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ABSTRACT

This paper investigates the impact of big data on deep learning models to help solve the full waveform inversion (FWI) problem.
While it is well known that big data can boost the performance of deep learning models in many tasks, its effectiveness has not
been validated for FWI. To address this gap, we present an empirical study that investigates how deep learning models in
FWI behave when trained on OPENFWI, a collection of large-scale, multi-structural, synthetic datasets published recently. In
particular, we train and evaluate the FWI models on a combination of 10 2D subsets in OPENFWI that contain 470K pairs
of seismic data and velocity maps in total. Our experiments demonstrate that training on the combined dataset yields an
average improvement of 13.03% in MAE, 7.19% in MSE and 1.87% in SSIM compared to each split dataset, and an average
improvement of 28.60%, 21.55% and 8.22% in the leave-one-out generalization test. We further demonstrate that model
capacity needs to scale in accordance with data size for optimal improvement, where our largest model yields an average
improvement of 20.06%, 13.39% and 0.72% compared to the smallest one.

Introduction
The recent advancements of deep learning in natural language processing and computer vision have proven that big data is
one of the key ingredients for obtaining good performance1–4. Similarly, in the context of science, deep learning models such
as AlphaFold5 have achieved significant breakthroughs with the help of large-scale datasets. However, unlike these tasks,
large-scale public datasets are not always available for many other scientific problems due to issues such as high data acquisition
costs, labeling costs, intellectual property concerns, or security concerns. Due to limited dataset sizes and variation, deep
learning models in scientific applications are often limited in their ability to generalize well to out-of-sample datasets.

Full waveform inversion (FWI) is a technique used to image the subsurface that has the potential to benefit from deep learning
and large training datasets. Specifically, FWI aims to reconstruct subsurface velocity maps v from seismic measurements p as
depicted in Figure 1. Conventional FWI methods6–20 leverage the forward operator f governed by a partial differential equation
(PDE) and perform iterative optimization per sample, which is computationally expensive and yields poor scalability. To
mitigate this issue, deep learning techniques have been recently introduced to FWI and achieved promising performance21–26. A
good summary of deep learning techniques for solving FWI problems can be found in Lin et al.27. In this paper, we follow the
previous studies27–29 and refer network-based FWI methods as data-driven methods. Inspired by the image-to-image translation
task in computer vision, these data-driven methods directly learn an inverse mapping f−1 from seismic data directly to velocity
maps. Nevertheless, due to the issue of lacking large-scale public datasets, the models in prior works were all developed on
relatively small datasets (i.e. 130 to 67K data pairs)28–30. Thus, the question remains open: does full waveform inversion benefit
from big data? Thankfully, the recently published large-scale datasets OPENFWI31 provide us an opportunity to start to answer
this question.

In this paper, we present an empirical study that attempts to answer the question of whether FWI benefits from large-scale
and multi-structural training datasets from three perspectives: model performance, the relationship between the model size
and data size, and model generalization. OPENFWI is a collection of large-scale, multi-structural datasets that cover different
domain interests, including interfaces, geological faults, and field data. We employ 10 2D synthetic datasets from OPENFWI,
and 408K/62K pairs of seismic data and velocity maps are used to train and evaluate the deep learning models, respectively. We
adopt one of the OPENFWI benchmark models InversionNet28 to serve as the baseline, and we compare the inversion results
of the baselines trained on relatively small-scale individual datasets and the models trained on large-scale datasets that are
composed of multiple datasets. We name the latter models BigFWI. Our findings are summarized as follows:
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Figure 1. Schematic illustration of data-driven FWI and forward modeling. The forward modeling process computes the
simulated seismic data from velocity maps, governed by a partial differential equation. Neural networks are employed in
data-driven FWI methods to reconstruct velocity maps from seismic measurements.

• Big data can boost the performance of deep learning models in FWI. BigFWI outperforms the baselines on almost
every dataset in terms of all the evaluation metrics.

• Larger data requires larger models. When more training samples are introduced, larger model architectures are
required in BigFWI to achieve further improvement compared to the baselines.

• Big data can improve the generalization of deep learning models in FWI. Given a dataset that is unseen during
training, BigFWI yields better performance than any baselines trained on single datasets.

Methods
In this section, we first present the preliminaries of full waveform inversion and then describe the network architecture of our
BigFWI and the loss function for training.

Full Waveform Inversion
Figure 1 provides an illustration of 2D data-driven FWI and forward modeling. The governing equation of the acoustic wave
forward modeling in an isotropic medium with a constant density can be described as follows:

∇2 p(rrr, t)− 1
v(rrr)2

∂ 2 p(rrr, t)
∂ t2 = s(rrr, t) , (1)

where ∇2 is the Laplace operator, p(rrr, t) denotes the pressure wavefield at spatial location rrr and time t, v(rrr) represents the
velocity map of wave propagation, and s(rrr, t) is the source term. As shown in Fig. 1, the goal of forward modeling is to simulate
seismic data p̃ from a given velocity map v. For simplicity, we formulate this process as:

p̃ = f (v), (2)

where f (·) represents the highly nonlinear forward operator. As mentioned above, data-driven FWI methods directly learn the
inverse mapping as:

v̂ = gθ (p) = f−1(p), (3)

where v̂ is the estimated velocity map and gθ (·) is the approximated inverse operator of f (·), which is usually implemented
as neural networks parameterized by θ . BigFWI is developed to leverage large-scale datasets to obtain a more precise and
universal approximation of the inverse operator.

