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The 2-opt heuristic is a very simple local search heuristic for the traveling sales-
person problem. In practice it usually converges quickly to solutions within a few
percentages of optimality. In contrast to this, its running-time is exponential and
its approximation performance is poor in the worst case.
Englert, Röglin, and Vöcking (Algorithmica, 2014) provided a smoothed analysis

in the so-called one-step model in order to explain the performance of 2-opt on
d-dimensional Euclidean instances, both in terms of running-time and in terms
of approximation ratio. However, translating their results to the classical model
of smoothed analysis, where points are perturbed by Gaussian distributions with
standard deviation σ, yields only weak bounds.

We prove bounds that are polynomial in n and 1/σ for the smoothed running-
time with Gaussian perturbations. In addition, our analysis for Euclidean distances
is much simpler than the existing smoothed analysis.
Furthermore, we prove a smoothed approximation ratio of O(log(1/σ)). This

bound is almost tight, as we also provide a lower bound of Ω( logn
log logn) for σ =

O(1/
√
n). Our main technical novelty here is that, different from existing smoothed

analyses, we do not separately analyze objective values of the global and local op-
timum on all inputs (which only allows for a bound of O(1/σ)), but simultaneously
bound them on the same input.

1 2-Opt and Smoothed Analysis

The traveling salesperson problem (TSP) is one of the classical combinatorial optimization
problems. Euclidean TSP is the following variant: given points X ⊆ [0, 1]d, find the shortest
Hamiltonian cycle that visits all points in X (also called a tour). Even this restricted variant is

∗This paper is based on results presented at ISAAC 2013 [22] and ICALP 2015 [19].
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NP-hard for d ≥ 2 [24]. We consider Euclidean TSP with Manhattan and Euclidean distances
as well as squared Euclidean distances to measure the distances between points. For the former
two, there exist polynomial-time approximation schemes (PTAS) [2,23]. The latter, which has
applications in power assignment problems for wireless networks [14], admits a PTAS for d = 2
and is APX-hard for d ≥ 3 [28].

As it is unlikely that there are efficient algorithms for solving Euclidean TSP optimally,
heuristics have been developed in order to find near-optimal solutions quickly. One very simple
and popular heuristic is 2-opt: starting from an initial tour, we iteratively replace two edges
by two other edges to obtain a shorter tour until we have found a local optimum. Experiments
indicate that 2-opt converges to near-optimal solutions quite quickly [15,16], but its worst-case
performance is bad: the worst-case running-time is exponential even for d = 2 [11] and the
approximation ratio is Ω(log n/ log log n) for Euclidean instances [6].

An alternative to worst-case analysis is average-case analysis, where the expected perfor-
mance with respect to some probability distribution is measured. The average-case running-
time for Euclidean and random metric instances and the average-case approximation ratio
for non-metric instances of 2-opt have been analyzed [4, 6, 10, 18]. However, while worst-case
analysis is often too pessimistic because it is dominated by artificial instances that are rarely
encountered in practice, average-case analysis is dominated by random instances, which have
often very special properties with high probability that they do not share with typical instances.

In order to overcome the drawbacks of both worst-case and average-case analysis and to
explain the performance of the simplex method, Spielman and Teng invented smoothed anal-
ysis [26], a hybrid of worst-case and average-case analysis: an adversary specifies an instance,
and then this instance is slightly randomly perturbed. The smoothed performance is the ex-
pected performance, where the expected value is taken over the random perturbation. The
underlying assumption is that real-world instances are often subjected to a small amount of
random noise. This noise can stem from measurement or rounding errors, or it might be a
realistic assumption that the instances are influenced by unknown circumstances, but we do
not have any reason to believe that these are adversarial. Smoothed analysis often allows more
realistic conclusions about the performance than worst-case or average-case analysis. Since its
invention, it has been applied successfully to explain the performance of a variety of algorithms.
We refer to two surveys for an overview of smoothed analysis in general [21, 27] and a more
recent survey about smoothed analysis applied to local search algorithms [20].

1.1 Related Results

Running-time. Englert, Röglin, and Vöcking [11] provided a smoothed analysis of 2-opt
in order to explain its performance. They used the one-step model : an adversary specifies
n probability density functions f1, . . . , fn : [0, 1]d → [0, ϕ]. Then the n points X1, . . . , Xn

are drawn independently according to the densities f1, . . . , fn, respectively. Here, ϕ is the
perturbation parameter. If ϕ = 1, then the only possibility is the uniform distribution on
[0, 1]d, and we obtain an average-case analysis. The larger ϕ, the more powerful the adversary.
Englert et al. [11] proved that the expected number of iterations of 2-opt is O(n4ϕ) and

O(n4+ 1
3ϕ

8
3 log(nϕ)) for Manhattan and Euclidean distances, respectively. These bounds can

be improved slightly by choosing the initial tour with an insertion heuristic. However, if we
transfer these bounds to the classical model of points perturbed by Gaussian distributions of
standard deviation σ, we obtain bounds that are polynomial in n and 1/σd [11, Section 6],
since the maximum density of a d-dimensional Gaussian with standard deviation σ is Θ(σ−d).
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While this is polynomial for any fixed d, it is unsatisfactory that the degree of the polynomial
depends on d.

Approximation ratio. Much less is known about the smoothed approximation performance
of algorithms. Karger and Onak have shown that multi-dimensional bin packing can be approx-
imated arbitrarily well for smoothed instances [17] and there are frameworks to approximate
Euclidean optimization problems such as TSP for smoothed instances [3, 7]. However, these
approaches mostly consider algorithms tailored to solving smoothed instances.

With respect to concrete algorithms other than 2-opt, we are only aware of analyses of the
jump and lex-jump heuristics for scheduling [5, 12].

Englert et al. [11] proved a bound of O(ϕ1/d). Translated to Gaussians, this yields a bound
of O(1/σ) if we truncate the Gaussians such that all points lie in a hypercube of constant side
length. This result, however, does not explain the approximation performance 2-opt, as the
bound is still quite large, even for larger values of σ or smaller values of ϕ.

1.2 Our Contribution

In order to improve our understanding of the practical performance of 2-Opt, we provide
an improved smoothed analysis of both its running-time and its approximation ratio. To
do this, we use the classical smoothed analysis model: an adversary chooses n points from
the d-dimensional unit hypercube [0, 1]d, and then these points are independently randomly
perturbed by Gaussian random variables of standard deviation σ.

Running-time. The bounds that we prove are polynomial in n and 1/σ. Different to ear-
lier results, the degree of the polynomial is independent of d. As distance measures, we
consider Manhattan (Section 3.3), Euclidean (Section 3.5), and squared Euclidean distances
(Section 3.4).
The analysis for Manhattan distances is essentially an adaptation of the existing analysis

by Englert et al. [11, Section 4.1]. Note that our bound does not have any factor that is
exponential in d.

Our analysis for Euclidean distances is considerably simpler than the one by Englert et al.,
which is rather technical and takes more than 25 pages [11, Section 4.2 and Appendix C].

The analysis for squared Euclidean distances is, to our knowledge, not preceded by a
smoothed analysis in the one-step model. Because of the nice properties of squared Euclidean
distances and Gaussian perturbations, this smoothed analysis is relatively compact and elegant.

Table 1 summarizes our bounds for the number of iterations.

Approximation ratio. As the earlier smoothed analysis by Englert et al. [11], we provide
bounds on the quality of the worst local optimum. While this measure is rather unrealistic and
pessimistic, it decouples the analysis from the seeding of the heuristic. Taking into account
the seeding would probably severely complicate the analysis.

Our bound of O(log(1/σ)) improves significantly upon the direct translation of the bound
of Englert et al. [11] to Gaussian perturbations (see Section 4.2 for how to translate the bound
to Gaussian perturbations without truncation). It smoothly interpolates between the average-
case constant approximation ratio and the worst-case bound of O(log n).

In order to obtain our improved bound for the smoothed approximation ratio, we take into
account the origins of the points, i.e., their unperturbed positions. Although this information
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Manhattan Euclidean squared Euclidean

Englert et al. [11] 2O(d)n4ϕ Od

(
n4+ 1

3ϕ
8
3 log(nϕ)

)
–

general O
(
d2n4Dmax

σ

)
O
(√dn4D4

max
σ4

)
O
(√dn4D2

max
σ2

)
σ = O(1/

√
n log n) O

(
d2n4

σ

)
O
(√

dn4

σ4

)
O
(√

dn4

σ2

)
σ = Ω(1/

√
n log n) O

(
d2n5
√
log n

)
O
(√

dn6 log2 n
)

O
(√

dn5 log n
)

remarks only for d ≥ 4 only for d ≥ 3; a weaker bound
holds for d = 2 (Theorem 3.14)

Table 1: Our bounds compared to the bounds obtained by Englert et al. [11] for the one-step
model. The bounds can roughly be transferred to Gaussian noise by replacing ϕ
with σ−d. For convenience, we added our bounds for small and large values of σ: for
σ = O(1/

√
n log n), we haveDmax = Θ(1), for larger σ, we haveDmax = Θ(σ

√
n log n).

The notation Od means that terms depending on d are hidden in the O. The remarks
are only for our bounds.

is not available to the algorithm, it can be exploited in the analysis. The smoothed analyses
of approximation ratios so far [3,5,7,11,12,17] essentially ignored this information. While this
simplifies the analysis, being oblivious to the unperturbed positions seems to be too pessimistic.
In fact, we see that the bound of Englert et al. [11] cannot be improved beyond O(1/σ) by
ignoring the positions of the points (Section 4.2). The reason for this limitation is that the lower
bound for the global optimum is obtained if all points have the same origin, which corresponds
to an average-case rather than a smoothed analysis. On the other hand, the upper bound for
the local optimum has to hold for all choices of the unperturbed points, most of which yield
higher costs for the global optimum than the average-case analysis. Taking this into account
carefully yields our bound of O(log(1/σ)) (Section 4.3).

To complement our upper bound, we show that the lower bound of Ω(log n/ log logn) by
Chandra et al. [6] remains true for σ = O(1/

√
n) (Section 4.4). This implies that a smoothed

bound of o(log(1/σ)/ log log(1/σ)) is impossible, and, thus, our bound cannot be improved
significantly.

2 2-Opt and Smoothing Model

2.1 2-Opt Heuristic for the TSP

Let X =⊆ Rd be a set of n points. The goal of the TSP is to find a Hamiltonian cycle (also
called a tour) T through X that has minimum length according to some distance measure.
In this paper, we consider standard Euclidean distances for both approximation ratio and
running-time as well as squared Euclidean distances and Manhattan distances for the running-
time.

Given a tour T , a 2-change replaces two edges {X1, X2} and {X3, X4} of T by two new edges
{X1, X3} and {X2, X4}, provided that this yields again a tour (this is the case if X1, X2, X3, X4

appear in this order in the tour) and that this decreases the length of the tour, i.e., d(X1, X2)+
d(X3, X4)−d(X1, X3)−d(X2, X4) > 0, where d(a, b) = ∥a−b∥2 (Euclidean distances), d(a, b) =
∥a − b∥1 (Manhattan distances), or d(a, b) = ∥a − b∥22 (squared Euclidean distances). The 2-
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opt heuristic iteratively improves an initial tour by applying 2-changes until it reaches a local
optimum. A local optimum is called a 2-optimal tour.

2.2 Smoothing Model

Throughout the rest of this paper, let X̄ = {x1, . . . , xn} ∈ [0, 1]d be a set of n points from the
unit hypercube. In the smoothed analysis, these points are chosen by an adversary, and they
serve as unperturbed origins. Let Z1, . . . , Zn ∼ N (0, σ2) be n independent random variables
with mean 0 and standard deviation σ. By slight abuse of notation, N refers here to the
multivariate normal distribution with covariance matrix diag(σ2). We obtain the perturbed
point set X = {X1, . . . , Xn} ⊆ Rd by adding Xi = xi + Zi for each i ∈ [n] = {1, . . . , n}. We
write X ← pertσ(X̄) to make explicit from which point set X̄ the points in X are obtained.

We assume that σ ≤ 1 throughout the paper. This is justified by two reasons. First, small
σ are the interesting case, i.e., when the order of magnitude of the perturbation is relatively
small. Second, smoothed performance guarantees are monotonically decreasing in σ: if we
have σ > 1, then this is equivalent to adversarial instances in [0, 1/σ]d that are perturbed with
standard deviation 1. This in turn is dominated by adversarial instances in [0, 1]d that are
perturbed with standard deviation 1, as [0, 1/σ]d ⊆ [0, 1]d. Thus, any upper bound for σ = 1
(be it for the number of iterations or the approximation ratio) holds also for larger σ.

Let us make a final remark about the smoothing model: while the algorithm itself, the 2-opt
heuristic in our case, only sees X and does not know anything about the origins X̄, we can of
course exploit the positions of the unperturbed points in the analysis.

3 Smoothed Analysis of the Running-time

In this section, we make the dependence on all parameters (the number n of points, the
dimension d, and the perturbation parameter σ) explicit. This means that the O or Ω do not
hide any factors, not even factors depending on d, which is often considered as a constant and
therefore ignored. (This is also in contrast to our analysis of the approximation ratio, where
the hidden constant can indeed depend on d.)

3.1 Probability Theory for the Running-time

In order to get an upper bound for the length of the initial tour, we need an upper bound for the
diameter of the point setX. Such an upper bound is also necessary for the analysis of 2-changes
with Euclidean distances (Section 3.5). We choose Dmax such that X ⊆ [−Dmax, Dmax]

d with a
probability of at least 1−1/n!. For fixed d and σ ≤ 1, we can choose Dmax = Θ(1+σ

√
n log n)

according to the following lemma. For σ = O(1/
√
n log n), we have Dmax = Θ(1).

Lemma 3.1. Let c ≥ 2 be a sufficiently large constant, and let Dmax = c · (σ
√
n log n + 1).

Then P(X ̸⊆ [−Dmax, Dmax]
d) ≤ 1/n!.

Proof. We have X ̸⊆ [−Dmax, Dmax]
d only if there is a point xi and a coordinate of xi that is

perturbed by more than Dmax − 1 ≥ cσ ·
√
n log n. According to Durrett [9, Theorem 1.2.3],

the probability that a 1-dimensional Gaussian of standard deviation σ is more than cσ
√
n log n

away from its mean is bounded from above by 2 · exp(−c
2n logn/2)

c
√
2πn logn

. Thus, the probability that

X ̸⊆ [−Dmax, Dmax]
d is bounded from above by 2dn · exp(−c

2n logn/2)

c
√
2πn logn

. For sufficiently large c,

this is at most 1/n!.
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Note that the constant c in Lemma 3.1 does not depend on the dimension d.
The following lemma is well known and follows from the fact that the density of a d-

dimensional Gaussian with standard deviation σ is bounded from above by (2σ)−d and the
volume of a d-dimensional ball of radius ε is bounded from above by (2ε)d.

