defined:

• width : , max
2∈C
|vbl(2) |;

• minimum domain size @min , min
E∈+
|&E |;

• maximum domain size @max , max
E∈+
|&E |;

• dependency degree � , max2∈� |{2
′ ∈ C \ {2} | vbl(2) ∩ vbl(2′) ≠ ∅}|;

• maximum violation probability ? , max
2∈C
P[¬2].

�e following condition characterizes the local lemma regime achieved in this paper.

Condition 1. Φ = (+,Q, C) is an atomic CSP formula satisfying

(2) (8e)3 · ? · (� + 1)2+Z ≤ 1,

where

Z =
2 ln(2 − 1/@min)

ln @min − ln(2 − 1/@min)
.

Our main results are the following algorithms for counting/sampling LLL under Condition 1.

�eorem 1.1 (counting LLL). Assume Condition 1 for Φ = (+,Q, C). �ere exists a deterministic algo-

rithm that, given any Φ and any Y ∈ (0, 1), outputs an estimate /̂ such that

(1 − Y)/Φ ≤ /̂ ≤ (1 + Y)/Φ

within time $
((
=
Y

)poly(:,�,log @max)
)
, where /Φ represents the number of solutions to Φ.

�eorem 1.2 (sampling LLL). Assume Condition 1 for Φ = (+,Q, C). �ere exists an algorithm that,

given any Φ and any Y ∈ (0, 1), outputs a random assignment - ∈ Q distributed as ˆ̀ such that

3TV ( ˆ̀, `Φ) ≤ Y

within time$
( (
=
Y

)poly(:,�,log @max)
)
, where `Φ represents the uniform distribution over all solutions toΦ.

Remark 1.3 (local lemma regime). �e Z = Z (@) in Condition 1 decreasesmonotonically as @ increases.
In particular, as @ tends to infinity, Z approaches 0, leading Condition 1 to approach ?�2 . 1, which
matches the ?�2 & 1 lower bound [BGG+19, GGW22]. Conversely, with @ = 2 (the Boolean domain),
Z achieves its maximum value of log4/3 (9/4) ≈ 2.82. In this case, Condition 1 becomes ?�4.82 . 1,

improving upon the previous best upper bound of ?�5 . 1 for counting/sampling LLL [HWY23a].

Remark 1.4 (non-uniform width). Condition 1 does not involve the width : , making it applicable to
CSP formulas with non-uniform widths. �is aspect is particularly desirable from the LLL perspective.
Previously, such generality was only a�ained in [FHY21] under the local lemma condition ?�350 . 1.

Remark 1.5 (time complexity). �e $
((
=
Y

)poly(:,�,log @)
)
time complexities of �eorems 1.1 and 1.2

alignwith previous results for deterministic counting LLL [Moi19, GLLZ19, JPV21b, HWY23a, FGW+23].
In fact, such complexity bounds with :, � in the exponents appear to be intrinsic to deterministic ap-
proximate counting to this day, which relies on exhaustive enumerations of local structures.

We then apply our results to two typical classes of atomic CSPs: hypergraph @-colorings and :-CNF.

1For hypergraph @-colorings, each hyperedge may correspond to @ atomic constraints, each of which forbids the edge to

be colored monochromatically with one particular color.
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1.1.1. Application to hypergraph colorings. Let � = (+, E) be a :-uniform hypergraph, where |4 | = :
for all 4 ∈ E . A proper hypergraph @-coloring - ∈ [@]+ assigns one of the @ colors to each E ∈ + ,
ensuring no edge is monochromatic. We denote Δ as the maximum degree of the hypergraph, i.e., each
vertex belongs to at most Δ hyperedges. Hypergraph colorings are foundational combinatorial objects
that have been a key to the discovery of the Lovász Local lemma [EL75]. �e local lemma was initially

devised to show that a proper @-coloring exists if @ ≥ �Δ
1

: , where � is a sufficiently large constant.
For the problem of approximate counting/sampling proper hypergraph @-colorings, the standard lo-

calMarkov chains are efficient for samplingwhen @ ≥ �Δ for some constant� [BDK06, BDK08], which
is also necessary for the irreducibility of local Markov chains [FM11]. For simple hypergraphs, where
any two distinct hyperedges share at most one vertex, it has been shown that local Markov chains

rapidly mix when @ ≥ max{�: log =, 500:3Δ
1

:−3 } [FM11, FA17], for hypergraphs with = vertices. �e
first result for efficiently approximate counting/sampling hypergraph colorings under LLL condition
is [GLLZ19]. By adaptingMoitra’s technique to a non-static “freezing”, they obtained polynomial-time

algorithms in the local lemma regime @ ≥ 357Δ
14

:−14 for : ≥ 28. �is regime has been improved in sev-
eral subsequent works [FHY21, JPV21b, JPV21a, HSW21], resulting in the current best upper bound

@ ≥ 310Δ
3

:−3 for : ≥ 24 in [JPV21a, HSW21]. On the lower bound side, it was proved in [GGW22]

that no efficient algorithm exists for the problem when @ & Δ
2

: unless NP=RP.
Our results produce the following corollary on counting/sampling proper hypergraph @-colorings,

closing the gap between the current upper and lower bounds for the problem.

Corollary 1.6 (counting/sampling hypergraph @-colorings). For any Z > 0, there exists a finite @0 such

that given any :-uniform hypergraph � = (+, E) on = vertices with maximum degree Δ and @ ≥ @0

colors, if : ≥ 8 and

@ ≥ 70Δ
2+Z
:−2−Z ,

then for any Y ∈ (0, 1):

• (approximate counting) the total number of proper @-colorings of � can be estimated within rela-

tive error 1 ± Y deterministically within time $
( (
=
Y

)poly(:,�,log @)
)
;

• (almost uniform sampling) an almost uniform random @-coloring - ∈ [@]+ can be generated

within time $
((
=
Y

)poly(:,�,log @)
)
, such that the distribution of - is Y-close (in total variation

distance) to the uniform distribution over all proper @-colorings of �.

�e @0 = @0 (Z) in Corollary 1.6 grows as @0 = exp($ (1/Z)) in Z .

1.1.2. Application to :-CNF. A standard se�ing for LLL is the :-CNF (conjunctive normal form) with
uniform width : and maximum variable-degree 3. A CNF is called a (:, 3)-formula if each clause has
exactly : distinct variables and each variable is contained in at most 3 distinct clauses.

For approximate counting/sampling :-CNF solutions, the breakthrough of Moitra [Moi19] was the
first to give an efficient algorithm in the LLL regime : ≥ 60 log : + 60 log 3 + 300. �is bound was
then improved in a series of works [FGYZ21a, JPV21b, JPV21a, HSW21, HWY23a], with the current
best bound given in [HWY23a] as : ≥ 5 log 3 + 5 log : + $ (1). �e lower bound proved in [BGG+19]
says that unless NP=RP, : & 2 log 3 + 2 log : is necessary for efficient algorithms to exist.

Our results improve the current best bound for approximate counting/sampling :-CNF solutions.

Corollary 1.7 (counting/sampling :-CNF solutions). Given any (:, 3)-formula Φ on = variables, if

: ≥ 4.82 log : + 4.82 log 3 + 5,

then for any Y ∈ (0, 1):

• (approximate counting) the total number of satisfying assignments for Φ can be estimated within

relative error 1 ± Y deterministically within time $
((
=
Y

)poly(:,�,log @)
)
;

• (almost uniform sampling) an almost uniform random satisfying assignment - ∈ {True, False}+

can be generated within time $
( (
=
Y

)poly(:,�,log @)
)
, such that the distribution of - is Y-close (in

total variation distance) to the uniform distribution over all satisfying assignments for Φ.
4



1.2. Technique overview. We then outline our general approach for the main results (�eorems 1.1
and 1.2) and provide a brief overview of the techniques.

Our high-level approach falls into the following two-step framework:

(1) In the first step, we construct a coupling between the joint distributions defined by two CSP
instances that differ locally. We manage to show that the discrepancy in this coupling decays
at an exponential rate in the local lemma regime characterized by Condition 1.

(2) Next, we leverage the coupling constructed in the first step to devise a linear program. By mim-
icking the transitions of the coupling procedure, this linear program can efficiently bootstrap
the marginal ratios as long as the original coupling procedure converges efficiently.

�is LP-based framework for counting LLL was initiated in the seminal work of Moitra [Moi19] and
was subsequently generalized and refined in [GLLZ19, GGGY20, JPV21b].

Despite this high-level framework, our method differs fundamentally from all previous works and
circumvents the barrier encountered by the previous approaches.

Our method completely dispenses with the “freezing” paradigm relied upon in previous works to
establish correlation decay properties in the local lemma regime. In addition, it also eliminates the need
for ensuring a “factorization property” that a�er properly pinning the marked variables, the residual
formula breaks down into logarithmic-sized connected components, which was required in previous
works to achieve counting/sampling using marginal estimators through an exhaustive enumeration.2

Specifically, we introduce a novel constraint-wise coupling, whose exponential decay of correlation
is due to an average-case percolation-style analysis, thus avoiding to preserve a local-lemma-type con-
dition with respect to a worst-case pinning. Also, we propose a “constraint-wise self-reducibility” for
local lemma regime to replace the “factorization property” to obtain counting/sampling algorithms,
providing a new perspective for sampling/counting LLL. Next, we provide a more in-depth discussion.

1.2.1. Constraint-wise coupling with exponential decay of correlation. �e correlation decay properties
have been a key to approximate counting and sampling in many classic and contemporary works
[Dob70, GMP05, Wei06, BGK+07, SST12, LLY13, LY13, YZ13, GKM15, PR17, LSS19, ALO20, CLV20,
CGŠV21, FGYZ21b]. For sampling CSP solutions, the correlation decay properties have also been
used explicitly or implicitly in various previous algorithmic results [HSZ19, Moi19, BGG+19, GLLZ19,
GGGY20, FGYZ21a, FHY21, JPV21a, JPV21b, HSW21, QWZ22, FGW22, HWY22, GGGHP22, HWY23a,
FGW+23, CMM23, HWY23b].

Fix the variable set+ with domain Q, and for any set of constraints C use `C to denote the uniform
distribution over solutions toΦ = (+,Q,C). Our work establishes a correlation decay property within
the local lemma regime of Condition 1. Such a correlation decay property is captured by the decay
of discrepancy in a novel constraint-wise coupling between `C and the distribution with one fewer
constraint `C\{20} (formally stated in �eorem 3.1).

We expose the idea of this coupling. Decompose `C\{20} using the law of total probability:

`C\{20} = `C\{20} (20) · `C + `C\{20} (¬20) · `C\{20} (· | ¬20).

Inspired from this, we can establish a coupling between `C and `C\{20} as follows:

• with probability `C\{20 } (20), establish a coupling between between identical distributions `C
and `C , which can already be perfectly coupled;
• with probability `C\{20 } (¬20), establish a coupling between between `C\{20} (· | ¬20) and `C .

Here, in the la�er case, a negated constraint ¬20 was introduced into the distribution. For atomic CSP,
this will force the assignment on vbl(20) to be the unique violating assignment c = False(20).

To address this issue, we further decompose `C as follows:

`C =
∑

d∈Qvbl(20 )

`C (d) · `C (· | d),

which inspire us to achieve the coupling in this case as: first, sample d ∼ `C,vbl(20 ) according to the
marginal distribution `C,vbl(20 ) induced by `C on vbl(20), and then, establish the coupling between the
conditional distributions `C\{20} (· | c) and `C (· | d). In thisway, we eliminated the negated constraint

2See the last paragraph of Section 1.2 in [JPV21b] for a discussion on the specific barriers of this paradigm.
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¬20 from the distribution, albeit potentially introducing a discrepancy in the assignment over vbl(20).
It is important to note that the coupling `C\{20} (· | c) and `C (· | d), a�er some simplification, is
equivalent to the coupling of two distributions specified by two sets of constraints on the same variable
set, thereby can be resolved recursively.

�e recursively constructed coupling in our approach may remind us of the recursive coupling tech-
nique introduced by Goldberg, Martin, and Mike to prove strong spatial mixing [GMP05]. However,
there are significant differences between our approach and theirs. Firstly, our coupling proceeds in a
constraint-wise manner. Secondly, the main distinction arises from the fact that the LLL regime is not
self-reducible. In their work [GMP05], self-reducibility plays a crucial role in the recursive coupling for
establishing strong spatial mixing. �e one-step worst-case contraction bounded there allows for the
application of path coupling [BD97]. However, in local lemma regimes, self-reducibility is not guaran-
teed, and the LLL condition degrades a�er pinning too many variables. Consequently, we must keep
track of the entire evolution of the coupling process and apply an average-case percolation-style anal-
ysis. An intriguing finding is that the random choices involved in our constraint-wise coupling proce-
dure can be explicitly identified using the principle of deferred decision. �is simplifies the analysis
considerably and may be of independent interest.

1.2.2. Linear programs from constraint-wise coupling. Wewill transform the exponentially decayed cou-
pling process constructed above into a linear program that mimics the transition probabilities of this
coupling procedure. �is linear program will be used to bootstrap the marginal ratios between the to-
tal numbers of CSP solutions to Φ = (+,Q, C) and (+,Q, C \ {20}).

Since our coupling proceeds in a constraint-wise manner and its analysis is considerably non-local,
it is significantly different from previous works within the same general framework. �erefore, sev-
eral new ideas are required for designing the linear program as well as the final counting/sampling al-
gorithms:

• Unlike in all previous LP-based methods for counting LLL [Moi19, GLLZ19, GGGY20, JPV21b],
a key property known as “local uniformity,” which used to be enforced by freezing, is no longer
guaranteed in our se�ing. Instead of relying on “local uniformity,” which introduces slackness
in the local lemma regimes, we utilize a 2-tree structure that provides certificates for overflow in
the coupling procedure, as well as a new class of constraints in the linear program. �is 2-tree
structure, critical to our algorithm, closely aligns with similar structures that have appeared
in the lower bounds [BGG+19, GGW22], shedding light on why our algorithms approach the
critical threshold.
• In the process of converting a marginal estimator to an approximate counting or sampling al-
gorithm within local lemma regimes where variable-wise self-reducibility does not hold, pre-
vious works relied on the “factorization” to complete partial assignments. However, this ap-
proach introduces slackness in local lemma regimes. Our finding shows that such additional
slackness is unnecessary for efficient counting/sampling LLL. Instead, we utilize “constraint-
wise self-reducibility” for local lemma regimes and show that the followings are efficient:
– estimate the constraint-wise marginal probability `C (2);
– incrementally update some sample - ∼ `C\{2} to . ∼ `C .

