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Abstract

Machine learning models are widely applied in various fields. Stakeholders
often use post-hoc feature importance methods to better understand the input
features’ contribution to the models’ predictions. The interpretation of the im-
portance values provided by these methods is frequently based on the relative
order of the features (their ranking) rather than the importance values them-
selves. Since the order may be unstable, we present a framework for quantifying
the uncertainty in global importance values. We propose a novel method for the
post-hoc interpretation of feature importance values that is based on the frame-
work and pairwise comparisons of the feature importance values. This method
produces simultaneous confidence intervals for the features’ ranks, which include
the “true” (infinite sample) ranks with high probability, and enables the selection
of the set of the top-k important features.

1 Introduction

Complex nonlinear prediction models are widely used to augment or even replace human
judgement in fields such as healthcare [1], finance [2], and science [3, 4]. Regulators, users,
and developers of such models are interested in understanding the relative contribution of
the different inputs, i.e., features, to the model’s predictions [5, 6]. Feature importance (FI)
methods such as permutation feature importance (PFI) [7] and SHapley Additive exPlana-
tions (SHAP) [8, 9] measure the contribution of features by estimating the effect of removing,
perturbing, or permuting the feature on the predicted value or prediction loss. The specifics
of this manipulation vary depending on the method and implementation [10, 11]. These FI
methods are employed to explain the predictions of models after they have been trained, and
therefore they are called post-hoc FI methods. This paper focuses on global FI methods that
explain the average model behavior rather than local FI methods that explain individual
predictions.

Recently, studies have demonstrated that post-hoc FI methods can be unstable [12, 13]
due to uncertainty stemming from the size and sampling of the data used to calculate the
FI values (explanation set); randomness in the perturbations, permutations [14, 15], or
approximations [10]; hyperparameter selection [16, 17]; and more. We focus on uncertainty
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in sampling the explanation set, which affects the stability of the FI values. Most methods
for quantifying this type of uncertainty produce per-feature spread estimates (or confidence
intervals) in the FI method’s output units [18, 19, 10, 16, 17, 20].

Existing uncertainty measures are insufficient, because stakeholders often rely on the rank
of the FI value, rather than the value itself, in their decisions. Feature rankings are unit-
independent and are therefore easy to interpret and compare across FI methods [21, 22].
Instability in the global FI values can lead to instability in their ranking [23] (an example
is provided in Figure 1). A simple ranking of the features based on the FI values cannot
reflect this uncertainty. Moreover, due to the ranking’s discrete nature, existing methods
for quantifying uncertainty in FI values cannot easily be modified to work for ranking
uncertainty. For example, we show that confidence intervals (CIs) produced by a naive
bootstrapping method based on the estimation of the ranking distribution do not cover
the true ranks. The previously mentioned challenges point to the need for a framework
for defining, estimating, and reporting ranking uncertainty. To properly model ranking
uncertainty, we first model the uncertainty of the global FI values and then infer the effect
of this uncertainty on the rankings.
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Figure 1: Bar plots of SHAP values for two samples of n = 50 observations from the bike
sharing dataset using an XGBoost model. The ranking of the features is unstable for this
sample size: ranking of theWorkingday andMonth features varies, depending on the sample.
The chances of observing each of the rankings (69.4% and 29.1%) are estimated based on
1,000 independent samples of size n = 50.

In this paper, we present a base-to-global framework to quantify the uncertainty of global
FI values. We define a two-level hierarchy of importance values, namely the base and
global FI values, where the global FI values are the average of independent base FI values.
Based on this framework, we propose a novel method for confidently ranking features. We
define the true rank as a feature’s rank, obtained based on an infinite sample, for both a
trained prediction model and an FI method. Our ranking method reports simultaneous CIs,
ensuring, with high probability, that each feature’s true rank is covered by the appropriate
interval. We construct the intervals by examining all pairs of features, testing hypotheses
regarding differences in means, and counting the number of rejections for each feature. The
examination process tackles the multiple tests problem, which might result in the false
discovery of a feature as relevant. The validity of our proposed method is demonstrated in a
comprehensive evaluation on both synthetic and real-world datasets. Our findings confirm
our method’s effectiveness and highlight its potential in quantifying and enhancing ranking
stability. Our base-to-global framework can be viewed as a generalization of the formulate,
approximate, explain (FAE) [10] framework for generating and interpreting Shapley-value-
based FI methods. We extend the FAE concept in two respects: first, we generalize it to
other post-hoc FI methods by defining the base values in a general way; and second, we
address the uncertainty in the ranking of the global FI values.

Our main contributions in this paper are as follows: (1) We propose a novel ranking method
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for FI values. (2) We quantify the uncertainty of the ranking by providing simultaneous
CIs for the features’ ranks.1 (3) We suggest an improved means of interpreting global FI
values. We generalize confident ranking methods to accommodate correlations and potential
departures from normality, which are common in FI values. To the best of our knowledge,
our ranking method is the first to formally incorporate uncertainty control in the ranking
of FI values.

2 Quantifying Uncertainty in Global FI Values

2.1 Terminology

Consider the supervised learning task of predicting a real-value outcome Y ∈ Y from a
vector of p features X = (X1, . . . , Xp) ∈ X . A prediction model f : X → Y is trained on a
training set Dtrain = {(xi, yi)}Mi=1 and fits the data well according to standard metrics (e.g.,
MSE or accuracy on external test sets). Stakeholders are then interested in the extent to
which a feature contributes to the model’s performance or predictions – the FI value.

2.2 Base-to-Global Framework

Post-hoc global FI methods describe the average behavior of the model. These methods
produce an importance value for each feature, Φ̂1, Φ̂2, . . . , Φ̂p ∈ R, based on a trained model
f and a sample Dexplain = {(xi, yi)}Ni=1, preferably independent of Dtrain. In most methods,

the assumption is that a higher value of Φ̂j indicates greater importance. Generally, the
features are ranked according to their FI values, and only the top-k features are considered.

In many cases, the FI values are calculated by averaging many independent runs. For
example, in SHAP [8], the global FI value is an average of the absolute values assigned to each
observation (the local SHAP values). Variability in the explanation set Dexplain introduces
uncertainty into the global FI values.2 In PFI [7], the global FI value is the average obtained
over multiple permutations. In this case, both variability in the explanation set and the
randomized permutations introduce uncertainty into the global FI values.