Lemma 3.2. Let a ∈ Rd be drawn according to a d-dimensional Gaussian distribution of
standard deviation σ, and let B = {b ∈ Rd | ∥b − c∥2 ≤ ε} be a d-dimensional hyperball of
radius ε centered at c ∈ Rd. Then P(a ∈ B) ≤ (ε/σ)d.

For x, y ∈ Rd with x ̸= y, let L(x, y) = {ξ · (y − x) + x | ξ ∈ R} denote the straight line
through x and y.

Lemma 3.3. Let a, b ∈ Rd be arbitrary with a ̸= b. Let c ∈ Rd be drawn according to a
d-dimensional Gaussian distribution with standard deviation σ. Then the probability that c is
ε-close to L(a, b), i.e., minc⋆∈L(a,b) ∥c− c⋆∥2 ≤ ε, is bounded from above by (ε/σ)d−1.

Proof. We divide drawing c into drawing a 1-dimensional Gaussian c⋆ in the direction of a− b
and drawing a (d − 1)-dimensional Gaussian c′ in the hyperplane orthogonal to a − b and
containing c⋆. Then the distance of c to L(a, b) is ∥c − c⋆∥2. For every c⋆, the point c is
ε-close to L(a, b) only if c′ falls into a (d − 1)-dimensional hyperball of radius ε around c⋆ in
the (d − 1)-dimensional subspace orthogonal to a − b. Now the lemma follows by applying
Lemma 3.2.

We need the following lemma in Section 3.5.

Lemma 3.4. Let f : R → R be a differentiable function. Let B be an upper bound for the
absolute value of the derivative of f . Let c be distributed according to a Gaussian distribution
with standard deviation σ. Let I be an interval of size ε, and let f(I) = {f(x) | x ∈ I} be the
image of I. Then P(c ∈ f(I)) = O(Bε/σ).

Proof. Since the derivative of f is bounded by B, the set f(I) is contained in some interval of
length Bε. The lemma follows since the density of c is bounded from above by O(1/σ).

The chi distribution [13, Section 8] is the distribution of the Euclidean length of a d-
dimensional Gaussian random vector of standard deviation σ and mean 0. In the following,
we denote its density function by χd. It is given by

χd,σ(x) =
21−

d
2 ·
(
x
σ

)d−1 · exp(−(x/σ)2/2)
σ · Γ(d/2)

, (1)

where Γ denotes the gamma function. We need the following lemma several times.

Lemma 3.5. Assume that c ∈ N is a fixed constant and d ∈ N is arbitrary with d > c. Then
we have ∫ ∞

0
χd,σ(x)x

−c dx =
2−c/2Γ

(
d−c
2

)
σc · Γ

(
d
2

) = Θ

(
1

dc/2 · σc

)
.

Proof. The first equality follows by integration. For the second inequality, we observe 2−c/2 is
a fixed constant (which also never depends on d when we apply the lemma) and that

Γ(x) =
√
2πxx−1/2e−x+µ(x)
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for some function µ with µ(x) ∈
[
0, 1

12x

]
according to Stirling’s formula [1, 6.1.37]. We have

d−c
2 ≥

1
2 as d > c and both are integers. Then

Γ(d−c2 )

Γ(d2)
=

√
2π ·

(
d−c
2

) d−c−1
2 · exp

(
−d−c

2 + µ
(
d−c
2

))
√
2π ·

(
d
2

) d−1
2 · exp

(
−d

2 + µ
(
d
2

))
=

(
d−c
2

) d−c−1
2(

d
2

) d−1
2

· exp
(
c

2
+ µ

(
d− c

2

)
− µ

(
d

2

))
︸ ︷︷ ︸

=Θ(1)

=

(
d− c

d

) d−1
2

︸ ︷︷ ︸
=A

·
(
d− c

2

)− c
2

︸ ︷︷ ︸
=B

·Θ(1).

Here, the third equality follows from two facts: first, c is a fixed constant, thus exp(c/2) =
Θ(1). Second, d−c

2 , d2 ≥
1
2 . Thus, µ(d−c2 ) and µ(d2) lie between 0 and a constant. Hence, the

exponential term is Θ(1).
Analyzing A and B remains to be done: We have B ≤ (d/2)−c/2, thus B = O(d−c/2).

If d ≤ 2c, then B is bounded from below by a constant and so is d−c/2. If d ≥ 2c, then
B ≥ (d/4)−c/2 = Ω(d−c/2). Hence, B = Θ(d−c/2).

We have A =
(
1 − c

d

) d−1
2 ≤ exp

(
− (d−1)·c

2d

)
= O(1). Distinguishing the cases d ≤ 2c and

d > 2c in the same way as for B yields A = Ω(1). Thus, A = Θ(1).

The analysis with Euclidean and squared Euclidean distances depends on the distribution of
the distance between two points perturbed by Gaussians, where a larger distance between the
two points is better for the analysis. The following two lemmas show that, given that larger
distance is better, we can replace the distribution of the distance by the corresponding chi
distribution. Since we do not know the original positions of the points involved, this allows us
to replace unknown distributions by the chi distribution.

Lemma 3.6. Assume that a is drawn according to a d-dimensional Gaussian distribution with
standard deviation σ and mean 0. Assume that b is drawn according to a d-dimensional Gaus-
sian distribution with standard deviation σ and mean µ. Then ∥b∥2 stochastically dominates
∥a∥2, i.e., P(∥b∥2 ≤ t) ≤ P(∥a∥2 ≤ t) for all t ∈ R.

Proof. For d = 1, we have the following:

P
(
∥b∥2 ≤ t

)
= P

(
b ∈ [−t, t]

)
= P

(
a ∈ [−t− µ, t− µ]

)
= P

(
a ∈ [−t, t]) + P

(
a ∈ [−t− µ,−t]

)
− P

(
a ∈ [t− µ, t]

)︸ ︷︷ ︸
≤0

≤ P
(
∥a∥2 ≤ t

)
Now we prove the lemma for larger d. Since Gaussian distributions are rotation symmetric,
we can assume that µ = (δ, 0, . . . , 0) for some δ ≥ 0.

We observe that ∥b∥2 dominates ∥a∥2 if and only if ∥b∥22 dominates ∥a∥22. Let b′ = a+ µ. It
suffices to prove the lemma for this choice of b′, as b′ follows the same distribution as b. Fixing
a2, . . . , ad fixes also a′2, . . . , a

′
d. Then ∥b′∥22 dominates ∥a∥22 if |a1 + δ| dominates |a1|. This is

true because the lemma holds for d = 1.
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Lemma 3.7. Let b be as in Lemma 3.6, and let h : [0,∞] → [0,∞) be a monotonically
decreasing function. Let g be the density function of ∥b∥. Then∫ ∞

0
g(x)h(x) dx ≤

∫ ∞
0

χd,σ(x)h(x) dx,

provided that both integrals exist.

Proof. Let a denote the d-dimensional Gaussian random variable of standard deviation σ and
mean 0. Then ∥a∥2 has density χd,σ. By Lemma 3.6, ∥a∥2 is dominated by ∥b∥2. This implies
that h(∥a∥2) dominates h(∥b∥2) since h is monotonically decreasing. The lemma follows by
observing that the two integrals are the two expected values of h(∥a∥2) and h(∥b∥2).

For Euclidean and squared Euclidean distances, it turns out to be useful to study ∆a,b(c) =
d(c, a)−d(c, b) for points a, b, c ∈ X. By abusing notation, we sometimes write ∆i,j(k) instead
of ∆Xi,Xj (Xk) for short. A 2-change that replaces {X1, X2} and {X3, X4} by {X1, X3} and
{X2, X4} improves the tour length by ∆1,4(2)−∆1,4(3) = ∆2,3(1)−∆2,3(4).

3.2 2-Opt State Graph and Linked 2-Changes

The number of iterations that 2-opt needs depends of course heavily on the initial tour and
on which 2-change is chosen in each iteration. We do not make any assumptions about the
initial tour and about which 2-change is chosen. Following Englert et al. [11], we consider the
2-opt state graph: we have a node for every tour and a directed edge from tour T to tour T ′

if T ′ can be obtained by one 2-change. The 2-opt state graph is a directed acyclic graph, and
the length of the longest path in the 2-opt state graph is an upper bound for the number of
successful iterations that 2-opt needs.
In order to improve the bounds, we also consider pairs of linked 2-changes [11]. Two 2-

changes form a pair of linked 2-changes if there is one edge added in one 2-change and removed
in the other 2-change. Formally, one 2-change replaces {X1, X2} and {X3, X4} by {X1, X3} and
{X2, X4} and the other 2-change replaces {X1, X3} and {X5, X6} by {X1, X5} and {X2, X6}.
The edge {X1, X3} is the one that appears and disappears again (or the other way round). It
can happen that {X2, X4} and {X5, X6} intersect. Englert et al. [11] called a pair of linked
2-changes a type i pair if |{X2, X4} ∩ {X5, X6}| = i. As type 2 pairs, which involve only
four nodes, are difficult to analyze because of dependencies, we ignore them. Fortunately, the
following lemma states that we will find enough disjoint pairs of linked 2-changes of type 0 and
1 in any sufficiently long sequence of 2-changes.

Lemma 3.8 (Englert et al. [11, Lemma 9 of corrected version]). Every sequence of t consecutive
2-changes contains at least t/7− 3n/28 disjoint pairs of linked 2-changes of type 0 or type 1.

Following Englert et al. [11, Figure 8], we subdivide type 1 pairs into type 1a and type 1b
depending on how {X2, X4} and {X5, X6} intersect. One of the 2-changes replaces {X1, X2}
and {X3, X4} by {X1, X3} and {X2, X4}. Then other 2-change, i.e., the one that removes the
edge {X1, X3} shared by the linked pair, determines its type:

Type 0: {X1, X3} and {X5, X6} are replaced by {X1, X5} and {X3, X6}.

Type 1a: {X1, X3} and {X2, X5} are replaced by {X1, X5} and {X2, X3}.

Type 1b: {X1, X3} and {X2, X5} are replaced by {X1, X2} and {X3, X5}.

8



The main idea in the proofs by Englert et al. [11] and also in our proofs is to bound the
minimal improvement of any 2-change or the minimal improvement of any pair of linked 2-
changes. We denote the smallest improvement of any 2-change by ∆min and the smallest
improvement of any pair of linked 2-changes of type 0, 1a, or 1b by ∆link

min. It will be clear from
the context which distance measure is used for ∆min and ∆link

min.
Suppose that the initial tour has a length of at most L, then 2-opt cannot run for more than

L/∆min iterations and not for more than Θ(L/∆link
min) iterations, provided that L/∆link

min = Ω(n2)
because of Lemma 3.8.

The following lemma formalizes this and shows how to bound the expected number of iter-
ations using a tail bound for ∆min or ∆link

min.

Lemma 3.9. Suppose that, with a probability of at least 1− 1/n!, any tour has a length of at
most L. Let γ > 1. Then

(1) If P(∆min ≤ ε) = O(Pε), then the expected length of the longest path in the 2-opt state
graph is bounded from above by O(PLn log n).

(2) If P(∆min ≤ ε) = O(Pεγ), then the expected length of the longest path in the 2-opt state
graph is bounded from above by O(P 1/γL).

(3) The same bounds as ((1)) and ((2)) hold if we replace ∆min by ∆link
min, provided that

PL = Ω(n2) for Case (1) and P 1/γL = Ω(n2) for Case (2).

Proof. If the length of the longest tour is longer than L, then we use the trivial upper bound
of n!. This contributes only O(1) to the expected value.

Consider the first statement. Let T be the longest path in the 2-opt state graph. If T ≥ t,
then ∆min ≤ L/t. Plugging this in and observing that n! is an upper bound for T yields

E(T ) =
n!∑
t=1

P(T ≥ t) ≤
n!∑
t=1

O(PL/t) = O(log(n!) · PL) = O(PLn log n).

Now consider the second statement, and let T be as above. Let K = O(L · P 1/γ). Then

E(T ) =
n!∑
t=1

P(T ≥ t) ≤
n!∑
t=1

min
{
1, O

(
P · (L/t)γ

)}
= K + PLγ ·

∑
t≥K

O(t−γ) = K + PLγ ·O(K1−γ) = O(K).

Finally, we consider the third statement. The statement follows from the observation that the
maximal number of disjoint pairs of linked 2-changes and the length of the longest path in the
2-opt state graph are asymptotically equal if they are of length at least Ω(n2) (Lemma 3.8) and
the probability statements become nontrivial only for t = Ω(PL) in the first and t = Ω(P 1/γL)
in the second case.

3.3 Manhattan Distances

The essence of our analysis for Manhattan distances is a straightforward adaptation of the
analysis in the one-step model. The extra factor of Dmax comes from the bound of the initial
tour, and the extra factor of d2 stems from stating the dependence on d explicitly and getting
rid of the exponential dependence on d [11, Proofs of Theorem 7 and Lemma 10].
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Lemma 3.10. P(∆link
min ≤ ε) = O(d2n6ε2/σ2).

Proof. We consider a pair of linked 2-changes as described in Section 3.2. The improvement
of the first 2-change is

Γ1 =

d∑
i=1

|x1i − x2i|+ |x3i − x4i| − |x1i − x3i| − |x2i − x4i|,

where xji is the i-th coordinate of Xj ∈ X. The improvement of the second 2-change is

Γ2 =
d∑

i=1

|x1i − x3i|+ |x5i − x6i| − |x1i − x5i| − |x3i − x6i|.

Note that we can have a type 1 pair, i.e., two of the points X2, X4, X5, X6 can be identical.
Each ordering of the xji gives rise to a linear combination for Γ1 and Γ2. We have (6!)d such

orderings. If we examine the case distinctions by Englert et al. [11, Lemmas 11, 12, 13] closely,
we see that any pair of linear combinations is either impossible (it uses a different ordering
of the variables for Γ1 and Γ2 or one of Γ1 and Γ2 is non-positive, thus the corresponding
2-change is in fact not a 2-change) or we have one variable xji that has a non-zero coefficient
in Γ1 and a coefficient of 0 in Γ2 and another variable xj′i′ that has a non-zero coefficient in
Γ2 and a coefficient of 0 in Γ1. The absolute values of the non-zero coefficients of xji and xj′i′

is 2. Now Γ1 falls into (0, ε] only if xji falls into an interval of length ε/2. This happens with
a probability of at most O(ε/σ). By independence, the same holds for Γ2 and xj′i′ .

