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ABSTRACT

Brain tumor segmentation is an active research area due to the
difficulty in delineating highly complex shaped and textured
tumors as well as the failure of the commonly used U-Net ar-
chitectures. The combination of different neural architectures
is among the mainstream research recently, particularly the
combination of U-Net with Transformers because of their in-
nate attention mechanism and pixel-wise labeling. Different
from previous efforts, this paper proposes a novel network
architecture that integrates Transformers into a self-adaptive
U-Net to draw out 3D volumetric contexts with reasonable
computational costs. We further add a residual connection to
prevent degradation in information flow and explore ensem-
ble methods, as the evaluated models have edges on different
cases and sub-regions. On the BraTS 2021 dataset (3D), our
model achieves 87.6% mean Dice score and outperforms the
state-of-the-art methods, demonstrating the potential for com-
bining multiple architectures to optimize brain tumor segmen-
tation.

Index Terms— Transformer, U-Net, Brain tumor seg-
mentation, ensemble learning

1. INTRODUCTION

Brain tumor segmentation has been a challenging task in med-
ical imaging research and plays a crucial role in diagnosis,
prognosis, and determining treatment strategies. Magnetic
resonance imaging (MRI) is the imaging modality of choice
for brain tumor clinics due to its advantages [1]: no radiation,
better resolution of soft tissues compared with computed to-
mography (CT), and various imaging contrasts that provide
rich diagnostic information via varying characteristics of the
tissues highlighted by multi-modality MRI. For example,
the spatial extent and volume of solid or active tumor re-
gions, edema, and necrotic regions are important diagnostic
and prognostic markers, and they can be measured by MRI.
While tumor tissues may be readily detectable or visible
at most times, accurate and reproducible auto-segmentation
and characterization are still active research fields. This pa-
per presents yet another deep learning-based segmentation
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method for brain tumor analysis using multi-modal MRIs
with considerable advantages to the current state-of-the-art
methods such as improving (1) the accuracy of segmentation
results for complex shaped and textured tumors, (2) the ro-
bustness of the models and (3) the efficiency of segmentation
systems (i.e., reducing the training time and computational
burden).

The dataset used in this paper comes from Multi-modal
Brain Tumor Segmentation Challenge (BraTS) 2021 [2, 3, 4],
which includes four MRI modalities: T1-weighted (T1), T2-
weighted (T2), fluid-attenuated inversion recovery (FLAIR),
and contrast-enhanced T1-weighted (T1ce) MRI volumes.
The segmentation task is defined as accurately generating
contours of brain tumor sub-regions.

Previous works. The U-Net [5] architecture and its nu-
merous modifications [6, 7, 8, 9] have achieved the state-of-
the-art results in medical image segmentation. Skip connec-
tions between the encoder and decoder enable the network
to capture details from low-level layers for accurate localiza-
tion of object of interest. However, due to limited kernel size,
long-range dependency is often lost through this process. This
is rather important in biomedical segmentation tasks because
it is difficult to capture more complex relations in some tu-
mors with complex shapes and texture.

To address this issue, many efforts of introducing the
self-attention mechanism have recently been made [10]. For
instance, TransUNet [11] takes image patches from U-Net
and provides evidence that Transformers have the potential
in making encoders stronger. U-Net Transformer [12] and
SwinUNet [13] both apply the transformer blocks during the
low-level encoding-decoding process to model long-range
dependencies. These models have shown the ability to extract
global context; therefore, leading to a better performance on
medical image segmentation. Yet, the transformer brings a
heavy computational and memory burden.

Despite the benefits of Transformers, the complexity re-
quired by its mechanism can largely impede the feasibility
of its application on 3D datasets. The aforementioned ap-
proaches are applied mainly on 2D medical images [14],
which leaves room for the further explorations of Transform-
ers. However, for 3D images, since the transformer requires
quadratic complexity calculations, the one more dimension
of the dataset would increase the computation so dramati-
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cally that it cannot be naively integrated into the network
architecture. One potential solution is to introduce a linear
transformer for segmentation, however, previous research
also shows there is a performance drop when making the
transformer linear [15].

