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Abstract

Phase diversity is a widefield aberration correction method that uses multiple im-
ages to estimate the phase aberration at the pupil plane of an imaging system by solving
an optimization problem. This estimated aberration can then be used to deconvolve the
aberrated image or to reacquire it with aberration corrections applied to a deformable
mirror. The optimization problem for aberration estimation has been formulated for
both Gaussian and Poisson noise models but the Poisson model has never been stud-
ied in microscopy nor compared with the Gaussian model. Here, the Gaussian- and
Poisson-based estimation algorithms are implemented and compared for widefield mi-
croscopy in simulation. The Poisson algorithm is found to match or outperform the
Gaussian algorithm in a variety of situations, and converges in a similar or decreased
amount of time. The Gaussian algorithm does perform better in low-light regimes
when image noise is dominated by additive Gaussian noise. The Poisson algorithm is
also found to be more robust to the effects of spatially variant aberration and phase
noise. Finally, the relative advantages of re-acquisition with aberration correction and
deconvolution with aberrated point spread functions are compared.

1 Introduction

Images acquired in microscopes and other imaging systems are often degraded by phase
aberrations. Phase aberrations occur when the spherical wavefronts emitted from a sample
become distorted by misaligned optics or refractive index (RI) mismatches and variations
[1]. These aberrations cause the spherical wavefronts to converge into spots much larger
than the diffraction limit on the imaging sensor, decreasing the sharpness and contrast of
images.

In order to restore diffraction-limited performance of optical systems, aberrations need
to be corrected, either using hardware like a deformable mirror (DM) or with software
deconvolution. For this to be achieved, the aberrations must first be detected and measured,
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so they can be properly compensated. Phase aberrations can be detected with hardware-
based methods, like a Shack-Hartmann wavefront sensor (SHWFS), or with software-based
methods. Software-based methods include optimizing a predefined image metric over DM
configurations and phase retrieval (PR) [2] [3].

In this paper, phase diverse phase retrieval, also known as phase diversity (PD) will
be used to estimate aberrations occurring in widefield images. In PD, multiple images
are acquired, each with a different but known phase aberration purposefully introduced.
With this set of images, the unknown phase aberration can be estimated by optimizing
an objective function appropriate for the assumed image noise model. This technique was
first derived for extended objects by Gonzalvez [4] [5] in the case of a single additional
diversity image assuming Gaussian noise. Paxman et al. later generalized the derivations
to multiple images with both Gaussian and Poisson noise models, but presented no results
or implementation [6].

There have been very few studies of PD in microscopy and all have used the Gaussian
approach [7] [8] [9]. Here, the Poisson-based approach proposed by Paxman is implemented
and compared to the Gaussian one. The Poisson estimator may offer improved aberration
estimation over the Gaussian likelihood function according to Cramer-Rao lower bound
estimates for extended objects [10]. PD with the Poisson estimator has had some limited
use in astronomy in deconvolution [11] [12] and wavefront estimation [13] [14], but with
little evaluation of aberration estimation performance and no comparison to the Gaussian
estimator.

2 Theory

2.1 Image Formation

In incoherent fluorescence microscopy, the noiseless image formation process within the
scalar diffraction approximation is modeled as

g(x) = s(x) ∗ f(x) (1)

s(x) =|F(H(u))|2 , (2)

where g is the image, s is the point spread function (PSF), f is the object, and H is the
generalized pupil function (GPF). Coordinates x and u are 2d spatial coordinates in the
image/object plane and pupil plane respectively. F denotes a Fourier transform and ∗
denotes convolution. Phase aberrations ϕ are described in the GPF as

H(u) = P (u) exp (i ϕ(u)) , (3)

where P is the pupil function. No apodization is used:

P (u) =

{
1 ∥u∥ ≤ NA/λ

0 ∥u∥ > NA/λ .
(4)

To reduce the dimensionality of the problem, the phase aberrations are expressed using
a basis of Zernike polynomials:

ϕ(u) =
∑
j

cjZj

(
λ

NA
u

)
. (5)
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Zernike polynomials have both a double-index representation (Zm
n ) and a single-index rep-

resentation (Zj). We use a single-index representation following the Noll convention [15].
The factor of λ

NA is to align the domain over which the Zernike polynomials are orthogonal
with the nonzero domain of the pupil function P .