2. Preliminaries and notations

2.1. CSP defined by atomic constraints.

2.1.1. Basic concepts for CSPs. A CSP is described by a collection of constraints defined on a set of
variables. Formally, an instance of a constraint satisfaction problem, called a CSP formula, is denoted by
Φ = (+,Q(=

⊗
E∈+ &E), C). Here,+ is a set of = = |+ | random variables, where each random variable

E ∈ + is endowed with a finite domain &E of size @E , |&E | ≥ 2; and C gives a collection of local
constraints, such that each 2 ∈ C is a constraint function 2 :

⊗
E∈vbl(2) &E → {True, False} defined

on a subset of variables, denoted by vbl(2) ⊆ + . An assignment f ∈ Q is called satisfying for Φ if

Φ(f) ,
∧
2∈C

2
(
fvbl(2)

)
= True.

6



In the context of LLL, each constraint 2 can be interpreted as a bad event �2 , which happens
when the assignment on vbl(2) violates 2. For any subset of of constraints E ⊆ C, denote vbl(E) ,⋃
2∈E vbl(2). For any subset of variables Λ ⊆ + , denote QΛ ,

⊗
E∈Λ&E . Also, we say Φ is satisfiable

is at least one satisfying assignment to Φ exists.
We say some constraint 2 ∈ C is defined by atomic bad events, or simply, atomic, if it is violated by

exactly one configuration inQvbl(2) . For atomic constraints 2, we denote False(2) as the only violating
configuration of 2 in Qvbl(2) . Moreover, when all constraints in C are atomic, we say Φ is atomic.

2.1.2. Notations for (partial) assignments. For a partial assignment f ∈ QΛ specified over a subset of
variables Λ ⊆ + , we use Λ(f) = Λ to denote the set of assigned variables in f. For any partial
assignment f and any ( ⊆ Λ(f), we use f( to denote

⊗
E∈( f (E). We further write fE = f{E} for

E ∈ + .
For any two assignments f, g such that Λ(f) ∩ Λ(g) = ∅, we define f ∧ g ∈ QΛ(f)∪Λ(g ) as the

concatenation of f and g such that for any E ∈ Λ(f) ∪ Λ(g),

(f ∧ g) (E) =

{
f (E) E ∈ Λ(f),

g(E) E ∈ Λ(g).

We will use ∅ to specifically denote an empty assignment, distinguishing from the empty set ∅.

2.1.3. Notations for events and probability measures. We then specify some notations for events and
probability measures related to the CSP.

Definition 2.1 (simple notations for events). For the simplicity of notations, we will use:

• any constraint 2 ∈ C to denote the event that this constraint is satisfied;
• any subset of constraints E ⊆ C to denote the event that all constraints in E are satisfied;
• any partial assignment f to denote the event that the assignment on Λ(f) is preciesely f.

Note that under this definition, the notationf∧g as a concatention of assignment is consistent with
the same notationwheref and g are considered as events, andf∧g is the logical and of the two events.

We use P to denote the uniform product distribution over the space Q. For any subset of variables
Λ ⊆ + . We use ` = `Φ denote the distribution over all satisfying assignments of Φ induced by P, i.e.

`Φ , P (· | C) .

`Φ is well-defined only when Φ is satisfiable.
When the variable set + and the domain Q is clear, for some set of constraints E defined over

+ , and some assignment f defined over Λ(f), we stipulate the following notations for (conditional)
distributions:

`E , P(· | E), `fE , P(· | E ∧ f).

For some probability distribution ` and some subset of variables Λ ⊆ + , we use `Λ to denote the
marginal distribution induced by ` on Λ. We use commas to separate multiple subscripts, for example,
we use `f

E,Λ
to denote the marginal distribution induced by `f

E
on Λ.

2.1.4. Pinned formula and pinned constraints. For a subset of variablesΛ ⊆ + and a partial assignment
f ∈ QΛ specified on Λ, the pinned formula Φ = (+,Q,C) under f, denoted by Φf = (+f,Qf, Cf),
is a new CSP formula such that +f = + \ Λ(f), Qf = Q+\Λ(f) and the C

f is obtained from C by:

(1) replacing each original constraint 2 ∈ C with the corresponding pinned constraint 2f , where
vbl(2f) = vbl(2) \ Λ(f) and 2f (g) = 2(g ∧ fΛ(f)∩vbl(2) ) for any g ∈ Qvbl(2f ) ;

(2) removing all the resulting constraints that have already been satisfied.

Whenever a pinning f is applied to a CSP formulaΦ = (+,Q, C), we always assume thatf does not
violate any constraint in C. Under such assumption, Φf is always well-defined and `Φf = `f

+\Λ(f)
.

Moreover, if Φ is atomic, then so is the pinned formulaΦf . We use C∗ to denote the set of all possible
constraints obtained from pinning some constraint in C with some non-violating f, including the
unpinned constraints in C. Finally, for each (possibly) pinned constraint 2 ∈ C∗, we use 2O to denote
its original unpinned constraint in C.

7



2.2. Lovász Local lemma. �e celebrated Lovász local lemma gives a sufficient criterion for a CSP
solution to exist:

�eorem 2.2 ([EL75]). Given a CSP formula Φ = (+,Q, C), if the following holds

∃G ∈ (0, 1)C s.t. ∀2 ∈ C : P[¬2] ≤ G (2)
∏

2′∈C\{2}
vbl(2)∩vbl (2′ )≠∅

(1 − G (2′)),(3)

then

P[C] ≥
∏
2∈�

(1 − G (2)) > 0.

When the condition in (3) is satisfied, the probability of any event in the uniform distribution `
over all satisfying assignments can be well approximated by the probability of the event in the product
distribution.

�eorem 2.3 ([HSS11, �eorem 2.1]). Given a CSP formula Φ = (+,Q,C), if (3) holds, then for any

event A that is determined by the assignment on a subset of variables vbl(A) ⊆ + ,

P[A | C] ≤ P[A]
∏
2∈C

vbl(2)∩vbl (A)≠∅

(1 − G (2))−1.

2.3. Dependency graph and 2-trees. �e dependency graph is a key notion for the Lovász local
lemma.

Definition 2.4 (dependency graph). Let Φ = (+,Q, C) be a CSP formula and let E ⊆ C be a subset of
constraints.

• �Φ(E) denotes the dependency graph induced by E , which is a graph with vertex set E such
that there is an edge between distinct 2, 2′ ∈ E if and only if vbl(2) ∩ vbl(2′) ≠ ∅.
• �2

Φ
(E) denotes the square graph of�Φ (E), in which there is an edge between distinct 2, 2

′ ∈ E

if and only if dist�Φ
(2, 2′) ≤ 2.

�e notion of 2-tree is an important combinatorial structure introduced by Alon [Alo91], which has
played key roles in algorithmic and sampling LLL.

Definition 2.5 (2-tree). Let � = (+, �) be a graph and dist� (·, ·) denote the shortest path distance
in � . A 2-tree in � is a subset of vertices ) ⊆ + such that:

• for any D, E ∈ ) , dist� (D, E) ≥ 2;
• ) is connected if an edge is added between each D, E ∈ ) such that dist� (D, E) = 2.

�e following lemma bounds the number of 2-trees of a certain size in bounded-degree graphs.

Lemma 2.6 ([FGYZ21a, Corollary 5.7]). Let � = (+, �) be a graph with maximum degree 3 and E ∈ +

be a vertex. �en the number of 2-trees in � of size ℓ containing E is at most
(e32)

ℓ−1

2
.

2.4. Total variation distance and coupling. Let ` and a be two probability distributions over the
same (finite) state space Ω. �eir total variation distance is defined by

3TV (`, a) =
1

2

∑
G∈Ω

|`(G) − a(G) | = max
�⊆Ω
(`(�) − a(�)) .

A couplingD of two distributions ` and a is a joint distribution overΩ×Ωwhose projection on the
first (or second) coordinate is ` (or a). �e well-known coupling lemma is o�en used to bound total
variation distances, given as follows.

Lemma 2.7 ([LP17, Proposition 4.7]). Let D : (-,. ) be any coupling of ` and a, then

3TV (`, a) ≤ Pr
D
[- ≠ . ] .
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3. Constraint-wise coupling with exponential decay of correlation

We prove a correlation decay property for the uniform distribution ` over all satisfying assignments
for the atomic CSP formula Φ satisfying Condition 1. �is correlation decay property is captured by
the decay of discrepancy in a coupling between ` and the distribution with one fewer constraint.

�eorem 3.1. Let the CSP formula Φ = (+,Q, C) satisfy Condition 1. Let 20 ∈ C be an arbitrary

constraint. �ere exists a coupling (-,. ) of `C and `C\{20} , such that for any integer  ≥ 1,

Pr [3Ham (-,. ) ≥ : · (� + 1) ·  ] ≤ 2− ,

where 3Ham (-,. ) ,
∑
E∈+ � [- (E) ≠ . (E)] denotes the Hamming distance between - and . .

�eorem 3.1 says that in the local lemma regime characterized by Condition 1, the total influence of
any particular constraint decays exponentially. �is is the first time that such an exponential decay of
correlation has been found in a local lemma regime as Condition 1. �is is achieved by a new constraint-
wise coupling process. �e construction and analysis of this novel process completely bypass the use
of Beck’s freezing approach, which introduced slackness and was used in almost every previous work.

�e rest of this section is devoted to proving �eorem 3.1.

3.1. A constraint-wise coupling. First, we present the construction of the coupling in �eorem 3.1.
Fix an instance of atomic CSP formulaΦ = (+,Q, C). �e coupling is defined by a recursive procedure
Couple(E,F , f, g), which takes as input two sets E,F ⊆ C∗ of pinned constraints, along with two
partial assignments f, g ∈ QΛ specified on some subset Λ ⊆ + of variables, with the promise that both
Ef and F g are satisfiable. �e procedure tries to produce a random pair of assignments (-,. ) ∈ Q×Q
distributed according to a coupling of the joint distributions `f

E
and `g

F
.

�is recursive procedure Couple(E,F , f, g) is given in Algorithm 1. An arbitrary total ordering is
assumed on C∗, which contains all original constraints in C and all their possible pinnings.

Algorithm 1: Couple(E,F , f, g)

Instance :atomic CSP formula Φ = (+,Q,C);
Input : two subsets of pinned constraints E,F ⊆ C∗, and two partial assignments

f, g ∈ QΛ specified on the same subset Λ ⊆ + of variables;
Output :a pair of assignments (-,. ) ∈ Q × Q;

1 if Ef = F g then

2 let (-,. ) be drawn according to the coupling of `f
E
and `g

F
that always satisfies

-+\Λ = .+\Λ;

3 return (-,. );

4 if F g * Ef then

5 choose the smallest 2 ∈ F g \ Ef;

6 with probability `f
E
(2) do

7 return Couple (E ∪ {2}, F , f, g);

8 else

9 let c = False(2) and draw a random d ∼ `g
F,vbl (2)

;

10 return Couple (E,F , f ∧ c, g ∧ d);

11 else

12 choose the smallest 2 ∈ Ef \ F g ;

13 with probability `g
F
(2) do

14 return Couple (E,F ∪ {2}, f, g);

15 else

16 draw a random c ∼ `f
E,vbl(2)

and let d = False(2) ;

17 return Couple (E,F , f ∧ c, g ∧ d);

9



Remark 3.2 (well-definedness of Algorithm 1). It is easy to see that for atomic CSP, if Ef = F g , the
joint distributions `f

E
and `g

F
are identically defined over+ \ Λ. �us the coupling in Line 2 must exist.

Also, note that the constraints 2 chosen in Line 5 and Line 12 (which are used later) are pinned
constraints, and are chosen according to the total ordering assumed over all pinned constraints in C∗.

Idea of the coupling. Algorithm 1 formalizes the ideas outlined in Section 1.2. �e coupling procedure
maintains a pair of “sub-instances with boundaries” (E, f) and (F , g), which initially are (C\{20},∅)

and (C,∅). �e procedure tries to couple the joint distributions `f
E
and `g

F
. When the reduced sets of

constraints Ef = F g , we have that `f
E
and `g

F
are identically distributed over the set + \ Λ of unas-

signed variables, and hence we can perfectly couple the unassigned variables (Lines 1-3). Otherwise
Ef ≠ F g , there must exist at least one (pinned) constraint 2 ∈ Ef△F g , say 2 ∈ F g \ Ef (Lines 4-10).
�e joint distribution `f

E
can be decomposed based on the satisfaction and violation of 2 as:

`fE = `fE (2) · `
f
E (· | 2) + `

f
E (¬2) · `

f
E∪{2} (· | ¬2).

�e coupling algorithm then proceeds as follows according to the above decomposition:

• With probability `f
E
(2), try to couple `f

E
(· | 2) and `g

F
(Lines 6-7), which is solved recursively

by the same coupling procedure on the new pair of sub-instances (E ∪ {2}, f) and (F , g).
• With probability `f

E
(¬2), try to couple `f

E
(· | ¬2) and `g

F
(Lines 8-10). Because 2 is a (pinned)

atomic constraint, `f
E
(· | ¬2) fixes the assignment on vbl(2) to be c = False(2). On the other

hand, the joint distribution `g
F
can be decomposes based on the assignment on vbl(2) as:

`gF =
∑

d∈Qvbl(2)

`gF (d) · `
g
F (· | d).

�en the coupling between `f
E
(· | ¬2) and `g

F
can be solved recursively on the new pair of

sub-instances (E, f ∧ c) and (F , g ∧ d), where c = False(2) and d ∼ `g
F,vbl(2)

.

�e mirrored case with 2 ∈ Ef \ F g is processed symmetrically (Lines 11-17).
Algorithm 1 per se does not give an efficient procedure for computing the output (-,. ), since it relies

on calculating some nontrivial marginal probabilities. But it is useful for exhibiting the correlation
decay property in the local lemma regime, which in turn is useful for the algorithmic implications.

Correctness of the coupling. Necessarily, the recursive procedure satisfies the invariant condition that
the two joint distributions `f

E
and `g

F
are coupled correctly.

Lemma 3.3 (soundness of coupling). Assume Condition 1. For any constraint 20 ∈ C, the procedure

Couple(C \ {20}, C,∅,∅) terminates with probability 1 and returns a coupling of `C and `C\{20} .

Proof. We first prove that the coupling procedure is well-defined. It suffices to show by structural
induction in the top-down order of recursion that for each recursive call Couple(E,F , f, g):

(4) Λ(f) = Λ(g), P [E ∧ f] > 0, P [F ∧ g] > 0.

�e base case is (E,F , f, g) = (C \ {20}, C,∅,∅). �en (4) holds by Condition 1 and �eorem 2.2.
For the induction step, assume the current call is Couple(E,F , f, g), then by the induction hypoth-

esis, both Ef and F g are well-defined andΛ(f) = Λ(g). We then only prove the case when F g * Ef .
�e case when F g ⊆ Ef follows analogously.