Network Architecture
We introduce three variants of BigFWI, including a “Base” model, a “Middle” one with additional layers, and a “Large” one
that is both deeper and wider. We denote them as BigFWI-B, BigFWI-M and BigFWI-L. The number of the parameters of each
model is summarized in Supplementary Table S1. All BigFWI models share an encoder-decoder architecture. The encoder
E first extracts the spatial-temporal features from the seismic input p ∈ RS×T×R and compresses them into a latent vector
z = E(x) ∈ RL×1×1. Here, S equals the number of sources used in seismic surveys or simulation, T represents the number of
samples recorded by each receiver, R denotes the number of receivers, and L is the length of the latent vector. The decoder D
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then transforms the latent vector z into spatial domain and generates the estimation of the velocity map v̂ =D(z) ∈ R1×W×H ,
where W and H denote the horizontal (i.e. length) and vertical (i.e. depth) dimensions of the velocity map. Both the encoder E
and the decoder D are fully based on 2D convolutional and deconvolution layers, and the details are presented as follows. The
visualized network architecture of BigFWI is provided in Supplementary Figure S1.

In the encoder E , since T = 1000 is much larger than R = 70 in the seismic data p of OPENFWI, we first reduce temporal
dimension and extract temporal features by stacking seven convolutional layers with n×1 kernels, where n = 7 in the first
layer, and n = 3 in the following six layers. The stride along the temporal dimension is set to 2 for every other layer to
reduce the temporal dimension until it is close to the spatial dimension. We then stack six layers with 3×3 kernels to extract
spatial-temporal features at the same time. Stride 2 is now applied to both dimensions every other layer. In BigFWI-M, instead
of stacking six layers, we stack nine layers where an additional 3×3 layer with stride 1 is added after every two layers so as to
increase model capacity without changing the dimensions of the original feature maps. In BigFWI-L, we stack eight layers
where two additional 3×3 layer with 1024 features maps are appended at the end. In BigFWI-B and BigFWI-M, we use a
layer with an 8×9 kernel to flatten the feature maps of the last to a 512-length latent vector z. In BigFWI-L, a layer with 4×5
kernel is used, and the length of latent vector is 1024.

The decoder D includes five deconvolution layers for upsampling, and each of them is followed by one convolutional layer
with 3×3 kernels in BigFWI-B and two convolutional layers in BigFWI-M. The first deconvolution layer with kernel size
5 transforms the latent vector z into a 512×5×5 tensor. The rest of the deconvolution layers with kernel size 4 and stride
2 upsample the feature maps by a factor of 2, resulting in an 80×80×32 tensor. We then apply center cropping followed
by a 3× 3 convolutional layer to output a single channel 70× 70 velocity map. In BigFWI-L, the kernel size of the first
deconvolution layer is 2, and there are six groups of deconvolution and convolutional layers.

All the convolutional and deconvolution layers are followed by batch normalization and LeakyReLU as the activation
function, except for the last output layer, which uses Tanh to generate the velocity map between [−1,1].

Loss Function
The original InversionNet model was trained with pixel-wise ℓ1 loss or ℓ2 loss between the ground truth of velocity maps v and
the predictions v̂. In this paper, we trained the baseline InversionNet and BigFWI using a combination of two loss functions to
leverage the advantages from both sides according to the previous study29. The loss function can be written as:

L(v, v̂) = 1
W ·H

W

∑
i=1

H

∑
j=1

|vi j − v̂i j|+
1

W ·H
W

∑
i=1

H

∑
j=1

√
(vi j − v̂i j)2, (4)

where W and H denote the number of grids in horizontal length and depth directions, and vi j and v̂i j represent the ground truth
velocity and the prediction at the grid (i, j).

Results
In this section, we first describe the OPENFWI dataset and then present the evaluation metrics and training details, followed by
the experimental results.

OpenFWI Datasets
We here briefly describe the OPENFWI datasets which are used in all the experiments. Unlike many existing synthetic datasets
for FWI, OPENFWI is publicly available and offers a rich collection of large-scale multi-structural benchmark datasets. The
datasets in OPENFWI are divided into four groups: “Vel Family”, “Fault Family”, “Style Family” and “Kimberlina Family”.
We exclude the “Kimberlina Family” in our experiments because the dimensions of both velocity maps and seismic data in
“Kimberlina Family" are different from the other three families. This allows us to combine the data samples from different
datasets to train BigFWI models. In terms of the complexity of subsurface structures, each of the three families consists of an
easy version (-A) and a hard version (-B). In addition, the datasets in “Vel Family” and “Fault Family” are further divided into a
flat version (Flat-) and a curved version (Curve-) in accordance with the shape of rock layers. The 10 datasets employed in our
experiments are: FlatVel-A/B, CurveVel-A/B, FlatFault-A/B, CurveFault-A/B, and Style-A/B. We use dataset abbreviations such
as FVA for FlatVel-A in the rest of the paper to simplify plots.

Each dataset in “Vel Family", “Fault Family", “Style Family" is split into 24K/6K, 48K/6K, and 60K/7K pairs of seismic
data and velocity maps for training and testing, respectively. We follow this splitting through our experiments. Figure 1 shows
an example of a velocity map and seismic data pair. Each velocity map has dimensions of 70×70 (depth × length in grids)
with a grid spacing of 10 meters in both directions. The dimensions of the seismic data are 5×1000×70 (# of sources × # of
timesteps × # of receivers). Five sources are evenly distributed on the top surface, each of which is a Ricker wavelet with a
central frequency of 15 Hz. The interval between timesteps is 1 millisecond, and the receivers are also placed with an interval of
10 meters. For more details about the forward model algorithm and simulation, please refer to the original paper of OPENFWI.
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Figure 2. Performance improvement of BigFWI trained on OpenFWI-204K over InversionNet in terms of MAE, RMSE
and SSIM. BigFWI trained on a large-scale dataset (OpenFWI-204K) yields better performance on almost every dataset,
compared to InversionNet28, which was trained on relatively small-scale datasets.