2.2 Phase Diversity

PD requires multiple images with known phase aberrations (referred to as diversity phases
and diversity images) that are purposefully introduced:

gk(x) = sk(x) ∗ f(x) (6)

sk(x) =|F [Hk(u)]|2 (7)

Hk(u) = H(u) exp i θk(u) , (8)

where θk are the diversity phases. While there are no restrictions on diversity phase selection,
a ‘good’ choice of diversity phase is essential for creating a likelihood function that leads to
an accurate phase estimation. For convenience, we only consider defocus for the diversity
phase, as it is rotationally symmetric and easily introduced in most optical systems by
moving the sample relative to the lens, which allows for use of PD even in systems without
a DM. Note that the term defocus is used in the literature to refer to both Zernike polynomial
Z0
2 and to the defocus function [8]:

θk(u) = zkγ(u) (9)

γ(u) =
2πn

λ

√
1−

(
λ ∥u∥
n

)2

, (10)

where γ is the defocus function, n is the RI of the medium, and zk is the distance from the
focal plane for the kth diversity phase. The Zernike polynomial defocus is an approximation
of the defocus function as described in [16]. Here, we use the defocus function, not its
Zernike approximation, to model the use of defocus as a diversity phase.

Using three diversity phases, with z0 set to 3λ, z1 set to 0λ, z2 set to −3λ, gave relatively
accurate estimations in a wide range of conditions. On a case by case basis, a more optimal
set of diversity phases can be chosen, but for simplicity, this diversity phase scheme is used
throughout the paper.

3 Phase Estimation

To estimate the unknown aberration ϕ, maximum-likelihood expectation maximization
(MLEM) is used. Paxman et al. derive likelihood functions (LF) in [6] for additive Gaussian
noise and Poisson noise. In the present paper, these LF’s are both maximized and compared
in a variety of situations. Besides the noise type, the LF’s differ significantly in implemen-
tation. In the Gaussian LF, the maximal likelihood object has a closed-form solution in
terms of the acquired images and aberration parameters. The Gaussian LF still estimates
the object, just not explicitly. In the Poisson LF, the object needs to be explicitly estimated
along with the aberration parameters.
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3.1 Gaussian

The Gaussian LF to be maximized is derived in [6], equation 13:

L(c⃗) = −
∑
k

∑
x

[dk(x)− f(x) ∗ sk(c⃗,x)]2 , (11)

where dk is the measured noisy image and the c⃗ in sk is used to indicate that the quantity
depends on the aberration parameters. The LF is maximized using the strategy of Vogel et
al. in [17], which develops a Gauss-Newton approach and calculates both the gradient and
the pseudo-Hessian of the Gaussian likelihood function. Details of our implementation are
given in our supplement.

3.2 Poisson

The Poisson LF to be maximized is also derived in [6], equation 29:

L(c⃗) =
∑
k

∑
x

[dk(x) ln gk(c⃗,x)− gk(c⃗,x)] . (12)

This LF is maximized using the methods from [6], which involve alternating updates of the
aberration coefficients and the object.

The algorithm is initialized with a uniform object estimate and a small non-zero phase
estimate (e.g. 10−10 for each Zernike amplitude). To begin, the aberration coefficients are
updated by performing a line search over the gradient of the likelihood with respect to each
Zernike coefficient. This gradient, specified in equation 42 from [6], is given by:

∂L(c⃗)
∂cj

= −2
∑
u

Zj

(
λ

NA
u

)
Im

[∑
k

Hk(c⃗,u)F−1

(
h∗
k(c⃗,x)

(
f̃(x) ∗ dk(x)

f(x) ∗ sk(c⃗,x)

))]
.