Let 2 be the smallest constraint in F g \ Ef. Note that by the induction hypothesis, `f
E
(2) is well-

defined. Also, when `f
E
(2) > 0 we have

P [(E ∪ {2}) ∧ f] = P [E ∧ f] · `
f
E (2) > 0,

proving (4) for the direct recursive call Couple(E ∪ {2}, F , f, g) on Line 7.
For any direct recursive call Couple(E,F , f ∧ c, g ∧ d) such that c = False(2) and d ∈ Qvbl(2) on

Line 10, Λ(f ∧ c) = Λ(g ∧ d) trivially holds. Also, it must hold that `f
E
(¬2) > 0, `g

F
(d) > 0 by Lines

8-Line 9 of Algorithm 1, meaning c implies ¬2. �erefore, we have

P [E ∧ f ∧ c] = P [E ∧ c ∧ ¬2] = `
f
E (¬2) · P [E ∧ f] > 0,

P [F ∧ g ∧ d] = `
g
F (d) · P [F ∧ g] > 0,
10



finishing the proof of the induction step. �is proves that the procedure is well-defined.
Knowing the procedure is well-defined, notice that Algorithm 1 terminates when Ef = F g , and in

each recursive step, either the size of Ef△F g reduces by one, or the number of unassigned variables
in f and g reduces by at least one. Due to the finiteness of the number of (pinned) constraints and
variables, the procedure Couple(C \ {20}, C,∅,∅) terminates eventually.

At last, we apply a structural induction in the bo�om-up order of recursion, to prove that each
possible recursive call of Couple(E,F , f, g) produces a correct coupling of `f

E
and `g

F
.

�e base case is when Ef = F g , and the above claim holds by Lines 1-3 of Algorithm 1.
For the induction step, by symmetry, we only prove for the case when F g * Ef. Let 2 be the

smallest constraint in F g \ Ef. From Lines 5-10 of Algorithm 1, we have the following two cases:

• With probability `f
E
(2), Couple(E,F , f, g) returns the output of Couple(E ∪ {2}, F , f, g). By

the induction hypothesis, the random pair of assignments (-1, .1) returned by Couple(E ∪

{2}, F , f, g) at Line 7 follow the marginal distributions

-1 ∼ `
f
E∪{2}

= `fE (· | 2) and .1 ∼ `
g
F
.

• With probability `f
E
(¬2), Couple(E,F , f, g) returns the output of Couple(E,F , f ∧ c, g ∧

d) for c = False(2) and d ∼ `g
F,vbl (2)

. By the induction hypothesis, the random pair of

assignments (-2, .2) returned by Couple(E,F , f ∧ c, g ∧ d) at Line 10 follow the marginal
distributions:

-2 ∼ `
f
E (· | c) = `

f
E (· | ¬2) and .2 ∼

∑
d∈Qvbl(2)

`gF (d) · `
g
F (· | d) = `

g
F .

Hence, the pair of assignments (-,. ) returned at Line 10 follow the marginal distributions:

- ∼`fE (2) · `
f
E (· | 2) + `

f
E (¬2) · `

f
E (· | ¬2) = `fE ,

. ∼`fE (2) · `
g
F + `

f
E (¬2) · `

g
F = `gF .

�is finishes the last case of the induction step and the proof of the lemma. �

3.2. 2-tree witness for discrepancy. We need to bound the decay of correlation stated in �eo-
rem 3.1. �roughout, we fix the input atomic CSP formula Φ = (+,Q, C) and an arbitrary constraint
20 ⊆ C assumed in �eorem 3.1. Our goal is to bound the discrepancy of the coupling measured in
Hamming distance between the random pair (-,. ) produced by Couple(C \ {20}, C,∅,∅). To achieve
this goal, we introduce a notion of witness for the discrepancy. Inspired by the 2-tree structure [Alo91],
the witness is defined as a subset of independent constraints accessed by Algorithm 1.

A technical aspect worth paying a�ention to is that Algorithm 1 deals with pinned constraints
2 ∈ C∗; however, independence between the original unpinned constraints 2O ∈ C should be ensured
to properly bound the discrepancy. �is is formalized through the following definition.

Definition 3.4 (witness for discrepancy). Given a run of Algorithm 1 from Couple(C \ {20}, C,∅,∅),
the witness set � = �20

⊆ C is a set of (unpinned) constraints, constructed as follows:

• Initially, � = ∅.
• Whenever Couple(E,F , f∧c, g∧d) is recursively called at Line 10 or Line 17, add the original
unpinned constraint 2O ∈ C into � if it does not share variables with any constraints already
in �. Formally, let �← � Z 2, where the join operator � Z 2 is defined as:

(5) � Z 2 ,

{
� ∃2′ ∈ � s.t. vbl

(
2O

)
∩ vbl(2′) ≠ ∅;

� ∪
{
2O

}
otherwise.

�e set � constructed in the definition above gives a witness for the discrepancy in the coupling
produced by Algorithm 1, in the sense which we will see later that the hamming distance 3Ham (-,. )
is always upper bounded by : · (� + 1) · |�| for the output (-,. ) of Couple(C \ {20}, C,∅,∅).

Recall the definitions of dependency graph (Definition 2.4) and 2-tree (Definition 2.5), we have the
following observation.

Lemma 3.5. During the process in Definition 3.4, the set � is always a 2-tree in the dependency graph�Φ.
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Proof. Note that by Definition 3.4 and (5), we directly have the set � always disjoint. It remains to
show that �2

Φ
(�) is always connected. We then prove this claim by a forward induction.

�e induction basis is when the current parameter for Couple is (E,F , f, g) = (C \ {20}, C,∅,∅),
and the claim holds by convention as we initialized � as ∅.

For the induction step, assume the current parameter (E,F , f, g) and the current witness set �. By
the induction hypothesis, �2

Φ
(�) is connected. We then prove the hypothesis for all possible direct

recursive calls. If Ef = F g , no further recursion will be called and we are already done. Otherwise
Ef ≠ F g , we then only prove the case when F g * Ef . �e case when F g ⊆ Ef follows analogously.
Let 2 be the smallest constraint in F g \ Ef, we have two cases:

• We recurse to Couple(E ∪ {2}, F , f, g) with � remains unchanged, the claim trivially holds.
• We recurse to Couple(E,F , f ∧ c, g ∧ d) for c = False(2) and some d ∈ Qvbl(2) and we
update � ← � Z 2. If � Z 2 = �, then the claim trivially holds by the induction hypothesis,
otherwise assume � Z 2 = � ∪ {2O }, we then have two additional cases:
– 2O is exactly 20, in this case it must hold that (E,F , f, g) = (C \ {20}, C,∅,∅), since
otherwise a�er the first step 20 is satisfied in both Ef and F g , and any pinned constraint
of it can never have been chosen by the algorithm. In this case, � Z 2 is simply {20

O} and
therefore the claim holds.

– Otherwise, it must satisfy that vbl(2) ≠ vbl(2O), since this is the only way that 2 can
be added into Ef△F g . Take any variable E ∈ vbl(2O) \ vbl(2), and let 2′ ∈ C∗ be the
pinned constraint containing E chosen by the procedure when E is assigned. We must have

(2′)O ∉ � since otherwise we have � Z 2O = � by (5). Hence, there must exist another
constraint 2∗ ∈ � such that vbl(2′) ∩ vbl(2∗) ≠ ∅ by the time we update � ← � Z 2′

according to (5). Hence 2∗ and 2O are adjacent in �2
Φ
and �2

Φ
(� Z 2) = �2

Φ
(� ∪ {2O }) is

also connected by the induction hypothesis.

�

To establish �eorem 3.1, it is intuitive to explore a truncated version of Algorithm 1, limited to
|�| <  for an integer  ≥ 1, and then bound the probability of truncation. �is will be formalized by
the random process introduced in Definition 3.6. Here, we monitor the sequence of input arguments
across all recursive calls of Couple, along with the associated witness set �, truncating it once its size
surpasses  . �is formal approach elucidates the structure of the recursive execution of Algorithm 1,
thereby enhancing our understanding and paving the way for subsequent algorithmic insights.

Definition 3.6 (random process simulating  -truncated Algorithm 1). Let X ∼ `C\{20} and Y ∼ `C
be drawn independently beforehand. Define the random process %cp = %

cp
 

= {(EC , FC , fC , gC , �C )}C≥0

starting from the initial state (E0, F0, f0, g0, �0) = (C \ {20}, C,∅,∅, ∅) as follows:

(1) If |�| =  or Ef = F g , the process stops and (EC , FC , fC , gC , �C ) is the outcome of the process.
(2) Otherwise, suppose F gCC * E

fC
C . Let 2 be the smallest pinned constraint in F gCC \ E

fC
C .

(EC+1, FC+1, fC+1, gC+1, �C+1) ←

{
(EC ∪ {2}, FC , fC , gC , �C ) 2 is satisfied by Xvbl(2) ;(
EC , FC , fC ∧ Xvbl(2) , gC ∧Yvbl(2) , �C Z 2

)
otherwise.

(3) Otherwise F gC ⊆ E
f
C . Let 2 be the smallest pinned constraint in EfC \ F

g
C .

(EC+1, FC+1, fC+1, gC+1, �C+1) ←

{
(EC ,FC ∪ {2}, fC , gC , �C ) 2 is satisfied by Yvbl(2) ;(
EC , FC , fC ∧ Xvbl(2) , gC ∧Yvbl(2) , �C Z 2

)
otherwise.

Let `cp = `
cp
 

denote the distribution of the outcome (E∞, F∞, f∞, g∞, �∞) of this process, and let

Lcp = supp(`cp) be its support. Let L
cp
 
be the set of “truncated” outcomes, i.e.:

L
cp
 

= {(E,F , f, g, �) | `cp ((E,F , f, g, �)) > 0 ∧ |�| =  } .

At last, letVcp denote the set of all possible (E,F , f, g, �) with Pr [(E,F , f, g, �) ∈ %cp] > 0.

Remark 3.7. Note that for atomic CSP Φ satisfying Condition 1, due to �eorem 2.2 and total proba-
bility, the random process %cp and the distribution `cp in Definition 3.6 are well-defined.
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Remark 3.8 (explicitly identified randomness). In Definition 3.6, all randomness used by the process
%cp is identified with the two pre-generated random assignments X ∼ `C\20

and Y ∼ `C . However,
in Algorithm 1, random choices (in Lines 6, 9, 13 and 16) are generated at the moment they are used.
According to the principle of deferred decision, this distinction does not affect the definition of %cp, and
the process faithfully simulates Algorithm 1. Nevertheless, such explicit identification of randomness
is crucial for our analyses of the coupling and its algorithmic implications.

A key observation is that the correlation decay of the coupling is bounded by the probability of
truncated outcomes of the process constructed in Definition 3.6.

Lemma 3.9. Assume Condition 1. For the output (-,. ) of Couple(C \ {20}, C,∅,∅),

Pr [3Ham (-,. ) ≥ : · (� + 1) ·  ] ≤ `cp
[
L

cp
 

]
.

Proof. Note that by Definition 3.4, each time we recursively call Couple(E,F , f ∧ c, g ∧ d) at Line 10
or Line 17 of Algorithm 1, we update � ← � Z 2, at most : variables is additionally assigned to f/g
and any pinned constraint of 2O will never been chosen by the procedure in future steps. Note that
each constraint in C shares constraint with at most � other constraints, hence by (5), a�er � + 1 such
operations the size of � increases by at least one. Also, by Line 3 of Algorithm 1 we have 3Ham (-,. )

is upper bounded by the total number of variables assigned in f/g during Couple(C \ {20}, C,∅,∅).
�erefore, we have

3Ham (-,. ) ≥ : · (� + 1) ·  =⇒ |�| ≥  .

We claim that the process in Definition 3.6 can be coupled with Algorithm 1 initialized by Couple(C \

{20}, C,∅,∅) so that each time we recursively call Couple(E,F , f, g) with witness set �, we will also
move to the same tuple (E,F , f, g, �) in Definition 3.6. Under the coupling assumed by the claim, it
follows that

|�| ≥  =⇒ (Ecp, F cp, fcp, gcp, �cp) ∈ L
cp
 
,

and the lemma immediately follows.
We strengthen the claim that conditioning on we are currently at some tuple (E,F , f, g, �) in

Definition 3.6, it follows that

(6) X ∼ `fE , Y ∼ `gF .

and prove the strengthened claim using a structural induction in the top-down order. �e base case is
for the initial call Couple(C \ {20}, C,∅,∅) with witness set � = ∅. Note that in Definition 3.6 we also
initially have (E,F , f, g, �) = (C \ {20}, C,∅,∅, ∅), and

X ∼ `C\{20} = `
f
E , Y ∼ `C = `gF .

For the induction step, assume we are currently executing Couple(C \ {20}, C,∅,∅) with witness
set �. By the induction hypothesis, we are also at the same tuple (E,F , f, g, �) in Definition 3.6, so
that (6) holds.

Now it remains to compare Algorithm 1 with Definition 3.6 and notice that under (6), the transition
probabilities to the next tuples are the same in both. �erefore, the next tuple in both can still be
perfectly coupled. Also, it can be verified that (6) also holds for each possible branch in Definition 3.6.
�is finishes the proof of the claim and the lemma. �

�e following tail bound for the measure of truncated outcomes is crucial for proving �eorem 3.1.

Lemma 3.10. Assume Condition 1. For any integer  ≥ 1,

`cp
[
L

cp
 

]
≤ 2− .

�eorem 3.1 then follows directly from combining Lemmas 3.3, 3.9 and 3.10. All we need to do now
is prove Lemma 3.10.
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3.3. Refutation of large witnesses. By the above arguments, it suffices to bound the probability
`cp

[
L

cp
 

]
. Consider the random outcome generated by the process in Definition 3.6:

(Ecp, F cp, fcp, gcp, �cp) ∼ `cp.

It then suffices to show that the witness set �cp is very unlikely to become too large. We first establish
the following tail bound for any particular large enough subset of �cp.

Lemma 3.11. Assume Condition 1. For any subset of disjoint constraints ) ⊆ C,

Pr [) ⊆ �cp] ≤ ?
2|) |
2+Z · (1 − e?)2(�+1) |) | .

Proof. We claim that for each 2 ∈ ) , the event 2 ∈ �cp implies the following event

(7) A2 : ∀E ∈ vbl(2), X(E) = False(2) (E) ∨Y(E) = False(2) (E).

To prove the claim, by contradiction we suppose that there exists some E ∈ vbl(2) such that both
X(E) ≠ False(2) (E) andY(E) ≠ False(2) (E). Let 2′ be the pinned constraint chosen by the procedure

when 2 is added into �cp at some step in Definition 3.6, then we have 2 = (2′)O . It must hold that
E ∈ Λ(2′), as otherwise 2′ is both satisfied in E and F conditioning on the assignment of X and Y

on vbl(2) \ Λ(2′), and could not have been chosen by the procedure. However, E ∈ Λ(2′) is also not
possible as otherwise by the time 2′ is chosen in Definition 3.6, 2′ will be satisfied by both Xvbl(2′ ) and
Yvbl(2′ ) and will not be added into �cp, a contradiction. �e above claim is proved.

�us we have

(8)

Pr [) ⊆ �cp] ≤Pr

[∧
2∈)

A2

]

(by disjointness between 2 ∈ )) ≤
∏
2∈)

Pr [A2]

≤
∏
2∈)

©
«

∏
E∈vbl(2)

(
2

|&E |
−

1

|&E |2

)
· (1 − e?)−2(�+1)ª®

¬
.