In considering how these examples could be addressed in a single framework, we make the
following observation: there is a two-level FI hierarchy in which the observed global FI value
is an average of independent base FI values; in the first example (SHAP), the base FI values
correspond to the local SHAP values, and in the second example (PFI), the base FI values
correspond to the PFI values calculated for a single permutation on the full explanation set.

We set the following notations: matrix vn×p is defined as the matrix of base FI values, with
rows v1, . . . , vn ∈ Rp representing the FI value for each feature.3 vj are the columns of the
matrix referring to the base FI values for the j’th feature. The observed global FI value for
the j’th feature is Φ̂j =

1
n

∑
vij .

SHAP Example For a single observation (x, y), the local SHAP value of a feature j is:

ϕj =
∑

S⊆[p]\{j}

|S|!(p− |S| − 1)!

p!
×

(
E[f(X)|XS∪{j} = xS∪{j}]− E[f(X)|XS = xS ]

)
1The paper’s code is publicly available at: https://github.com/BityaNeuhof/confident_feature_

ranking.
2This paper only considers the exact computation of SHAP values without approximation.
3If the base FI values are the local values, n = N is the size of Dexplain.
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where [p] is the set of all features, and S is a subset of features. The base FI value is:

vSHAP
j = |ϕj |, (1)

and the global FI value is: Φ̂SHAP
j = 1

n

∑n
i=1 v

SHAP
j .

PFI Example Let L be a loss function; the global PFI value of a feature j is:

Φ̂PFI
j =

1

B

B∑
b=1

L(f(Xb
[j]), Y )− L(f(X), Y ),

where X[j] is a replication of X with a permuted version of the j’th feature, and B is the
number of permutations. The base FI value can be defined either as a single permutation of
the j’th feature: vPFI

j = L(f(X[j]), Y )− L(f(X), Y ) (here the number of base FI values is
the number of permutations (n = B)) or as the average of permutations for an observation:

vPFI
j =

1

B

B∑
b=1

L(f(xb
[j]), y)− L(f(x), y), (2)

where x[j] is a replication of observation x with a permuted version of the j’th feature. Here,
the number of base FI values is the number of observations (n = N). A detailed analysis of
the sources of uncertainty in PFI is provided in Appendix A.

2.3 Uncertainty in Feature Ranking

Global FI values are often interpreted as a ranking used to highlight or select the most
relevant features. Since different FI methods produce FI values of varying scales, the ranking
of the features is often used to compare the methods’ output. The observed ranks r̂ =
(r̂1, . . . , r̂p), r̂j ∈ {1, ..., p} are typically derived directly from the observed global FI values,
with the rank p assigned to the highest global FI value, and rank 1 assigned to the lowest.

The sampling of the base FI values introduces uncertainty into the global FI values. The
global FI values are then ranked, propagating the uncertainty into the observed ranks. This
process is summarized in Figure 2 which presents the framework’s pipeline for quantifying
the uncertainty in the observed ranks.

Base
FI Values

Observed Global
FI Values

Sampler

𝑣!

𝑣"

𝑣#

Observed Ranks

!Φ! !Φ$⋯

#r! #r$⋯
3 5 6 1 9 7 2 4 8

Figure 2: Base FI values are sampled as vectors, introducing uncertainty. The vectors are
averaged to form the observed global FI values. Finally, the global FI values are ranked to
produce the observed ranks.
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Note that the definitions of the base and global FI levels specify the source of the uncertainty
to be reflected in the CIs for the ranks; two options for base FI value definition for PFI are
presented above.

3 Statistical Model and Inference Goal

In this section, we describe our statistical model for estimating ranking uncertainty. First,
we define a feature’s rank-set as a rank that considers information about ties. Then we
define our inference goal – to provide simultaneous CIs for the rank-sets. Finally, we discuss
the advantages of simultaneous CIs and provide an example in which the top-k features are
highlighted.

3.1 True Global FI Values and Rank-Sets

Recall that in Section 2 we introduced the base FI values matrix v, with rows vi ∈ Rp.
Here, we model the rows vi as independent samples from distribution Fv with mean vector
E[vi] = (Φ1, . . . ,Φp); these are the true global FI values. Each observed global FI value Φ̂j

is an unbiased but noisy version of Φj . We are interested in understanding the effects of
this variability on the possible feature rankings.

In contrast to the observed noisy ranks, the true ranks r1, ..., rp are based on the true global
FI values Φ1, ...,Φp. Whereas in the observed global FI values exact ties are unlikely, for
the true global FI values we can imagine ties between equivalent features, or we may want
to allow an indifference level. We follow [24] in redefining the true ranks to account for ties:

Definition 1 (Rank-Set) Define the lower rank of Φj as lj = 1 + #{k : Φj > Φk, j ̸= k}
and the upper rank of Φj as uj = p −#{k : Φj < Φk, j ̸= k}. Then the rank-set of Φj is
the set of natural numbers {lj , lj+1, . . . , uj} denoted as [lj , uj ].

If there are no ties, the lower and upper ranks are identical and equal to the standard
definition. In the remainder of the paper, the term ‘true rank’ will refer to the rank-set.

3.2 CIs for True Ranks

We propose quantifying the rankings’ uncertainty using simultaneous CIs for the true ranks.
Here, we define marginal and simultaneous CIs, and in Section 4 we propose a method for
constructing valid simultaneous CIs for the true ranks.

Definition 2 (CI for a True Rank) The ranks interval [Lj , Uj ] is an (1− α)-level CI for a
true rank of the j’th feature if PFv ([lj , uj ] ⊆ [Lj , Uj ]) ≥ 1− α for any possible Fv.

Lj , Uj are functions of v, the matrix of observed base FI values. We note that different sets
of observed base FI values will produce different CIs.

The set of intervals [L1, U1], . . . , [Lp, Up] has marginal coverage if each interval is a valid CI
of the corresponding true rank. For ranking and selection of features, marginal coverage
is not sufficient, because it does not support selection after ranking [25]. Therefore, our
ranking method constructs simultaneous CIs for the true ranks.

Definition 3 (Simultaneous Coverage) The set of intervals [L1, U1], . . . , [Lp, Up] ⊆ [1, p]
has simultaneous coverage at level 1− α if

PFv ([lj , uj ] ⊆ [Lj , Uj ], ∀j ∈ {1, . . . , p}) ≥ 1− α.