However, we would incur an extra factor of (6!)d in this way, and we would like to remove
all exponential dependence of d. In order to do this, we assume that we know i and i′ already.
This comes at the expense of a factor of O(d2) for taking a union bound over the choices of i
and i′. We let an adversary fix values for all xjĩ with ĩ ̸= i, i′. Since we know i and i′, we are

left with at most (6!)2 = O(1) possible linear combinations.
Finally, the lemma follows by taking a union bound over all O(n6) possible pairs of linked

2-changes.

Theorem 3.11. The expected length of the longest path in the 2-opt state graph corresponding
to d-dimensional instances with Manhattan distances is at most O(d2n4Dmax/σ).

Proof. The initial tour has a length of at most O(ndDmax) with a probability of at least 1−1/n!
by Lemma 3.1. We apply Lemma 3.9 for linked 2-changes using Lemma 3.10 and γ = 2.

3.4 Squared Euclidean Distances

3.4.1 Preparation

In this section, we have ∆a,b(c) = ∥c− a∥22 − ∥c− b∥22 for a, b, c ∈ Rd.
Assume that we have a 2-change that replaces {X1, X2} and {X3, X4} by {X1, X3} and

{X2, X4}. The improvement caused by this 2-change is ∆2,3(1)−∆2,3(4) = ∆1,4(2)−∆1,4(3).
Given the positions of the four nodes except for a single i ∈ {1, 2, 3, 4}, such a 2-change yields
a small improvement only if the corresponding ∆·,·(i) falls into some interval of size ε. The
following lemma gives an upper bound for the probability that this happens.
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Lemma 3.12. Let a, b ∈ Rd, a ̸= b, and let c be drawn according to a Gaussian distribution
with standard deviation σ. Let I ⊆ R be an interval of length ε. Then

P
(
∆a,b(c) ∈ I

)
≤ ε

4σ · ∥a− b∥2
.

Proof. Since Gaussian distributions are rotationally symmetric, we can assume without loss of
generality that a = (0, . . . , 0) and b = (δ, 0, . . . , 0) with δ = ∥a−b∥2. Let c = (c1, . . . , cd). Then
∆a,b(c) = c21 − (c1 − δ)2 = 2c1δ + δ2. Thus, ∆a,b(c) ∈ I if and only if c1 falls into an interval
of length ε

2δ . Since c1 is a 1-dimensional Gaussian random variable with a standard deviation
of σ, the probability for this is bounded from above by ε

4δσ since the maximum density of a
1-dimensional Gaussian of standard deviation σ is bounded from above by 1

2σ .

3.4.2 Single 2-Changes

In this section, we prove a simple bound for the expected number of iterations of 2-opt with
squared Euclidean distances. This bounds holds for all d ≥ 2. In the next section, we improve
this bound for the case d ≥ 3 using pairs of linked 2-changes.

Lemma 3.13. For d ≥ 2, we have P(∆min ∈ (0, ε]) = O
(

n4ε
σ2
√
d

)
.

Proof. Consider a 2-change where {X1, X2} and {X3, X4} are replaced by {X1, X3} and
{X2, X4}. Its improvement is given by ∆2,3(1) −∆2,3(4). We let an adversary fix X3. Then
we draw X2. This fixes the distance δ = ∥X2 −X3∥2. Now we draw X4. This fixes ∆2,3(4).
The 2-change yields an improvement of at most ε only if ∆2,3(1) falls into an interval of size
at most ε. According to Lemma 3.12, the probability that this happens is at most ε

4δσ .
Now let g be the probability density of δ = ∥X2 − X3∥. Then the probability that the

2-change yields an improvement of at most δ is bounded from above by∫ ∞
0

g(δ) · ε

4σδ
dδ ≤

∫ ∞
0

χd,σ(δ) ·
ε

4σδ
dδ = O

(
ε

σ2
√
d

)
.

The first step is due to Lemma 3.7. The second step is due to Lemma 3.5 using c = 1 and
d ≥ 2. The lemma follows by a union bound over the O(n4) possible 2-changes.

Theorem 3.14. For all d ≥ 2, the expected length of the longest path in the 2-opt state
graph corresponding to d-dimensional instances with squared Euclidean distances is at most
O(
√
dD2

maxn
6 log(n)/σ2).

Proof. With a probability of at least 1 − 1/n!, the instance is contained in a hypercube of
sidelength Dmax. Thus, the longest edge has a length of at most

√
dDmax. Therefore, the

initial tour has a length of at most ndD2
max. We combine this with Lemmas 3.9 and 3.13 to

complete the proof.

3.4.3 Pairs of Linked 2-Changes

We can obtain a better bound than in the previous section by analyzing pairs of linked 2-
changes. With the following three lemmas, we analyze the probability that pairs of linked
2-changes of type 0, 1a, or 1b yield an improvement of at most ε.

Lemma 3.15. For d ≥ 2, the probability that there exists a pair of type 0 of linked 2-changes
that yields an improvement of at most ε is bounded from above by O

(
n6ε2

σ4d

)
.

11



Proof. Consider a fixed pair of type 0 of linked 2-changes involving the six points X1, . . . , X6

as described in Section 3.2. We show that the probability that it yields an improvement of at
most ε is at most O(εσ−2/

√
d). A union bound over the O(n6) possibilities of pairs of type 0

yields the lemma.
The basic idea is that we restrict ourselves to analyzing ∆1,4(3) and ∆1,6(5) only in order

to bound the probability that we have a small improvement. In this way, we use the principle
of deferred decision to show that we can analyze the improvements of the two 2-changes as if
they were independent:

1. We let an adversary fix X1 arbitrarily.

2. We draw X4, which determines the distance ∥X1 −X4∥.

3. We draw X2. This fixes the position of the “bad” interval for ∆1,4(3). Its size is already
fixed since we know the positions of X1 and X4. The position of X3 is still random.

4. We draw X3. The probability that X3 assumes a position such that the first 2-change
yields an improvement of at most ε is thus at most ε

4σ·∥X1−X4∥ .

5. We draw X6. This determines the distance ∥X1 −X6∥.

6. We draw X5. The probability that X5 assumes a position such that the second 2-change
yields an improvement of at most ε is thus at most ε

4σ·∥X1−X6∥ .

Let g be the probability density function of the distance between X1 and X4, and let g′ be
the probability density function of the distance between X1 and X6. By independence of the
points, the probability that both 2-changes of the pair yield an improvement of at most ε is
bounded from above by ∫ ∞

δ=0
g(δ) · ε

4σδ
dδ ·

∫ ∞
δ=0

g′(δ) · ε

4σδ
dδ.

We observe that ε
4σδ is monotonically decreasing in δ. Thus, by Lemma 3.7, we can replace

g and g′ by the density χd,σ of the chi distribution to get the following upper bound for the
probability that a pair of type 0 yields an improvement of at most ε:(∫ ∞

0
χd,σ(δ) ·

ε

4δσ
dδ

)2

= O

(
ε2

σ4d

)
.

Here, we use Lemma 3.5 with c = 1, which is allowed since d ≥ 2.

Lemma 3.16. For d ≥ 2, the probability that there exists a pair of type 1a of linked 2-changes
that yields an improvement of at most ε is bounded from above by O

(
n5ε2

σ4d

)
.

Proof. We can analyze pairs of type 1a in the same way as type 0 pairs in Lemma 3.15. To do
this, we analyze ∆2,3(4) and ∆1,2(5):

1. We let an adversary fix the position of X2.

2. We draw X3. This fixes ∥X2 −X3∥.
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3. We drawX1. This fixes ∥X1−X2∥. In addition, this fixes the positions of the intervals into
which ∆2,3(4) and ∆1,2(5) must fall if the first or second 2-change yield an improvement
of at most ε.

4. We draw X4.

5. We draw X5.

The remainder of the proof is identical to the proof of Lemma 3.15, except that we have to
take a union bound only over O(n5) possible choices.

Lemma 3.17. For d ≥ 3, the probability that there exists a pair of type 1b of linked 2-changes
that yields an improvement of at most ε is bounded from above by O

(
n5ε2

σ4d

)
.

Proof. Again, we proceed similarly to Lemma 3.15. We analyze a fixed pair of type 1b, where
{X1, X2} and {X3, X4} are replaced by {X1, X3} and {X2, X4} in one step and {X1, X3} and
{X2, X5} are replaced by {X1, X2} and {X3, X5}, and apply a union bound over the O(n5)
possible type 1a pairs. We analyze the probability that ∆2,3(4) or ∆2,3(5) assume a bad value.
We draw the points in the following order:

1. We fix X2.

2. We draw X3. This fixes the distance ∥X2 −X3∥2, which is crucial for both 2-changes.

3. We draw X1.

4. We draw X4. The probability that the first 2-change yields an improvement of at most
ε is at most ε

4σ·∥x2−x3∥ .

5. We draw X5. The probability that the second 2-change yields an improvement of at most
ε is at most ε

4σ·∥x2−x3∥ .

The main difference to Lemma 3.15 is that the sizes of the bad intervals are not independent.
However, once the size of the bad intervals is fixed, we can analyze the probabilities that ∆2,3(4)
or ∆2,3(5) fall into their bad intervals as independent. Given that ∥X2 − X3∥ = δ is fixed,
the probability that the first and the second 2-change yield an improvement of at most ε is
bounded from above by ε2

16δ2σ2 . Since this is decreasing in δ, we can replace the distribution
of δ by the chi distribution to obtain an upper bound according to Lemma 3.7. Thus, using
Lemma 3.5 with c = 2 and d ≥ 3, we obtain the following upper bound for the probability
that a pair of type 1b yields an improvement of at most ε:∫ ∞

δ=0
χd,σ(δ) ·

ε2

16δ2σ2
dδ = O

(
ε2

dσ4

)
.

With the three lemmas above, we can obtain a bound on the expected number of iterations
of 2-opt for TSP with squared Euclidean distances.

Theorem 3.18. For d ≥ 3, the expected length of the longest path in the 2-opt state graph corre-

sponding to d-dimensional instances with squared Euclidean distances is at most O
(n4
√
dD2

max
σ2

)
.

Proof. The probability that any pair of linked 2-changes of type 0, 1a, or 1b yields an improve-
ment of at most ε is bounded from above by O

(
ε2n6

σ4d

)
. We apply Lemma 3.9 with γ = 2 and

observe that the initial tour has a length of at most O(ndD2
max) with a probability of at least

1− 1/n!.
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Figure 1: The situation for Lemma 3.19.

3.5 Euclidean Distances

3.5.1 Differences of Euclidean Distances

In this section, we have ∆a,b(z) = ∥z−a∥2−∥z−b∥2 for a, b, z ∈ Rd. Analyzing ∥z−a∥2−∥z−b∥2
turns out to be more difficult than analyzing ∥z − a∥22 − ∥z − b∥22 in the previous section. In
particular the case when ∥z − a∥2 − ∥z − b∥2 is close to its maximal value of ∥a− b∥2 requires
special attention. Intuitively, this is for the following reason: if ∆a,b(z) ≈ ∥a − b∥2, then z
is close L(a, b). Assume that z ∈ L(a, b) for the moment. Then either z is between a and b,
which is fine. Or z is not between a and b. Then moving z in the direction of L(a, b) does not
change ∆a,b(z) at all.
We observe that η = ∆a,b(z) behaves essentially 2-dimensionally: it depends only on the

distance of z from L(a, b) (this is x in the following lemma) and on the position of the projection
z onto L(a, b) (this is y in the following lemma). It also depends on the distance ∥a−b∥2 between
a and b (this is δ in the following lemma, and we had this dependency also in the previous section
about squared Euclidean distances). The following lemma makes the connection between x
and y explicit for a given η. Figure 1 depicts the situation described in the lemma.

Lemma 3.19. Let z = (x, y) ∈ R2, x ≥ 0, y ≥ 0. Let a = (0,−δ/2) and b = (0, δ/2) be two
points at a distance of δ. Let η = ∥z − a∥2 − ∥z − b∥2. Then we have

y2 =
η2δ2 + 4η2x2 − η4

4δ2 − 4η2
=

η2

4
+

η2x2

δ2 − η2
(2)

for 0 ≤ η < δ and

x2 =
y2 ·

(
4δ2 − 4η2) + η4 − η2δ2

4η2
=

y2 ·
(
δ2 − η2)

η2
− δ2 − η2

4
. (3)

for δ ≥ η > 0. Furthermore, η > δ is impossible.

Proof. The last statement follows from the triangle inequality.
We have η =

√
(y + δ/2)2 + x2−

√
(y − δ/2)2 + x2. Rearranging terms and squaring implies

η2 + (y − δ/2)2 + x2 + 2η
√
(y − δ/2)2 + x2 = (y + δ/2)2 + x2

⇔ 2η
√
(y − δ/2)2 + x2 = 2yδ − η2.
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Squaring again yields

4η2 ·
(
(y − δ/2)2 + x2

)
= 4y2δ2 − 4yδη2 + η4

⇔ 4η2 ·
(
y2 − δy + δ2/4 + x2

)
= 4y2δ2 − 4yδη2 + η4

⇔ 4η2y2 − 4η2δy + η2δ2 + 4η2x2 = 4y2δ2 − 4yδη2 + η4

⇔ 4η2y2 + η2δ2 + 4η2x2 = 4y2δ2 + η4.

By rearranging terms again, we obtain

y2 ·
(
4δ2 − 4η2) = η2δ2 + 4η2x2 − η4.

Using the assumption η < δ or η > 0 implies the two claims.

As said before, the difficult case in analyzing ∆a,b(c) = η is when η ≈ ∥a − b∥2. In terms
of the previous lemma, this can only happen if x is small, i.e., if c is close to L(a, b), but not
between a and b. The following lemmas makes a quantitative statement about this connection.

Lemma 3.20. Let a, b, z ∈ [−Dmax, Dmax]
d. Assume that ∥a−b∥ = δ and that z has a distance

of x from L(a, b). Then

|∆a,b(z)| ≤ δ − x2δ

32dD2
max

. (4)

Proof. Let y be the distance of z from m = a+b
2 , and let η = ∆a,b(z). Then, according to (3),

we have

x2 =
y2 ·

(
δ2 − η2)

η2
− δ2 − η2

4
.