Evaluation Metrics
We follow the benchmarking guidelines in OPENFWI and compute three metrics between the ground truth and the prediction
of velocity maps to evaluate the performance of a model: mean absolute error (MAE), root mean squared error (RMSE), and
structural similarity (SSIM)32. Both MAE and RMSE are commonly used to measure pixel-wise errors, while SSIM aligns
better with human vision and measures the perceptual similarity that is more related to structural information. When calculating
MAE and RMSE, we keep the velocity maps in the normalized scale [−1,1]. During the calculation of SSIM, we rescale the
velocity maps to [0,1] as required by the algorithm. We additionally compute the average quadratic Wasserstein Distance33, 34

for both velocity maps and seismic data as side evaluation metrics. The details are provided in Supplementary Wasserstein
Distance Section.

Training Details
We use identical hyperparameters to train all the models in our experiments. Specifically, we employ AdamW optimizers with
momentum parameters β1 = 0.9, β2 = 0.999, and a weight decay of 1×10−4 to update the parameters of each model. The base
learning rate is set to 8×10−4, and the models are trained for 170 epochs. In the first five warm-up epochs, we linearly increase
the learning rate from 1×10−4, and we decay the learning rate by a factor of 10 at epoch 150 and epoch 160, respectively. The
batch size is set to 256. All the models are implemented in PyTorch and trained on 4 NVIDIA Tesla V100 GPUs. We employ
the natural logarithmic transformation to make the intensity of seismic data more balanced and normalize the data to range
[−1,1] before they are fed into the network. The velocity maps are also normalized to the same scale before we compute the
loss.

Big data benefits FWI
We first design an experiment to explore if the performance of the data-driven FWI models can be improved by enlarging the
training set. Specifically, we train a BigFWI-B on a combination of the datasets in OPENFWI and compare performance with
the baseline InversionNet models trained on each split dataset. For brevity, we refer to BigFWI-B as BigFWI in this section.
Both the BigFWI and InversionNet models share the same training hyperparameters and network architecture. Instead of using
all the training samples in OPENFWI, we randomly select 12K samples from each of the four datasets in Vel Family, 24K from
each of the four in the Fault Family, and 30K from each of the two in the Style Family. The rest of the samples in the training
sets are reserved for the experiment in the next section, where we further enlarge the datasets. The combined large-scale training
set consists of 204K samples in total, and we name it OpenFWI-204K. The test sets are directly adopted from OPENFWI.

We plot the performance improvement of BigFWI compared to the InversionNet on each dataset in Figure 2. The quantitative
results are provided in Supplementary Table S2 and S3. We observe that BigFWI shows a clear improvement for all the datasets
except for datasets FVA and FVB, which are comprised of flat layers only. One potential reason for the model’s degraded
performance on FVA and FVB is that the network focuses more on curved layers which exist in most of the other datasets, and
thus has a negative impact on the prediction of flat layers. We also observe that BigFWI exhibits significant improvement in
MAE and RMSE for A datasets compared to B datasets across all families. However, the comparison of SSIM demonstrates
the opposite trend, with the B datasets exhibiting better SSIM improvements compared to the A datasets in the same family.
This variation in performance could be attributed to the greater complexity of the B datasets. The discrepancies in the baseline
structures may not impact statistical misfits such as MAE and RMSE, but they may influence the SSIM. The simpler A datasets
tend to benefit slightly more from the larger data volume than the more intricate B datasets.
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Figure 3. Comparison of ground truth (top) and predicted velocity maps generated by InversionNet (middle) and
BigFWI (bottom). In general, BigFWI yields clearer layer boundaries, more accurate fault locations, and fewer artifacts
compared to InversionNet as highlighted in squares.

Figure 3 shows a comparison of velocities maps between ground truth, InversionNet, and BigFWI. We observe that
InversionNet predicts the velocity maps with various errors, such as extra bottom layer anomalies (FVA), inaccurate layer
values (CVA, CVB), and inaccurate structures (FVB, FFB, CFA, CFB). BigFWI models generally yield better performance in
predicting the structure and values of the velocity maps than InversionNet. We see that the improved results of BigFWI are due
to the knowledge learned from the large-scale training dataset that consists of a variety of velocity map distributions. Here, we
define the velocity map distributions as the different geological subsurface structures in OpenFWI: i.e., flat layers vs. curved
layers, faults vs. non-fault, and smooth vs. sharp. However, in addition to benefits, the variety of the velocity map distributions
may also bring some negative effects such as inaccurate layer boundaries. For instance, we observe non-flat interfaces in the
predictions of FVA/FVB, which are obviously affected by other velocity map distributions.

Additionally, we conduct an experiment by simply enlarging each split dataset, and this also leads to performance
improvement. Results are provided in Supplementary Table S4 and S5, followed by a discussion in Supplementary Single
Enlarged Dataset Section.