In 1 − α simultaneous CIs, the probability that all intervals cover the true ranks is at
least 1 − α. Simultaneous CIs remain valid for any form of selection after ranking (for
example, selection of the most important features). We note that simultaneous coverage is
conservative and can result in relatively large intervals.
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3.3 Top-K Set

Here we present an application of simultaneous CIs for the selection of the most important
features (top-k) with a guarantee of coverage. Since the ranking is based on the observed
FI values, the size of the set of possible top-k features might be greater than k.

Denote Tk ⊆ [p] as the set of features whose true FI value is ranked in the top-k Tk = {j :
uk ≥ p−k+1}. A simple selection method is to select features for which the upper bound of
the CI is greater than p−k. With simultaneous coverage, the probability of an error for this
selection is controlled [26]. Furthermore, the CIs for the features currently ranked among
the top-k still have marginal coverage. These two properties are not guaranteed without
simultaneous coverage [27].

Lemma 1 Let {[L1, U1], . . . , [Lp, Up]} be 1−α simultaneous CIs for the true ranks. Define

the top-k set T̂k = {j : Uj ≥ p− k + 1}. This set includes all features with an upper bound

in the top-k ranks (p, p− 1, . . . , p− k + 1). Then P(Tk ⊆ T̂k) ≥ 1− α.

To prove this, consider a case in which Tk ⊆ T̂k does not hold; then it must follow that there
is some j ∈ Tk that is not in T̂k. This means that the estimated upper bound Uj is less than
the true upper rank uj , so the CI [Lj , Uj ] does not cover [lj , uj ]. Based on the definition of
1− α simultaneous CIs, the probability of any such event is at most α.

4 Confident Simultaneous Feature Ranking

In this section, we introduce our ranking method which is designed to rank FI values while
taking into account the uncertainty associated with the post-hoc FI method and the sam-
pling process. Using our base-to-global framework, we are able to quantify the uncertainty
by calculating simultaneous CIs for the true ranks.

4.1 Feature Ranking

Our method uses pairwise hypothesis tests to estimate lower and upper bounds for the true
rank of each feature. For each feature pair j, k, we perform two one-sided hypothesis tests:

(a) A test of H1
jk : Φj < Φk versus H0

jk : Φj ≥ Φk;

(b) A test of H1
kj : Φk < Φj versus H0

kj : Φk ≥ Φj .

Each test is composed of a p-value pjk = pairCompare(vj ,vk) and a significance level
α ∈ (0, 0.5]; the test rejects H0

jk if pjk < α. The test is calibrated if: P(pjk ≤ α) ≤
α for any Φj ≥ Φk, meaning that the probability of rejecting H0

jk when H1
jk is correct

is bounded by α. For the tests to be calibrated, they need to account for the possible
dependence between vj and vk. In our implementation, we use the paired-sample t-test
(see Section 4.4).

There is a natural relation between the results of the one-sided hypothesis tests and the
ranking of the global FI values. The rejection of a hypothesis H0

jk : Φj ≥ Φk, implies
acceptance of a partial ranking of the global FI values, namely Φj < Φk. This partial
ranking limits the global ranking: the feature j cannot be ranked highest (uj < p), and the
feature k cannot be ranked lowest (lk > 1). We combine many partial ranking statements
to improve the bounds on the ranks.

Combining many probabilistic decisions comes at a price. Setting the tests’ rejection thresh-
old to α limits the marginal probability of making an error in each partial ranking to α.
However, when combined, the probability of making at least one error increases with the
number of tests, and without proper adjustments it may greatly exceed α. In the next
subsection, we adjust the p-values to control this probability over multiple tests.
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4.2 Controlling Partial Ranking Error

We defineD as the set of partial rankings from all pairwise testsD = {(j, k) : H0
jk was rejected}.

A partial ranking error is a pair (j′, k′) ∈ D for which Φj′ ≥ Φk′ . For simultaneous CIs, we
want to control the probability of error over all the partial rankings.

Definition 4 (Family-Wise Error Rate) The family-wise error rate (FWER) is controlled
at probability level α on the set of partial rankings D if the probability of making any partial
ranking error is less than α: P(∃(j′, k′) ∈ D : Φj′ ≥ Φk′) ≤ α.

To control the FWER, we replace the original p-values with a set of adjusted p-values padj =
FWERAdjust(v, pairCompare). After adjustment, the partial rankings are obtained by

comparing padjjk and padjkj to the required FWER level α .4 Some examples of adjustment
procedures in which the FWER is controlled are provided in Section 4.4.

4.3 Confident Simultaneous Feature Ranking

When the FWER is controlled for the partial rankings set, we can use the partial rankings
set to derive simultaneous CIs for the true ranks:

Theorem 1 [24] Let D be the set of partial rankings with FWER control at level α. For
j = 1, ..., p, define:

Lj = 1 +#{k : (k, j) ∈ D},
Uj = p−#{k : (j, k) ∈ D}.

Then the sets {[Lj , Uj ] for j ∈ [p]} are (1− α) simultaneous CIs for the true ranks.

The construction naturally extends the definition of rank-set provided in Definition 1. The
idea of the proof is that a coverage failure means that the set of true (one-sided) differences
is smaller than the set of observed (one-sided) differences. This means that at least one
partial ranking in D is false. Therefore the FWER upper bounds the probability of an error
in the CIs (see proof in Appendix B.1). Our ranking method is based on ICRanks [24]; the
way in which the proposed method differs from ICRanks is discussed in Section 4.4.

Algorithm 1 summarizes our method for constructing simultaneous CIs for the true ranks.
The algorithm works directly on the base FI matrix without requiring access to the trained
model, the FI method, or the explanation set. The main assumption is that our paired test
is calibrated for the possible distributions of base FI values.

4.4 Ranking Method Implementation

Paired Test We use a parametric paired t-test to compute p-values for the pairs of base
FI values. Set d = vj − vk to be the vector of differences, and denote d̄ as the sample
average and sd as the sample standard deviation. Then the one-sided α level test rejects the
null hypothesis if d̄/(sd/

√
n) > Tn−1(1− α), where Tn−1(1− α) denotes the 1− α quantile

of student-t (n − 1 df). The paired t-test is fairly robust to departures from a normal
distribution [28].