To this end, we propose a novel architecture by integrating
Transformers into the nnU-Net architecture solely in the bot-
tleneck layer of feature extraction so as to alleviate the heavy
computation issue on 3D datasets. Our models are expected
to combine the benefits of the self-attention mechanism and
nnU-Net, which are to learn long-range dependencies, to re-
serve the details from low-level layers in the decoding pro-
cess, and to auto-generate network configurations. To avoid
hierarchical complexity brought by additional layers [16], we
also add residual connection on the Transformer block to fur-
ther stabilize the model performance.

Our contributions can be summarized as:
• We design an effective architecture combining the Trans-

former algorithm with a self-adaptive U-Net and include
residual connections on the Transformer to avoid possible
degradation in information flow.

• Further, we manage to apply our algorithm in 3D volu-
metric space instead of the conventional slice-by-slice ap-
proach.

• We demonstrate a great potential in ensemble learning of
the proposed architectures for further enhancement in the
segmentation performance.

• The proposed design shows improved robustness against
poor-quality images, and the efficacy for brain tumor seg-
mentation on 3D datasets and outperforms the state-of-
the-art approaches in this field.

2. METHODOLOGY

This study is based on nnU-Net, an extension of U-Net that
automatically generates network configurations based on the
dataset characteristics [6]. In our implementation, the pa-
rameters, including target spacing, patch size, batch size,
downsampling strides, and convolutional kernel sizes, are
self-adaptive and adjusted based on the specific dataset. To
capture long-range contextual interactions, we introduce a
self-attention mechanism by integrating a transformer block
into the deepest layer of the encoder, where the dimensions
of the input sequences are reduced to a size that can be easily
handled by the transformer. We also include a residual con-
nection to prevent information degradation. Figure 1 shows
the architecture of our proposed model, illustrating the flow
of information through the network, and highlighting the
locations of the transformer block and residual connection.

2.1. U-Net architecture with transformer

Down-sampling. The input to our model is a 3D image
with dimensions of 240 x 240 x 155 (height x width x depth),
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Fig. 1. The network architecture of the segmentation engine
with the transformer block nested at the bottleneck layer.

composed of four distinct channels derived from various MRI
contrasts. Following pre-processing (i.e., inhomogeneity cor-
rection, denoising, and intensity standardization), the images
are conveyed to the encoder for down-sampling. Each layer
of the encoder comprises two consecutive blocks of stacked
convolutional layers, incorporating 3D convolution, dropout,
3D instance normalization, and leaky ReLU activation in a
sequential manner. The encoder extracts features from image
patches that are subsequently utilized as input sequences for
the Transformer block.

Transformer block. The Transformer block acts as the
final component of the encoder, performing a sequence-to-
sequence operation. It takes in non-overlapping encoded
patches and transforms them into vectors. It repeats the self-
attention layer n = 8 times for multi-head attention. The
self-attention [17] mechanism can be written as:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (1)

where the manipulation of queries (Q), keys (K), and values
(V) requires O(N²) computational complexity. After being
encoded down to the bottleneck layer, the sequence dimen-
sion could be reduced dramatically. Thus, on a 3D dataset,
the transformer block placed in the last layer can alleviate the
computational burden and can make it feasible to include self-
attention in the overall network. The Transformer later out-
puts encoded image patches into the decoder, which reshapes
them back to the original input size.

Residual connection. To avoid a fracture in informa-
tion from previous layers and the difficulty in training com-
plex models, we add a residual connection to the Transformer
block. This allows the information to be propagated directly
to the designated last layer. By doing so, we seek to ensure
the integrity of the information flow while mitigating poten-
tial issues such as gradient explosion. We compare this model
to one without a residual connection.