Big data in FWI requires larger models
To explore the relationship between the size of the training set and the size of the data-driven FWI models, we conduct an
experiment that is similar to the previous one but employs the full training set provided by OPENFWI. Hence, the training set
now contains 408K samples, and we name it OpenFWI-408K for brevity. We keep the baselines which are InversionNet trained
on OpenFWI-204K, and we additionally train the InversionNet on each split datasets of OpenFWI-408K for comparison. We
also train BigFWI-B, BigFWI-M and BigFWI-L on OpenFWI-408K.

In Figure 4, we show the statistical performance improvement of BigFWI over InversionNet (trained on the split components
of OpenFWI-204K). More detailed quantitative results are provided in Supplementary Table S6 and S7. Overall, all the models
trained on OpenFWI-408K yield better performance compared to InversionNet trained on OpenFWI-204K, and the BigFWI
models (coral, blue and orange bars) outperform InversionNet (green) for almost every dataset, which again verifies that larger
training set brings better performance. We further observe that among three BigFWI variants, larger models yield better
performance in general. In particular, BigFWI-L (coral) and BigFWI-M (blue) outperform BigFWI-B (orange) by a large
amount in all three metrics for relatively simple datasets such as FVA, FVB, FFA and CFA. For relatively complicated datasets
such as CFB and SA, the gap is narrower. For dataset SB, BigFWI-B even outperforms BigFWI-L. This infers that larger
models are preferred for most big data scenarios, but additional efforts such as more advanced network architectures are still
required for some complicated cases.

Figure 5 shows the ground truth and predictions of velocity maps InversionNet, BigFWI-B, BigFWI-M, and BigFWI-L.
Though the performance of InversionNet has improved statistically when trained on larger datasets, errors in prediction such
as extra bottom layer anomalies (FVA), inaccurate layer values (CVA, CVB), and inaccurate structures (FVB, FFB, CFA,
CFB) still exist. In contrast, BigFWI generally offers enhanced accuracy in layer location and velocity values. Comparing
the performance of the BigFWI models, BigFWI-L and BigFWI-M outperforms BigFWI-B in many aspects. For instance,
the flat interfaces in FVA and FVB are more flat and sharp in the results of BigFWI-L and BigFWI-M than the ones of
BigFWI-B. BigFWI-M also predicts more accurate fault slopes in FFA and FFB. A similar observation can be obtained from
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Figure 4. Comparison of the performance improvement of different methods trained on the further enlarged dataset
(i.e. OpenFWI-408K) in terms of MAE, RMSE, and SSIM. Note that the improvement percentages are computed based on the
InversionNet trained on OpenFWI-204K. For most of the datasets, the BigFWI-L, which has the largest model size, yields the
best performance.

the Style Family results, in which BigFWI-L and BigFWI-M predict more accurate kinematic information than InversionNet
and BigFWI-B. Though InversionNet predicts more high-frequency components, the scatters are inaccurate in shape, which
introduces even larger data misfit.

Big data leads to better generalization
Leave-one-out Generalization Test: To verify whether large-scale training data also leads to better generalization, we design
the experiment where the BigFWI models are trained under leave-one-out settings. Specifically, given a target dataset for testing
(e.g., FVA), we train the BigFWI model on the combination of the training samples from all the other datasets in OPENFWI
(e.g., FVB, CVA/B, FFA/B, CFA/B, and SA/B). We then compare the performance of this BigFWI model on the test samples of
the target dataset (e.g., FVA) with InversionNet, which are trained on split datasets other than the target one.

In Figure 6, we present the statistical performance improvement in the percentage of the best generalization performance of
InversionNet models. BigFWI shows superior performance across all the datasets, especially in terms of MAE and RMSE. This
yields that big data leads to better generalization. Notably, utilizing datasets A as the target set results in greater improvements
in terms of MAE and RMSE, while datasets B show greater improvements in terms of SSIM. The detailed quantitative results
are provided in Supplementary Table S8 and S9.

Figure 7 compares the generalization results of different methods to the ground truth. We observe that InversionNet
produces inaccurate layer structures for out-of-distribution (OOD) data. In FFA, FFB, CVA, FFA, and SA, InversionNet’s
generalization outputs have errors of blurred borders, wrong layer positions, and inaccurate velocity values, especially in
deeper parts. Moreover, the results clearly have incorrect patterns from other datasets in more complex datasets (i.e., CVB,
FFB, CFA and CFB). Meanwhile, these explain why we could find higher SSIM improvement in these four datasets in Fig. 6.
Conversely, our BigFWI benefits from its large-scale cross-domain training set and can effectively capture more essential
features of different datasets. Thus, BigFWI has more accurate predictions on OOD data than InversionNet.

Generalization Test on Marmousi & Overthrust: We further conduct generalization experiments on two more challenging
standard test synthetic datasets Marmousi35, 36 and Overthrust37, 38. Both velocity maps contain more practical subsurface
structures and have been widely adopted for the evaluation of full waveform inversion methods31, 39–41. Furthermore, the
Marmousi velocity map was used as the style image to generate the Style Family in OpenFWI, which was specifically created
for the simulation of real-world velocity maps.

In this experiment, we resize the original Marmousi and Overthrust velocity maps to match our sizes and generate the
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Figure 5. Comparison of ground truth (first row) and predicted velocity maps generated by InversionNet (second row)
and BigFWIs (from third row to fifth row). BigFWI-L yields the most accurate results, especially in deep regions, compared
to other BigFWI models and the baselines as highlighted in squares.

seismic data using the same configuration as in OpenFWI. Since the dataset SA is a smoothed version of SB in OpenFWI, we
are also interested in the generalization performance of BigFWI on the smoothed versions of Marmousi and Overthrust. To this
end, we follow the previous work39 and apply Gaussian filters with a standard deviation 2 to the velocity maps to obtain the
smoothed ones. For comparison, we compare the BigFWIs trained on OpenFWI-408K with the InversionNet models trained on
SA and SB separately.