Adjustment for Multiple Tests We implement two sequential procedures to adjust
(increase) the p-values:

• Holm’s procedure [29]. Assuming that the base FI values are normally distributed, the
paired t-test is calibrated with this procedure. We implement Holm’s procedure on
the one-sided hypothesis tests, although for approximately normal data, the two-sided

4In practice, when both tests use the same data and the threshold α is less than 0.5, none or just one
of the null hypotheses will be rejected (there will not be a case in which both of the null hypotheses are
rejected).
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Algorithm 1 Simultaneous CIs for Ranks

Require:
v: base FI matrix;
1− α > 0: level of confidence;
pairCompare: suitable paired test;
FWERAdjust: FWER adjustment procedure.
for j, k ∈ [p], j ̸= k do
pjk ← pairCompare(vj ,vk).

end for
padj =← FWERAdjust(v, pairCompare)

D ← {(j, k) : padjjk ≤ α}
for j ∈ [p] do
Lj ← 1 + #{k : (k, j) ∈ D}
Uj ← p−#{k : (j, k) ∈ D}

end for
return [L1, U1], . . . , [Lp, Up].

Holm would likely work well also. See [30, 31] on using Holm’s procedure for pairwise
tests.

• Min-P [32]. This procedure is based on bootstrapping. Therefore, no further assump-
tions are required.

The adjusted p-values are then compared to the predefined threshold of α (details on the
procedures are provided in Appendix B.2). With these procedures, if the p-values are
calibrated, then the FWER for the rejected tests is controlled at the α level, regardless of
the dependence.

Comparison to ICRanks Similar to Algorithm 1, ICRanks [24] is based on Tukey’s
correction [33] in order to control the differences between ranks simultaneously. Tukey’s
correction is designed for normal and independent data, which are distributional assumptions
that would usually not hold for FI values. In contrast, our algorithm applies a test to each
feature pair separately, and the Holm’s or the Min-P procedure is performed on the resulting
p-values; therefore, it can be utilized with robust or nonparametric tests [34].

5 Evaluation

In this section, we evaluate our base-to-global framework and ranking method. We use
synthetic data to assess our method’s validity (simultaneous coverage) and efficiency. We
analyze our ranking method by generating base FI values directly (Section 5.1). We note
that feature ranking is an interpretability step at the end of an ML task, as shown in Figure
3; therefore, we simulate the entire process of training and explaining a model with simulated
data (Section 5.2) and real data (Section 5.3).

Metrics We use the metrics (ranking measures) suggested by [24] to define simultaneous
coverage and efficiency:

• Simultaneous coverage – the proportion of experiments where all true ranks are covered
by their CIs: one if all {Φj ∈ [Lj , Uj ]}, andzero otherwise.

• Efficiency – the average relative size of the CIs: 1
p·(p−1)

∑p
j=1(Uj − Lj).

Higher coverage and lower efficiency are better.
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Figure 3: Feature ranking and evaluation process.

5.1 Ranking Method Comparison

Ranking Methods We compare the ranking measures of four ranking methods: a naive
ranking method based on empirical quantiles of bootstrap samples as a baseline (details are
provided in Appendix D.1.1), ICRanks,5 our ranking method with Holm’s procedure, and
our ranking method with the Min-P adjustment procedure.

We sample the base FI values from a multivariate-normal distribution Np(µ,Σ) with prede-
termined vector of means µ and a covariance matrix Σ. The true global FI values are the
means, and we control the correlation structure between the base FI values via the definition
of the covariance matrix.

Vector of Means The structure of the vector µ is (1µ-exponent, 2µ-exponent, . . . , (p+ 1)µ-exponent)
T
,

with µ-exponent ∈ [0.1, 0.25, 0.5]. A lower value of µ-exponent results in a more dense vector
of means. Ties between the means are allowed.

Covariance Matrix The covariance matrix structure is composed of a vector σ2 of the
variances of the base FI values sampled from the re-scaled chi-squared distribution (χ2

(5)/5).

The correlation matrix structure can be one of three structures: identity (no correlations),
block-wise pairs, or equal correlations with ρ ∈ [0.1, 0.5, 0.9]. In addition, we vary the level
of noise in the base FI values by scaling the vector σ by σ-factor ∈ [0.2, 1, 5].

We analyze the ranking measures for multiple conditions of the vector of means (µ) and
the correlation matrix (Σ) (a total of 486 conditions). The number of features p is one
of: [10, 30, 50], and the number of base FI values n is one of: [100, 300, 1000]. We sample
100 independent explanation sets for each configuration and report the average ranking
measures across the repetitions. Below, we present the results for p = 30, µ-exponent=0.25,
and equal correlations. Additional results are presented in Appendix D.1.

Simultaneous Coverage In the naive ranking method, simultaneous coverage is not
maintained in all conditions. All other methods maintain simultaneous coverage levels of
almost 100%; this indicates that they are overly conservative compared to the nominal
required simultaneous coverage of 90%.

Efficiency Without correlations, efficiency degrades as the σ-factor increases, with almost
no difference observed between the methods (Figure 4). With correlations, as ρ increases
our method becomes more efficient than ICRanks, with the Min-P adjustment seen to be
slightly more efficient than Holm’s procedure. The gap between the methods increases as
the σ-factor increases (Figure 5).

5ICRanks package
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Figure 4: Ranking efficiency as a function of n for multiple σ-factors and three ranking
methods. Low values mean smaller sets and are therefore better. The methods’ efficiency
is similar.

5.2 SHAP Ranking Measures

Here, we simulate the entire ML process as described in Figure 3 with simulated data. We
analyze the ranking measures and runtime of our ranking method with Min-P and Holm’s
procedures compared to ICRanks.

Data Generating Process (DGP) We follow the DGP of [18]. We sample a data matrix
X with independent uniformly distributed features and calculate Y as a function of X with
noise. We define two functions:

(A) y = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ϵ;

{xj} ∼ U(0, 1); ϵ ∼ N(0, 1).

(B) y = (x2
1 + [x2x3 − (x2x4)

−1]2)0.5 + ϵ;

x1 ∼ U(0, 10), x2 ∼ U(π, 2π), x4 ∼ U(1, 5),

all other features {xj} ∼ U(0, 1); ϵ ∼ N(0, 1).

The definitions of (X,Y ) are for p = 10 features. We simulate a larger number of features
by defining the functions for cycles of 10 features. For example, in DGP-A, X11 ∼ U(0, 10)
and is added to Y as X2

11.