Here, the last inequality is by interpreting the probability space for generating X ∼ `C and Y ∼

`C\{20} as the product space over two copies of the distribution P, conditioning on that all constraints
in C are satisfied in the first copy, and all constraints in C \ {20} are satisfied in the second copy.
Note that this can be viewed as an LLL distribution with dependency degree at most � and violation
probability of each bad event at most ?. Also, each eventA2 is mutually dependentwith all but 2(�+1)

bad events. �erefore, se�ing G (2) = e? for each bad event 2 and applying �eorem 2.3 gives to the
above last inequality.

Note that since C is a set of atomic constraints, we have for each 2 ∈ C,∏
E∈vbl(2)

1

|&E |
≤ ?,

and for any E ∈ vbl(2),

ln
(
2/|&E | − 1/|&E |

2
)

ln (1/|&E |)
= 2 −

ln(2/|&E | − 1)

ln(1/|&E |)
≥ 2 −

ln(2/@min − 1)

ln @min

=
2

2 + Z
,

where in above we use that ln(2G−1)
ln G

is a monotonically decreasing function for all G > 1.
Hence, combining with (8) we have

Pr [) ⊆ �cp] ≤
∏
2∈)

(
?

2

2+Z · (1 − e?)−2(�+1)
)
= ?

2|) |
2+Z · (1 − e?)−2(�+1) |) | . �

With the help of Lemma 3.11, we are ready to prove Lemma 3.10, completing the proof of �eo-
rem 3.1.
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Proof of Lemma 3.10. LetT20

 
be the set of 2-trees in�Φ of size containing 20. Since ≥ 1we have all

(Ecp, F cp, fcp, gcp, �cp) ∈ V
cp
 

satisfy that 20 ∈ �
cp by Condition 1 and Definition 3.6. �en we have

`cp [L
cp
 
]

(by Definition 3.4) ≤Pr [|�cp | ≥  ]

(by Lemma 3.5) ≤
∑
)∈T

20

 

Pr [) ⊆ �cp]

(by Lemma 3.11) ≤
∑
)∈T

20

 

?
2 
2+Z · (1 − e?)−2(�+1) 

(by Lemma 2.6) ≤
(e�2) −1

2
· ?

2!
2+Z · (1 − e?)−2(�+1) 

≤
(
e�2 · ?

2

2+Z · (1 − e?)−2(�+1)
) 

(by Condition 1) ≤2− .

�

4. Linear programming from constraint-wise coupling

In this section, we will present a linear program that is the central component for the counting and
sampling algorithms within the local lemma regime, as stated in �eorem 1.1 and �eorem 1.2.

As in previous works for LP-based counting LLL [Moi19, GLLZ19, JPV21b], we will set up a linear
program to mimic the transition probabilities in the coupling procedure (Definition 3.6) with the goal
of bootstrapping the constraint-wisemarginal ratios. However, our construction of the coupling differs
vastly from previous works. Additionally, our analysis of the coupling is near-critical in reaching
the optimal threshold, making the design of the linear program challenging and requiring significant
novelty. Nevertheless, we have managed to distill critical structures from the analysis in Section 3 that
are sufficient for constructing the LP.

4.1. Marginal probabilities from coupling procedure. Fix an atomic CSP formula Φ = (+,Q,C),
an arbitrary constraint 20 ∈ C, and an integer  ≥ 1. Recall the random process %cp = %

cp
 

=

{(EC , FC , fC , gC , �C )}C≥0 and the distribution `cp = `
cp
 
of its final outcome, both introduced in Defini-

tion 3.6. �e following defines a family of probabilities arising from a natural one-sided sampling pro-
cess induced from %cp. �ese probabilities correspond to the variables of the linear program that will
be introduced later.

Definition 4.1 (one-sided sampler and marginal probabilities). Let - (resp. . ) be drawn as:

• draw (E, F,2, 3, H) ∼ `cp;
• draw - ∼ `2

E
(and resp. . ∼ `3

F
).

For any evaluation of (E,F , f, g, �), any x ∈ QE∧f , {c ∈ Q | c satisfies E ∧ f} and y ∈ QF∧g ,
define:

?-(E,F,f,g,�) , Pr [(E,F , f, g, �) ∈ %cp | - = x] ,

?.(E,F,f,g,�) , Pr [(E,F , f, g, �) ∈ %cp | . = y] .

Note that in above definition, ?-
(E,F,f,g,�)

= Pr [(E,F , f, g, �) ∈ %cp | - = x] for any x ∈ QE∧f

(and similarly ?.
(E,F,f,g,�)

= Pr [(E,F , f, g, �) ∈ %cp | . = y] for any y ∈ QF∧g ). �is is actually

well-defined. And furthermore, these probabilities are in fact marginal probabilities of some partial
assignments in some joint distributions. �ese are formally justified by the following proposition.

Proposition 4.2. Assume Condition 1. Fix any evaluation of (E,F , f, g, �). It holds that

∀x, x′ ∈ QE∧f : Pr [(E,F , f, g, �) ∈ %cp | - = x] = Pr [(E,F , f, g, �) ∈ %cp | - = x′] ,

∀y, y′ ∈ QF∧g : Pr [(E,F , f, g, �) ∈ %cp | . = y] = Pr [(E,F , f, g, �) ∈ %cp | . = y′] .
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Moreover, it holds that

(9) ?-(E,F,f,g,�) = `C (F ∧ g) and ?.(E,F,f,g,�) = `C\{20} (E ∧ f).

Proof. Following the same routine as the proof of Lemma 3.9 (more precisely, following (6)), we can
couple the one-sided sampler in Definition 4.1 with the process %cp so that the sample - (resp. . )
generated by the one-sided sampler is identified with the random source X ∼ `C\{20 } (resp. Y ∼ `C)
used in the construction of %cp in Definition 3.6.

We then only prove the first equality in (9), and the other follows analogously. Fix some x ∈ Q, then
under the coupling between - and X it immediately follows that

Pr [- = x] = `C\{20} (x).

We claim that for any (E,F , f, g, �) ∈ Vcp,

(10) Pr [(E,F , f, g, �) ∈ %cp ∧ - = x] =

{
0 x ∉ QE∧f ;

`C\{20} (x) · `C (F ∧ g) x ∈ QE∧f ,

and the lemma follows from the law of conditional probability.
We then prove (10). Note that the first case is immediate by Definition 4.1.
Following the proof of Lemma 3.9, we have that for each (E,F , f, g, �) ∈ Vcp,

(11) Pr [(E,F , f, g, �) ∈ %cp] = `C\{20} (E ∧ f) · `C (F ∧ g).

�erefore, for any (E,F , f, g, �) ∈ Vcp and any x ∈ QE∧f ,

Pr [(E,F , f, g, �) ∈ %cp ∧ - = x]

=Pr [(E,F , f, g, �) ∈ %cp] · Pr [- = x | (E,F , f, g, �) ∈ %cp]

(by Definition 4.1) =Pr [(E,F , f, g, �) ∈ %cp] · `fE (x)

(by (11)) =`C\{20} (E ∧ f) · `C (F ∧ g) · `
f
E (x)

(by the chain rule) =`C\{20} (x) · `C (F ∧ g),

finishing the proof of (10). Here, the last equality is additionally by that E ∧ f implies C \ {20} for
each (E,F , f, g, �) ∈ Vcp, an argument easily proven through an induction on Definition 3.6. �

�e following lists some basic properties of ?-
(E,F,f,g,�)

and ?.
(E,F,f,g,�)

.

Proposition 4.3. Assume Condition 1. �e followings hold for the ?-
(E,F,f,g,�)

and ?.
(E,F,f,g,�)

:

(1) ?-
(E,F,f,g,�)

, ?.
(E,F,f,g,�)

∈ [0, 1]. In particular, ?-
(C\{20 },C,∅,∅,∅)

= ?.
(C\{20 },C,∅,∅,∅)

= 1.

(2) For any (E,F , f, g, �) ∈ Vcp \ Lcp, whereVcp and Lcp are defined in Definition 3.6,

(a) if F g * Ef , le�ing 2 ∈ F g \ Ef be the smallest and c = False(2),

?-(E,F,f,g,�) =?
-
(E∪{2},F,f,g,�) =

∑
d∈Qvbl(2)

(E,F,f∧c,g∧d,�Z2) ∈V cp

?-(E,F,f∧c,g∧d,�Z2) ;

?.(E,F,f,g,�) =?
.
(E∪{2},F,f,g,�) + ?

.
(E,F,f∧c,g∧d,�Z2) ,

for all d ∈ Qvbl(2) and all (E,F , f ∧ c, g ∧ d, � Z 2) ∈ V
cp.

(b) otherwise F g ⊆ Ef, le�ing 2 ∈ Ef \ F g be the smallest and d = False(2),

?-(E,F,f,g,�) =?
-
(E,F∪{2},f,g,�) + ?

-
(E,F,f∧c,g∧d,�Z2) ,

for all c ∈ Qvbl(2) and all (E,F , f ∧ c, g ∧ d, � Z 2) ∈ V
cp;

?.(E,F,f,g,�) =?
.
(E,F∪{2},f,g,�) =

∑
c∈Qvbl(2)

(E,F,f∧c,g∧d,�Z2) ∈V cp

?.(E,F,f∧c,g∧d,�Z2) .
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(3) For any (E,F , f, g, �) ∈ Vcp,

?-(E,F,f,g,�) ·
|QE∧f |

|QC\{20} |
= ?.(E,F,f,g,�) ·

|QF∧g |

|QC |
.

�ese properties follow directly from Definition 4.1 or from Proposition 4.2, and are easy to verify.
�e following bounds for ?-

(E,F,f,g,�)
and ?.

(E,F,f,g,�)
with 2-trees follow from a similar argument

as in our analysis of the correlation decay property (e.g. the proof of Lemma 3.11).

Proposition 4.4. Assume Condition 1. Let T20

 
be the set of 2-trees in �Φ of size  containing 20. Recall

that P is the product distribution. For each 2 ∈ C, let A2 be the event defined as (7), that is,

A2 : ∀E ∈ vbl(2), X(E) = False(2) (E) ∨Y(E) = False(2) (E).

�en for any ) ∈ T20

 
and x ∈ QC\{20} ,

∑
(E,F,f,g,�) ∈Lcp :

�=)∧x∈QE∧f

?-(E,F,f,g,�) ≤ (1 − e?) (�+1) Pr
Y∼P

[∧
2∈)

A2 | X = x

]
,

and for any ) ∈ T20

 
and y ∈ QC ,

∑
(E,F,f,g,�) ∈Lcp :

�=)∧y∈QF∧g

?.(E,F,f,g,�) ≤ (1 − e?) (�+1) Pr
X∼P

[∧
2∈)

A2 | Y = y

]
.

Proof. We only prove the first inequality, and the second one follows analogously.
Let (Ecp,F cp, fcp, gcp, �cp) ∼ `cp denote the random outcome of the process %cp constructed in

Definition 3.6. Following the same routine as the proof of Lemma 3.9 (more precisely, following (6)), we
can couple the one-sided sampler in Definition 4.1 with the process %cp so that the sample - (resp. . )
generated by the one-sided sampler is identified with the random source X ∼ `C\{20 } (resp. Y ∼ `C)

used in the construction of %cp in Definition 3.6. Fix any x ∈ QC\{20} . �en we have∑
(E,F,f,g,�) ∈Lcp :

�=)∧x∈QE∧f

?-(E,F,f,g,�) =
∑

(E,F,f,g,�) ∈Lcp :

�=)∧x∈QE∧f

Pr [(E,F , f, g, �) ∈ %cp | - = x]

=Pr [�cp = ) | - = x]

(by the coupling between - and X) = Pr
X∼`C\{20}

Y∼`C

[�cp = ) | X = x]

≤ Pr
X∼`C\{20}

Y∼`C

[∧
2∈)

A2 | X = x

]

(by �eorem 2.3) ≤(1 − e?) (�+1) Pr
Y∼P

[∧
2∈)

A2 | X = x

]
.

Here, the first inequality follows the same argument in the proof of Lemma 3.11 that �cp = ) implies
the event

∧
2∈)
A2 . �

Proposition 4.4 utilizes the independence between the random assignments X,Y, which are gener-
ated as the random source used by the process %cp constructed in Definition 3.6 for simulating Algo-
rithm 1. Such explicit identification of randomness helped in proving Lemma 3.11 and also will play a
key role in constructing the linear program that will be introduced later.

4.2. Setting up the linear program. Next, we set up the linear program that mimicries the marginal
probabilities ?-

(E,F,f,g,�)
and ?.

(E,F,f,g,�)
introduced in Definition 4.1, in order to bootstrap the ratio

between the numbers of assignments satisfying C and those satisfying C \ {20}.
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4.2.1. �e coupling tree. Wedefine the following notion of the recursion tree for the coupling procedure
Couple(C \ {20}, C,∅,∅), truncated whenever the witness set � has size |�| ≥  .

Definition 4.5 ( -truncated coupling tree). �e  -truncated coupling tree T = T (Φ, 20) is a finite
rooted tree, with each tree node corresponding to a (E,F , f, g, �), which is the tuple appeared in
Definition 3.6. �e tree T is inductively constructed as follows:

(1) �e root of T corresponds to (C \ {20}, C,∅,∅, ∅), and has depth 0.
(2) For 8 = 0, 1, . . .: for all existing tree nodes (E,F , f, g, �) ∈ + (T ) of depth 8 in the current T ,

(a) if f violates E or g violates F or Ef = F g or |�| =  , then do nothing and hence leave
(E,F , f, g, �) as a leaf node in T ;

(b) else if F g * Ef, then pick the smallest 2 ∈ F g \ Ef, add (E ∪ {2}, F , f, g, �) as a child
of (E,F , f, g, �) in T , and for c = False(2) and each d ∈ Qvbl(2) , add (E,F , f ∧ c, g ∧
d, � Z 2) as a child of (E,F , f, g, �) in T ;

(c) else, pick the smallest 2 ∈ Ef \ F g , add (E,F ∪ {2}, f, g, �) as a child of (E,F , f, g, �)
in T , and for each c ∈ Qvbl(2) and d = False(2), add (E,F , f ∧ c, g ∧ d, � Z 2) as a
child of (E,F , f, g, �) in T .

Let L be the set of leaf nodes in T . We further define:

• Lcoup , {(E,F , f, g, �) ∈ L | E
f = F g} as the set of “coupled” leaf nodes in T ;

• Ltrun , {(E, F , f, g, �) ∈ L | |�| =  } as the set of “truncated” leaf nodes in T ;
• Lvalid , Ltrun ∪ Lcoup as the set of “valid” leaf nodes in T ;
• Linvld , L \ Lvalid as the set of “invalid” leaf nodes in T .