The generalization ability of our models to Marmousi and Overthrust are depicted in Figure 8. We also provide the results
of Reverse Time Migration (RTM) and the differences of RTM compared to the ground truth in Supplement Figure S2 and S3,
respectively. Generally, BigFWI yield more accurate inversion results compared to InversionNet. For the smoothed version of
Marmousi, the results of BigFWI match the ground truth better in the shallow region. The BigFWI-M even generates some
layered structures in the top-right corner. In the deep region, the results of the InversionNet models contain either too many
false high-velocity predictions or a horizontal layer with relatively low velocity. In contrast, though the velocity in the results
of BigFWI is lower than the ground truth, they capture the locations of high-velocity regions. For the original version of
Marmousi, it is obvious that the performance of BigFWI is better than InversionNet. We observe the layered structures given by
BigFWI, and we think this is learned from CVA and CVB.

For the Overthrust velocity maps, BigFWI consistently generates flat layers with geological faults in the deep region, which
are more visually plausible than the results of InversionNet. We see that the behavior of BigFWI is greatly affected by FVB,
which demonstrates the advantages of training models on large-scale multi-structural datasets. However, we also observe that
BigFWI tends to follow one specific learned pattern per prediction; for example, in the predictions of the smoothed Overthrust,
BigFWI still generates structures with sharp boundaries that exist in FVB. This indicates that there may be still much space for
the improvement of BigFWI in terms of both the model architecture and the training data.

The quantitative results are provided in Supplementary Table S10, S11 and S12, which generally align with our observations
in the visualization results. From the quantitative results, we further notice that the performance improvement of BigFWI
compared to InversionNet on the original velocity maps is smaller than the one on the smoothed version. This is consistent with
our previous observations where the improvement of BigFWI models on SB is always smaller than the one of SA. It points
out a future direction where instead of simply combining all the datasets, we may bias towards SB dataset during training by
generating more samples or training more steps on SB so that the model can yield better performance on the realistic cases with
high-wavenumber components. In addition, we observe that InversionNet trained on SA achieves smaller RTM differences for
the smoothed version of Overthrust. The discrepancy in this case may be attributed to a velocity misfit, causing RTM image
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Figure 6. Generalization improvement of BigFWI models trained using leave-one-out settings in terms of MAE, RMSE
and SSIM. For each target dataset, our BigFWI yields better generalization performance than all the InversionNet trained on the
split datasets other than the target one.

FVA FVB CVA CVB FFA FFB CFA CFB SA SB

Ground 
Truth

InversionNet

BigFWI
(OOD)

Velocity (m/s)
1500 2000 2500 3000 3500 4000 4500

InversionNet
（OOD)

Figure 7. Comparison of ground truth (first row) and generalization results of different methods. From the first to last
row: the InversionNet trained on the target datasets, the InversionNet trained on the datasets other than the target one, and the
BigFWIs trained using leave-one-out settings. Our BigFWIs yield relatively reasonable velocity maps that are closer to the
ones generated by the InversionNet trained on the target datasets.

interfaces to be half-cycle shifted in depth, resulting in larger RMS and L2-norm values. However, the performance of the
four models on the Overthrust-smooth is relatively comparable. Moreover, it is worth noting that although BigFWI achieves
better results compared to InversionNet for both Marmousi and Overthrust, the performance is still insufficient for real-world
applications, which indicates much space for improvement.

Discussion
This study is a preliminary investigation into the influence of big data on deep learning FWI methods, and there still exist
some limitations and promising future directions. First, our study is entirely based on OPENFWI, which brings us not only
convenience but also several inherent limitations. Although the Style Family in OPENFWI has made an effort to simulate
the real-world velocity maps, there is still a gap between the synthetic data and field data. Our experiments are thus limited
to simulations. It is an ongoing challenge for the whole FWI community to bridge this gap by either providing more public
field data or improving the fidelity of the simulation. Second, in the present study, we only made minimal modifications to
the network architecture of BigFWI. As a potential direction of future work, we may develop different network architectures
to further improve performance. For instance, we observed during the qualitative analysis that the cross-domain training
could lead to interference between datasets and inaccurate layer boundaries. Such issues could potentially be addressed by
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Figure 8. Comparison of ground truth (first column) and generalization results of different methods on Marmousi and
Overthrust. For all velocity maps, Our BigFWIs yield more accurate results, especially in the shallow region of each velocity
map as highlighted in squares.

implementing an adaptive network architecture. Another challenge we plan to take into consideration when developing the
network architecture is how models can be generalized to various survey settings. Examples can be the size of the target velocity
map, the type of source and the placement of source-receiver arrays. An existing method we can employ is Fourier-DeepONet42,
which considers the generalization of frequencies and locations of sources. Another potential solution is to adapt Transformer43

or Vision Transformer44 with embeddings that encode the additional information. If this challenge is well-addressed, we will be
able to include more diverse data during training, and the model will be more easily generalized to practical field applications.
Third, throughout the experiments, we observe that the evaluation of inversion results is very complicated, and sometimes the
differences in visualization results cannot be reflected in the current quantitative metrics. Hence, new evaluation metrics should
also be developed in future to better reflect inversion quality.