For this simulation, we sample a large data matrix XM×p (M = 500k), calculate Y as a
function of X with noise, and train a prediction model on Dtrain = (X,Y ). We calculate
the global FI values Φ̂1, . . . Φ̂p based on a sufficiently large sample (n = 1M), making it a
low variance estimator of Φ1, . . .Φp [16]. We generate multiple simulated datasets, varying
the number of features (p) and base FI values (n), the DGP, and the prediction models. We
sample 100 independent explanation sets for each evaluation configuration to measure the
ranking efficiency, simultaneous coverage, and runtime.

Below we present the results for the DGP-A with a random forest (RF) model [7] and
DGP-B with an XGBoost (XGB) model [35] (see Appendix D.2 for the complete results).
We use TreeSHAP [9] to compute the base FI values, relying on the definition of base and
global FI values presented in Section 2 (Equation 1). To calculate the ranking measures, we
repeatedly sample Dexplain independent of Dtrain.
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Figure 5: Ranking efficiency with low (a) and high (b) σ-factors, as a function of n for
multiple levels of correlations (ρ) and three ranking methods.

Simultaneous Coverage All of the examined methods maintain simultaneous coverage
levels of almost 100% in all simulated conditions. However when the base FI values have
an extremely long tail, simultaneous coverage is not guaranteed (an example is provided in
Appendix D.2.3).

Efficiency We can see that ICRanks is comparable to our ranking method. The ranking
efficiency improves as n increases (Figure 6). For the XGB model, we see that the efficiency
of our method with the Min-P procedure is worse than that of our method with Holm’s
procedure for low n values; the Min-P procedure recalibrates the p-values based on resampled
data, which is an inefficient process when n is low.

Runtime We analyze the runtime of TreeSHAP (computation of base FI values) and the
ranking times (ICRanks, Holm’s procedure, and the Min-P procedure). The runtime of
ICRanks and Holm’s procedure is ten times faster than the runtime of TreeSHAP. The Min-
P procedure requires B repetitions (bootstrap samples) of the pairwise tests, so the runtime
increases with B. Details are provided in Appendix D.2.2.
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Figure 6: Ranking efficiency as a function of n for different numbers of features (p) and
ranking methods. The efficiency improves as n increases.

5.3 Real Data Experiments

5.3.1 Ranking Stability

We demonstrate the use of our ranking method and present the simultaneous CIs produced
with the bike sharing dataset [36], the TreeSHAP FI method, and Holm’s procedure. We
create 60/40 train/test splits, fit an XGB regression model (default hyperparameters) to the
training set (R2 = 0.98), and evaluate the performance on the test set (R2 = 0.94). Then,
we calculate the base FI values for n = 50 and n = 1000 by sampling from the test set.
Presenting the CIs for the ranks enables us to compare the stability for different sizes of n
(see Figure 7). The triangles within the CIs are the observed global FI values. The process
of constructing the CIs for n = 50 base FI values is described in Appendix C.

5.3.2 Training Stability

Our base-to-global framework can also be used to quantify the uncertainty in training stem-
ming from the sampling of the training set. Here, we use the COMPAS dataset [37], an RF
classification model (default hyperparameters), the PFI method, and the Min-P procedure.
We define the base FI values as global PFI values. Each trained model produces a base FI
vector vi; the global FI values are obtained by resampling and training multiple equivalent
models (with the same hyperparameters and size of Dtrain (M = 3K) and similar training
accuracy (0.883 ± 0.005)). We use the same explanation set (N = 600) to calculate the
importance values. Figure 8 presents the true ranks’ CIs for two values of n. The ob-
served uncertainty in the ranking for n = 10 indicates that the randomness in sampling can
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Figure 7: Global SHAP values (left) and CIs for the true ranks (right) for the bike sharing
dataset. The importance values were obtained from 50 (top) and 1,000 (bottom) observa-
tions. The CIs point out uncertain feature rankings for a small sample size.

influence the learned mapping between the features and the target variable.
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Figure 8: CIs for the true ranks for n = 10 (left) and n = 40 (right) trained models. The
CIs present uncertainty in training a model based on M = 3K training observations.

5.3.3 High-Dimensional Data

In previous sections (Sections 5.1 and 5.2), we analyzed the validity of our ranking method
in multiple settings, including with moderately high-dimensional data (p = 50), and showed
that our method maintains simultaneous coverage. Now we demonstrate the use of our
ranking method with high-dimensional data, utilizing the Nomao dataset [38], which consists
of 118 input features and a binary target variable. We create 60/40 train/test splits, fit an
XGB classification model (with the default hyperparameters) to the training set (accuracy =
0.99), and evaluate the performance on the test set (accuracy = 0.97). Then, we calculate
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the base FI values with TreeSHAP; the distribution of the global FI values is shown on the
left side of Figure 9. Thirty-one features have importance values of zero.

We use our ranking method to rank all the features from the least important (1) to the most
important (118); the full ranking is presented in Appendix D.3 (Figure 18). As 31 features
have the same importance value of zero, the CI of each feature is [1, 31]. In such a case, if
we measure the efficiency of the ranking across all features, the long CIs of the irrelevant
features will affect it. The skewness of the CI length is presented on the right of Figure 9. A
model will likely use some features, and the unused features will get a low importance value
(or a value of zero); a filtering step is required to improve the ranking process by comparing
only the relevant features.
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Figure 9: Global SHAP FI value distribution (left) and length of the CIs for the ranks (right)
for the Nomao dataset features. The FI value of many features is zero, and the ranking is
accordingly inefficient.

6 Related Work

6.1 Uncertainty in Feature Ranking

Ordering features in terms of their importance to the model’s prediction is referred to as
feature ranking. It is often infeasible to determine the “right” order or perfect subset
of features, because it requires the examination of all possible feature subsets [39]. Many
studies suggested overcoming this limitation and obtaining a more stable ranking by applying
a two-step procedure in which multiple rankings are generated and the outputs are combined
into a single ranking [40]. Each of the rankings generated in the first step is obtained by
ordering the global FI values, which are produced using different FI methods [41] or by
resampling the data and ranking the output FI values using a single FI method [42, 43, 44].
The process of combining all of the rankings into a single ranking is sometimes based on
voting [42, 41], pairwise comparisons of the rankings [39, 44], or other techniques [43]. In all
of the techniques mentioned above, more stable ranking is achieved by aggregating multiple
global scores or rankings, a process that is computationally expensive and requires many
explanation sets or FI methods. In contrast, our ranking method produces a stable ranking
based on a single FI method and explanation set.