Remark 4.6 (well-definedness of coupling tree). For each internal node (E,F , f, g, �) in the coupling
tree T , the event E ∧ f ∧ F ∧ g is partitioned in some way into mutually disjoint events, e.g.:

(E ∪ {2}) ∧ f ∧ F ∧ g, E ∧ (f ∧ False(2)) ∧ F ∧ (g ∧ d), ∀d ∈ Qvbl(2) ,

each of which corresponds to a child. �erefore, all nodes in T are distinct and T is well-defined.
Note that every leaf node (E,F , f, g, �) ∈ L satisfies exactly one of the followings:

• Ef = F g ;
• |�| =  ;
• f violates E or g violates F .

�erefore, the classification of leaf nodes in Definition 4.5 is also well defined.

Remark 4.7 (difference between the coupling tree and the original coupling process). Note that the
coupling tree T may include more nodes than the tuples (E,F , f, g, �) that can possibly be generated
by the process in Definition 3.6. �is is because some branch in the coupling tree T may have 0
probability in the random process. Some properties are unaffected by such distinction and still hold for
the coupling tree, for instance, Lemma 3.5, while others need to be reproved in this stronger se�ing.

4.2.2. �e linear program. We now introduce the linear program. �e LP is constructed on an instance
of  -truncated coupling tree introduced in Definition 4.5, where each tree node (E,F , f, g, �) is as-
sociated with a pair of variables, corresponding to ?-

(E,F,f,g,�)
and ?.

(E,F,f,g,�)
. �e constraints of

the LP are derived from the properties listed in Propositions 4.3 and 4.4.

Definition 4.8 (linear program induced by the coupling). Let T = T (Φ, 20) be the  -truncated
coupling tree. Let 0 ≤ A− ≤ A+ be two parameters. �e following linear program (for checking
feasibility) is defined on the variables ?̂-

(E,F,f,g,�)
and ?̂.

(E,F,f,g,�)
for all (E,F , f, g, �) ∈ + (T ):

I. Range constraints:

?̂-(C\{20 },C,∅,∅,∅)
= ?̂.(C\{20 },C,∅,∅,∅)

= 1;

?̂-(E,F,f,g,�) , ?̂
.
(E,F,f,g,�) ∈ [0, 1], ∀(E,F , f, g, �) ∈ + (T ).

II. Non-leaf constraints: For each non-leaf node (E,F , f, g, �) ∈ + (T ) \ L,
18



(a) if F g * Ef, le�ing 2 be the smallest constraint in F g \ Ef and c = False(2),

?̂-(E,F,f,g,�) = ?̂
-
(E∪{2},F,f,g,�) =

∑
d∈Qvbl(2)

?̂-(E,F,f∧c,g∧d,�Z2) ;

?̂.(E,F,f,g,�) = ?̂
.
(E∪{2},F,f,g,�) + ?̂

.
(E,F,f∧c,g∧d,�Z2) , ∀d ∈ Qvbl(2) .

(b) otherwise F g ⊆ Ef, le�ing 2 be the smallest constraint in Ef \ F g and d = False(2),

?̂-(E,F,f,g,�) = ?̂
-
(E,F∪{2},f,g,�) + ?̂

-
(E,F,f∧c,g∧d,�Z2) , ∀c ∈ Qvbl(2) ;

?̂.(E,F,f,g,�) = ?̂
.
(E,F∪{2},f,g,�) =

∑
c∈Qvbl(2)

?̂.(E,F,f∧c,g∧d,�Z2) .

III. Leaf constraints: For each leaf node (E,F , f, g, �) ∈ L,
(a) if it is a coupled leaf (E,F , f, g, �) ∈ Lcoup,

A− · ?̂
.
(E,F,f,g,�) ≤ ?̂

-
(E,F,f,g,�) ≤ A+ · ?̂

.
(E,F,f,g,�) .

(b) if it is an invalid leaf (E,F , f, g, �) ∈ Linvld,

?̂.(E,F,f,g,�) = 0, if f violates E;

?̂-(E,F,f,g,�) = 0, if g violates F .

IV. Overflow constraints (via 2-tree): Let T20

 
be the set of 2-trees in �Φ of size  containing 20.

∑
(E,F,f,g,�) ∈Ltrun :

�=)∧x∈QE\(C\{20})∧f

?̂-(E,F,f,g,�) ≤ (1 − e?) (�+1) Pr
Y∼P

[∧
2∈)

A2 | X = x

]
; ∀) ∈ T

20

 
, x ∈ Q;

∑
(E,F,f,g,�) ∈Ltrun :

�=)∧y∈QF\C∧g

?̂.(E,F,f,g,�) ≤ (1 − e?) (�+1) Pr
X∼P

[∧
2∈)

A2 | Y = y

]
, ∀) ∈ T

20

 
, y ∈ Q,

where recall that P is the product distribution and A2 denotes the event defined in (7), i.e.

A2 : ∀E ∈ vbl(2), X(E) = False(2) (E) ∨Y(E) = False(2) (E).

Due to the independence between the constraints within a 2-tree, the probabilities involvingA2 in
the overflow constraints (Item IV.) of Definition 4.8, can be calculated explicitly as:

Pr
Y∼P

[∧
2∈)

A2 | X = x

]
=
∏
2∈)

∏
E∈vbl(2)

|&E |
−� [xE≠False (2)E] ,

Pr
X∼P

[∧
2∈)

A2 | Y = y

]
=
∏
2∈)

∏
E∈vbl(2)

|&E |
−� [yE≠False (2)E] .

�e overflow constraints (Item IV.) of Definition 4.8 are derived from Proposition 4.4. �ese constraints
encapsulate a critical “independence property” pivotal to our analysis of the correlation decay. �ey
stand as the primary novelty in our linear program design, distinguishing it from previous LP-based
approaches [Moi19, GGGY20, JPV21b]. Note, however, that the overflow constraints slightly differ from
Proposition 4.4, as the domain of x/y have been extended and the conditions under the summation
have changed. �ese differences serve technical purposes for the linear program to be efficient.

While it is natural to question the number of overflow constraints described in Definition 4.8, we
will address this concern later (in Proposition 4.9). Specifically, we will show that there are indeed
exp( · poly(:, log @max, �)) distinct overflow constraints, and moreover, it takes approximately that
amount of time to both write down the linear program and verify its feasibility.
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4.3. Analysis of the linear program. We now present several properties for the above linear pro-
gram. First, we show that the feasibility of the linear program can be checked efficiently.

Proposition 4.9. For any 0 ≤ A− ≤ A+, the feasibility of the linear program in Definition 4.8 can be

checked within exp( · poly(:, log @max, �)) time.

Proposition 4.9 holds because there are at most exp( · poly(:, log @max, �)) constraints that need
to be checked. Its formal proof is deferred to Appendix A.

Next, we show the soundness of this linear program: �e true values of the marginal probabilities
satisfy all the linear constraints.

Lemma 4.10. Assume Condition 1. �e LP in Definition 4.8 is feasible for A− = A+ =
| QC\{20} |

| QC |
.

Proof. For each (E,F , f, g, �) ∈ + (T ), we let

(12) ?̂-(E,F,f,g,�) = `C (F ∧ g), ?̂.(E,F,f,g,�) = `C\{20} (E ∧ f),

and show that this is a feasible solution for A− = A+ =
| QC\{20} |

| QC |
. We remark that following Lemma 3.3,

this choice of the solution in (12) coincides with the real values of ?-
(E,F,f,g,�)

, ?.
(E,F,f,g,�)

defined

in Definition 4.1, but extends to all nodes in + (T ) instead of justVcp.
Item I. directly follows from Item 1 of Proposition 4.3. Also, Item II. directly follows from Item 2 of

Proposition 4.3.
Item III.b directly follows from (12). To prove Item III.a , note that for (E,F , f, g, �) ∈ Lcoup,

Ef = F g and hence |QE∧f | = |QF∧g | . �erefore,

• if |QE∧f | = |QF∧g | > 0, then Item III.a follows directly from Item 3 of Proposition 4.3;
• otherwise |QE∧f | = |QF∧g | = 0, then `C (F ∧g) = `C\{20} (E∧f) = 0 and Item III.a still holds.

�e proof of Item IV. falls into a similar vibe as the proof for Proposition 4.4. However, since now
the domain for x and y has changed, we need to define another procedure similar to Definition 3.6
for explicitly identifying randomness to interpret the le�-hand side in the inequality of Item IV.. �e
formal proof of Item IV. is deferred to Appendix B. �

At last, we show that the feasibility of the linear program implies that A− and A+ provide respective

lower and upper bound approximations for | Q
C\{20} |

| QC |
with bounded multiplicative error. With this, we

can apply a binary search to approximate the true value of | Q
C\{20} |

| QC |
.

Lemma 4.11. Assume Condition 1. If the LP in Definition 4.8 is feasible for parameters 0 ≤ A− ≤ A+, then(
1 − 2 · 2− 

)
A− ≤

|QC\{20} |

|QC |
≤

(
1 + 2 · 2− 

)
A+.

Proof. First, we claim the following property for the feasible solutions.

Claim 4.12. ∑
(E,F,f,g,�) ∈Lvalid :

x∈QE∧f

?̂-(E,F,f,g,�) = 1, for all x ∈ QC\{20} ,

∑
(E,F,f,g,�) ∈Lvalid :

y∈QF∧g

?̂.(E,F,f,g,�) = 1, for all y ∈ QC .

�is claim can be proved by routinely verifying Definition 4.8. �e proof is deferred to Appendix A.
By summing the equations in Claim 4.12 over all 2 ∈ QC\{20} and respectively all 2 ∈ QC, we obtain:

(13)

|QC\{20} | =
∑

x∈QC\{20}

∑
(E,F,f,g,�) ∈Lvalid :

x∈QE∧f

?̂-(E,F,f,g,�) ,

|QC | =
∑
y∈QC

∑
(E,F,f,g,�) ∈Lvalid :

y∈QF∧g

?̂.(E,F,f,g,�) .
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Claim 4.13. Assume Condition 1. �e followings hold.

1

|QC\{20} |

∑
x∈QC\{20}

∑
(E,F,f,g,�) ∈Ltrun :

x∈QE∧f

?̂-(E,F,f,g,�) ≤ 2− ,

1

|QC |

∑
y∈QC

∑
(E,F,f,g,�) ∈Ltrun :

y∈QF∧g

?̂.(E,F,f,g,�) ≤ 2− .

�is claim can be proved by a similar argument to the analysis of correlation decay in Section 3. �e
proof is deferred to Appendix B.

We then have

(by (13)) |QC\{20} | =
∑

x∈QC\{20}

∑
(E,F,f,g,�) ∈Lvalid :

x∈QE∧f

?̂-(E,F,f,g,�)

=
∑

x∈QC\{20}

∑
(E,F,f,g,�) ∈Lcoup :

x∈QE∧f

?̂-(E,F,f,g,�)

+
∑

x∈QC\{20}

∑
(E,F,f,g,�) ∈Ltrun :

x∈QE∧f

?̂-(E,F,f,g,�)

(by Claim 4.13) ≤
∑

(E,F,f,g,�) ∈Lcoup

|QE∧f | · ?̂-(E,F,f,g,�) + 2− · |QC\{20} |.

�erefore, we have���QC\{20}
��� ∈ [Î-, (

1 + 2 · 2− 
)
Î-

]
,

where Î- ,
∑

(E,F,f,g,�) ∈Lcoup

|QE∧f | · ?̂-(E,F,f,g,�) ;

��QC�� ∈ [Î. , (
1 + 2 · 2− 

)
Î.
]
,

where Î. ,
∑

(E,F,f,g,�) ∈Lcoup

|QF∧g | · ?̂.(E,F,f,g,�) .

�erefore,

|QC\{20} |

|QC |
≤

(
1 + 2 · 2− 

) ∑
(E,F,f,g,�) ∈Lcoup

|QE∧f | · ?̂-
(E,F,f,g,�)∑

(E,F,f,g,�) ∈Lcoup

|QF∧g | · ?̂.
(E,F,f,g,�)

≤
(
1 + 2 · 2− 

)
A+,

where the last inequality is due to the leaf constraints of the LP (Item III. of Definition 4.8). Symmetri-
cally, we have

|QC\{20} |

|QC |
≥

(
1 − 2 · 2− 

) ∑
(E,F,f,g,�) ∈Lcoup

|QE∧f | · ?̂-
(E,F,f,g,�)∑

(E,F,f,g,�) ∈Lcoup

|QF∧g | · ?̂.
(E,F,f,g,�)

≥
(
1 − 2 · 2− 

)
A−.

Together, we have (
1 − 2 · 2− 

)
A− ≤

|QC\{20} |

|QC |
≤

(
1 + 2 · 2− 

)
A+. �
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5. Counting and sampling via linear programming

In this section, we utilize the linear program introduced in Section 4 to prove �eorems 1.1 and 1.2.

5.1. Constraint-wise self-reducibility in the local lemma regime. To obtain the algorithms for
approximate counting and sampling required in �eorems 1.1 and 1.2, we will first provide a marginal

estimator and a dynamic sampler. Within the local lemma regime characterized by Condition 1, the
marginal estimator can efficiently estimate the ratio between the numbers of satisfying assignments for
two sets of constraints differing in exactly one constraint; and the dynamic sampler can dynamically
update a sample for the uniform satisfying assignment when a new constraint is added. Such amarginal
estimator and a dynamic sampler are stated in the following two theorems.

�eorem5.1 (marginal estimator). �ere exists a deterministic algorithm such that for anyΦ = (+,Q,C)

satisfying Condition 1, any 20 ∈ C and Y ∈ (0, 1), within time $
((

1
Y

)poly(:,�,log @max)
)
the algorithm

outputs an estimate Â satisfying

(1 − Y)
/Φ

/Φ20

≤ Â ≤ (1 + Y)
/Φ

/Φ20

,

where /Φ and /Φ20 respectively denote the numbers of solutions to Φ and Φ20 = (+,Q,C \ {20}).

�eorem 5.2 (dynamic sampler). �ere exists a randomized algorithm such that for any Φ = (+,Q,C)

satisfying Condition 1, any 20 ∈ C and Y ∈ (0, 1), given access to a sample f ∼ `Φ20 of the uniform

distribution `Φ20 over all solutions to Φ20 = (+,Q,C \ {20}), within time $
((

1
Y

)poly(:,�,log @max)
)
the

algorithm updates the f to an assignment g ∈ Q satisfying

3TV (g, `Φ) ≤ Y.

�rough a constraint-wise self-reduction that maintains the local lemma regime, �eorem 1.1 is
implied by �eorem 5.1 and �eorem 1.2 is implied by �eorem 5.2.

Proof of �eorem 1.1. Let C = {21, 22, . . . , 2<}. Note that we have < ≤ =(� + 1). For each 0 ≤ 8 ≤ <,
we let C8 = {21, 22, . . . , 28}, Φ8 = (+,Q, C8) and /Φ8 denote the number of solutions to Φ8 . Note that
Φ< = Φ. We can then decompose /Φ< in the following way:

(14) /Φ< = /Φ0
·
/Φ<

/Φ0

= /Φ0
·

<∏
8=1

/Φ8

/Φ8−1

.