We have δ ≤ η. This and the upper bound y ≤ 2
√
dDmax yields the following weaker bound:

x2 ≤
4dD2

max ·
(
δ2 − η2)

η2
. (5)

We distinguish two cases. The first case is that η < δ/2. In this case, it suffices to show that

δ/2 ≤ δ− x2δ
32dD2

max
in order to prove (4). Since |x| ≤ 2

√
dDmax, this holds because δ/2 ≤ δ−δ/2.

The second case is that η ≥ δ/2. We have

δ2 − η2 = (δ + η) · (δ − η) ≤ 2δ · (δ − η).

Replacing δ2 − η2 by 2δ · (δ − η) in the numerator and η2 by δ2/4 in the denominator of (5),
we obtain

x2 ≤
4dD2

max ·
(
δ2 − η2)

η2
≤ 32dD2

max · (η − δ)

δ
.

Rearranging terms completes the proof.

In order to be able to apply Lemma 3.4, we need the following upper bound on the derivative
of y with respect to η, given that x is fixed.

Lemma 3.21. For x, y ≥ 0, let y =
√

η2

4 + η2x2

δ2−η2 with 0 < η < δ. Assume further that

η ≤ δ − x2δ
8dD2

max
and that x ≤ 2

√
dDmax. Then the derivative of y with respect to η is bounded

by
1

2
+

323/2D3
maxd

3/2

δx2
.
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Proof. The derivative of y with respect to η is given by

y′ =
dy

dη
=

δ4 − 2δ2η2 + η4 + 4δ2x2

2 · (δ2 − η2)3/2 ·
√

δ2 − η2 + 4x2

=
(δ2 − η2)2 + 4δ2x2

2 · (δ2 − η2)3/2 ·
√

δ2 − η2 + 4x2

=
(δ2 − η2)2

2 · (δ2 − η2)3/2 ·
√

δ2 − η2 + 4x2
+

4δ2x2

2 · (δ2 − η2)3/2 ·
√
δ2 − η2 + 4x2

≤ 1

2
+

2δ2x2

(δ2 − η2)3/2 ·
√

δ2 − η2 + 4x2
.

We observe that y′ ≥ 0 for all x and allowed choices of η and δ. For the second term, we have

2δ2x2

(δ2 − η2)3/2 ·
√
δ2 − η2 + 4x2

≤ 2δ2x2

(δ2 − η2)3/2 ·
√
4x2

=
δ2x

(δ2 − η2)3/2
.

By assumption, we have δ − η ≥ x2δ
32dD2

max
and η ≤ δ. Thus, we have

δ2x

(δ2 − η2)3/2
=

δ2x(
(δ + η) · (δ − η)

)3/2 ≤ δ2x

δ3/2 ·
(

x2δ
32dD2

max

)3/2 =
323/2D3

maxd
3/2

δx2
.

Using Lemmas 3.21 and 3.4, we can bound the probability that ∆a,b(z) assumes a value in
an interval of size ε.

Lemma 3.22. Let d ≥ 4. Let a, b ∈ [−Dmax, Dmax]
d be arbitrary, a ̸= b, and let z be drawn

according to a Gaussian distribution with standard deviation σ. Let δ = ∥a− b∥2. Let I be an
interval of length ε. Then

P
(
∆a,b(z) ∈ I

)
≤ O

(
εD3

max

√
d

σ3δ

)
+ P

(
z /∈ [−Dmax, Dmax]

d
)
.

Proof. We assume throughout this proof that z ∈ [−Dmax, Dmax]
d. The case that this is not

satisfied is taken care of by the second term in the upper bound for the probability in the
statement of the lemma.

Let x denote the distance of z to L(a, b), and let y denote the position of the projection
of z onto L(a, b). First, let us assume that x is fixed. Then, by Lemmas 3.21 and 3.4, the
probability that ∆a,b(z) ∈ I is bounded from above by

O

((
1 +

D3
maxd

3/2

δx2

)
· ε
σ

)
.

Here, the requirements of Lemma 3.21 are satisfied because of Lemma 3.20, or we have z /∈
[−Dmax, Dmax]

d.
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We observe that this probability is decreasing in x. Thus, in order to get an upper bound
for the probability with random x, we can use the (d − 1)-dimensional chi distribution for x
according to Lemma 3.7. We obtain∫ ∞

x=0
χd−1,σ(x) ·O

((
1 +

D3
maxd

3/2

δx2

)
· ε
σ

)
dx

= O
( ε
σ

)
+

∫ ∞
x=0

χd−1,σ(x) ·O

(
D3

maxd
3/2ε

σδx2

)
dx = O

(
ε

σ
+

D3
max

√
dε

σ3δ

)
.

by Lemma 3.5 using c = 2 and d− 1 ≥ 3. Since δ ≤ 2
√
dDmax, the lemma follows.

3.5.2 Analysis of Pairs of 2-Changes

We immediately go to pairs of linked 2-changes, as these yield the better bounds.

Lemma 3.23. For d ≥ 4, the probability that a pair of linked 2-changes of type 0 yields an
improvement of at most ε or some point lies outside [−Dmax, Dmax]

d is bounded from above by

O

(
n6ε2D6

max

σ8

)
.

Proof. We proceed similarly as in the proof of Lemma 3.15 for type 0 pairs for squared Eu-
clidean distances. We draw the points of a fixed pair of linked 2-changes as in the proof of
Lemma 3.15.

In the same way as in the proof of Lemma 3.15, using Lemma 3.22 instead of Lemma 3.12,
we obtain that the probability that one fixed of the two 2-changes yields an improved of at
most ε is bounded from above by∫ ∞

δ=0
χd,σ(δ) ·O

(
εD3

max

√
d

σ3δ

)
dδ = O

(
εD3

max

σ4

)
.

Here, we applied Lemma 3.5 with c = 1.
Again in the same way as in the proof of Lemma 3.15, we can analyze both 2-changes of the

type 0 pair is if they are independent. Finally, the lemma follows by a union bound over the
O(n6) possibilities for a type 0 pair.

Lemma 3.24. For d ≥ 4, the probability that a pair of linked 2-changes of type 1a yields an
improvement of at most ε or some point lies outside [−Dmax, Dmax]

d is bounded from above by

O

(
n5ε2D6

max

σ8

)
.

Proof. The lemma can be proved in the same way as Lemma 3.16 with differences analogous
to the proof of Lemma 3.23.

Lemma 3.25. For d ≥ 4, the probability that a pair of linked 2-changes of type 1b yields an
improvement of at most ε or some point lies outside [−Dmax, Dmax]

d is bounded from above by

O

(
n5ε2D6

max

σ8

)
.
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Proof. Similar to the proof of Lemma 3.17 and using Lemma 3.22, the probability that the
two 2-changes of the pair both yield an improvement of at most ε is bounded from above by∫ ∞

δ=0
χd,σ(δ) ·O

(
εD3

max

√
d

σ3δ

)2

dδ =

∫ ∞
δ=0

χd,σ(δ) ·O
(
ε2D6

maxd

σ6δ2

)
dδ.

Now the lemma follows by applying Lemma 3.5 with c = 2.

Theorem 3.26. For d ≥ 4, the expected length of the longest path in the 2-opt state graph

corresponding to d-dimensional instances with Euclidean distances is at most O(
√
dn4D4

max
σ4 ).

Proof. We have P(∆link
min ≤ ε) = O(n

6ε2D6
max

σ8 ) by Lemmas 3.23, 3.24, and 3.25. If all points are

in [−Dmax, Dmax]
d, then the longest edge has a length of O(

√
dDmax). Thus, the initial tour

has a length of at most O(n
√
dDmax). Plugging this into Lemma 3.9 yields the result.

4 Smoothed Analysis of the Approximation Ratio

4.1 Technical Preparation

The following standard lemma provides a convenient way to bound the deviation of a perturbed
point from its mean in the two-step model.

Lemma 4.1 (Chi-square bound [26, Cor. 2.19]). Let x be a Gaussian random vector in Rd of
standard deviation σ centered at the origin. Then, for t ≥ 3, we have P

(
∥x∥ ≥ σ3

√
d ln t

)
≤

t−2.9d.

To give large-deviation bounds on sums of independent variables with bounded support, we
will make use of a standard Chernoff-Hoeffding bound.

Lemma 4.2 (Chernoff-Hoeffding Bound [8, Exercise 1.1]). Let X :=
∑n

i=1Xi, where Xi, i =
1, . . . , n are independently distributed in [0, 1], and µL ≤ E(X) ≤ µH . Then, for 0 ≤ ε ≤ 1, we
have

P
(
X > (1 + ε) · µH

)
≤ exp(−(ε2/3) · µH),

P
(
X < (1− ε) · µL

)
≤ exp(−(ε2/2) · µL).

Throughout this paper, we assume that the dimension d ≥ 2 is a fixed constant. Given a
sequence of points X1, . . . , Xn ∈ Rd, we call a collection T ⊆ [n] × [n] of edges a tour, if T is
connected and every i ∈ [n] = {1, . . . , n} has in- and outdegree exactly one in T . Note that we
consider directed tours, which is useful in the analysis in this chapter, but our distances are
always symmetric.

Given any collection of edges S, its length is denoted by L(S) =
∑

(u,v)∈S d(u, v), where
d(u, v) denotes the Euclidean distance ∥Xu −Xv∥ between points Xu and Xv.

We call a collection T ⊆ [n]2 a partial 2-optimal tour if T is a subset of a tour and
d(u, v) + d(w, z) ≤ d(u,w) + d(v, z) holds for all edges (u, v), (w, z) ∈ T . Our main interests
are the traveling salesperson functional TSP(X) := mintour T L(T ) as well as the functional
2OPT(X) := max2-optimal tour T L(T ) that maps the point set X to the length of the longest
2-optimal tour through X.
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We note that the results in Section 4.2 hold for metrics induced by arbitrary norms in Rd

(Lemma 4.4 and 4.5) or typical ℓp norms (Lemma 4.6 and 4.7), not only for the Euclidean
metric. We conjecture that also the upper bound in Section 4.3 holds for more general metrics,
while the lower bound in Section 4.4 is probably specific for the Euclidean metric. Still, we
think that the construction can be adapted to work for most natural metrics.

For obtaining lower bounds on the length of optimal tours, we consider the boundary func-
tional TSPB(X) that attains the length of the shortest tour through all points in X that is
allowed to traverse the boundary of [0, 1]d at zero cost. For a proof of the following lemma, we
refer to the monograph by Yukich [29].

Lemma 4.3 (Boundary Functional [29, Lemma 3.7]). There is a constant C > 0 such that for

all sets X ⊆ [0, 1]d of n points, we have TSPB(X) ≥ TSP(X)− Cn
d−2
d−1 .

4.2 Length of 2-Optimal Tours under Perturbations

In this section, we provide an upper bound for the length of any 2-optimal tour and a lower
bound for the length of any global optimum. These two results yield an upper bound of O(1/σ)
for the approximation ratio.

Chandra et al. [6] proved a bound on the worst-case length of 2-optimal tours that, in fact,
already holds for the more general notion of partial 2-optimal tours. For an intuition why
this is true, let us point out that their proof strategy is to argue that not too many long arcs
in a tour may have similar directions due to the 2-optimality of the edges, while short edges
do not contribute much to the length. The claim then follows from a packing argument. It
is straight-forward to verify that it is never required that the collection of edges is closed or
connected.

Lemma 4.4 (Length of partial 2-optimal tours [6, Theorem 5.1], paraphrased). There exists
a constant cd such that for every sequence X of n points in [0, 1]d, any partial 2-optimal tour
has length less than cd · n1−1/d.

While this bound directly applies to any perturbed instance under the one-step model,
Gaussian perturbations fail to satisfy the premise of bounded support in [0, 1]d. However,
Gaussian tails are sufficiently light to enable us to translate the result to the two-step model
by carefully taking care of outliers.

Lemma 4.5. There exists a constant bd such that for any σ ≤ 1 the following statement holds.
For any X̄, the probability that any partial 2-optimal tour on X ← pertσ(X̄) has length greater
than bd · n1−1/d, i.e., 2OPT(X) > bd · n1−1/d, is bounded by exp(−Ω(

√
n)). Furthermore,

EX←pertσ(X̄)

(
2OPT(X)

)
≤ bd · n1−1/d.

Proof. By translation, assume without loss of generality that the input points are contained
in [−1/2, 1/2]d. We define cubes C1 = ℓ1[−1, 1]d, C2 = ℓ2[−1, 1]d, . . . with ℓk := 6

√
kd ln 3. The

side length of cube Ck is 2ℓk. We consider the partitioning of Rd into the regions C1 and
Ci \Ci−1 for i ≥ 2. For some cube C and any tour T , let EC(T ) denote the edges in T that are
completely contained in C. For any tour T , the sequence E1, E2, . . . defined by E1 := EC1(T )
and Ek := ECk

(T )\ECk−1
(T ), for k ≥ 2, partitions the edges of T . Thus, L(T ) =

∑∞
k=1 L(Ek).

For any outcome of the perturbed points, let T be the longest 2-optimal tour. Then, each
Ek is a partial 2-optimal tour in Ck. Let nk be the (random) number of points in Rd \ Ck−1,
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which is an upper bound on the number of points in Ck \ Ck−1. At most 3nk vertices are
incident to the edges Ek, since each such edge is incident to at least one endpoint in Ck \Ck−1
and every point has degree 2 in T . Since Ck = ℓk[−1, 1]d is a translated unit cube scaled by
2ℓk, Lemma 4.4 yields L(Ek) ≤ cd · (2ℓk)(3nk)

1−1/d.
Observe that Xi is not contained in Ck only if its origin has been perturbed by noise of length

at least ℓk/2. Thus, let Z ∼ N (0, σ2) and note that σ ≤ 1 implies that ℓk/2 ≥ 3
√
dk ln 3σ.

Hence, for each point Xi, Lemma 4.1 yields

P(Xi /∈ Ck) ≤ P
(
∥Z∥ ≥ ℓk

2

)
≤ 3−(2.9d)k.