6.2 Ranking and Selection

The problem of ranking and selection (R & S) of items has been well studied by researchers
in the field of statistics, and various solutions have been suggested [45, 46]. Some studies
focused on ranking items based on noisy data and pairwise comparisons [47, 48]. Other
studies proposed methods that look for the best item [49], select the set of top- or lowest-
ranked items, or, most similar to our work, methods that rank all items based on the
observed means [50, 51, 47]. After ranking all of the items, a subset of items might be
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selected. [24, 23]. Other researchers have proposed methods like ours that deal with the
effect of multiple tests and examine how to control the FWER and increase the probability
that the correct items are selected [52, 53].

7 Conclusions

We propose a base-to-global framework and a method for constructing CIs for the true ranks
of the global FI values. Because rankings are frequently used to summarize FI methods’
output, it is crucial to consider the rankings’ stability. Our method can be used with robust
and nonparametric paired-tests to support non-standard FI distributions.

We present a rigorous criterion for quantifying uncertainty that can be explicitly modeled
(e.g., the explanation set size). We view the proposed method as a step toward producing
new forms of stability assessments for explainable ML. In future research, we aim to address
other sources of instability, such as the difference between FI methods, although their effect
is more challenging to quantify.

Finally, our current algorithm is conservative, as demonstrated in simulations where the
coverage level surpasses the requested (1-α)%. Future research will also be aimed at nar-
rowing the CIs while maintaining nominal coverage and reducing the impact of the number
of features on coverage by using a filtering step (e.g., eliminating non-important features).
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Appendix

A PFI Variance Analysis

In Section 2, we present two options for defining the base FI values for PFI [7]: (1) a single
permutation, and (2) a single observation. We obtain the same global FI values from the
two base definitions by setting the values of the number of permutations (B) and the size of
the explanation set (N) accordingly. However, the different decomposition of the global FI
value to base FI values allows for the analysis of various sources of uncertainty – the variance
of the permutations and the variance of the explanation set. Our framework is limited to
quantifying only one source of uncertainty by aggregating base FI values to global FI values.
Therefore, using it might be a problem when the uncertainty of the global FI values stems
from multiple sources of uncertainty. Nevertheless, if most of the variability comes from
one of the sources, it is reasonable to target it and disregard the other sources. In the case
of PFI, we expect that the size of the explanation set introduces greater variance than the
number of permutations. Our results clearly show this; therefore, we can use our framework
to quantify the uncertainty of global PFI values.

A.1 Experimental Setup

In this experiment, we use the same DGPs (A and B) described in Section 5.2, including
the definition of X, Y , and the functions.

A.1.1 Dummy Prediction Model

Instead of training a model, we create a Dummy model that predicts Y from X using the
DGP’s function. We use this approach to control the variability stemming from the training
and focus on the variability of the permutations and explanation set.

A.1.2 Experiment Details

We sample the data as described above with various configurations of B, p, and N , and the
two functions. For each configuration:

(1) We perform B permutations for each observation and calculate the loss difference for
each permutation b: L(f(xb

[j]), y)− L(f(x), y).

(2) We average all of the permutations for each observation.

(3) We average all of the observations.

The result of steps 1-3 is a set of p global FI values Φ̂PFI
1 , . . . , Φ̂PFI

p . We repeat this process
100 times and calculate the average and standard deviation (SD) across the repetitions.

A.2 Results

For both functions we compare the SD of the global FI values for different values of B and
N . In Figure 10, we can see that different features have different SDs, but in all conditions
the SD is almost fixed with respect to B and decreases with N . This indicates that the
number of observations introduces more variability to the global FI values than the number
of permutations.
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Figure 10: SD of global FI values of p = 10 features for two functions; with respect to the
number of permutations (B) and the number of observations (N).

B Definitions and Proofs

B.1 Proof of Theorem 1

In this section, we present the detailed proof of Theorem 1.

Recall that D is the set of partial rankings and that we assume that the probability of any
error in D is less than α. To prove the theorem, we first show that any error in coverage,
i.e., a CI that does not cover the true rank, must be caused by at least one partial ranking
error in D:

Suppose that there is a coverage error. Without loss of generality, assume that the coverage
error occurs for feature 1:

[l1, u1] ⊈ [L1, U1].

The coverage error can be in one or both bounds:

(1) l1 < L1,

(2) u1 > U1.
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If (1), then L1 > 1, and there are L1−1 > 0 pairs of the type (1, k) ∈ D, meaning that there
are L1 − 1 features with a significantly lower observed global FI than the observed global
FI of feature 1. However, according to Definition 1, l1− 1 = #{k : Φ1 > Φk}, meaning that
there are only l1 − 1 features with true global FI lower than the true global FI of feature 1.
Combining these two statements together, there must be at least one feature k = 2, ..., p for
which (1, k) ∈ D but Φ1 ≯ Φk, meaning that there is a partial ranking error in D.

If (2), then the set {k ∈ 2, ..., p : (k, 1) ∈ D} is higher than the set {k : Φk > Φ1}. Again,
this would mean that for at least one value of k there is a partial ranking error.

The event of at least one coverage error is contained in the event of obtaining a partial
ranking error. Given that, the coverage error probability is bounded by FWER = α.

B.2 FWER Adjustment Procedures

Here, we provide details on the two sequential procedures that we use in our implementation.
After adjustments, the p-values are compared to a chosen α level. Note that all p-values
are inflated compared to their original level, making it less likely that the null hypothesis
will be rejected. Furthermore, the p-values keep their relative order after adjustment. In
the procedures below, this is governed by the max function, which assures that the order
is maintained. The resulting process is sequential in that for a given level α, after the first
non-rejected value, all others would not be rejected. Let p1, ..., pK be a set of K p-values
obtained by testing a family on null hypotheses H0

1 , . . . ,H
K
0 ; below we demonstrate how

the two FWER adjustment procedures are used to calculate padg1 , ..., padgK , a set of adjusted
p-values.

B.2.1 Holm’s Procedure

We implement Holm’s procedure [29] on one-sided hypothesis tests. The paired t-test is
calibrated with this procedure for normally distributed base FI values.