Up-sampling. During the up-sampling process, the de-
coder utilizes transposed convolutions to expand the image



Multi-head

attention

Add & Norm

Feed-forward

Add & Norm

Outputs

Inputs

Linear

(projection)

Linear

(back-projection)

Positional 

embedding

＋

× n

Q

K

V

Fig. 2. Zoom-in architecture of the transformer block.

size and move up to low-level layers until the size matches
the original input image. At each layer, the decoder concate-
nates input features with image features from the correspond-
ing encoder level through a skip connection. It preserves cru-
cial details in the final segmentation map. To further prevent
information loss in the decoding process, we incorporate deep
supervision. Overall, this up-sampling strategy enhances the
accuracy and robustness of the proposed architecture.

2.2. Training and testing

We evaluate all our models on the BraTS2021 dataset. This
dataset contains fully-annotated, multi-institutional, multi-
parametric brain tumor MRI, covering diverse degrees of
gliomas. There are 1,470 samples in the dataset, each of
which has four MRI modalities: T1, T2, FLAIR, and T1ce.
We split them into the training and validation set of 1,251
samples, and the test set of 219 samples. We use 5-fold cross-
validation and optimization to train our models, where the
loss function is defined as the sum of Dice loss and cross-
entropy loss. Moreover, to assess the performance of our
models, we conduct a blind-testing on the unseen validation
dataset through an online evaluation provided by the BraTS
challenge organizers.

Figure 3 illustrates an example annotation of a single
subject’s FLAIR image with four segmentation labels: per-
itumoral edema (ED), GD-enhancing tumor (ET), necrotic
tumor core (TC), and background. A whole tumor (WT)
refers to the complete extent of the disease, entailing TC and
ED. When comparing T1ce to T1 images, ET shows hyper-
intensity while TC shows hypo-intensity, as can be observed
in Figure 4. Generally, all four labels are present in the expert
manual annotation following a certain topological relation-
ship, where ED is on the outside and TC is the innermost,
but it varies from patient to patient. Some samples only have
one or two labels (when there is no ET or TC to be found)
due to different tumor development stages, which may affect
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The GD-enhancing tumor 
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(a) Horizontal plane (b) Sagittal plane

(c) Coronal plane (d) 3D segmentation mask

Fig. 3. Typical labels in expert segmentation on a sample
from the training set, projected on FLAIR.

the segmentation performance of certain models. This will be
further discussed later.

3. RESULTS

3.1. Single model performance

We evaluate the performance of four different models on the
BraTS2021 dataset. The models include nnU-Net as the base-
line, E1D3 [18] as a comparison to the state-of-the-art, and
our proposed models transformer-nested nnU-Net (UNet+T)
and its variation with residual connection (UNet+T+R). E1D3
is a variation of the U-Net that uses one encoder and three de-
coders for separate sub-regions of the brain tumor. This archi-
tecture may give E1D3 some advantages on certain samples
that require examining sub-regions independently, therefore
making it a good candidate for the later ensemble.

The evaluation metrics used in this study were the Dice
coefficient score and Hausdorff Distance (HD). Table 1 pro-
vides the evaluation results on sub-region performance for all
four models. The results show that UNet+T has a slightly
better Dice score on ET and TC, and a better HD score on
WT. UNet+T+R demonstrates significant improvement in the
prediction of ET and better HD scores on ET and TC. As a
result, our models demonstrate the best overall performance
as evaluated by both mean Dice and mean HD.

Furthermore, nnU-Net is observed to be robust to poor
image quality and displacement noise, as it gives the high-
est Dice score for WT. We also observe that E1D3 performs
better on the ET region for many selected samples that con-
tains less than or equal to two labels in the segmentation map,
excluding the background. This observation inspires us to en-
semble the results generated by different models to combine
their advantages on sub-region segmentation.



Table 1. Prediction results for 4 models on the BraTS 2021
validation dataset (unseen). Bold texts represent the best
scores for each metric. HD refers to Hausdorff Distance. T
and R stand for transformer block and residual connection
around it, respectively.