(13)
The tilde denotes flipping:

f̃(x) = f(−x) . (14)

Next, equation 62 from [6] is used to update the object estimate:

fr+1(x) = fr(x)

[
1∑

k

∑
x sk(c⃗,x)

∑
k

s̃k(c⃗,x) ∗
dk(x)

f(x) ∗ sk(c⃗,x)

]
. (15)

These two steps are repeated until stopping conditions are met. Using specifically (13) and
(15) is essential for fast convergence of the Poisson LF. We used a threshold on the norm of

the gradient (∂L(c⃗)
∂cj

) for the stopping condition.

3.3 Other Algorithm Details

In order to improve algorithm runtime, images are downscaled by a factor of two. Performing
this downscaling gives a substantial runtime improvement, with minimal loss of estimation
accuracy for both algorithms in most situations (see section 5.3 and Fig.7). Note that this
technique only works if the image sensor is sampling at the Nyquist rate or higher.

4



Regularization was found to have no significant impact on phase estimation with either
algorithm for both the object estimate and the aberration estimate. For the Gaussian algo-
rithm, a small non-zero value (e.g. 10−10) was used for regularizing the object estimation.
For the Poisson algorithm, the object estimation was normalized after each iteration.

4 Image Simulation

The process used to simulate an aberrated image is shown in Fig.1. It involves (1) creating
a synthetic object, (2) generating a phase aberration of specified magnitude and its corre-
sponding PSF, (3) convolving the PSF with the synthetic object, and (4) applying noise.
These steps are introduced in greater detail in the following sections.

Fig. 1. Simulation process and corresponding images. Step 1: Generate
object (A). Step 2: Generate phase aberration (B) and corresponding PSF
(C). Step 3: Convolve PSF with object (D). Step 4: Simulate noise processes
(E). Final image is normalized so that the minimum value is 0 and maximum
value is 1.

4.1 Object Simulation

Objects are approximated as 2D distributions and are created similar to the methods de-
scribed in [18]. Using a synthetic object allows extensive control over the object properties
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(such as size of features, number of cells, cell texture, etc.). The object properties can have
strong influence on the estimation accuracy of the PD algorithms, and fine control over
those properties allows rapid testing of the algorithms in a variety of situations. The four
simulated objects used to test the PD algorithms are shown in Fig.2.

Fig. 2. Synthetic objects used to test PD algorithms.

4.2 Aberration

To set the amount of each Zernike component present in the simulated wavefronts, uniform
random values between 1 and -1 are selected for the coefficients. 42 coefficients are used,
corresponding to Zernike polynomials of order 2 through 7 (j = 4 through j = 45). Polyno-
mials of orders lower than 2 are not considered here, as they do not cause image blurring
and cause no change in the LFs.

The first 12 coefficients (n = 2 through n = 4) are scaled to a specific aberration magni-
tude, which is specified in units of wavelength. Aberration magnitude (also called wavefront

6



RMS) is defined as:

WRMS(ϕ) =
1

2π

√∫
ϕ(u)2du (16)

=
1

2π

√√√√∑
j

c2j
Aj

, (17)

where Aj is the normalization factor
∫
Zj

(
λ

NAu
)2

du.
The rest of the coefficients are scaled to half of that aberration magnitude, as they are

usually present in lower amplitude [19] [20] [21]. Not all coefficients need to be estimated;
the large number of coefficients for image simulation is to verify that lower-order coefficients
can be estimated in the presence of higher-order coefficients. Unless otherwise indicated,
every simulated aberration had an aberration magnitude of 2λ.

4.3 Convolution

After selecting the coefficients, the phase of the aberrated wavefront is calculated using (5),
along with the GPF and PSF using (3) and (2) respectively. Next, a pristine object image is
convolved with the PSF. When standard Fourier-based convolution is performed, the output
image has unrealistic artifacts near the edges from the cyclic convolution. The convolution
process used here still uses Fourier transforms, but the output images are cropped to more
accurately simulate the infinite extent of the PSF and object. See the supplement for more
details on the convolution process. Examples of noiseless, convolved images at four different
aberration magnitudes are shown in Fig.3.