Let p(1) ≤, ...,≤ p(K) ≤ 1 be the sorted set of p-values. Then:

padj(1) = K · p(1),

padj(2) = max{padj(1) , (K − 1)p(2)},

. . . ,

padj(k) = max{padj(1) , ..., p
adj
(k−1), (K − (k − 1))p(k)},

. . . ,

padj(K) = max{padj(1) , ..., p
adj
(K−1), p(K)}.

B.2.2 Min-P Procedure

Holm’s procedure is highly conservative, since it is valid regardless of the structure of de-
pendence between the p-values. To improve it, [32] suggested the Min-P procedure. The
idea is to use bootstrapping to model the structure of dependencies between p-values, obtain
lower adjusted p-values, and reject more hypotheses. The details of the Min-P procedure
described here are taken from [54].

Here, we also start with the sorted set of p-values p(1) ≤, ...,≤ p(K) ≤ 1. Let i1, . . . iK
indicate the corresponding original indices, p(k) = pik , and define Ik = {ik, ik+1, . . . , iK}
and πk = P0{minj∈Ik(Pj) ≤ p(k)}. Here, (P1, . . . , PK) indicates a hypothetical realization
of the unordered p-values p1, ..., pK obtained under the complete null hypothesis, meaning
all H0

ks are true. The adjusted p-values are then defined by:

padjj = max
k≤j

πk.
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C Confident Feature Ranking: Step-By-Step

This section demonstrates how our ranking method constructs simultaneous CIs for the true
ranks. We use the bike sharing dataset [36], the TreeSHAP FI method, and our ranking
method with Holm’s procedure for n = 50 base FI values. This demonstration is a detailed
description of the example presented in Section 5.3 (Figure 7).

Base and Global FI Values We construct a TreeSHAP explainer [9] based on the
trained XGB model. The base FI values are the absolute values of the local SHAP values
the explainer produces for an explanation set of size n = 50. The global FI values are the
average of the base FI values. The values and the order of the global base FI values for this
explanation set are presented in Table 1.

Pairwise Differences The paired-sample t-test is based on the differences between the
base FI values of two features vj − vk. The one-sided hypothesis H0

jk : Φj ≥ Φk is rejected
if the difference between the observed global FI values is significantly different from zero.
In Figure 11a, we present the differences between Workingday and all other features. The
average of the differences between Workingday and Month and Temp is near zero.

Partial Rankings We set the significance level to α = 0.1, and for each pair of features,
we run two paired one-sided t-tests; then, we adjust the p-values to multiple comparisons
using Holm’s procedure. In Figure 11b, gray and black indicate that the observed global
FI value of the feature in row j is respectively less and greater than the observed global FI
value of the feature in column k. White indicates that the difference is zero (neither H0

jk

nor H0
kj were rejected). The set of partial rankings D is then obtained. For example, we can

conclude that (Month, Y ear) ∈ D, (Day,Month) ∈ D, and (Month,Workingday) ̸∈ D.

Constructing Simultaneous CIs for the True Ranks For each feature, we initialize
the lower bound of the CI to one and the upper bound to p. If there are no differences
between the features, the CIs for all features are [1, p]. Otherwise, there are differences.
Without loss of generality, consider the Workingday feature. By looking at the row for
Workingday in Figure 11b, we can see that the observed global FI value of Workingday is
significantly higher than the observed global FI values of Day and Weather, and it is signif-
icantly lower than the observed global FI values of Year and Hour. There is no significant
difference between Workingday and Month and Temp. Therefore, we increase the lower
bound by two, decrease the upper bound by two, and obtain the confidence set [3, 5] for the
true rank of Workingday.

We repeat the same process for all features and obtain 90% simultaneous CIs for the true
ranks. See lower and upper bounds in Table 1 and a visualization of the CIs in Figure 11c.
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Figure 11: Visualization of Algorithm 1: first, test all one-sided pairs of hypotheses for
the difference between base FI values (a), then adjust the p-values and obtain the partial
rankings from the rejected hypotheses (b), and finally construct the CIs for the true ranks
(c).
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Table 1: Ranks and Simultaneous CIs

Feature Observed Global FI Observed Rank CI
Hour 129.042 7 [7, 7]
Year 44.805 6 [6, 6]
Temp 33.777 5 [4, 5]
Workingday 28.95 4 [3, 5]
Month 23.987 3 [3, 4]
Weather 10.865 2 [2, 2]
Day 5.673 1 [1, 1]

D Experiment Details and Additional Results

D.1 Ranking Method Comparison

D.1.1 Baseline Ranking Method

We implement a naive ranking method to construct CIs for the features’ true ranks based
on bootstrap samples. For each sample, we rank the global FI values. We report lower and
upper bounds (Lj , Uj) by taking the α/2 and 1 − α/2 quantiles of the ranks of the j’th
feature over the bootstrap distribution.

D.1.2 Additional Results

Equal Correlations In Figure 12, we present the ranking efficiency of three ranking
methods for p = 10 and p = 50 as a function of n, with multiple levels of correlations. We
use the same configuration as in Figure 5: low and high σ-factors, µ-exponent=0.25, with
and without ties. We can observe the same efficiency trends seen for p = 30: the efficiency
increases as ρ increases, the gap between the methods increases as the σ-factor increases,
the efficiency improves as the n increases, and our ranking method is more efficient than
ICRanks.
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Figure 12: Ranking efficiency for p = 10 and p = 50.

Number of Features We compare the ranking efficiency for different numbers of features
and multiple values of µ-exponent, with n = 500, σ-factor=1, equal correlations, and ρ = 0.5
(see Figure 13). The efficiency degrades as the means become more dense (µ-exponent
decreases), , and the number of features has almost no effect on the efficiency.
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Figure 13: Ranking efficiency as a function of p for multiple values of µ-exponent and three
ranking methods.

Correlation Structure We compare the equal correlation structure with the block-wise
pairs structure of the correlation matrix. In Figure 14, we present the results for different
numbers of features, n = 500, σ-factor=1, µ-exponent-0.25, and low (0.1) and high (0.9)
values of ρ. The differences between the structures of the correlation matrix are more
substantial for ρ = 0.9.
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Figure 14: Ranking efficiency with low (a) and high (b) values of ρ, as a function of p for
two correlation structures and three ranking methods.