This study offers valuable insights into the inverse problem, which can contribute to the advancement of this concept in
other domains, including medical imaging, climate modeling, and astronomy. The knowledge gained from this investigation
can be leveraged to support the application of AI in scientific research and enhance its capabilities in these fields.

Conclusion
We presented an empirical study to determine the extent to which big data can benefit the deep learning models in FWI from
three perspectives: model performance, the relationship between model size and data size, and model generalization. To
accomplish this, we utilized the large-scale, publicly available datasets OPENFWI and designed the experiments to compare
the performance of baseline InversionNet trained on relatively small-scale individual datasets with that of BigFWIs, which
are trained on combined, large-scale datasets. Through both quantitative and qualitative analysis, our study has demonstrated
that big data can significantly enhance the performance of deep learning models in FWI on both in-distribution and out-
of-distribution data. Moreover, we have shown that model architectures need to be scaled with data size to achieve further
improvement. We trust that our findings can provide valuable guidance for the future development of deep-learning-based FWI
methods.
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Data and Codes Availability
OpenFWI data set can be downloaded from the website (https://openfwi-lanl.github.io/). InversionNet codes
are released and can be downloaded from the Website (https://github.com/lanl/OpenFWI/).
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Supplementary
Wasserstein Distance
We follow the previous literature1 to calculate the squared 2-Wasserstein Distance. The definition of the distance between two
distributions f : X → R+ and g : Y → R+ can be formulated as:

W 2
2 ( f ,g) = inf

T∈M

∫

X

|x−T (x)|2 f (x)dx, (1)

where f and g denotes the probability density functions of the distributions, T : X → Y is a transport plan, and M is the set of
all possible transport plans.

For seismic data, we compute the average trace-by-trace distance. Each trace is considered as a density function. Addi-
tionally, we extract the envelope of data by applying the Hilbert transform to generate non-negative density functions. We
also normalize the data of both ground truth and predictions so that the functions have equal mass, as required by Wasserstein
Distance. We use f̃ and g̃ to denote the modified traces of the ground truth and the predictions. The average trace-by-trace
distance is given as:

WDSeis =
1

S ·R
S

∑
s=1

R

∑
r=1

W 2
2 ( f̃ (r, t;s), g̃(r, t;s)), (2)

where S is the number of sources, and R is the number of receivers.
Similarly, for velocity maps, we consider a map as a joint probability density function and estimate the distances by

computing the Sliced Wasserstein Distances with 50 projections2.

Enlarged Single Dataset
We further conduct an experiment by simply enlarging the split datasets in OpenFWI. Specifically, we follow the velocity map
generation process in OpenFWI and generate additional pairs of velocity maps and seismic data for the Vel Family and the
Fault Family so that each split dataset contains 204K training samples. The test sets remain unchanged. For brevity, we name
the datasets as OpenFWI-204K-Extended, and the models trained on the enlarged datasets are still referred as BigFWI for
consistency. For the Style Family, there exist some factors that may cause distribution shift. For instance, the specific Marmousi
velocity map used as the style image is unknown. Therefore, we choose to exclude the Style Family in this experiment. The
hyperparameter setting is the same as the one in the experiment of OpenFWI-204K.

The quantitative results are listed in Table S4 and S5. We observe that BigFWI outperforms InversionNet on all the datasets
by a large extent, which still demonstrates the impact of data scaling. It is also worth noting that the performance improvement
from enlarging single datasets is larger than the one of combining all the datasets. However, training on the single dataset may
also limit the generalization of the model as the velocity maps with other subsurface structures are unseen during training.
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Figure S1. Visualization of the network architecture of InversionNet and BigFWI. Batch normalization layers and activation
layers are omitted for simplicity.

Model Encode Layers Decode Layers Latent Length Parameters

BigFWI-B 14 11 512 24M

BigFWI-M 17 16 512 28M

BigFWI-L 16 14 1024 87M

Table S1. Configurations of BigFWI model variants.
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Dataset
InversionNet BigFWI

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

FlatVel-A 0.0092 0.0163 0.9930 0.0066 0.0137 0.9922

FlatVel-B 0.0288 0.0797 0.9582 0.0298 0.0888 0.9498

CurveVel-A 0.0560 0.1131 0.8405 0.0415 0.0936 0.8751

CurveVel-B 0.1344 0.2697 0.6995 0.1155 0.2471 0.7309

FlatFault-A 0.0138 0.0382 0.9813 0.0111 0.0332 0.9841

FlatFault-B 0.1012 0.1672 0.7267 0.0855 0.1514 0.7573

CurveFault-A 0.0220 0.0607 0.9605 0.0193 0.0556 0.9636

CurveFault-B 0.1610 0.2419 0.5981 0.1425 0.2251 0.6292

Style-A 0.0625 0.1024 0.8839 0.0592 0.0994 0.8908

Style-B 0.0609 0.0971 0.7303 0.0600 0.0962 0.7324

Table S2. Quantitative comparison between the results of InversionNet and BigFWI on OpenFWI-204k in terms of MAE,
RMSE and SSIM.