Fig. 3. Images shown have wavefront magnitudes of (from left to right): 0λ,
1.2λ, 2.4λ, and 4λ. Color range for each image corresponds to individual
image’s data range.

4.4 Noise

To simulate the noisy image, three noise processes are used, as in [22]:

dk = QE× P(Ikph) + P(Idc) +N (0, σ2
r), (18)

where QE (which has a value of 0.6 in all simulations) is the quantum efficiency of the
detector, P(λ) is a Poisson distributed random variable with mean λ, and N (µ, σ2) is a
Gaussian distributed random variable with mean µ and variance σ2. Ikph represents the
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expected number of photons at each pixel from the convolved object and kth PSF. To
specify the number of expected photons per pixel (p/px, i.e. the amount of shot noise), the
noiseless convolved image from the convolution step is divided by its mean, and subsequently
multiplied by the desired p/px. Idc represents the expected number of electrons from an
additive Poisson distributed noise process, such as dark noise. σ2

r represents the variance of
the number of electrons from an additive Gaussian distributed noise process, such as read
noise. Idc and σ2

r are uniform at each pixel. No ADC noise is simulated. Examples of
images with different levels and combinations of noise are shown in Fig.4. Unless otherwise
indicated, every image was simulated with an average of 500 p/px and low additive noise
(Idc = 1, σr = 2).

Fig. 4. Images shown are samples of (from left to right): high additive noise
with maximum signal at 10 photons/pixel (p/px) average, high additive noise
at 200 p/px, low additive noise at 10 p/px, and low additive noise at 200
p/px. Low additive noise is Idc = 1, σr = 2 and high additive noise is
Idc = 100, σr = 20. Color range for each image corresponds to individual
image’s data range.

5 Simulation Results

First, the performance of the phase estimation algorithms will be analyzed with a variety
of simulation settings. Estimation accuracy of the algorithms is quantified by the residual
wavefront error (RWE), which is the RMSE of the residual wavefront:

RWE(ϕ) =
1

2π

√√√√∑
j

(c̃j − cj)2

Aj
, (19)

where c̃j are the ground truth Zernike coefficients.
All parameter sweeps are performed by simulating 100 image sets at each point in the

sweep with randomly chosen aberrations. Error bars show standard error.

5.1 Aberration Magnitude

First, the accuracy of estimation is evaluated at different levels of aberration (Fig.5). Each
plot shows the RWE as a function of initial aberration magnitude (wavefront RMSE). The
Poisson estimation algorithm matches or outperforms the Gaussian algorithm in most ob-
jects and aberration levels.
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Fig. 5. Comparison of estimation performance over different levels of aberra-
tion and different objects. Inset indicates which object is used in each sweep.

5.2 Image Noise

Next, the algorithms are tested with different amounts of noise and different objects (Fig.6).
The p/px are varied, and two different additive noise strengths are used. Note that each
image is simulated with the same total number of photons in the noise process, causing the
sparser objects to have higher peak p/px. In the high-count regime, the Poisson algorithm
matches or outperforms the Gaussian model. At lower count levels, when additive Gaussian
noise dominates, the Gaussian model generally performs better.

5.3 Image Size

Image size variation is explored in two cases: cropping at constant magnification (Fig.7,
upper left), and cropping with variable magnification (Fig.7, lower left). The first case
reduces the amount of object in the FOV, but keeps it at the same resolution, while the
second case keeps the same amount of object in the FOV, but at a lower resolution.

Regardless of estimation algorithm, both size-changing paradigms lead to worsening
aberration estimates for smaller images. Runtime of the estimation algorithms are shown
in (Fig.7, upper right), with the algorithms being run on a desktop PC with an Intel Core
i7-7700K. One additional benefit to increased image size (not explored here) is that if the
FOV is large enough to sample the entire object, the cyclic convolution model assumed by
both estimation algorithms is accurate, giving a better aberration estimation.