D.2 SHAP Ranking Measures

Here, we sample the training and explanation sets using the DGP described in Section
5.2. For each configuration of (X,Y ), we train an XGB (default hyperparameters) or RF
(number of estimators=1,000) regression model for this experiment. We follow the XGB
tutorial6 to train both the XGB and RF models (see the train and test R2 of the model in
Table 2).

D.2.1 Additional Results

In the paper, we present an example of the efficiency of RF with DGP-A and XGB with
DGP-B. Here, we present the complementary efficiency results for all configurations (see
Figure 15). The simultaneous coverage for all configurations is almost one (0.997±0.009). In
addition, we compare the efficiency of our CIs (using our method with the Min-P procedure)
with n = 1000 base FI values, to the efficiency of the true FI ranks as an upper bound on the

6XGB tutorial
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Table 2: Prediction Models’ Performance

Model DGP p Train R2 Test R2

RF

DGP-A
10 0.786 0.783
30 0.523 0.515
50 0.346 0.336

DGP-B
10 0.863 0.862
30 0.836 0.836
50 0.745 0.744

XGB

DGP-A
10 0.956 0.952
30 0.963 0.958
50 0.954 0.945

DGP-B
10 0.875 0.868
30 0.951 0.946
50 0.964 0.959

efficiency of the observed values (see Table 3); as can be seen, the efficiency of our ranking
method with n = 1000 is not ideal, even in the case of perfect true ranking.
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Figure 15: Ranking efficiency as a function of n for different numbers of features (p) and
ranking methods.

D.2.2 Ranking Runtime Analysis

We also analyzed TreeSHAP’s runtime and our method’s runtime. In Figure 16, we present
the runtime of TreeSHAP and the different ranking methods. TreeSHAP’s runtime clearly
depends on the sample size n, since it is a local FI method. In contrast, the runtime of the
ranking methods depends on the number of features (p). The runtime of our method with
Holm’s procedure is comparable to that of ICRanks but with lower variance. The runtime
of our method with the Min-P procedure is much higher, because it is based on a bootstrap
process and increases with the number of repetitions (B).

D.2.3 Non-Normal Base FI Value Distribution

We use the paired-sample t-test to compare base FI values and adjust the p-values with the
Min-P or Holm’s procedure. Our primary assumption is that the paired test is calibrated for
the possible distributions of base FI values (note that the paired-sample t-test is calibrated
even when the base FI values are not normally distributed). However, we found that our
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Table 3: Ranking Efficiency

Model DGP p True Efficiency Mean Efficiency

RF

DGP-A
10 0.222 0.238
30 0.393 0.412
50 0.486 0.495

DGP-B
10 0.222 0.386
30 0.634 0.641
50 0.772 0.777

XGB

DGP-A
10 0 0.204
30 0 0.293
50 0 0.32

DGP-B
10 0 0.299
30 0 0.247
50 0 0.287

method does not always maintain simultaneous coverage when the base FI values have an
extremely long tail. In this example, we sample the data from:

y = x1x2 + x2
3 − x4x7 + x8x10 − x2

6

+ x11x12 + x2
13 − x14x17 + x18x20 − x2

16

+ x21x22 + x2
23 − x24x27 + x28x30 − x2

26 + ϵ;

X ∼ N30(0,Σ); ϵ ∼ N(0, 1),

where Σ is an equal correlation matrix

with ρ = 0.3 and {σ2
j } ∼ χ2.

We train an RF model and calculate the base FI values with TreeSHAP. Table 4 summa-
rizes the average coverage and simultaneous coverage. As can be seen, for all sizes of n
(the number of base FI values) our method does not maintain simultaneous coverage; the
marginal coverage is almost 90% for small sizes of n, and the simultaneous coverage of the
Min-P procedure is better.

Table 4: Ranking Coverage

n Ranking Method Coverage Simultaneous Coverage

100
Holm 0.839 0.08
Min-P 0.96 0.63

500
Holm 0.75 0.01
Min-P 0.888 0.56

1000
Holm 0.7 0.01
Min-P 0.85 0.37

3000
Holm 0.634 0.01
Min-P 0.782 0.14

We further analyze the CIs of the features for p = 30, an RF model, and a single explanation
set of size n = 100, 000. In Figure 17, the base FI values distribution of two features, for
which we found coverage errors for multiple explanation sets. The true global FI values of
the two features are almost identical, and the variance is relatively large. More importantly,
the distributions of the base FI values of both features display extremely long tails, and the
observed global FI values are influenced by the rare values at the tails. In such cases, we
recommend replacing the paired t-test with a robust alternative [34].
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Figure 16: TreeSHAP and ranking times (in seconds) as a function of the number of features
(p) for different sizes (n) of Dexplain.

D.3 High-Dimensional Example

Displaying the global FI values or the CIs for the ranks for many features may be difficult
to interpret. Therefore, typically only the top-k features are presented. For example, in
SHAP’s global bar plot API7 the default number of features to present is 10. In Figure 18,
we present the complete ranking for the Nomao dataset[38] features . Our ranking method
makes it easier to interpret which features are irrelevant and determine how to select a
threshold k for the most important features to display.

7Global bar plot API.
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Figure 18: CIs for the true ranks of the Nomao dataset features. The features are ordered
by their observed global FI value. There are 31 irrelevant features and many intersections
between CIs.

E Implementation Details

E.1 Availability of Data

The bike sharing dataset [36] contains 10,886 records of bike rentals between 2011 and 2012
from the Capital Bikeshare program in Washington, D.C. The regression task is forecasting
demand for bike rentals based on time and environmental measures such as month and
weather. The data is publicly available at Kaggle.

The COMPAS dataset [37] contains 6,172 records of criminal history from Broward County
from 2013 and 2014. The classification task is assessing a criminal defendant’s likelihood to
re-offend based on jail and prison time, and demographics. The data is publicly available
at Propublica’s Github.

Nomao is a search engine of places. The Nomao dataset [38] contains 34,465 records with
comparison features about places, such as name and localization, from different sources.
The classification task is detecting whether two sources of information refer to the same
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place. The data is publicly available at OpenML.

E.2 Reproducibility Instructions

The code for our ranking method, experiments, and visualizations was written in the Python
programming language (Python version 3.10.3) and can be found in this Git repository. The
ICRanks R package was imported to Python through the rpy2 package.

E.3 Computing Infrastructure

The experiments were performed on a server with 64G RAM and 16 CPUs.
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