By linearity of expectation, we conclude that E(nk) ≤ n3−(2.9d)(k−1) for k ≥ 1. This yields

E
(
L(T )

)
=
∞∑
k=1

E(L(Ek)) ≤
∞∑
k=1

cd · (2ℓk)(3E(nk))
1−1/d

≤ cd · 12
√
d ln 3 · (3n)1−1/d

( ∞∑
k=1

√
k3−2.9(d−1)(k−1)

)
= O(n1−1/d),

where we used Jensen’s inequality for the first inequality.
To derive tail bounds for the length of any 2-optimal tour, let Nk := n3−2.9d(k−1) be the

upper bound on E(nk) derived above. By the Chernoff bound (Lemma 4.2), we have

P(nk ≥ 2Nk) ≤ exp(−Nk/3).

This guarantee is only strong as long as Nk is sufficiently large. Hence, we regard this guarantee
only for 1 ≤ k ≤ k1, where k1 is chosen such that

√
n ≤ Nk1 ≤ 32.9d

√
n. Assume that nk ≤ 2Nk

for all 1 ≤ k ≤ k1. Then, analogously to the above calculation, the contribution of E1, . . . , Ek1

is bounded by

k1∑
k=1

L(Ek) ≤
k1∑
k=1

cd · (2ℓk)(6Nk)
1−1/d

≤ cd · 12
√
d ln 3 · (6n)1−1/d

( ∞∑
k=1

√
k3−2.9(d−1)(k−1)

)
= O(n1−1/d).

Let p1 denote the probability that some 1 ≤ k ≤ k1 fails to satisfy nk ≤ 2Nk. Then,

p1 ≤
k1∑
k=1

P(nk > 2Nk) ≤ k1 exp(−Nk1/3) = exp(−Ω(
√
n)).

Let us continue assuming that all 1 ≤ k ≤ k1 satisfy nk ≤ 2Nk. Since in particular nk1 ≤ 2Nk1 ,
at most nk1 ≤ 2 · 32.9d

√
n vertices remain outside Ck1−1. Let k2 := ⌈

√
n⌉. By a union bound,

p2 := P(∃j : Xj /∈ Ck2) ≤ n3−2.9d(k2−1) = exp(−Ω(
√
n)).

Assume that the corresponding event holds (i.e., X ⊆ Ck2), then the remaining points outside
Ck1−1 (and hence, outside Ck1) are contained in Ck2 . We conclude that, with probability at
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least 1− (p1 + p2) = 1− exp(−Ω(
√
n)), we have

∞∑
k=k1+1

L(Ek) =

k2∑
k=k1+1

L(Ek) ≤ cd · (2ℓk2)(6Nk1)
1−1/d

= O(
√

k2(Nk1)
1−1/d) = O(n

1
4
+ 1

2(1−
1
d)) = O(n1−1/d).

This finishes the claim, since we have shown that with probability 1− exp(−Ω(
√
n)), both the

contribution of E1, . . . , Ek1 and Ek1+1, . . . is bounded by O(n1−1/d).

We complement the bound above by a lower bound on tour lengths of perturbed inputs,
making use of the following result by Englert et al. [11] for the one-step model.

Lemma 4.6 (Englert et al. [11, Proof of Theorem 1.4]). Let X1, . . . , Xn be a ϕ-perturbed
instance. Then with probability 1 − exp(−Ω(n)), any tour on X1, . . . , Xn has length at least
Ω(n1−1/d/ d

√
ϕ).

It also follows from their results that this bound translates to the two-step model consistently
with the intuitive correspondence of ϕ ∼ σ−d between the one-step and the two-step model.

Lemma 4.7. Let X1, . . . , Xn be an instance of points in the unit cube perturbed by Gaussians
of standard deviation σ ≤ 1. Then with probability 1 − exp(−Ω(n)) any tour on X1, . . . , Xn

has length at least Ω(σn1−1/d).

Proof. We summarize the arguments of Englert et al. [11, Section 6] first, who considered
truncated Gaussian perturbations: Here, we condition the Gaussian perturbation Zi for each
input point Xi to be contained in A := [−α, α]d for some α ≥ 1. Conditioned on this event,
the resulting input instance is contained in the cube C := [−α, 1 + α]d. By straight-forward
calculations, the conditional distribution of each point in C has maximum density bounded
by O(αd/σd). Moreover, the probability that the condition fails for a single point is bounded
by P(Zi /∈ A) ≤ dσ exp(−α2/(2σ2)) for all i. Thus, by choosing α ≥ 1 sufficiently large, each
point has at least constant probability to satisfy the condition Zi ∈ A.
Given any instance (with Gaussian perturbations which are not truncated), first reveal the

(random) subinstance of those points for which the condition Zi ∈ A is satisfied and let n′

be the number of such points. By the Chernoff bound (Lemma 4.2), and P(Zi ∈ A) = Ω(1),
we have n′ ≥ c · n for some c > 0 with probability at least 1 − exp(−Ω(n)). If this event
occurs, we obtain a random instance of n′ ≥ cn points and maximum density ϕ = O(αd/σd).
Hence an application of Lemma 4.6 yields that, for some constant c′ > 0, the probability that
a tour of length less than c′ · (n′)1−1/d/ d

√
ϕ = O((σ/α)n1−1/d) = O(σn1−1/d) exists is at most

exp(−Ω(n)) + exp(−Ω(n′)) = exp(−Ω(n)).

Note that Lemmas 4.5 and 4.7 almost immediately yield the following bound on the approx-
imation performance for the two-step model. (The large-deviation bound is immediate. For
the expected approximation ratio, we make use of the worst-case bound of O(log n), given in
Lemma 4.9 below.)

Observation 4.8. Let X1, . . . , Xn be an instance of points in the unit cube perturbed by Gaus-
sians of standard deviation σ ≤ 1. Then the approximation performance of 2-Opt is bounded
by O(1/σ) in expectation and with probability 1− exp(−Ω(

√
n)).
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We remark that this bound is best possible for an analysis of perturbed instances that
separately bounds the lengths of any 2-optimal tour from above and gives a lower bound on
any optimal tour. To see this, we argue that Lemma 4.6, Lemma 4.4 (even under ϕ-perturbed
input), Lemma 4.7 and Lemma 4.5 cannot be improved in general. This is straight-forward for
Lemma 4.6, since n points distributed uniformly at random in a cube of volume 1/ϕ always
have, by scaling and Lemma 4.4, a tour of length O(n1−1/d/ d

√
ϕ). Hence, the lower bound on

optimal tours on perturbed instances is tight. To see that the upper bound on any 2-optimal
tour is tight, take n uniformly distributed points that have, by Lemma 4.6, an optimal tour of
length Ω(n1−1/d) with high probability and thus also in expectation.

Naturally, this transfers to the case of Gaussian perturbations, albeit more technical to verify:
If we place n identical points in [0, 1]d, say at the origin, and perturb them with Gaussians of
standard deviation σ, then we may without loss of generality scale the unit cube to [0, 1/σ]d

and perturb the points with standard deviation 1 instead. By Lemma 4.5, any 2-optimal tour
and, thus, any optimal tour on these points has a length of O(n1−1/d) on the scaled instance,
since the origins are still contained in the unit cube. Thus, the optimal tour on the original
instance has a length of at most O(σ · n1−1/d) in expectation and with high probability.

We only sketch that 2-optimal tours can have a length of at least Ω(n1−1/d): We distribute
the n (unperturbed) points into 1/σd groups of σdn points each, and we partition the cube
[0, 1]d into 1/σd subcubes of equal side length. Let c > 0 be a constant such that with high
probability, at least cσdn points of a group remain in their subcube after perturbation. We
call these points successful. Since successful points are identically distributed, conditioned on
falling into a compact set, the shortest tour through these (at least) cσdn points has a length of
at least σ · c′(σdn)1−1/d = c′σdn1−1/d for some other constant c′ > 0 [29]. (This is just a scaled
version of perturbing and truncating a Gaussian of standard deviation 1 to a unit hypercube,
which would result in a tour length of m1−1/d for m points.) By closeness of the tour on all
points to the boundary functional and geometric superadditivity of the boundary functional
(see Yukich [29] for details), it follows that the optimal tour on all successful points is at least
Ω
(
(1/σd) · σdn1−1/d) = Ω(n1−1/d).

4.3 Upper Bound on the Approximation Performance

In this section, we establish an upper bound on the approximation performance of 2-Opt under
Gaussian perturbations. We achieve a bound of O(log 1/σ). Due to the lower bound presented
in Section 4.4, improving the smoothed approximation ratio to o

(
log(1/σ)/ log log(1/σ)

)
is

impossible. Thus, our bound is almost tight.
As noted in the previous section, to beat O(1/σ) it is essential to exploit the structure of

the unperturbed input. This will be achieved by classifying edges of a tour into long and short
edges and bounding the length of long edges by a (worst-case) global argument and short edges
locally against the partial optimal tour on subinstances (by a reduction to an (almost-)average
case). The local arguments for short edges will exploit how many unperturbed origins lie in
the vicinity of a given region.
The global argument bounding long edges follows from the worst-case O(log n) bound on

the worst-case approximation performance [6] that we rephrase here for our purposes.

Lemma 4.9 ( [6, Proof of Theorem 4.3]). Let T be a 2-optimal tour and OPT denote the
length of the optimal traveling salesperson tour TOPT. Let Ti contain the set of all edges in T
whose length is in [OPT/2i,OPT/2i−1]. Then L(Ti) = O(OPT). In particular, it follows that
L(T ) = O(log n) ·OPT.
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In the proof of our bound of O(log 1/σ), the above lemma accounts for all edges of length
[Ω(σ), O(1)]. A central idea to bound all shorter edges is to apply the one-step model result to
small parts of the input space. In particular, we will condition sets of points to be perturbed
into cubes of side length σ. The following technical lemma helps to capture what values of ϕ
suffice to express the conditional density function of these points depending on the distance of
their unperturbed origins to the cube. This allows for appealing to the one-step model result
of Lemma 4.6.

Lemma 4.10. Let c ∈ [0, σ]d and k = (k1, . . . , kd) ∈ Nd
0. Let Y be the random variable

X ∼ N (c, σ2) conditioned on X ∈ Q := [k1σ, (k1 + 1)σ] × · · · × [kdσ, (kd + 1)σ] and fY be
the corresponding probability density function. Then fY is bounded from above by exp(∥k∥1 +
(3/2)d)σ−d.

Proof. Let fX(x) = 1
(2π)d/2σd · exp(−

∥x−c∥2
2σ2 ) be the probability density function of X. Let

q := argminz∈Q ∥z − c∥ be the point in Q that is closest to c. Then, since fX(x) is rotationally
invariant around c and decreasing in ∥x− c∥, the density fX(x) inside Q is maximized at x = q.
Likewise, q′ := argmaxz∈Q ∥z − c∥ minimizes the density inside Q. Since Q is a (σ × · · · × σ)-

cube in R≥0, ∥q′ − c∥ ≤ ∥(q + σ1)− c∥, where 1 = (1, . . . , 1) ∈ Rd denotes the all-ones vector.

Given g(q) := fX(q)
fX(q+σ1) , we can thus bound the conditional probability density function fY for

x ∈ Q by

fY (x) =
fX(x)∫

Q fX(y)dy
≤ fX(x)

fX(q′)vol(Q)
≤ fX(q)

fX(q + σ1)
· 1

σd
=

g(q)

σd
.

It remains to bound, for x ∈ Q,

g(x) =
f(x)

f(x+ σ1)
= exp

(
∥(x− c) + σ1∥2 − ∥x− c∥2

2σ2

)
= exp

(
∥x− c∥1

σ
+

d

2

)
.

Since for all x ∈ Q, ∥x− c∥1 ≤ (∥k∥1+ d)σ, we can bound g(x) ≤ exp(∥k∥1+(3/2)d), yielding
the claim.

The main result of this section is the following theorem, which will be proved in the remainder
of the section.

Theorem 4.11. Let X = (X1, . . . , Xn) be an instance of points in [0, 1]d perturbed by Gaus-
sians of standard deviation σ ≤ 1. With probability 1 − exp(−Ω(n1/2−ε)) for any constant
ε > 0, we have 2OPT(X) = O(log(1/σ)) · TSP(X). Furthermore,

E
(
2OPT(X)

TSP(X)

)
= O(log(1/σ)).

Since the approximation performance of 2-Opt is bounded by O(log n) in the worst-case, we
may assume that 1/σ = O(nε) for all constant ε > 0, since otherwise our smoothed result is
superseded by Lemma 4.9. Furthermore, we may also assume that 1/σ = ω(1), since otherwise
Observation 4.8 already yields the result. In what follows, let TOPT and T be any optimal and
longest 2-optimal, respectively, traveling salesperson tour on X1, . . . , Xn. Furthermore, we let
OPT = L(TOPT) denote the length of the shortest traveling salesperson tour.
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4.3.1 Outliers and Long Edges

We will first show that the contribution of almost all points outside [0, 1]d is bounded by
O(σn1−1/d) with high probability and in expectation, similar to Lemma 4.5. For this, we
define growing cubes Ai := [−ai, 1 + ai]

d, where we set ai := 3σ
√

di ln(3/σ) for i ≥ 1 and
A0 = [0, 1]d. Let ni be the number of points not contained in Ai−1. For every point Xj ,
Lemma 4.1 with t := (3/σ)i bounds P(Xj /∈ Ai−1) ≤ (σ/3)2.9d(i−1) (note that we have chosen
the ai such that t ≥ 3). Thus, E(ni) ≤ n(σ/3)2.9d(i−1). We define Ei as the set of edges of
the longest 2-optimal tour T contained in Ai with at least one endpoint in Ai \Ai−1. We first
bound the contribution of the Ei with i ≥ 2.

Lemma 4.12. With probability 1− exp(−Ω(n1/2−ε)) for any constant ε > 0, we have

∞∑
i=2

L(Ei) = O
(
σn1−1/d

)
.

In addition, we have E (
∑∞

i=2 L(Ei)) = O
(
σn1−1/d).

Proof. The proof is analogous to the proof of Lemma 4.5. Linearity of expectation, Lemma 4.4,
and Jensen’s inequality yield

∞∑
i=2

E(L(Ei)) ≤
∞∑
i=2

cd · (3E(ni))
1−1/d(1 + 2ai)

≤
∞∑
i=2

3cd · n1−1/d
(σ
3

)2.9(d−1)(i−1) (
1 + 6σ

√
i ln(3/σ)

)
≤ 3cd · n1−1/d

(σ
3

)2.9(d−1)
(1 + 6σ

√
ln(3/σ))

( ∞∑
i=0

√
i+ 2

(σ
3

)2.9(d−1)i)
.