Note that /Φ0
=

∏
E∈+
|&E | is easily computable in poly(=, @max) time. We can then apply �eorem 5.1

to approximate each
/Φ8
/Φ8−1

up to multiplicative error Y
4<

and multiply them together, by that Φ8 satis-

fies Condition 1 for each 0 ≤ 8 ≤ <. In this way we obtain an estimate up to error Y within time

$
((
=
Y

)poly(:,�,log @max)
)
, as desired. �

Proof of �eorem 1.2. Let C = {21, 22, . . . , 2<}. Note that we have < ≤ =(� + 1). For each 0 ≤ 8 ≤ <,
we let C8 = {21, 22, . . . , 28} and Φ8 = (+,Q, C8). We build a sequence of assignments f0, f1, . . . , f< ∈

Q as follows:

• Sample f0 ∼ P.
• For each 1 ≤ 8 ≤ <, use the dynamic sampler in�eorem 5.2 to obtain f8 from f8−1 with input
formula (+,Q, C8), input constraint 28 , input parameter Y

<
, and input sample f8−1. We output

an arbitrary final assignment instead if f8 isn’t a satisfying solution to Φ8 for some 0 ≤ 8 ≤ <.

By�eorem 5.2 and induction, it easily follows frommaximally coupling f8 with a uniform solution
of Φ8 and applying the coupling lemma (Lemma 2.7) that

∀0 ≤ 8 ≤ <, 3TV (f8, `C8 ) ≤
8

<
· Y.

Also, the overall running time is bounded by$
((
=
Y

)poly(:,�,log @max)
)
. �erefore, the theorem is proved.

�
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5.2. Construction of the marginal estimator/sampler. It remains to prove �eorems 5.1 and 5.2.
�eorem 5.1 is proved by directly applying the linear program constructed and analyzed in Section 4.

Proof of �eorem 5.1. We set the truncation threshold as.

 = 1 + log Y−1.

Applying a binary search on the parameters A− and A+, one can obtain an estimate of | Q
C\{20} |

| QC |
within

multiplicative error Y by Lemma 4.11. �e running time bound follows from Proposition 4.9. �

We then prove �eorem 5.2. �e dynamic sampler claimed in �eorem 5.2 is constructed as follows.

Definition 5.3 (dynamic sampler). �ealgorithm takes as input a CSPΦ = (+,Q, C), a constraint 20 ∈

C and Y ∈ (0, 1), and is given access to an assignment fin ∈ Q which satisfies Φ20 = (+,Q, C \ {20}).
�e algorithm proceeds as follows to update fin to a new assignment fout ∈ Q:

• Set the truncation threshold as

 = 1 + log
(Y
4

)−1

.

Construct the LP in Definition 4.8 on the  -truncated coupling tree T = T (Φ, 20). Apply
a binary search to narrow down the interval [A−, A+] so that A− ≥

4+Y
4+2Y

A+ and the LP is still
feasible with parameters A− and A+. By Lemma 4.11, it is guaranteed that(

1 −
Y

4

)
A− ≤

|QC\{20} |

|QC |
≤

(
1 +

Y

4

)
A+.

Let
{
?̂-
(E,F,f,g,�)

, ?̂.
(E,F,f,g,�)

}
(E,F,f,g,�) ∈+ (T )

be the corresponding LP feasible solution.

• Use the following random process to generate a root-to-leaf path in T . �e process starts from
the root node (C \ {20}, C,∅,∅, ∅). In each step, at a non-leaf node (E,F , f, g, �), it does:
(1) if F g * Ef, denoted by 2 be the smallest pinned constraint in F g \ Ef,

– move to (E ∪ {2}, F , f, g, �) if 2 is satisfied by fin
vbl(2)

;

– otherwise, move to (E,F , f ∧ fin
vbl(2)

, g ∧ d, � Z 2) for each d ∈ Qvbl(2) w.p.

?̂-
E,F,f∧fin

vbl (2)
,g∧d,�Z2

?̂-
(E,F,f,g,�)

;

(2) otherwise F g ⊆ Ef, denoted by 2 be the smallest pinned constraint in Ef \ F g ,
– move to (E,F ∪ {2}, f, g, �) with probability

?̂-
(E,F∪{2},f,g,�)

?̂-
(E,F,f,g,�)

;

– move to (E,F , f ∧ fin
vbl(2)

, g ∧ d, � Z 2) for d = False(2) with probability

?̂-
(E,F,f∧fin

vbl (2)
,g∧d,�Z2)

?̂-
(E,F,f,g,�)

.

In the end, the random process arrives at a random leaf (E, F,2, 3, H) ∈ L. Let %samp denote
the root-to-leaf path generated by this process.
• If the sampled leaf node (E, F,2, 3, H) ∉ Lcoup, then let f

out ∈ Q be an arbitrary unsatisfying

assignment of Φ; otherwise, update fin by changing the values of the assigned variables to the
corresponding values as in 3, i.e. let fout ← 3 ∧ fin

+\Λ(3)
.

We then finish the section by proving the following lemma, which directly implies �eorem 5.2.

Lemma 5.4. Assume Condition 1 and fin ∼ `C\{20} . �en the fout produced by the dynamic sampler in

Definition 5.3 satisfies

3TV (f
out, `C) ≤ Y.
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Proof. We need the following lemma, whose proof is deferred to Appendix B.

Lemma 5.5. Assume Condition 1. Let fin ∼ `C\{20 } . For any (E,F , f, g, �) ∈ + (T ), we have

Pr [(E,F , f, g, �) ∈ %samp] =`C\{20} (E ∧ f) · ?̂
-
(E,F,f,g,�) .

Moreover, conditioning on (E,F , f, g, �) ∈ %samp, it follows that

fin ∼ `fE ,

for each (E,F , f, g, �) such that Pr [(E,F , f, g, �) ∈ %samp] > 0.

�en for each y ∈ QC , we have

Pr
[
fout = y

]
=

∑
(E,F,f,g,�) ∈Lcoup :

y∈QF∧g

`C\{20} (E ∧ f) · ?̂
-
(E,F,f,g,�) ·

1

|QE∧f |

(by Item III.a of Definition 4.8) ≥A− ·
∑

(E,F,f,g,�) ∈Lcoup :

y∈QF∧g

`C\{20} (E ∧ f) · ?̂
.
(E,F,f,g,�) ·

1

|QE∧f |

(★) =A− ·
1

|QC\{20} |
·

∑
(E,F,f,g,�) ∈Lcoup :

y∈QF∧g

?̂.(E,F,f,g,�) .

Here, the first equality is by that Ef = F g for each (E,F , f, g, �) ∈ Lcoup, and hence each solution

in QF∧g is generated with equal probability 1

|QF∧g |
= 1

|QE∧f |
by Lemma 5.5. �e ★ equality is by the

chain rule and that E ∧ f =⇒ C \ {20} for each (E,F , f, g, �) ∈ + (T ), following the argument in
Remark 4.6.

Consider a distribution a defined over Q such that for each y ∈ QC, we let

(15) a[y] =
1

|QC |
·

∑
(E,F,f,g,�) ∈Lcoup :

y∈QF∧g

?̂.(E,F,f,g,�) ,

and that distribution of a over unsatisfying assignments of Φ is carefully designed in a way that

(16) 3TV

(
a, fout) =

���� 1

|QC |
− A− ·

1

|QC\{20} |

���� ∑
y∈QC

∑
(E,F,f,g,�) ∈Lcoup :

y∈QF∧g

?̂.(E,F,f,g,�) .

By
(
1 − Y

4

)
A− ·

| QC\{20} |

| QC |
≤

(
1 + Y

4

)
A+ and A− ≥

4+Y
4+2Y

A+ ensured by the process, we then have

(17)
(
1 −

Y

2

)
·
|QC\{20} |

|QC |
≤ A− ≤

(
1 +

Y

2

)
·
|QC\{20} |

|QC |
.

Combining (16) and (17), we obtain

(18) 3TV (a, f
out) ≤

Y

2
·

1

|QC |

∑
y∈QC

∑
(E,F,f,g,�) ∈Lcoup :

y∈QF∧g

?̂.(E,F,f,g,�) ≤
Y

2
.

Now that by (15) and Claim 4.12, for each y ∈ QC we have a[y] ≤ 1
| QC |

= `C (y). Hence,

3TV (`C, a) =
∑
y∈QC

©
«

1

|QC |
−

1

|QC |
·

∑
(E,F,f,g,�) ∈Lcoup :

y∈QF∧g

?̂.(E,F,f,g,�)

ª®®®®
¬

(by Claim 4.12) =
1

|QC |

∑
y∈QC

∑
(E,F,f,g,�) ∈Ltrun :

y∈QF∧g

?̂.(E,F,f,g,�)
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(by Claim 4.13) ≤
Y

2
.

Combining with (18) and using the triangle inequality for the total variation distance, we obtain

3TV (`C, f
out) ≤ 3TV (`C, a) + 3TV (a, f

out) = Y,

finishing the proof of the lemma. �

6. Conclusion and open problems

In this paper, we present polynomial-time algorithms for approximate counting/almost uniform
sampling atomic constraint satisfaction solutions in the regime of ?�2+>(1) . 1 (Condition 1), where
the >(1) factor approaches zero as the minimum domain size grows. �is regime almost matches the
lower bound ?�2 . 1 given by [BGG+19, GGW22]. Even for the worst-case of Boolean domains, our
regime ?�4.82 . 1 still improves over the previous best regime of ?�5 . 1 [HWY23a].

At the heart of our approach is a novel constraint-wise coupling for CSPs. �is coupling, along
with its analyses, sharply captures the critical phenomenon for counting/sampling LLL and may be of
independent interest, helping pave the way for future improvements.

Here, we outline several future research directions that our findings may serve as a basis for:

• An obvious open problem is establishing the optimal counting/sampling LLL for small domain
sizes @, especially for counting/sampling :-CNF, where the domain size @ = 2.
• Another open direction is to generalize the current approach to general CSPs, possibly with
non-atomic constraints.
• Last but not the least, an open aspect is to devise fast algorithms for sampling LLL that runs
in polynomial time when : and � are allowed to be unbounded or in near-linear time when :
and � are bounded. Such fast algorithms should avoid relying on exhaustive enumerations of
local structures, unlike the deterministic approximate counting algorithms to this day.
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[HV15] Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma
via resampling oracles. In FOCS, pages 1327–1345. IEEE, 2015.

[HWY22] Kun He, Chunyang Wang, and Yitong Yin. Sampling lovász local lemma for general
constraint satisfaction solutions in near-linear time. In FOCS, pages 147–158. IEEE, 2022.

[HWY23a] Kun He, Chunyang Wang, and Yitong Yin. Deterministic counting lovász local lemma
beyond linear programming. In SODA, pages 3388–3425. SIAM, 2023.

[HWY23b] Kun He, KewenWu, and Kuan Yang. Improved bounds for sampling solutions of random
CNF formulas. In SODA, pages 3330–3361. SIAM, 2023.

[JPV21a] Vishesh Jain, Huy Tuan Pham, and �uy Duong Vuong. On the sampling Lovász local
lemma for atomic constraint satisfaction problems. arXiv, abs/2102.08342, 2021.

[JPV21b] Vishesh Jain, Huy Tuan Pham, and �uy Duong Vuong. Towards the sampling lovász
local lemma. In FOCS, pages 173–183. IEEE, 2021.

[Kha80] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational

Mathematics and Mathematical Physics, 20(1):53–72, 1980.
[Kol16] Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. In FOCS,

pages 780–787. IEEE, 2016.
[LLY13] Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems.

In SODA, page 67–84. SIAM, 2013.
[LP17] David A. Levin and Yuval Peres. Markov chains and mixing times. AmericanMathematical

Soc., 2017.
[LSS19] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Correlation decay and partition

function zeros: Algorithms and phase transitions. SIAM J. Comput., pages 200–252, 2019.
[LY13] Pinyan Lu and Yitong Yin. Improved FPTAS for multi-spin systems. In RANDOM, pages

639–654. Springer, 2013.
[Moi19] Ankur Moitra. Approximate counting, the Lovász local lemma, and inference in graphical

models. J. ACM, 66(2):10:1–10:25, 2019. (Conference version in STOC’17).
[Mos09] Robin A. Moser. A constructive proof of the Lovász local lemma. In STOC, pages 343–350.

ACM, 2009.
[MR99] Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In STOC

’98 (Dallas, TX), pages 524–529. ACM, 1999.
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Appendix A. Basic properties of the linear program

In this section, we will prove two basic properties of the linear program constructed in Section 4,
specifically Proposition 4.9 and Claim 4.12.

Recall that we have fixed a CSP Φ = (+,Q, C) and a constraint 20 ∈ C. Also, recall the notations in
Definition 4.1, the  -truncated coupling tree T = T (Φ, 20) in Definition 4.5, and the linear program
in Definition 4.8.

A.1. Proof of Proposition 4.9. Before proving Proposition 4.9, we need to first prove the following
lemma, which bounds the depth of the coupling tree T .

Lemma A.1. T has depth at most  � (� + 1) + 1.

Proof. Suppose to the contrary that there exists a node (E′,F ′, f′, g′, �′) ∈ + (T ) of depth  � (� +
1)+2. We track the size of Ef△F g when going down the path between the root and (E′, F ′, f′, g′, �′)
and denote it by C. Initially, by Condition 1, we have C = 1. Note that each time we either add some
2 into E or F , and let C decreases by one; or we assign some values to f and g on vbl(2), and let C
increases by at most � − 1 (note that at most � new elements can be added into Ef△F g and that 2 is
removed from Ef△F g). We denote the number of times the la�er operation being executed by 8.

By (E′, F ′, f′, g′, �′) is of depth  � (� +1) +2, the above step is repeated for  � (� +1) +2 times.
Note that at (E′, F ′, f′, g′, �′) we have C ≥ 0, then

(� − 1) · 8 + 1 − ( � (� + 1) + 2 − 8) ≥ 0,

and hence 8 >  (� + 1). Note that by Definition 4.5 and (5), we have |�′ | >  , contradicting the
truncation condition at Item 2a of Definition 4.5. �erefore, the lemma is proved. �

We are now ready to prove Proposition 4.9.

Proof of Proposition 4.9. Note that the branching number of the coupling tree is at most (@max)
2: .

Hence by Lemma A.1, the size of the coupling tree is bounded by exp( · poly(:, log @max, �)).
�erefore, the total number of constraints of Items I. through III. in Definition 4.8 is also bounded

by exp( · poly(:, log @, �)). For Item IV. of Definition 4.8, we only show how to efficiently check
the feasibility for the first inequality, and the other one follows analogously. We note that a�er fixing
some ) ∈ T20

 
, for all leaf nodes (E,F , f, g, �) ∈ Ltrun satisfying � = ) , the following properties hold:

• for any E ∈ Λ(f), there exist 2 ∈ C, 2′ ∈ ) such that E ∈ vbl(2) and vbl(2) ∩ vbl(2′) ≠ ∅;
• for any 2 ∈ E \ (C \ {20}), we have Λ(f) ∩ vbl(2

O) ≠ ∅.