With smaller scaled images, the Gaussian outperforms the Poisson algorithms. In all
other cases, the Poisson matches or outperforms the Gaussian algorithms. Downscaling
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Fig. 6. Comparison of estimation performance over different photon levels
and different objects. Inset indicates which object is used in each sweep.
Low additive noise is Idc = 1, σr = 2 and high additive noise is Idc = 100,
σr = 20.

the images prior to running the algorithms sacrifices very little estimation accuracy, while
substantially decreasing algorithm runtime.

5.4 Spatial Variance and Phase Noise

Biological samples have varying RIs, leading to interfaces where light is refracted, causing
aberrations. However, the RI variations are different across the sample, leading to aberra-
tions that vary spatially. The PD techniques here do not account for spatial variation, but
can still find an overall ‘mean’ aberration (Fig.8, left) that can be corrected over the entire
image with a single DM at the pupil plane.

To simulate spatially varying aberration, the isoplanatic wavefront has a random compo-
nent added to it at each point in the image. Over the entire image, these random components
have zero mean, so the isoplanatic wavefront remains unchanged. The magnitude of the spa-
tial variance (SV) was varied by scaling the random components. Images were simulated
with random wavefront components that varied slowly over the image (low frequency SV)
and rapidly over the image (high frequency SV). Due to the long times required to simulate
images with spatially varying wavefronts, only a single aberration pattern is evaluated, al-
beit under these four different combinations of frequency and magnitude. The results show
that both algorithms perform well in the face of most of the variation studied, although
at high magnitude and high frequency the Poisson approach significantly outperforms the
Gaussian approach.
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Fig. 7. Left: RWE and runtime vs image size. Top row: Image size was
changed only with a crop. Bottom Row: Image size was changed with a crop
and magnification. Downscaled indicates that the downscaling technique
mentioned in section 3.3 was used prior to running the algorithms. The
short horizontal lines in the bars indicate maximum, mean, and minimum.
Bar thickness indicates density of values vs RWE. Images are the largest
object (A), the cropped image (B), and the cropped and magnified image
(C).

Also, some additional unknown aberration may be generated when adjusting the imaging
system (with either a DM or by moving the objective lens) for acquiring the diversity
images. This aberration, called phase noise, is unique to each diversity image. The mean
phase noise between all the diversity images simply combines with the main aberration ϕ
being estimated and does not violate any assumptions of the image formation. However,
the residual phase noise (with zero mean) is not modelled by the image formation process,
and degrades accuracy of the estimation. To measure the estimation degradation of phase
noise, random vectors of Zernike components (with zero mean) are added to each individual
wavefront before running the estimation algorithms (Fig.8, right). See the supplement for
more details on SV and phase noise.

5.5 Deconvolution vs Re-acquisition

Having estimated the phase aberration, it can be used either to generate a PSF for decon-
volution of the original image or to shape a deformable mirror for re-acquisition of a less
aberrated image. To compare these two approaches, structural similarity (SSIM) [23] is used
as an image-quality metric. The ground truth image in the SSIM comparison is an image
with blur from only the diffraction process and high-order aberrations. This represents a
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Fig. 8. Estimation accuracy when images are degraded by spatially varying
wavefronts (left) and phase noise (right). Both simulations used lower left
object (see Fig.2). Bar labels in SV plot are: No Spatial Variance, Low Fre-
quency / Low Magnitude, High Frequency / Low Magnitude, Low Frequency
/ High Magnitude, and High Frequency / High Magnitude.

perfectly AO-corrected image.
Deconvolution was performed with Richardson-Lucy deconvolution using all the diversity

images, similar to the approach in [24]. Images are slightly cropped before measuring the
SSIM to remove ringing artifacts (commonly occurring in Richardson-Lucy deconvolution)
from comparison. Re-acqusition with a DM was simulated by applying the estimated low-
order aberrations as correction phases in the pupil plane, then re-simulating the image.