Dataset
InversionNet BigFWI

WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓

FlatVel-A 15.8109 0.0417 10.4228 0.0372

FlatVel-B 79.0238 0.1339 76.6044 0.1328

CurveVel-A 478.6276 0.1898 291.5563 0.1192

CurveVel-B 997.6450 0.4120 819.0640 0.3354

FlatFault-A 150.4610 0.0481 170.1272 0.0436

FlatFault-B 722.4929 0.3139 544.0522 0.2260

CurveFault-A 264.9666 0.0692 260.3809 0.0577

CurveFault-B 1342.0856 0.4040 992.1356 0.3091

Style-A 156.1971 0.1967 145.9914 0.1691

Style-B 131.8703 0.0994 182.7130 0.0934

Table S3. Quantitative comparison between the results of InversionNet and BigFWI on OpenFWI-204k in terms of
Wasserstein Distance.
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Dataset
InversionNet BigFWI

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

FlatVel-A 0.0092 0.0163 0.9930 0.0035 0.0056 0.9985

FlatVel-B 0.0288 0.0797 0.9582 0.0116 0.0421 0.9867

CurveVel-A 0.0560 0.1131 0.8405 0.0236 0.0703 0.9198

CurveVel-B 0.1344 0.2697 0.6995 0.0704 0.1953 0.8209

FlatFault-A 0.0138 0.0382 0.9813 0.0048 0.0196 0.9952

FlatFault-B 0.1012 0.1672 0.7267 0.0598 0.1288 0.8366

CurveFault-A 0.0220 0.0607 0.9605 0.0080 0.0324 0.9910

CurveFault-B 0.1610 0.2419 0.5981 0.1132 0.1964 0.6937

Table S4. Quantitative comparison between the results of InversionNet and BigFWI on OpenFWI-204k-Extended in terms of
MAE, RMSE and SSIM.

Dataset
InversionNet BigFWI

WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓

FlatVel-A 15.8109 0.0417 2.6449 0.0355

FlatVel-B 79.0238 0.1339 16.8437 0.0634

CurveVel-A 478.6276 0.1898 122.2878 0.0859

CurveVel-B 997.6450 0.4120 393.6323 0.2119

FlatFault-A 150.4610 0.0481 66.2190 0.0284

FlatFault-B 722.4929 0.3139 276.2333 0.1632

CurveFault-A 264.9666 0.0692 119.6634 0.0381

CurveFault-B 1342.0856 0.4040 696.8380 0.2314

Table S5. Quantitative comparison between the results of InversionNet and BigFWI on OpenFWI-204k-Extended in terms of
Wasserstein Distance.
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Dataset
InversionNet BigFWI-B BigFWI-M BigFWI-L

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

FlatVel-A 0.0055 0.0104 0.9964 0.0076 0.0130 0.9943 0.0045 0.0085 0.9965 0.0041 0.0079 0.9965

FlatVel-B 0.0210 0.0632 0.9718 0.0233 0.0696 0.9658 0.0193 0.0621 0.9729 0.0173 0.0584 0.9756

CurveVel-A 0.0409 0.0944 0.8796 0.0343 0.0798 0.9027 0.0272 0.0725 0.9180 0.0260 0.0705 0.9199

CurveVel-B 0.1073 0.2349 0.7527 0.0933 0.2154 0.7808 0.0816 0.2006 0.8053 0.0772 0.1947 0.8134

FlatFault-A 0.0096 0.0278 0.9880 0.0106 0.0286 0.9871 0.0075 0.0229 0.9904 0.0066 0.0208 0.9918

FlatFault-B 0.0843 0.1497 0.7635 0.0710 0.1321 0.8027 0.0636 0.1259 0.8137 0.0644 0.1269 0.8033

CurveFault-A 0.0164 0.0485 0.9712 0.0167 0.0474 0.9712 0.0130 0.0404 0.9771 0.0117 0.0369 0.9801

CurveFault-B 0.1444 0.2248 0.6274 0.1245 0.2027 0.6781 0.1161 0.1954 0.6896 0.1169 0.1960 0.6790

Style-A 0.0567 0.0947 0.8972 0.0514 0.0868 0.9125 0.0480 0.0829 0.9187 0.0483 0.0831 0.9136

Style-B 0.0542 0.0890 0.7646 0.0553 0.0876 0.7567 0.0538 0.0867 0.7600 0.0563 0.0908 0.7429

Table S6. Quantitative comparison between the results of InversionNet and BigFWIs on OpenFWI-408k in terms of MAE,
RMSE and SSIM.

Dataset
InversionNet BigFWI-B BigFWI-M BigFWI-L

WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓

FlatVel-A 7.1659 0.0363 6.5469 0.0319 3.9796 0.0299 4.2737 0.0273

FlatVel-B 44.9913 0.1059 56.9304 0.1017 37.7425 0.0901 34.0136 0.0875

CurveVel-A 256.9994 0.1335 215.5561 0.0964 160.5040 0.0851 154.5497 0.0780

CurveVel-B 732.5136 0.3340 607.3340 0.2661 537.0858 0.2378 498.6442 0.2216

FlatFault-A 96.9786 0.0358 126.8728 0.0364 90.7467 0.0312 80.5870 0.0293

FlatFault-B 521.3496 0.2458 440.6822 0.1838 345.5444 0.1662 362.3163 0.1468

CurveFault-A 186.2397 0.0507 218.2358 0.0449 166.9954 0.0421 152.6674 0.0373

CurveFault-B 1044.2372 0.3357 891.3471 0.2604 773.0494 0.2367 773.9282 0.2179

Style-A 125.4812 0.1617 126.1750 0.1426 113.1486 0.1301 121.2802 0.1235

Style-B 96.8782 0.0866 169.6936 0.0828 169.4446 0.0787 199.0436 0.0784

Table S7. Quantitative comparison between the results of InversionNet and BigFWIs on OpenFWI-408k in terms of
Wasserstein Distance.