Here, the first property can be shown using proof by contradiction: Suppose that such 2 ∈ C, 2′ ∈ )
cannot be found. by the time E is assigned in f/g through the root-to-leaf path in T , let 2∗ be the

(pinned) constraint chosen at the time, then (2∗)O doesn’t share variable with any constraint in � at

the time according to the assumption, and thus (2∗)O must be added into � by Definition 4.8 and (5).
�en we have a contradiction by le�ing 2 = 2′ = 2∗. �e second property follows from that each
(pinned) constraint 2 chosen by the procedure and added into E in Definition 4.8 lies in Ef△F g at the
time, and 2 can added into Ef△F g only by either

• 2 is exactly 20;
• or 2 is pinned by f/g, i.e. vbl(2O) ≠ vbl(2).

By the above properties, the feasibility of the first equation can be directly verified by enumerating
the assignment of x on variables of constraints within distance 2 of ) in �Φ. �is says it suffices

to only check (@max)
 : (�+1)2 (partial) assignments of x to verify the first inequality in Item IV. of

Definition 4.8. Combining with the bound on the number of 2-trees in Lemma 2.6, we have the number
of constraints in Item IV. of Definition 4.8 can be bounded by exp( · poly(:, log @max, �)).

Hence, we have both the number of variables and constraints of the linear program defined in Defi-
nition 4.8 is at most exp( ·poly(:, log @max, �)). �en the lemma follows from the standard running
time guarantees for linear programming (e.g., [Kha80]). �
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A.2. Proof of Claim 4.12. �e proof of Claim 4.12 comes from verifying several basic definitions of
the linear program.

Proof of Claim 4.12. We only prove the first equality of Claim 4.12, then the second equality follows
analogously. By Item II. of Definition 4.8 and an induction on the increasing depth of T , we have∑

(E,F,f,g,�) ∈L:

x∈QE∧f

?̂-(E,F,f,g,�) = 1, for all x ∈ QC\{20} .

Note that for any G ∈ QC\{20} , any (E,F , f, g, �) ∈ Linvld such that x ∈ QE∧f , it must hold that g
violates F . �en, the lemma holds immediately by applying Item III.b of Definition 4.8. �

Appendix B. Probabilistic properties of the linear program

In this section, we prove several important probabilistic properties related to the linear program.
Specifically, we will finish the proof of Lemma 4.10 regarding Item IV. of Definition 4.8, also prove
Claim 4.13 and Lemma 5.5. �e key ideas of the proofs will heavily resemble the proofs of the correla-
tion decay property in Section 3.

Recall that we have fixed a CSP Φ = (+,Q, C) and a constraint 20 ∈ C. Also, recall the notations in
Definition 4.1, the  -truncated coupling tree T = T (Φ, 20) in Definition 4.5, and the linear program
in Definition 4.8.

B.1. Remaining proof of Lemma 4.10. Recall that for each (E,F , f, g, �) ∈ + (T ), we let

(19) ?̂-(E,F,f,g,�) = `C (F ∧ g), ?̂.(E,F,f,g,�) = `C\{20} (E ∧ f).

We then finish the proof of Lemma 4.10 by showing the above choice satisfies Item IV. of Defini-
tion 4.8. We only prove the first inequality, and the second inequality follows analogously.

We need the definition of a random process, which is almost the same process as Definition 3.6,
except that now X follows the distribution of P instead of `C\{20} . Also, the random process now can
be interpreted as generating a root-to-leaf path in T . Here in this random process, it is possible to
reach those nodes (E,F , f, g, �) ∈ Linvld due to the different distribution of X.

Definition B.1 (random process associated with the true marginal probabilities). Let Xmg ∼ P and
Ymg ∼ `C be drawn independently beforehand. Define the randomprocess %mg = %

mg
 

= {(EC , FC , fC , gC , �C )}C≥0

starting from the initial state (E0, F0, f0, g0, �0) = (C \ {20}, C,∅,∅, ∅) as follows:

(1) Iff violatesE or g violatesF or orEf = F g or |�| =  , the process stops and (EC , FC , fC , gC , �C )
is the outcome of the process.

(2) Otherwise, suppose F gCC * E
fC
C . Let 2 be the smallest pinned constraint in F gCC \ E

fC
C .

(EC+1, FC+1, fC+1, gC+1, �C+1) ←

{
(EC ∪ {2}, FC , fC , gC , �C) 2 is satisfied by X

mg

vbl(2)
;(

EC , FC , fC ∧ X
mg

vbl(2)
, gC ∧Y

mg

vbl(2)
, �C Z 2

)
otherwise.

(3) Otherwise F gC ⊆ E
f
C . Let 2 be the smallest pinned constraint in EfC \ F

g
C .

(EC+1, FC+1, fC+1, gC+1, �C+1) ←

{
(EC , FC ∪ {2}, fC , gC , �C ) 2 is satisfied by Yvbl(2) ;(
EC , FC , fC ∧ X

mg

vbl(2)
, gC ∧Y

mg

vbl(2)
, �C Z 2

)
otherwise.

Let `mg denote the distribution of the outcome (E∞, F∞, f∞, g∞, �∞) of this process.

By comparing with the definition of T = T (Φ, 20) in Definition 4.5. We have all tuples possibly
visited by Definition B.4 are in + (T ).

�e following lemma holds for the process in Definition B.1.

Lemma B.2. Assume Condition 1. For each (E,F , f, g, �) ∈ + (T ),

(E,F , f, g, �) ∈ %mg ⇐⇒ Xmg ∈ QE\(C\{20 })∧f ∧Ymg ∈ QF∧g .

�e following corollary is then direct by combining Lemma B.2 with the law of conditional proba-
bility.
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Corollary B.3. Assume Condition 1. For each x ∈ Q and each (E,F , f, g, �) ∈ + (T ),

Pr [(E,F , f, g, �) ∈ %mg | Xmg = x] =

{
0 x ∉ QE\(C\{20 })∧f ;

`C (F ∧ g) x ∈ QE\(C\{20 })∧f .

Proof. For each x ∈ Q and each (E,F , f, g, �) ∈ L we have

(20)
Pr [(E,F , f, g, �) ∈ %mg | Xmg = x] =

Pr [(E,F , f, g, �) ∈ %mg ∧ Xmg = x]

Pr [Xmg = x]

(by Definition B.1) =|Q | · Pr [(E,F , f, g, �) ∈ %mg ∧ Xmg = x] .

By Lemma B.2, if x ∉ QE\(C\{20 })∧f , then the above term clearly equals 0. We then assume x ∈

QE\(C\{20 })∧f . Note that by Definition B.1 and Lemma B.2, conditioning on the event (E,F , f, g, �) ∈
%mg, the distribution of Xmg is uniform over all assignments in QE\(C\{20 })∧f . �erefore,

Pr [(E,F , f, g, �) ∈ %mg ∧ Xmg = x] =Pr [(E,F , f, g, �) ∈ %mg] ·
1

|QE\(C\{20})∧f |

(by Lemma B.2) =
|QE\(C\{20 })∧f |

|Q |
·
|QF∧g |

|QC |
·

1

|QE\(C\{20})∧f |

(★) =
1

|Q |
· `C (F ∧ g),

combining with (20) proves the corollary. Here, the ★ equality is by that F ∧ g =⇒ C for each
(E,F , f, g, �) ∈ + (T ), following the argument in Remark 4.6. �

We are now ready to finish the proof of Lemma 4.10.

Remaining proof of Lemma 4.10. Let (Emg, Fmg, fmg, gmg, �mg) ∼ `mg denote the random outcome of
the process %mg constructed in Definition B.1.

Recall that T20

 
is the set of 2-trees in�Φ of size  containing 20. By Corollary B.3, we have for each

x ∈ Q and each ) ∈ T20

 
,

(21)

Pr [�mg = ) | Xmg = x] =
∑

(E,F,f,g,�) ∈Ltrun :
�=)

Pr [(E,F , f, g, �) ∈ %mg | Xmg = x]

(by Corollary B.3 and (19)) =
∑

(E,F,f,g,�) ∈Ltrun :

�=)∧x∈QE\(C\{20})

?̂-(E,F,f,g,�) ,

which is exactly the expression in the le�-hand side of the first inequality in Item IV. of Definition 4.8.
Fix some ) ∈ T20

 
. Now it remains to bound Pr [�mg = ) | Xmg = x]. Here, we leverage the analysis

in Lemma 3.11. Following the argument in Lemma 3.11, we have that for each 2 ∈ ) , 2 ∈ �mg implies

A
mg
2 : ∀E ∈ vbl(2), Xmg (E) = False(2) (E) ∨Ymg(E) = False(2) (E).

�erefore, we have

Pr [�mg = ) | Xmg = x] ≤Pr

[∧
2∈)

A
mg
2 | X

mg = x

]

(by Definition B.1) = Pr
Y∼`C

[∧
2∈)

A2 | X = x

]

(by �eorem 2.3) ≤(1 − e?) (�+1) Pr
Y∼P

[∧
2∈)

A2 | X = x

]
.

Combining with (21), Lemma 4.10 is proved. �

We finish this subsection by proving Lemma B.2.
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Proof of Lemma B.2. ByΦ satisfy Condition 1,Ymg and the procedure inDefinition B.1 arewell-defined.
We then prove by structural induction in the top-down order that for any (E,F , f, g, �) such that
Pr [(E,F , f, g, �) ∈ %mg] > 0,

(22) (E,F , f, g, �) ∈ %mg ⇐⇒ Xmg ∈ QE\(C\{20 })∧f ∧Ymg ∈ QF\C∧g ,

then Lemma B.2 directly holds.
�e base case is when (E,F , f, g, �) = (C \ {20}, C,∅,∅, ∅). In this case, (E,F , f, g, �) ∈ %mg

and QE\(C\{20 })∧f = QF\C∧g = Q. So (22) holds, proving the base case.
For the induction step, we assume for the current (E,F , f, g, �) that Ef ≠ F g , |�| <  , f doesn’t

violate E and g doesn’t violate F . We then only prove the case for F g * Ef . �e case when F g ⊆ Ef

follows analogously.
let 2 be the smallest constraint in F g \ Ef. By Definition B.1, we have the following two cases:

• �e next tuple is (E ∪ {2}, F , f, g, �), then we have

(E ∪ {2}, F , f, g, �) ∈ %mg

(by Definition 3.6) ⇐⇒ (E,F , f, g, �) ∈ %mg ∧ X
mg

vbl(20 )
satisfies 2

(by I.H.) ⇐⇒ Xmg ∈ QE\(C\{20 })∧f ∧Ymg ∈ QF∧g ∧ X
mg

vbl(20 )
satisfies 2

⇐⇒ Xmg ∈ QE\(C\{20 })∪{2}∧f ∧Ymg ∈ QF∧g

(★) ⇐⇒ Xmg ∈ Q (E∪{2})\(C\{20 })∧f ∧Ymg ∈ QF∧g .

Here, the ★ implication is by that each 2 ∈ F g \ Ef chosen by the random process in Defini-
tion B.1 must satisfy either
– is exactly 20;
– or is pinned by f/g, i.e. vbl(2) ≠ vbl(2O),

and hence cannot be in C \ {20}.
• �e next tuple is (E,F , f ∧ c, g ∧ d, � Z 2) for c = False(2) and some d ∈ Qvbl(2) , then we
have

(E,F , f ∧ c, g ∧ d, � Z 2) ∈ %mg

(by Definition 3.6) ⇐⇒ (E,F , f, g, �) ∈ %mg ∧ Xmg violates 2 ∧ X
mg

vbl(2)
= c ∧Y

mg

vbl(2)
= d

(by c = False(2)) ⇐⇒ (E,F , f, g, �) ∈ %mg ∧ X
mg

vbl(2)
= c ∧Y

mg

vbl(2)
= d

(by I.H.) ⇐⇒ Xmg ∈ QE\(C\{20 })∧f ∧Ymg ∈ QF∧g ∧ X
mg

vbl(2)
= c ∧Y

mg

vbl(2)
= d

⇐⇒ Xmg ∈ QE\(C\{20 })∧f∧c ∧Ymg ∈ QF∧g∧d,

finishing the induction steps and the proof of the lemma.

�

B.2. Proof of Claim 4.13 and Lemma 5.5. In this subsection, we simultaneously prove Claim 4.13
and Lemma 5.5. Similar as the introduction of Definition 3.6 in Section 3 and Definition B.1 in the pre-
vious subsection, we need to define the following random process for explicitly identified randomness:

Definition B.4 (two random processes associatedwith the linear program). We consider the following
way of generating root-to-leaf paths of T . Initiate a random assignment Xlp ∈ Q distributed as either

• Xlp ∼ P (type 1 initialization)
• or Xlp ∼ `C\{20} (type 2 initialization)

�e process starts from the root node (C \ {20}, C,∅,∅, ∅) of T . In each step, at a non-leaf node
(E,F , f, g, �), it does:

(1) if F g * Ef, denoted by 2 be the smallest pinned constraint in F g \ Ef,

• move to (E ∪ {2}, F , f, g, �) if 2 is satisfied by X
lp

vbl(2)
;
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• otherwise, move to (E,F , f ∧ X
lp

vbl(2)
, g ∧ d, � Z 2) for each d ∈ Qvbl(2) w.p.

?̂-
E,F,f∧X

lp

vbl (2)
,g∧d,�Z2

?̂-
(E,F,f,g,�)

;

(2) otherwise F g ⊆ Ef, denoted by 2 be the smallest pinned constraint in Ef \ F g ,
• move to (E,F ∪ {2}, f, g, �) with probability

?̂-
(E,F∪{2},f,g,�)

?̂-
(E,F,f,g,�)

;

• move to (E,F , f ∧ X
lp

vbl(2)
, g ∧ d, � Z 2) for d = False(2) with probability

?̂-
(E,F,f∧X

lp

vbl (2)
,g∧d,�Z2)

?̂-
(E,F,f,g,�)

.

By Item II. of Definition 4.8, it can be verified that for both types of initialization of Xlp, the above
process generates a probability distribution over root-to-leaf paths of T . For the two processes with
Xlp initialized as type 1/type 2, we refer to the Xlp as Xlp1/Xlp2, respectively. We let the root-to-leaf
path generated be %lp1/%lp2, and the distribution on the leaf node induced by the process be `lp1/`lp2,
respectively.

We then present probability bounds for Definition B.4 with different initialization, concluded by the
two following lemmas.

Lemma B.5. Assume Condition 1. For each (E,F , f, g, �) ∈ + (T ), it holds that

Pr
[
(E,F , f, g, �) ∈ %lp1

]
= P [(E \ (C \ {20})) ∧ f] · ?̂

-
(E,F,f,g,�) .

Moreover, conditioning on (E,F , f, g, �) ∈ %lp1, it follows that

Xlp1 ∼ `fE\(C\{20 })
,

for each (E,F , f, g, �) such that Pr
[
(E,F , f, g, �) ∈ %lp1

]
> 0.