By observing that
∑∞

i=0

√
i+ 2(σ/3)2.9(d−1)i is bounded by a constant, we conclude that∑∞

i=2 E(L(Ei)) is bounded by O(σn1−1/d).
Let Nk := n(σ/3)2.9d(k−1) be the upper bound on E(nk) derived above. By the Chernoff

bounds (Lemma 4.2), we have

P(nk ≥ 2Nk) ≤ exp(−Nk/3).

Choose k1 such that (σ/3)2.9dσ
√
n ≤ Nk1 ≤ σ

√
n. Thus, k1 = O(log n). Assume that nk ≤ 2Nk

for all 1 ≤ k ≤ k1. Then, analogously to the above calculation, the contribution of E2, . . . , Ek1

is bounded by

k1∑
k=2

L(Ek) ≤
k1∑
k=2

cd · (1 + 2ak)(6Nk)
1−1/d

≤ cd ·
(
1 + 6σ

√
d ln(3/σ)

)
· (6n)1−1/d(σ/3)2.9(d−1)

·

( ∞∑
k=0

√
k + 2(σ/3)2.9(d−1)k

)
= O(σn1−1/d).
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Note that the probability that some 1 ≤ k ≤ k1 fails to satisfy nk ≤ 2Nk is bounded by

k1∑
k=1

P(nk > 2Nk) ≤ k1 exp(−Nk1/3) = exp(−Ω(n1/2−ε)),

for any constant ε > 0. Since nk1 ≤ 2Nk1 , at most nk1 ≤ 2σ
√
n vertices remain outside Ak1−1.

Let k2 := ⌈σ
√
n⌉. By a union bound, for any constant ε > 0,

P(∃j : Xj /∈ Ak2) ≤ n(σ/3)2.9d(k2−1) = exp(−Ω(n1/2−ε)).

Assume that we have the – very likely – event that all points are in Ak2 , then the remaining
points outside Ak1−1 are contained in Ak2 . We conclude that

∞∑
k=k1

L(Ek) =

k2∑
k=k1

L(Ek)

≤ cd · (1 + 2ak2)(6Nk1)
1−1/d

= O(
√
k2(Nk1)

1−1/d)

= O(σ3/2−1/dn
1
4
+ 1

2(1−
1
d)) = O(σn1−1/d).

In the remainder of the proof, we bound the total length of edges inside A1. Define C := A1

and note that all edges in C have bounded length
√
d(1 + 2a1) = O(1). We let Ti con-

tain the set of all those edges within C (in the longest 2-optimal tour T ) whose lengths are in
[OPT/2i,OPT/2i−1]. Let k1 be such that

√
d(1+2a1) ∈ [OPT/2k1 ,OPT/2k1−1]. Then L(Tk) =

0 for all k < k1, since no longer edges exist. Let k2 be such that σ ∈ [OPT/2k2 ,OPT/2k2−1].
Then

∑k2
k=k1

L(Tk) = O((k2 − k1) · OPT) = O(log(1/σ)OPT) by Lemma 4.9. This argument
bounds the contribution of long edges, i.e., edges longer than σ, in the worst case, after observ-
ing the perturbation of the input points. It remains to bound the length of short edges in C,
which we do in the next section.

4.3.2 Short Edges

To account for the length of the remaining edges, we take a different route than for the long
edges: Call an edge that is shorter than σ a short edge and partition the bounding box
C = [−a1, 1+a1]

d into a grid of (σ×· · ·×σ)-cubes C1, . . . , CM with M = Θ((σ/(1+a1))
−d) =

Θ(σ−d), which we call cells. All edges in Tk for k ≥ k2, i.e., short edges, are completely
contained in a single cell or run from some cell Ci to one of its 3d − 1 neighboring cells. For a
given tour T , let ECi(T ) denote the short edges of T for which at least one of the endpoints
lies in Ci.
We aim to relate the length of the edges ECi(T ) for the longest 2-optimal tour T to the

length of the edges ECi(TOPT) of the optimal tour TOPT. This local approach is justified by
the following property.

Lemma 4.13. For any tour T ′, the contribution L(ECi(T
′)) of cell Ci is lower bounded by

TSP(X ∩ Ci)−O(σ|X ∩ Ci|
d−2
d−1 ).

Proof. Consider all edges S in T ′ that have at least one endpoint in Ci. Replacing those
edges (u, v) ∈ S with u ∈ Ci and v /∈ Ci by the shortest edge connecting u to the boundary

25



of Ci does not increase the total edge length by triangle inequality. If Ci were the unit
cube, L(ECi(T

′)) would thus be lower bounded by the boundary functional TSPB(X ∩ Ci).
Instead, we scale the instance X ∩ Ci by 1/σ to obtain an instance X ′ in the unit cube,
satisfying TSP(X ∩ Ci) = σTSP(X ′) and, as argued above, L(ECi(T

′)) ≥ σTSPB(X ′). Thus
an application of Lemma 4.3 yields

L(ECi(T
′)) ≥ σ

(
TSP(X ′)−O

(
|X ′|

d−2
d−1
))

= TSP(X ∩ Ci)−O
(
σ · |X ∩ Ci|

d−2
d−1
)
.

Intuitively, a cell Ci is of one of two kinds: either few points are expected to be perturbed
into it and hence it cannot contribute much to the length of any 2-optimal tour (a sparse cell),
or many unperturbed origins are close to the cell (a heavy cell). In the latter case, either
the conditional densities of points perturbed into Ci are small, hence any optimal tour inside
Ci has a large value by Lemma 4.6, or we find another cell close to Ci that has a very large
contribution to the length of any tour.

To formalize this intuition, fix a cell Ci and let ni be the expected number of points Xj

with Xj ∈ Ci. Assume for convenience that a1/σ and (1 + a1)/σ are integer. We describe
the position of a cube Ci canonically by indices pos(Ci) ∈ {−ai

σ , . . . ,
1+ai
σ }

d. For two cells Ci

and Cj , we define their distance as dist(Ci, Cj) = ∥pos(Ci)− pos(Cj)∥1. For k ≥ 0, let Dk

denote all cells of distance k to Ci and let n(Dk) denote the cardinality of unperturbed origins
located in a cell in Dk. We call a perturbed point Xℓ ∈ Ci with unperturbed origin xℓ ∈ Cj ,
for some Cj ∈ Dk, a k-successful point. Let Sk denote the set of all k-successful points. Then
ni =

∑∞
k=0 E(|Sk|).

Our first technical lemma shows that any cell Ci, having (in expectation) a large num-
ber µ of points perturbed into it from cells of distance at most K, contributes at least
σµ1−1/d exp(−O(K + 1)) to the length of the optimal tour.

Lemma 4.14. Let K ≥ 0 and define S≤K := S0 ∪ · · · ∪SK as the set of k-successful points for
k ≤ K. Let µ := E(|S≤K |). If K = o(logµ), then with probability 1− exp(−Ω(µ)), we have

L(ECi(TOPT)) ≥
σµ1−1/d

exp(O(K + 1))
.

Proof. Note that by Lemma 4.13, L(ECi(TOPT)) ≥ TSP(S≤K) − O(σ · |S≤K |
d−2
d−1 ). Fix any

realization of S≤K , i.e., choice of unperturbed origins inside some cell in D0, . . . , DK whose
perturbed points fall into Ci. We can simulate the distribution of TSP(S≤K) (under this
realization of S≤K) by appealing to the one-step model. Note that each point in S≤K is
distributed as a Gaussian conditioned on containment in cell Cj . By rotational invariance of the
Gaussian distribution, Lemma 4.10 is applicable and bounds the conditional density function
of each point in S≤K by exp(K+(3/2)d)σ−d. By scaling, we obtain an instance in the unit cube
withN := |S≤K | points distributed according to density functions of maximum density exp(K+
(3/2)d). Hence, by Lemma 4.6 we obtain that any tour has length Ω(N1−1/d/ exp(K/d +
3/2)) on the scaled instance with probability 1− exp(−Ω(N)). Scaling back to Ci, we obtain
TSP(S≤K) ≥ Ω(σN1−1/d/ exp(K/d+ 3/2)). Since by Chernoff bounds (Lemma 4.2), |S≤K | =
Ω(µ) with probability 1− exp(−Ω(µ)), we finally obtain, using Lemma 4.13,

L(ECi(TOPT)) ≥ Ω

(
σµ1− 1

d

exp(Kd + 3
2)

)
−O(σ · µ

d−2
d−1 ) ≥ σµ1−1/d

exp(O(K + 1))
,

with probability 1− exp(−Ω(µ)), where we used that K = o(logµ).
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The following simple technical lemma shows that with constant probability, a point is per-
turbed into the cell it originates in.

Lemma 4.15. Let c ∈ Q0 := [0, σ]d and Z ∼ N (c, σ2). Then P(Z ∈ Q0) ≥ 1
(2π)d/2

exp(−d
2).

Proof. Let f(x) = 1
(2π)d/2σd · exp(−

∥x−c∥2
2σ2 ) be the probability density function of Z. For all

x ∈ Q0, we have ∥x− c∥ ≤
√
dσ and hence f(x) ≥ 1

(2π)d/2σd · exp(−d
2) =: fmin. This yields

P(Z ∈ Q0) =

∫
Q0

f(x)dx ≥ σdfmin =
1

(2π)d/2
exp(−d/2).

We are set-up to formally show the classification of heavy cells. Recall that M = Θ(σ−d)
denotes the number of cells Ci.

Lemma 4.16. Let α := M
d

d−1 , k1 := γ log log(1/σ) and k2 := (1/γ′)
√

log 1/σ for sufficiently
small constants γ, γ′. Then we can classify each cell Ci with ni ≥ n

α into one of the following
two types.

(T1) With probability 1− exp(−Ω(n1−ε)) for any constant ε > 0, we have

L(ECi(T )) ≤ O(log 1/σ)L(ECi(TOPT)).

(T2) There is some Cj ∈ Dk1 ∪ · · · ∪Dk2 such that for any f(1/σ) = polylog(1/σ), we have

L(ECi(T )) ≤
L(ECj (TOPT))

f(1/σ)
,

with probability 1− exp(−Ω(n1−ε)) for any constant ε > 0.

Proof. We start with some intuition. By Lemma 4.4, we can bound L(ECi(T )) = O(σn
1−1/d
i ).

If we have E(|S≤k1 |) = Ω(ni), then Lemma 4.14 already proves Ci to have type (T1). Otherwise,
by tail bounds for the Gaussian distribution, we argue that some cell Cj in distance at most k2
contains at least ni exp(Ω((log log 1/σ)

2)) unperturbed origins. These are sufficiently many to

let Cj contribute f(1/σ)σn
1−1/d
i , for any f(1/σ) = polylog(1/σ), to the optimal tour length.

To make the intuition formal, note that all edges in ECi(T ) are contained in a cube of side
length 3σ around Ci. By Chernoff bounds (Lemma 4.2), at most 2ni points are contained in
Ci with probability 1− exp(−Ω(ni)). Hence, Lemma 4.4 bounds

L(ECi(T )) ≤ 3σcd(6ni)
1−1/d, (6)

with probability 1− exp(−Ω(ni)).

Case 1: E(S≤k1) > ni/2. In this case, we may appeal to Lemma 4.14 (since k1 = o(log ni))
and obtain

L(ECi(TOPT)) ≥
σ(|S≤k1 |)1−1/d

exp(O(k1))
= Ω

(
σn

1−1/d
i

log(1/σ)

)
, (7)

with probability 1−exp(−Ω(ni)), since k1 = γ log log 1/σ and γ can be chosen sufficiently small.
By a union bound, (6) and (7) hold with probability 1 − exp(−Ω(ni)) = 1 − exp(−Ω(n1−ε))
for any constant ε > 0, proving that Ci has type (T1).
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Case 2: E(S≤k1) ≤ ni/2. Every point in Ci has an ℓ1-distance of at least σ(dist(Ci, Cj)−d)
to every point in Cj . Thus, by Lemma 4.1, we have

E(|Sk|) ≤ n(Dk)P
(
∥Z∥ ≥ k − d√

d
σ

)
≤ n(Dk) exp

(
−0.32(k − d)2

d

)
, (8)

for sufficiently large k. Since α = poly(1/σ), we can choose a sufficiently small constant γ′ such
that k2 = (1/γ′)

√
log 1/σ satisfies exp(−0.32(k2 − d)2/d) ≤ 1/(4α). From

∑∞
k=0 n(Dk) = n,

we conclude

∞∑
k=k2+1

E(|Sk|) ≤
∞∑

k=k2+1

n(Dk) exp(−0.32(k − d)2/d) ≤ n

4α
≤ ni

4
.

Hence, we have

k2∑
k=k1+1

E(|Sk|) = ni − E(|S≤k1 |)−
∞∑

k=k2+1

E(|Sk|) ≥
ni

4
.

By (8), it follows that

N :=

k2∑
k=k1+1

n(Dk) ≥ exp

(
0.32

(k1 − d)2

d

) k2∑
k=k1+1

E(|Sk|) = ni exp(Ω((log log 1/σ)
2))

unperturbed origins are situated in cells in distance k1 < k ≤ k2 from Ci. Note that there
are at most

∑k2
k=k1+1 |Dk| = O(kd2) = polylog(1/σ) such cells and exp(Ω((log log 1/σ)2) =

ω(logc(1/σ)) for any c ∈ N. By pigeon hole principle, there is a cell Cj ∈ Dk1 ∪ · · · ∪Dk2 with
Ω(N/kd2) = ni exp(Ω((log log 1/σ)

2)) many unperturbed origins.
Let S′0 be the 0-successful points for cell Cj , i.e., the points with origin in Cj that are

perturbed into Cj . By Lemma 4.15, each unperturbed origin xℓ ∈ Cj has constant probability
to be perturbed into Cj , i.e., P(Xℓ ∈ Cj) = Ω(1). Hence, E(|S′0|) = ni exp(Ω((log log 1/σ)

2)).
Thus, Lemma 4.14 bounds

L(ECj (TOPT)) ≥
σ(E(|S′0|))1−

1
d

exp(O(1))
= σn

1− 1
d

i exp(Ω((log log 1/σ)2)), (9)

with probability 1−exp(−Ω(E(|S′0|))) = 1−exp(−Ω(ni)). Since (6) and (9) hold simultaneously
with probability 1 − exp(−Ω(ni)) = 1 − exp(−Ω(n1−ε)) for any constant ε > 0, this proves
that Ci has type (T2).