Methods Dice (%) HD (mm)
ET TC WT Mean ET TC WT Mean

nnU-Net 80.5 87.5 92.7 86.9 24.66 7.62 3.60 11.96
E1D3 81.6 80.6 91.5 84.6 18.46 17.65 4.73 13.61

UNet+T 82.0 87.8 92.6 87.5 18.13 9.27 3.49 10.30
UNet+T+R 82.2 87.7 92.5 87.5 16.24 7.53 3.73 9.17

Table 2. Prediction results for ensemble models on the BraTS
2021 validation dataset (unseen). Bold texts represent the best
scores for each metric.

Methods Dice (%) HD (mm)
ET TC WT Mean ET TC WT Mean

Mode 81.6 87.6 92.6 87.3 19.72 9.26 3.61 10.86
Average 82.4 80.6 92.2 85.1 12.87 16.63 5.27 11.59
Median 82.0 87.7 92.6 87.4 18.00 9.20 3.61 10.27

Threshold 82.0 88.3 92.6 87.6 18.13 7.56 3.57 9.75

3.2. Ensemble models

Table 2 presents the results of four different ensemble strate-
gies. The first three methods involves performing pixel-wise
operations on the segmentation maps from the four models,
using mode, mean, and median, respectively. We should note
that the weight of each model is not equal, as we double the
weight of the UNet+T model based on its better overall per-
formance and empirical evidence. For the threshold ensem-
ble, we set a threshold of TC volume smaller than 60 and ET
volume larger than 60 to automatically select subjects to be
predicted by the E1D3 model, and the remaining subjects are
predicted using the UNet+T model. This method is based on
the observation that E1D3 performs better for subjects meet-
ing these criteria, which may suggest fewer than four labels
in the ground truth. Therefore, this method is only an ensem-
ble of two models: E1D3 and UNet+T. The threshold method
shows the best overall performance, both in terms of Dice
score and HD, suggesting that this criterion helps improve
our models.

We also manually pick the best model to apply for each
case, but the results are not compared in the table because
it is not an automatic process. However, it has achieved the
highest Dice (ET 84.0%, TC 88.3%, WT 92.8%) and low-
est HD (ET 11.17mm, TC 7.51mm, WT 3.40mm) across all
sub-regions, as well as the mean Dice (88.4%) and mean HD
(6.82mm). It indicates that the four architectures evaluated in
this paper have the potential to improve combined accuracy
significantly if a more complex ensemble method were speci-

fied. All these ensemble methods have improved accuracy on
selected sub-regions, and the threshold method gives the best
overall Dice score and HD among automatic methods.

Fig. 4. Segmentation of tumors is illustrated (each row in-
dicates one example). Representatives of failure (left) and
acceptable (right) segmentation predictions for a given image
(middle). Left to right, modalities are T1, T1ce, and FLAIR
with a half-transparent segmentation map.

4. DISCUSSION

We present a residual Transformer integrated nnU-Net archi-
tecture for brain tumor segmentation. Simple yet effective,
both models with Transformer nested demonstrated impres-
sive performance on 3D multi-modality datasets and have sur-
passed the state-of-the-art algorithms, including nnU-Net it-
self. We also explore ensemble models in an effort to com-
bine their advantages on sub-regions and different types of
subjects. Although the ensemble methods are not complex
and the threshold is empirical, we have still observed notable
improvements in segmentation performance.

We observe that the performance of the model is affected
by various aspects of the subject, such as the number of sub-
regions, the percentage of each class, the clarity of the bound-
ary, and other unidentified factors. To test this hypothesis,
we manually pick the best-performing model for each sub-
ject, and it achieves the best Dice scores among all models
across metrics. This observation suggests that human-in-the-
loop decision-making, as is common in current clinical prac-
tice, can further push the boundary of current segmentation
performance.

In the future, we plan to investigate better ensemble meth-
ods and select appropriate models for combination. The po-
tential demonstrated in our results is convincing and has the
potential to be applied to other medical imaging tasks. Over-
all, our work offers a promising ensemble approach to brain
tumor segmentation, opening up new possibilities for the in-
tegration of Transformers in medical image analysis.
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