5/9



Target
Dataset

InversionNet BigFWI

Source MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

FlatVel-A FlatVel-B 0.0207 0.0381 0.9723 0.0137 0.0285 0.9795

FlatVel-B CurveVel-B 0.1076 0.2331 0.7797 0.0820 0.1970 0.8345

CurveVel-A CurveVel-B 0.0833 0.1458 0.7828 0.0578 0.1114 0.8404

CurveVel-B FlatFault-B 0.4267 0.5649 0.4234 0.2543 0.4042 0.5373

FlatFault-A CurveFault-A 0.0394 0.0979 0.9224 0.0211 0.0626 0.9618

FlatFault-B CurveFault-B 0.1213 0.1895 0.6677 0.0998 0.1630 0.7343

CurveFault-A FlatFault-B 0.0834 0.1537 0.8364 0.0398 0.0955 0.9198

CurveFault-B FlatFault-B 0.1898 0.2840 0.5369 0.1638 0.2528 0.5905

Style-A Style-B 0.1195 0.1655 0.7653 0.0948 0.1372 0.8049

Style-B Style-A 0.0858 0.1226 0.6817 0.0801 0.1142 0.6871

Table S8. Quantitative comparison between the generalization results of InversionNet and BigFWIs (leave-one-out) in terms
of MAE, RMSE and SSIM.

Target
Dataset

InversionNet BigFWI

Source WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓

FlatVel-A FlatVel-B 31.5622 0.0912 32.2925 0.0616

FlatVel-B CurveVel-B 471.8385 0.3892 364.7918 0.3283

CurveVel-A CurveVel-B 631.7191 0.2903 472.7896 0.1658

CurveVel-B FlatFault-B 5445.9127 1.8209 2597.8299 0.7624

FlatFault-A CurveFault-A 631.0078 0.1113 454.4401 0.0801

FlatFault-B CurveFault-B 863.8857 0.3363 795.1951 0.2664

CurveFault-A FlatFault-B 1419.7535 0.3397 671.2540 0.1189

CurveFault-B FlatFault-B 1703.5499 0.4681 1307.8235 0.3566

Style-A Style-B 317.7699 0.5207 285.1514 0.3141

Style-B Style-A 284.4557 0.2024 406.7438 0.1798

Table S9. Quantitative comparison between the generalization results of InversionNet and BigFWIs (leave-one-out) in terms
of Wasserstein Distance.
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Dataset
InversionNet-SA InversionNet-SB BigFWI-M BigFWI-L

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑
Marmousi
(smooth)

0.1410 0.1996 0.7408 0.1456 0.1988 0.5886 0.0792 0.1164 0.8356 0.0823 0.1244 0.7808

Marmousi
(original)

0.1783 0.2505 0.4749 0.2161 0.2942 0.3798 0.1492 0.2323 0.4936 0.1549 0.2419 0.4806

Overthrust
(smooth)

0.1213 0.1719 0.7511 0.1062 0.1398 0.6898 0.0722 0.1000 0.7599 0.0760 0.1001 0.7491

Overthrust
(original)

0.2052 0.2742 0.4177 0.1819 0.2414 0.4252 0.1549 0.2040 0.4608 0.1775 0.2297 0.3938

Table S10. Quantitative comparison betwen the generalization results of InversionNet and BigFWIs on Marmousi and
Overthrust in terms of MAE, RMSE and SSIM.

Dataset
InversionNet-SA InversionNet-SB BigFWI-M BigFWI-L

WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓ WDSeis ↓ WDV map ↓
Marmousi
(smooth)

1140.5796 0.6277 1092.4845 0.4691 1104.5630 0.2706 1125.5029 0.2882

Marmousi
(original)

2160.1560 0.6764 3215.7143 0.5241 1460.0678 0.2840 1293.1754 0.2558

Overthrust
(smooth)

2203.9591 0.6695 1059.8792 0.4295 1045.3390 0.1136 976.3700 0.0752

Overthrust
(original)

2794.4750 0.7481 1376.2766 0.4220 1805.2714 0.0981 1697.1583 0.1567

Table S11. Quantitative comparison between the generalization results of InversionNet and BigFWIs on Marmousi and
Overthrust in terms of Wasserstein Distance.

Dataset
InversionNet-SA InversionNet-SB BigFWI-M BigFWI-L

RMSRT M ↓
(×10−3)

2-normRT M ↓
(×10−1)

RMSRT M ↓
(×10−3)

2-normRT M ↓
(×10−1)

RMSRT M ↓
(×10−3)

2-normRT M ↓
(×10−1)

RMSRT M ↓
(×10−3)

2-normRT M ↓
(×10−1)

Marmousi
(smooth)

0.8396 0.5877 1.3680 0.9576 0.5962 0.4174 0.7789 0.5452

Marmousi
(original)

2.1476 1.5033 2.3882 1.6717 2.0772 1.4540 2.1852 1.5296

Overthrust
(smooth)

0.9596 0.6717 1.1037 0.7726 1.0319 0.7223 1.0512 0.7359

Overthrust
(original)

2.7633 1.9343 2.7022 1.8915 2.5804 1.8063 2.7460 1.9222

Table S12. Quantitative comparison between the generalization results of InversionNet and BigFWIs on Marmousi and
Overthrust in terms of Wasserstein Distance.
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Figure S2. Zero-offset least square reverse time migration (LSRTM) images using different velocity models for comparison.

Figure S3. Zero-offset least square reverse time migration (LSRTM) image differences to the ground truth images using
different velocity models for comparison.
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