4.3.3 Total Length of 2-Optimal Tours

With the analyses of the previous subsections, we can finally bound the total length of 2-
optimal tours. To bound the total length of short edges, consider first sparse cells Ci, i.e.,

cells containing ni ≤ n/α perturbed points in expectation (recall that α = M
d

d−1 , where
M = Θ(σ−d) is the number of cells). For each such cell, the Chernoff bound (Lemma 4.2)
yields that with probability 1 − exp(−Ω(n/α)), at most 2n/α points are contained in Ci,
since each point is perturbed independently. By a union bound, no sparse cell contains more
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than 2n/α points with probability at least 1−M exp(−Ω(n/α)) = 1− exp(−Ω(n1−ε)) for any
constant ε > 0. In this event, Lemma 4.4 allows for bounding the contribution of sparse cells
by ∑

i:ni≤n/α

L(ECi(T )) ≤M(3σ)cd

(
6n

α

)1− 1
d

= O

(
Mσn1− 1

d

α1− 1
d

)
= O(σn1− 1

d ). (10)

For bounding the length in the remaining cells (the heavy cells), let T1 := {i | Ci has type (T1)}
and T2 := {i | Ci has type (T2)}. We observe the following: with probability at least
1 − M exp(−Ω(n1−ε)) = 1 − exp(−Ω(n1−ε)), all type-(T1) cells Ci satisfy L(ECi(T )) =
O(log 1/σ)L(ECi(TOPT)). Thus,

∑
i∈T1

L(ECi(T )) ≤ O(log 1/σ) ·

∑
i∈T1

L(ECi(TOPT))

 ≤ O(log 1/σ) ·OPT, (11)

where the last inequality follows from
∑M

i=1 LCi(TOPT) ≤ 2 · OPT, which holds since every
edge in OPT (inside C) is counted at most twice on the left-hand side.

Let A : T2 → {1, . . . ,M} be any function that assigns to each cell Ci of type-(T2) a
corresponding cell CA(i) ∈ Dk1 ∪ · · · ∪ Dk2 satisfying the condition (T2). We say that Ci

charges CA(i). We can choose any f(1/σ) = polylog(1/σ) and have with probability at least

1 −M exp(−Ω(n1−ε)) = 1 − exp(−Ω(n1−ε)) that L(ECi(T )) ≤
L(ECA(i)

(TOPT))

f(1/σ) for all i ∈ T2.
Assume that this event occurs. Since every cell Ci can only be charged by cells in distance
k1 < k ≤ k2, each cell can only be charged

∑k2
k=k1+1 |Dk| = O(kd2) times. Hence,

∑
i∈T2

L(ECA(i)
(TOPT)) ≤ O(kd2)

M∑
i=1

L(ECi(TOPT)) = O(kd2)OPT.

Since kd2 = polylog(1/σ), choosing f(1/σ) = polylog(1/σ) sufficiently large yields

∑
i∈T2

L(ECi(T )) ≤
∑
i∈T2

L(ECA(i)
(TOPT))

f(1/σ)
≤ O(kd2)OPT

f(1/σ)
= O(OPT). (12)

Proof of Theorem 4.11. By a union bound, we can bound by 1 − exp(−Ω(n1/2−ε)), for any
constant ε > 0, the probability that (i) OPT = Ω(σn1−1/d) (by Lemma 4.7), (ii) all edges
outside C contribute O(σn1−1/d) = O(OPT) (by Lemma 4.12), (iii) all sparse cells contribute
O(σn1−1/d) = O(OPT) (by (10)), (iv) the type-(T1) cells Ci induce a cost of O(log 1/σ)OPT
(by (11)), and (v) the type-(T2) cells induce a cost of O(OPT) (by (12)). Since the remaining
edges are long edges and contribute only O(log(1/σ) · OPT), we obtain that every 2-optimal
tour has a length of at most O(log 1/σ)OPT with probability 1− exp(−Ω(n1/2−ε)).

Since a 2-optimal tour always constitutes a O(log n)-approximation to the optimal tour
length by Lemma 4.9, we also obtain that the expected cost of the worst 2-optimal tour is
bounded by

O(log 1/σ) ·OPT+ exp(−Ω(n1/2−ε)) ·O(log n) ·OPT = O(log 1/σ) ·OPT.
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Figure 2: Parts V1 and V3 of the lower bound instance. Each point is contained in a corre-
sponding small container (depicted as brown circle) with high probability. The black
lines indicate the constructed 2-optimal tour, which runs analogously on V2.

4.4 Lower Bound on the Approximation Ratio

We complement our upper bound on the approximation performance by the following lower
bound: for σ = O(1/

√
n), the worst-case lower bound is robust against perturbations. For this,

we face the technical difficulty that in general, a single outlier might destroy the 2-optimality
of a desired long tour, potentially cascading into a series of 2-Opt iterations that result in a
substantially different or even optimal tour.

Theorem 4.17. Let σ = O(1/
√
n). For infinitely many n, there is an instance X of points in

R2 perturbed by normally distributed noise of standard deviation σ such that with probability
1 − O(n−s) for any constant s > 0, we have 2OPT(X) = Ω(log n/ log log n) · TSP(X). This
also yields

E
(
2OPT(X)

TSP(X)

)
= Ω

(
log n

log log n

)
.

We remark that our result transfers naturally to the one-step model with ϕ = Ω(n) and
interestingly, holds with probability 1 over such random perturbations.

Proof of Theorem 4.17. We alter the construction of Chandra et al. [6] to strengthen it
against Gaussian perturbations with standard deviation σ = O(1/

√
n) (see Figure 2). Let

p ≥ 3 be an odd integer and P := 3p2p. The original instance of [6] is a subset of the (P ×P )-
grid, which we embed into [0, 1]2 by scaling by 1/P , and consists of three parts V1, V2 and
V3. The vertices in V1 are partitioned into the layers L0, . . . , Lp. Layer i consists of p2i + 1
equidistant vertices, each of which has a vertical distance of ci = p2p−2i−1/P to the point above
it in Layer i + 1 and a horizontal distance of ai = p2p−2i/P to the nearest neighbor(s) in the
same layer. The set V2 is a copy of V1 shifted to the right by a distance of 2/3. The remaining
part V3 consists of a copy of Layer p of V1 shifted to the right by 1/3 to connect V1 and V2 by
a path of points. We regard Li as the set of Layer-i points in V1 ∪ V2 ∪ V3.

As in the original construction, we will construct an instance of n = Θ(p2p) points, which
implies p = Θ(log n/ log logn). Let 0 ≤ t ≤ p be the largest odd integer such that p2t+1 ≤
(3σ)−1. In our construction, we drop all Layers t+1, . . . , p in both V1 and V2, as well as Layer
p in V3. Instead, we connect V1 and V2 already in Layer t by an altered copy of Layer t of V1

shifted to the right by 1/3. Let C be an arbitrary point of our construction, for convenience
we will use the central point of Layer t in V3. We introduce p2p − 1 additional copies of this
point C. These surplus points serve as a “padding” of the instance to ensure n = Θ(p2p). Note
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that the resulting instance has t + 1 layers L0, . . . , Lt. We choose t such that the magnitude
of perturbation is negligible compared to the pairwise distances of all non-padding points.
Furthermore, the restriction on σ ensures that incorporating the padding points increases the
optimal tour length only by a constant.

Lemma 4.18. With probability 1−O(n−s) for any constant s > 0, the optimal tour has length
O(1).

Proof. Let n be the number of points in the constructed instance. Note that X = (x1, . . . , xn)

consists of (i) a subset X
orig

of the instance of Chandra et al. [6], plus (ii) an additional copy X
t

of Layer t and (iii) the padding points X
pad

in V3. Denote the number of points in X
orig ∪Xt

by n′. We have

n′ = p2t + 2

(
t∑

i=0

p2i + 1

)
≤ p2t + 2(1− p−2)−1p2t + 2t = O(σ−1/p),

by choice of t. Hence n = (p2p − 1) + n′ = Θ(p2p). It is easy to see [6] that the original

instance of Chandra et al. has a minimum spanning tree of length MST(X
orig

) ≤ 9p2p/P .
(This is achieved by the spanning tree that includes, for each Layer-i vertex with 0 ≤ i < p,
the vertical edge to the point above it, and each edge between consecutive points on Layer p.)
Clearly,

MST(X
orig ∪X

t
) ≤ MST(X

orig
) +MST(X

t
) + 2at ≤ 9p2p/P + p2p/P + 2at = O(1).

Consider the perturbed instance X ← pertσ(X). Note that for every constant s > 0, we have
pσ ≥ 3σ

√
d(s+ 1) lnn for sufficiently large n. Thus for each 1 ≤ i ≤ n, the Gaussian noise

Zi ∼ N (0, σ) satisfies ∥Zi∥ ≤ pσ with probability at least 1− O(n−s+1) by Lemma 4.1. By a

union bound, we have
∑n′

i=1 ∥Zi∥ ≤ O(n′pσ) = O(1) with probability at least 1 − O(n−s). In
this case, by the triangle inequality, the fact that TSP(Y ) ≤ 2 ·MST(Y ) for all point sets Y
and since only a constant number of edges connects the three parts, we obtain

TSP(X1, . . . , Xn) ≤ 2 ·MST(X
orig ∪X

t
) + 2

(
n′∑
i=1

∥Zi∥

)
+ TSP(Xpad) +O(1)

≤ TSP(Xpad) +O(1).

Note that we may translate and scale X
pad

to be contained in [0, σ]d, by which TSP(Xpad) may
be regarded as the optimal tour length on an instance of p2p = Θ(n) points in [0, 1]d perturbed
by Gaussians with standard deviation 1. By Lemma 4.5, any 2-optimal tour and hence also
the optimal tour on the scaled instance has length O(

√
n) with probability 1− exp(−Ω(

√
n)).

Scaling back to the original instance, we obtain TSP(Xpad) = O(
√
nσ) = O(1) with probability

1− exp(−Ω(
√
n)). This yields the result by a union bound.

We find a long 2-optimal tour on all non-padding points analogously to the original con-
struction by taking a shortcut of the original 2-optimal tour, which connects V1 and V2 already
in Layer t (see Figure 2).

Consider the padding points, which are yet to be connected. Let Cℓ denote the nearest
point in Layer t of V3 that is to the left of C. Symmetrically, Cr is the nearest point to the
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right of C. Let T p be any 2-optimal path from Cℓ to Cr that passes through all the padding
points (including C). We replace the edges (Cℓ, C) and (C,Cr) by the path T p, completing
the construction of our tour T .

Lemma 4.19. Let s > 0 be arbitrary. With probability 1−O(n−s), T is 2-optimal and has a
length of Ω(log n/ log logn).

Note that given Lemma 4.19, Theorem 4.17 follows directly using Lemma 4.18. The (rather
technical) proof of Lemma 4.19 hence concludes our lower bound.

Probability of 2-optimality. To account for the perturbation in the analysis, we define a
safe region for every point. More formally, let xj be any unperturbed origin. We define its
container Bj as the circle centered at xj with radius β := at/8 = p2p−2t/(8P ) ≥ σp/8. Very
likely, all perturbed points lie in their containers.

Lemma 4.20. For sufficiently large p, the tour T constructed as described in Section 4.4 is
2-optimal, provided that all points Xj lie in their corresponding containers Bj.

We first show that this lemma implies Lemma 4.19.

Proof of Lemma 4.19. Let Z ∼ N (0, σ2), and let s > 0 be arbitrary. By β ≥ σp/8 =
Ω(σ log(n)/ log logn) = ω(σ

√
log n), we have β ≥ 3σ

√
d(s+ 1) lnn for sufficiently large n.

By definition of the containers, Lemma 4.1 yields that for any point Xj and sufficiently large
n,

P(Xj /∈ Bj) ≤ P(∥Z∥ ≥ β) ≤ P(∥Z∥ ≥ σ3
√

d(s+ 1) lnn) ≤ n−(s+1).

By a union bound, we conclude that with probability 1−n−s, all points are contained in their
corresponding containers and hence, by the previous lemma, T is 2-optimal.

Recall that t is the largest odd integer satisfying p2t+1 ≤ (3σ)−1. Since σ−1 = Ω(
√
n),

this implies t ≥ p−1
2 − 1. Observe that T visits t = Ω(p) many layers and crosses a horizontal

distance of 2/3 in each of them. Hence, it has a length of at least Ω(p) = Ω(logn/ log logn).

In the remainder of this section, we prove Lemma 4.20, i.e., show that the constructed tour is
2-optimal, provided all points stay inside their respective containers. Clearly, it suffices to show
for any pair of edges (u, v) and (w, z) in the tour, the corresponding 2-change, i.e., replacing
these edges by (u,w) and (v, z) does not reduce the tour length, i.e., d(u,w)+d(v, z) ≥ d(u, v)+
d(w, z). We first state the technical lemmas capturing the ideas behind the construction.

The first lemma treats pairs of horizontal edges and establishes how large their vertical
distance must be in order to make swapping these edges increase the length of the tour. It is
a generalization of a similar lemma of Chandra et al. [6] to a perturbation setting, in which
points are placed arbitrarily into small containers.

Note that in what follows, for a point p ∈ R2, we let px denote its x-coordinate and py
its y-coordinate. Furthermore, for any points p, q ∈ R2, we let dx(p, q) := |px − qx| and
dy(p, q) := |py − qy| denote their horizontal and vertical distance, respectively.

Lemma 4.21. Let pq and rs be horizontal line segments in the Euclidean plane with px < qx
and rx < sx. Let Bp, Bq, Br and Bs be circles of radius β with centers p, q, r and s,
respectively. If d(r, s) ≥ d(p, q) + 4β and the vertical distance v := dy(p, r) = dy(q, s) between
pq and rs is at least √

d(p, q)d(r, s) + 4βd(r, s) + 2β,
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then, for all p̃ ∈ Bp, q̃ ∈ Bq, r̃ ∈ Br, s̃ ∈ Bs, we have

d(p̃, r̃) + d(q̃, s̃) ≥ d(p̃, q̃) + d(r̃, s̃).