Lemma B.6. Assume Condition 1. For each (E,F , f, g, �) ∈ + (T ), it holds that

Pr
[
(E,F , f, g, �) ∈ %lp2

]
= `C\{20} (E ∧ f) · ?̂

-
(E,F,f,g,�) .

Moreover, conditioning on (E,F , f, g, �) ∈ %lp2, it follows that

Xlp2 ∼ `fE ,

for each (E,F , f, g, �) such that Pr
[
(E,F , f, g, �) ∈ %lp2

]
> 0.

By Lemma B.6 and comparing Definition B.4 with Definition 5.3, Lemma 5.5 is immediately proved.
Also, we have the following corollary by combining Lemma B.5 with the law of conditional probability.

Corollary B.7. Assume Condition 1. For each x ∈ Q and each (E,F , f, g, �) ∈ + (T ),

Pr
[
(E,F , f, g, �) ∈ %lp1 | Xlp1 = x

]
=

{
0 x ∉ QE\(C\{20 })∧f ;

?̂-
(E,F,f,g,�)

x ∈ QE\(C\{20 })∧f .

Proof. For each x ∈ Q and each (E,F , f, g, �) ∈ + (T ) we have

(23)
Pr

[
(E,F , f, g, �) ∈ %lp1 | Xlp1 = x

]
=

Pr
[
(E,F , f, g, �) ∈ %lp1 ∧ Xlp1 = x

]
Pr

[
Xlp1 = x

]
(by Definition B.4) =|Q | · Pr

[
(E,F , f, g, �) ∈ %lp1 ∧ Xlp1 = x

]
.
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Note that by Lemma B.5, if x ∉ QE\(C\{20 })∧f , then the above term clearly equals to 0. We then
assume x ∈ QE\(C\{20 })∧f . Note that by Lemma B.5, conditioning on the event (E,F , f, g, �), the
distribution of f is uniform over all assignments in QE\(C\{20 })∧f . �erefore,

Pr
[
(E,F , f, g, �) ∈ %lp1 ∧ Xlp1 = x

]
=Pr

[
(E,F , f, g, �) ∈ %lp1

]
·

1

|QE\(C\{20})∧f |

(by Lemma B.5) =
|QE\(C\{20 })∧f |

|Q |
· ?̂-(E,F,f,g,�) ·

1

|QE\(C\{20})∧f |

=
1

|Q |
· ?̂-(E,F,f,g,�) ,

combining with (23) proves the corollary. �

�e proofs of Lemmas B.5 and B.6 follow a direct induction on the coupling tree. We provide the
proofs of Lemmas B.5 and B.6 at the end of this subsection for completeness.

We are now ready to prove Claim 4.13.

Proof of Claim 4.13. We only prove the first inequality, and the second inequality follows analogously.
Note that we have

(24)

1

|QC\{20} |

∑
x∈QC\{20}

∑
(E,F,f,g,�) ∈Ltrun :

x∈QE∧f

?̂-(E,F,f,g,�)

(★) =
∑

x∈QC\{20}

∑
(E,F,f,g,�) ∈Ltrun :

x∈QE∧f

Pr
[
(E,F , f, g, �) ∈ %lp2

]
|QE∧f |

(N) =
∑

(E,F,f,g,�) ∈Ltrun

Pr
[
(E,F , f, g, �) ∈ %lp2

]
,

where the ★ equality is by Lemma B.6 and that E ∧ f =⇒ C \ {20} for each (E,F , f, g, �) ∈ + (T ),
following the argument in Remark 4.6. �e N equality is still by that E ∧ f =⇒ C \ {20} and
exchanging the order of summation.

Let
(
E lp1, F lp1, flp1, glp1, �lp1

)
∼ `lp1 and

(
E lp2, F lp2, flp2, glp2, �lp2

)
∼ `lp2 denote the random leaf

of + (T ) generated by the two processes in Definition B.4, respectively.
LetT20

 
be the set of 2-trees in�Φ of size containing 20. Note that following the proof of Lemma 3.5

we have � ⊆ T20

 
for all (E,F , f, g, �) ∈ Ltrun. We then have

(25)

1

|QC\{20} |

∑
x∈QC\{20}

∑
(E,F,f,g,�) ∈Ltrun :

x∈QE∧f

?̂-(E,F,f,g,�)

(by (24)) =
∑

(E,F,f,g,�) ∈Ltrun

Pr
[
(E,F , f, g, �) ∈ %lp2

]

=
∑
)∈T

20

 

Pr
[
�lp2 = )

]

=
∑
)∈T

20

 

∑
x∈QC\{20}

Pr
[
Xlp2 = x

]
· Pr

[
�lp2 = ) | Xlp2 = x

]

(★) =
∑
)∈T

20

 

∑
x∈QC\{20}

Pr
[
Xlp2 = x

]
· Pr

[
�lp1 = ) | Xlp1 = x

]

(by Corollary B.7) =
∑
)∈T

20

 

∑
x∈QC\{20}

Pr
[
Xlp2 = x

]
·

∑
(E,F,f,g,�) ∈Ltrun :

x∈QE\(C\{20})∧f∧�=)

?̂-(E,F,f,g,�) .
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Here, the★ equality is by noting that we can perfectly couple the random processes in Definition B.4
with two types of initialization when Xlp1 and Xlp2 are the same value in QC\{20} .

RecallA2 denotes the event defined in (7), i.e.

A2 : ∀E ∈ vbl(2), X(E) = False(2) (E) ∨Y(E) = False(2) (E).

We further note that ∑
)∈T

20

 

∑
x∈QC\{20}

Pr
[
Xlp2 = x

]
·

∑
(E,F,f,g,�) ∈Ltrun :

x∈QE\(C\{20})∧f∧�=)

?̂-(E,F,f,g,�)

(★) ≤(1 − e?) (�+1) 
∑
)∈T

20

 

∑
x∈QC\{20}

Pr
[
Xlp2 = x

]
Pr
Y∼P

[∧
2∈)

A2 | X = x

]

(N) =(1 − e?) (�+1) 
∑
)∈T

20

 

∑
x∈Qvbl() )

Pr

[
X
lp2

vbl() )
= x

]
· Pr
Y∼P

[∧
2∈)

A2 | Xvbl() ) = x

]

(by Definition B.4) ≤(1 − e?)2(�+1) 
∑
)∈T

20

 

∑
x∈Qvbl() )

Pr
X∼P

[
Xvbl() ) = x

]
· Pr
Y∼P

[∧
2∈)

A2 | Xvbl() ) = x

]

=(1 − e?)2(�+1) 
∑
)∈T

20

 

Pr
X,Y∼P

[∧
2∈)

A2

]

(�) ≤(1 − e?)2(�+1) 
∑
)∈T

20

 

?
2

2+Z

(by Lemma 2.6) ≤
(
e�2 · ?

2

2+Z · (1 − e?)−2(�+1)
) 

(by Condition 1) ≤2− ,

which combining with (25) finishes the proof of the lemma.
Here, the ★ inequality is by Item IV. of Definition 4.8. �e N equality is by the definition ofA2 that

the expression

Pr
Y∼P

[∧
2∈)

A2

]

only depends onXvbl() ) . �e� inequality is by following the argument in the proof of Lemma 3.11. �

We finish this subsection and the overall section by proving Lemmas B.5 and B.6.

Proof of Lemma B.5. We prove the lemma by a structural induction in a top-down order.
�e base case is when at the root node, i.e., (E,F , f, g, �) = (C \ {20}, C,∅,∅, ∅). Note that in this

case we have Pr
[
(E,F , f, g, �) ∈ %lp1

]
= 1 and

P [(E \ (C \ {20})) ∧ f] = 1, ?̂-(E,F,f,g,�) = 1,

where the second equality is by Item 2 of Definition 4.8. Also, it follows from Definition B.4 that

Xlp1 ∼ P = `fE\(C\{20 })
.

�e base case is proved.
For the induction step, we only prove the case when F g * Ef. �e case when F g ⊆ Ef follows

analogously. Let 2 be the smallest constraint in F g \ Ef . From Definition B.4, we have the following
cases:

• 2 is satisfied byXlp1. In this case, we go to (E∪{2}, F , f, g, �). By the induction hypothesis, we
haveXlp1 ∼ `f

E\(C\{20 })
and therefore this event (2 is satisfied byXlp1) happenswith probability

34



`f
E\(C\{20 })

(2). �en

Pr
[
(E ∪ {2}, F , f, g, �) ∈ %lp1

]
(by Definition B.4) =Pr

[
(E,F , f, g, �) ∈ %lp1

]
· `fE\(C\{20 })

(2)

(by I.H.) =P [(E \ (C \ {20})) ∧ f] · ?̂
-
(E,F,f,g,�) · `

f
E\(C\{20 })

(2)

(by the chain rule) =P [((E \ (C \ {20})) ∪ {2}) ∧ f] · ?̂
-
(E,F,f,g,�)

(★) =P [((E ∪ {2}) \ (C \ {20})) ∧ f] · ?̂
-
(E,F,f,g,�)

(by Item II. of Definition 4.8) =P [((E ∪ {2}) \ (C \ {20})) ∧ f] · ?̂
-
(E∪{2},F,f,g,�) .

Here, the★ equality is by that each 2 ∈ F g \Ef chosen by the random process in Definition B.1
must satisfy either
– is exactly 20;
– or is pinned by f, i.e., vbl(2) ≠ vbl(2O),

and hence cannot be in C\ {20}. Also, conditioning on going to (E ∪{2}, F , f, g, �), it follows
that

Xlp1 ∼ `f
E\(C\{20 })∪{2}

= `f
(E∪{2})\(C\{20 })

,

finishing the proof of this case.

• 2 is violated by Xlp1. Let c = X
lp1

vbl(2)
, then we have c = False(2). By the induction hypothesis,

we have Xlp1 ∼ `f
E\(C\{20 })

and this event (2 is violated by Xlp1) happens with probability

`fE\(C\{20 })
(¬2) = `fE\(C\{20 })

(c).

In this case, for each d ∈ Qvbl(2) we go to (E,F , f ∧ c, g ∧ d, � Z 2) with probability
?̂-
(E,F,f∧c,g∧d,�Z2)

?̂-
(E,F,f,g,�)

. Hence for each d ∈ Qvbl(2) ,

Pr
[
(E,F , f ∧ c, g ∧ d, � Z 2) ∈ %lp1

]
(★) =Pr

[
(E,F , f, g, �) ∈ %lp1

]
· `fE\(C\{20 })

(c) ·
?̂-
(E,F,f∧c,g∧d,�Z2)

?̂-
(E,F,f,g,�)

(by I.H.) =P [(E \ (C \ {20})) ∧ f] · ?̂
-
(E,F,f,g,�) · `

f
E\(C\{20 })

(c) ·
?̂-
(E,F,f∧c,g∧d,�Z2)

?̂-
(E,F,f,g,�)

(N) =P [(E \ (C \ {20})) ∧ (f ∧ c)] · ?̂
-
(E,F,f∧c,g∧d,�Z2) ,

where the ★ equality is by Definition B.4 and the N equality is by the chain rule. Also,
conditioning on going to (E,F , f ∧ c, g ∧ d, � Z 2), it follows that

Xlp1 ∼ `f∧cE\(C\{20 })
,

finishing the proof of this case and the lemma.

�

Proof of Lemma B.6. We prove the lemma by a structural induction in a top-down order.
�e base case is when at the root node, i.e., (E,F , f, g, �) = (C \ {20}, C,∅,∅, ∅). Note that in this

case we have Pr
[
(E,F , f, g, �) ∈ %lp2

]
= 1 and

`C\{20} (E ∧ f) = 1, ?̂-(E,F,f,g,�) = 1,

where the second equality is by Item 2 of Definition 4.8. Also, it follows from Definition B.4 that

Xlp2 ∼ `C\{20} = `
f
E .

�e base case is proved.
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For the induction step, we only prove the case when F g * Ef. �e case when F g ⊆ Ef follows
analogously. Let 2 be the smallest constraint in F g \ Ef . From Definition B.4, we have the following
cases:

• 2 is satisfied by Xlp2. In this case, we go to (E ∪ {2}, F , f, g, �). By the induction hypothesis,
we have Xlp2 ∼ `f

E
and this event (2 is satisfied by Xlp2) happens with probability `f

E
(2). �en

Pr
[
(E ∪ {2}, F , f, g, �) ∈ %lp2

]
(by Definition B.4) =Pr

[
(E,F , f, g, �) ∈ %lp2

]
· `fE (2)

(by I.H.) =`C\{20} (E ∧ f) · ?̂
-
(E,F,f,g,�) · `

f
E (2)

(★) =`C\{20} ((E ∪ {2}) ∧ f) · ?̂
-
(E,F,f,g,�)

(by Item II. of Definition 4.8) =`C\{20} ((E ∪ {2}) ∧ f) · ?̂
-
(E∪{2},F,f,g,�) ,

where the★ equality is by the chain rule and that E∧f =⇒ C\{20} for each (E,F , f, g, �) ∈
+ (T ), following the argument in Remark 4.6. Also, conditioning on going to (E∪{2}, F , f, g, �),
it follows that

Xlp2 ∼ `fE∪{2} ,

finishing the proof of this case.

• 2 is violated by Xlp2. Let c = X
lp2

vbl(2)
. By the induction hypothesis, we have Xlp2 ∼ `f

E
and this

event (2 is violated by Xlp2) happens with probability

`fE (¬2) = `
f
E (c).

In this case, for each d ∈ Qvbl(2) we go to (E,F , f ∧ c, g ∧ d, � Z 2) with probability
?̂-
(E,F,f∧c,g∧d,�Z2)

?̂-
(E,F,f,g,�)

. Hence, for each d ∈ Qvbl(2) ,

Pr
[
(E,F , f ∧ c, g ∧ d, � Z 2) ∈ %lp2

]
(by Definition B.4) =Pr

[
(E,F , f, g, �) ∈ %lp2

]
· `fE (c) ·

?̂-
(E,F,f∧c,g∧d,�Z2)

?̂-
(E,F,f,g,�)

(by I.H.) =`C\{20} (E ∧ f) · ?̂
-
(E,F,f,g,�) · `

f
E (c) ·

?̂-
(E,F,f∧c,g∧d,�Z2)

?̂-
(E,F,f,g,�)

(★) =`C\{20} (E ∧ (f ∧ c)) · ?̂
-
(E,F,f∧c,g∧d,�Z2) ,

where the★ equality is by the chain rule and that E∧f =⇒ C\{20} for each (E,F , f, g, �) ∈
+ (T ), following the argument in Remark 4.6. Also, conditioning on going to (E,F , f ∧ c, g ∧
d, � Z 2), it follows that

Xlp2 ∼ `f∧cE ,

finishing the proof of this case and the lemma.

�

36


	1. Introduction
	2. Preliminaries and notations
	3. Constraint-wise coupling with exponential decay of correlation
	4. Linear programming from constraint-wise coupling
	5. Counting and sampling via linear programming
	6. Conclusion and open problems
	References
	Appendix A. Basic properties of the linear program
	Appendix B. Probabilistic properties of the linear program