The results are displayed in Fig.9 A, which shows SSIM as a function of p/px. The p/px
in Fig.9 A were multiplied by 4/3 for the estimated corrected images to account for the extra
photons needed to acquire the corrected image. The RWEs of the aberration estimations
are also plotted, with values given on the right-hand scale.

It can be seen that both correction approaches substantially improve over the uncorrected
image at high SNR. The DM-based re-acquisition provides a small but clear improvement
over deconvolution at high SNR and nearly approaches the image quality provided by the
hypothetical ideal correction. However, at lower SNR the extra photon dose combined
with the poor estimation accuracy substantially decreases the quality of both correction
approaches and leads to deconvolution outperforming the DM-corrected image, at least
when dose matching as we have done here.

6 Discussion

The PD algorithms presented here estimate phase aberrations accurately enough for image
improvement, even in the many detrimental settings tested in simulation. Unlike the use
of SHWFS, PD requires no specialized hardware (even the DM is only required for correc-
tion), accounts for extended objects, and measures aberrations in the path to the image
sensor. Consequently, PD algorithms can be fast, simple, and robust methods to measure
phase aberrations. The PD algorithms can be run with uploaded images at https://share.
streamlit.io/nikolajreiser/PoissonPhaseDiversity, and the code and usage instruc-
tions are available at https://github.com/nikolajreiser/PoissonPhaseDiversity.

The results here also show that aberration correction can be achieved with no specialized
hardware at all. If defocus is used as a diversity phase by physically moving the lens, diversity
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Fig. 9. Comparison of image quality using different correction techniques.
A: Plot showing SSIM of various correction approaches and RWE of wave-
front estimations (using Poisson LF) vs noise level. Bottom row: example of
AO corrected image (B), deconvolved image (C), and uncorrected aberrated
image (D).

images can be acquired without a DM, and the estimated aberrated PSFs then used in a
multi-image deconvolution. At high SNR, the dose-matched performance of this strategy
only slightly lags one that uses a DM to reacquire images corrected for the aberrations, and
at low SNR it slightly outperformed the DM. While the process of wavefront estimation
and deconvolution is technically equivalent to blind deconvolution, explicitly separating the
wavefront estimation from deconvolution permits implementations tailored for each step.

While both PD algorithms achieve accurate phase estimations, the Poisson algorithm
estimates the phase more accurately than the Gaussian algorithm in most cases. The Poisson
algorithm is also less sensitive to effects not modeled in the LFs, such as spatial variance,
phase noise, and out of focus plane contamination (see supplement for results on the latter).

There are many areas where further research could improve these algorithms. The opti-
mization process could be improved for both algorithms, in terms of runtime and avoiding
local minima. Also, diversity phases besides defocus were not explored. An improved
method for diversity phase selection could enhance the algorithms, although it would likely
depend strongly on specifics of the imaging system and the imaged object.

The PD algorithms should only be used for widefield detection. Imaging systems that are
point scanning do not have to consider the object in phase retrieval, simplifying aberration
estimation. Furthermore, the widefield PD algorithms are incapable of measuring spatial

13



variation without subdividing the FOV. Smaller FOVs are likely to lead to poor aberration
estimates, as seen in section 5.3, and re-acquisition would require multiple acquisitions with
different DM settings tailored to the different FOVs.

7 Conclusion

Poisson and Gaussian phase estimation algorithms were implemented and compared in the
context of widefield microscopy. The Poisson algorithm is found to match or outperform the
Gaussian algorithm for a variety of objects as well as for a range of illumination intensity
and aberration levels. The Gaussian algorithm performs better in low-light regimes when
image noise is dominated by additive Gaussian noise. The Poisson algorithm is also found
to be more robust to the effects of spatially variant aberration and phase noise. Finally,
the advantage of re-acquisition with aberration correction over deconvolution using the
estimated aberrated PSFs is demonstrated. However, the performance of deconvolution is
strong enough that it could be used in situations where no deformable mirror is available.
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