Proof. Note that dy(p̃, r̃), dy(q̃, s̃) ≥ v − 2β. Furthermore, we have that

d(r, s)− 2β ≤ s̃x − r̃x = (p̃x − r̃x) + (q̃x − p̃x) + (s̃x − q̃x)

≤ (p̃x − r̃x) + d(p, q) + 2β + (s̃x − q̃x),

and hence
(p̃x − r̃x) + (s̃x − q̃x) ≥ d(r, s)− d(p, q)− 4β,

where the right-hand side expression is at least 0, since d(r, s) ≥ d(p, q) + 4β by assumption.
Let L := p̃x − r̃x and R := s̃x − q̃x, then it is straight-forward to verify that the expression

d(p̃, r̃) + d(q̃, s̃) ≥
√
(v − 2β)2 + L2 +

√
(v − 2β)2 +R2, (13)

subject to L+R ≥ d(r, s)− d(p, q)− 4β is minimized when L = R = d(r,s)−d(p,q)
2 − 2β.

Hence, we can bound (13) by

d(p̃, r̃) + d(q̃, s̃)

≥ 2

√
(v − 2β)2 +

(
d(r, s)− d(p, q)

2
− 2β

)2

≥ 2

√
d(p, q)d(r, s) + 4βd(r, s) +

(
d(r, s)− d(p, q)

2
− 2β

)2

= 2

√(
d(r, s)− d(p, q)

2

)2

+ d(p, q)d(r, s) + 4βd(r, s)− 2β(d(r, s)− d(p, q)) + (2β)2

= 2

√(
d(r, s) + d(p, q)

2

)2

+ 2β(d(r, s) + d(p, q)) + (2β)2

= 2

(
d(r, s) + d(p, q)

2
+ 2β

)
= d(r, s) + d(p, q) + 4β ≥ d(p̃, q̃) + d(r̃, s̃),

where the third line follows from our assumption on v.

The following very basic lemma shows that a sequence of edges that share roughly the same
direction will always be 2-optimal.

Lemma 4.22. Let p1, p2, p3 and p4 be a sequence of points in [0, 1]2 such that all connecting
segments pi+1 − pi fulfill |(pi+1 − pi)y| ≤ (pi+1 − pi)x. Then,

d(p1, p3) + d(p2, p4) ≥ d(p1, p2) + d(p3, p4).

Proof. For any point p, let Cp denote the cone Cp := {q | |(q−p)y| ≤ (q−p)x}. Let ∆ := p2−p1,
then by assumption, we have p2 ∈ Cp1 and thus |∆y| ≤ ∆x. Let us assume that 0 ≤ ∆y ≤ ∆x

(the other case is symmetric). Since by assumption, p3 ∈ Cp2 , we have for ∆′ := p3 − p1 that
∆′x = ∆x + δx and ∆′y = ∆′y + δy for some δx > 0 and δy with |δy| < δx. If δx ≥ ∆y, the claim

33



is immediate from d(p1, p3) ≥ ∆x + δx ≥ ∆x + ∆y ≥ d(p1, p2). Otherwise, for δx < ∆y, we
obtain

d(p1, p3) =
√

(∆x + δx)2 + (∆y + δy)2

≥
√
(∆x + δx)2 + (∆y − δx)2

≥
√
∆2

x +∆2
y + 2δx(∆x −∆y) ≥

√
∆2

x +∆2
y = d(p1, p2).

By an analogous computation, d(p2, p4) ≥ d(p3, p4) follows and hence the claim.

We can now prove Lemma 4.20. Assume that all points are contained in their respective
containers. We call an edge between Xi and Xj horizontal (or vertical) if the edge between
xi and xj is horizontal (or vertical) and neither xi nor xj belong to the set of padding points.
In what follows, we will first consider horizontal-horizontal, horizontal-vertical and vertical-
vertical edge pairs and then turn to pairs of edges for which at least one edge is adjacent to
some padding point. Recall that β is chosen such as to satisfy at = 8β.

Horizontal-horizontal edge pair. Let (Xi, Xi+1) and (Xj , Xj+1) be two horizontal edges.
Horizontal edges (Xi, Xi+1) with xi, xi+1 ∈ Lk appear only if k ≤ t. We distinguish the
following cases.

1. xi, xi+1, xj , xj+1 ∈ Lk: Both edges are in the same layer. Note that no 2-change swaps
neighboring edges. Assume without loss of generality that (xi)x < (xi+1)x < (xj)x <
(xj+1)x (the other case is symmetric). Since ak ≥ at = 8β, we have that

dy(Xi, Xi+1) ≤ 2β ≤ ak − 2β ≤ dx(Xi, Xi+1).

Similarly, dy(Xj , Xj+1) ≤ dx(Xj , Xj+1) and dy(Xi+1, Xj) ≤ dx(Xi+1, Xj). This shows
that Lemma 4.22 is applicable to Xi, Xi+1, Xj , Xj+1, which yields that no 2-change can
be profitable.

2. xi, xi+1 ∈ Lk, and xj , xj+1 ∈ Lk+1. By construction of T , the edges have opposite
direction. Assume that (xi)x < (xi+1)x and hence (xj)x > (xj+1)x (the other case is
symmetric). By construction (xi+1)x − (xi)x ≥ ak. We have that (Xi+1)x − (Xi)x ≥
ak−2β ≥ at−2β = 6β > 0. The same reasoning shows that (Xj)x > (Xj+1)x. Similarly,
one can show that py > qy for all p ∈ {Xj , Xj+1} and q ∈ {Xi, Xi+1}. Hence the 2-
change to (Xi, Xj) and (Xi+1, Xj+1) has a crossing, which by triangle inequality cannot
be profitable.

3. xi, xi+1 ∈ Lk, and xj , xj+1 ∈ Lk+ℓ with ℓ ≥ 2 and k + ℓ ≤ t. Either both edges have
opposite directions, then the previous argument shows that a 2-change is not profitable.
Otherwise, note that the first requirement of Lemma 4.21, ak ≥ ak+ℓ + 4β, is fulfilled.
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Also note that β = at
8 ≤

ak
8p2ℓ

, since k ≤ t− ℓ. We have√
d(xi, xi+1)d(xj , xj+1) + 4βd(xi, xi+1) + 2β =

√
akak+ℓ + 4βak + 2β

≤

√
a2k
p2ℓ

+
a2k
2p2ℓ

+
ak
4p2ℓ

≤
√

3

2
· ak
pℓ

+
ak
4p2ℓ

≤

(√
3

2
· 1

pℓ−1
+

1

4p2ℓ−1

)
ak
p

≤ ck ≤
ℓ−1∑
m=0

ck+m = dy(xi, xj),

since for sufficiently large p, we have
√
3/2/pℓ−1 + 1/(4p2ℓ−1) ≤ 1. Consequently,

Lemma 4.21 applies and shows that the 2-change does not yield an improvement.

Horizontal-vertical edge pair. Let (Xi, Xi+1) be a vertical edge and (Xj , Xj+1) be a
horizontal edge. We assume that the vertical edge is in V1, since the case xi, xi+1 ∈ V2 is
symmetric. Exactly one of the following cases occurs.

1. xi ∈ Lk, xi+1 ∈ Lk+1 and xj , xj+1 ∈ Lk′ with k′ ∈ {k, k+1}. The horizontal edge is in the
same layer as one of the end points of the vertical edge. Clearly, d(Xi, Xi+1) ≤ ck + 2β
and d(Xj , Xj+1) ≤ ak′ + 2β. Since a 2-change cannot swap neighboring edges, at least
one horizontal segment lies between both edges. By construction of the tour, one of the
edges {xi, xj} and {xi+1, xj+1} crosses a vertical distance of at least ck and the other a
horizontal distance of at least 2ak′ . Hence

d(Xi, Xj) + d(Xi+1, Xj+1) ≥ 2ak′ + ck − 4β ≥ ak′ + ck + 4β,

since ak′ ≥ at = 8β.

2. xi ∈ Lk, xi+1 ∈ Lk+1 and xj , xj+1 ∈ Lk′ with k′ /∈ {k, k + 1}. As in the previous case,
d(Xi, Xi+1) ≤ ck + 2β and d(Xj , Xj+1) ≤ ak′ + 2β. Consider first the case that k′ < k,
then by construction of the tour, one of the edges {xi, xj} and {xi+1, xj+1} crosses a
horizontal distance of at least ak′ and the other edge crosses a vertical distance of at
least ck′ , yielding

d(Xi, Xj) + d(Xi+1, Xj+1) ≥ ak′ + ck′ − 4β ≥ ak′ + ck + 4β,

since ck′ ≥ ck−1 ≥ ck + 8β. Otherwise, if k′ > k + 1, the edges xi, xj crosses a vertical
distance of at least ck+1 + ck and hence

d(Xi, Xj) + d(Xi+1, Xj+1) ≥ ck+1 + ck − 2β ≥ ak′ + ck + 4β,

since ck+1 ≥ ak+2 + 6β ≥ ak′ + 6β. Thus in both cases, a 2-change is not profitable.
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Vertical-vertical edge pair. Let (Xi, Xi+1) and (Xj , Xj+1) be vertical edges.

1. xi ∈ Lk, xi+1 ∈ Lk+1 and xj ∈ Lk′ , xj+1 ∈ Lk′+1 with (xi)x = (xj)x, i.e., the vertical
edges are above each other. By swapping the x- and y-axis in Lemma 4.22, we can show
that a 2-change is not profitable, since it is easy to see that |(p− q)x| ≤ (p− q)y for all
consecutive pairs (p, q) in (Xi, Xi+1, Xj , Xj+1).

2. xi ∈ Lk, xi+1 ∈ Lk+1 and xj ∈ Lk′ , xj+1 ∈ Lk′+1 with (xi)x ̸= (xi′)x. Clearly, d(Xi, Xj) ≥
a0 − 2β and d(Xi+1, Xj+1) ≥ a0 − 2β, while d(Xi, Xi+1) ≤ ck + 2β ≤ c0 + 2β and
d(Xj , Xj+1) ≤ ck′ +2β ≤ c0+2β. Hence a 2-change is not profitable, since a0 ≥ 8β+ c0.

Padding points. Since we assumed for convenience that the padding points are placed at
the central vertex C of Layer t in V3, only the edges with at least one endpoint in V3 are
relevant candidates for the treatment of padding points. This is because all other edges have
both endpoints at a distance of 1/6 to the padding points, which can never be accounted for
by its edge length, since all edges except in Layer 0 are much shorter than 1/3. Separately,

the Layer-0 edges can be handled easily as well: an edge {Xi, Xi′} with xi = xi′ ∈ X
pad

is a
horizontal edge, hence the pair (Xi, Xi′) and a Layer-0 edge trigger the corresponding case of
horizontal-horizontal edge pairs with even smaller edge length of the edge (Xi, Xi′) in Layer t.

It remains to handle the following cases, where we regard C as a padding point, i.e., C ∈
X

pad
, not as a Layer-t point.

1. xi, xi′ ∈ X
pad

, and xj , xj′ ∈ Lt. Clearly, d(Xj , Xj′) ≤ at + 2β and d(Xj , Xj′) ≤ 2β.
Furthermore, at least one of {xj , xj′} has a horizontal distance of at least 2at to xi = xi′ .
Hence,

d(Xi, Xj) + d(Xi′ , Xj′) ≥ 2at − 2β ≥ at + 4β ≥ d(Xj , Xj′) + d(Xi, Xi′)

2. xi ∈ {Cℓ, Cr}, xi′ ∈ X
pad

and xj , xj′ ∈ Lt. These edge pairs are exactly as regular pairs
of Layer-t edges and the corresponding case of horizontal-horizontal edge pairs applies.

3. xi, xi′ , xj , xj′ ∈ X
pad ∪ {Cr, Cℓ}. All such edges are 2-optimal by construction, since a

2-optimal path from Cℓ to Cr passing by all padding points was used.

This concludes the case analysis and thus the proof of Lemma 4.20.

5 Concluding Remarks

Running-time. Our approach for Euclidean distances does not work for d = 2 and d = 3.
However, we can use the bound of Englert et al. [11] for Euclidean distances, which yields a
bound polynomial in n and 1/σ for d ∈ {2, 3}.

In the same way as Englert et al. [11], we can slightly improve the smoothed number of
iterations by using an insertion heuristic to choose the initial tour. We save a factor of n1/d for
Manhattan and Euclidean distances and a factor of n2/d for squared Euclidean distances. The
reason is that there always exist tours of length O(Dmaxn

1− 1
d ) for n points in [−Dmax, Dmax]

d

for Euclidean and Manhattan distances and of length O(D2
maxn

1− 2
d ) for squared Euclidean

distances for d ≥ 2 [29] (the constants in these upper bounds depend on d). Taking into
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account also that, because Gaussians have light tails, only few points are far away from the
hypercube [0, 1]d after perturbation, one might get an even better bound. However, we did not
take these improvements into account in our analysis to keep the paper concise.

Of course, even our improved bounds do not fully explain the linear number of iterations
observed in experiments. However, we believe that new approaches, beyond analyzing the
smallest improvement, are needed in order to further improve the smoothed bounds on the
running-time.

Approximation ratio. We have proved an upper bound of O(log 1/σ) for the smoothed
approximation ratio of 2-Opt. Furthermore, we have proved that the lower bound of Chandra
et al. [6] remains robust even for σ = O(1/

√
n). We leave as an open problem to generalize our

upper bounds to the one-step model to improve the current bound ofO( d
√
ϕ) [11], but conjecture

that this might be difficult, because of the special structure that Gaussian distributions provide.
While our bound significantly improves the previously known bound for the smoothed ap-

proximation ratio of 2-Opt, we readily admit that it still does not explain the performance
observed in practice. A possible explanation is that when the initial tour is not picked by
an adversary or the nearest neighbor heuristic, but using a construction heuristic such as the
spanning tree heuristic or an insertion heuristic, an approximation factor of 2 is guaranteed
even before 2-Opt has begun to improve the tour [25]. We chose to compare the worst local
optimum to the global optimum in order, as this is arguably the simplest of all technically
difficult possibilities.

However, a smoothed analysis of the approximation ratio of 2-Opt initialized with a good
heuristic might be difficult: even in the average case, it is only known that the length of an

optimal TSP is concentrated around γd · n
d−1
d for some constant γd > 0. But the precise value

of γd is unknown [29]. Since experiments suggest that 2-Opt even with good initialization
does not achieve an approximation ratio of 1 + o(1) [15, 16], one has to deal with the precise
constants, which seems challenging.
Finally, we conjecture that many examples for showing lower bounds for the approximation

ratio of concrete algorithms for Euclidean optimization such as the TSP remain stable under
perturbation for σ = O(1/

√
n). The question remains whether such small values of σ, although

they often suffice to prove polynomial smoothed running time, are essential to explain practical
approximation ratios or if already slower decreasing σ provide a sufficient explanation.
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