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Abstract. There has been increasing demand for establishing privacy-preserving method-
ologies for modern statistics and machine learning. Differential privacy, a mathematical
notion from computer science, is a rising tool offering robust privacy guarantees. Recent
work focuses primarily on developing differentially private versions of individual statis-
tical and machine learning tasks, with nontrivial upstream pre-processing typically not
incorporated. An important example is when record linkage is done prior to downstream
modeling. Record linkage refers to the statistical task of linking two or more datasets of
the same group of entities without a unique identifier. This probabilistic procedure brings
additional uncertainty to the subsequent task. In this paper, we present two differentially
private algorithms for linear regression with linked data. In particular, we propose a
noisy gradient method and a sufficient statistics perturbation approach for the estima-
tion of regression coefficients. We investigate the privacy-accuracy tradeoff by providing
finite-sample error bounds for the estimators, which allows us to understand the relative
contributions of linkage error, estimation error, and the cost of privacy. The variances
of the estimators are also discussed. We demonstrate the performance of the proposed
algorithms through simulations and an application to synthetic data.
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Media Summary

Differential privacy is a mathematical framework for ensuring the privacy of individuals in
datasets. It mitigates the privacy risk of disclosing sensitive information about individuals within
the dataset during data analysis. Under such a framework, we are interested in finding the relation-
ship between two variables (via statistical regression) after they are linked from two data sources
with uncertainties. A pre-processing procedure of linking datasets is called record linkage, and the
uncertainties should be taken into account in the downstream analysis. In the article, we propose
two algorithms that satisfy differential privacy for regression estimation problems with linked data.
The theoretical results regarding privacy guarantees and statistical accuracy are provided. We
demonstrate the performance of the proposed algorithms through simulations and an application.
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1. Introduction

Data for the same group of entities are often scattered across different resources, lacking unique
identifiers for perfect linkage. To conduct statistical modeling or inference on the integrated in-
formation, it is necessary to probabilistically link multiple datasets by comparing the common
quasi-identifiers (e.g., names, gender, address) as a pre-processing step. Such a procedure is called
record linkage (RL), also known as entity resolution, or data matching (Christen, 2012), which is an
essential component of data integration in big data analytics (Dong & Srivastava, 2015). Thanks to
its wide application in many disciplines such as public health and official statistics, record linkage has
been studied for decades. Earlier pioneering works include Fellegi and Sunter (1969), Jaro (1989),
and Newcombe et al. (1959). In addition, record linkage is frequently used in current practice. The
U.S. Census Bureau has a long tradition using record linkage methodology for multiple endeavors.
A current prominent example is the Decennial Census (U.S. Census Bureau, 2022). In this context,
record linkage involves using administrative records and other data sources to improve data quality,
with efforts underway to construct a comprehensive “reference database” including individuals from
multiple administrative records. A recent review paper, Binette and Steorts (2022), provided a
comprehensive summary of record linkage. Broadly speaking, there are two perspectives regarding
record linkage (Chambers et al., 2021): (1) the primary viewpoint concerns how to link the records;
(2) the secondary perspective is focused on how to propagate the uncertainty to the downstream
statistical learning tasks after the linkage has been determined. Our focus in this paper will adopt
the second of these two perspectives.

Closely related to record linkage is data privacy. In the area of privacy-preserving record linkage
(PPRL), two or more private datasets owned by different organizations are linked without revealing
the data to one another (Christen et al., 2020; Hall & Fienberg, 2010). The outcome of PPRL is the
information regarding which pairs or sets are matched. PPRL, in turn, is associated with secure
multiparty computation (SMPC) in that SMPC techniques are commonly used to solve PPRL
problems (He et al., 2017; Kuzu et al., 2013; Rao et al., 2019). PPRL to date only engages in the
private linkage process from a primary perspective, without concerning how the linkage uncertainties
would impact the downstream analysis. On the contrary, the secondary perspective is to modify
the statistical tools to account for the linkage uncertainty. Our goal is to incorporate privacy into
the secondary perspective of record linkage, which is different from yet complementary to PPRL or
SMPC.

Privacy concerns have, if anything, become significantly more exacerbated with the emergence of
individual-level big data. Releasing information about a sensitive dataset is subject to a variety of
privacy attacks (Dwork et al., 2017). Therefore, there has been a growing demand for establishing
robust privacy-preserving methodologies for modern statistics and machine learning. A mathe-
matical framework proposed by Dwork et al. (2006), differential privacy (DP), is now considered
the gold standard for rigorous privacy protection and has made its way to broad application in
industry (Apple, 2017; Google, 2021; Microsoft, 2020) and the public sector (U.S. Census Bureau,
2021). The literature on differential privacy has been flourishing in recent years and the interface
of differential privacy and statistics has started to draw increasing attention from the statistics
community.
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Recent work on differential privacy focuses primarily on individual statistical and machine learn-
ing tasks, with nontrivial upstream pre-processing, such as record linkage, typically not incorpo-
rated. In this paper, we consider the linear regression problem, i.e.,

(1.1) y = Xβ + e, e ∼ N (0, σ2In)

but where X and y are observed in two separate datasets. As a result, rather than having X and y

in hand, we are instead provided with a pair X and z. Here z is a permutation of y resulting from
record linkage performed by an external entity, who also supplies a minimum amount of information
about the linkage accuracy. In the regression procedure, we take into account the linkage uncertainty
as well as offer differential privacy guarantees. As shown in Figure 1 which depicts the pipeline
of the problem we consider, we assume that an external analyst conducts record linkage a priori.
From there, we aim to devise a private estimator for the regression coefficients of ultimate interest
with the help of differential privacy.

Our focus

Record linkage

External party

X, z, Q DP regression Private estimator β̂priv
outputinput

Figure 1. Pipeline of private regression with linked data.

Specifically, we propose two algorithms for linear regression after record linkage to meet dif-
ferential privacy: (1) post-RL noisy gradient descent (NGD), and (2) post-RL sufficient statistics
perturbation (SSP). Our work builds on the seminal work by Lahiri and Larsen (2005) where an
estimator is proposed for linear regression with linked data in a non-privacy-aware setting. We
construct a private estimator, β̂priv, by deploying differential privacy tools to achieve privacy pro-
tections. To the best of our knowledge, our work is the first one in the literature to consider a
statistical model after record linkage in a privacy-aware setting.

The two proposed algorithms also extend the noisy gradient method (Bassily et al., 2014) and
the “Analyze Gauss” algorithm (Dwork et al., 2014), which are applied to linear regression, to addi-
tionally handle the presence of linkage errors. Prior works (Alabi et al., 2022; Bernstein & Sheldon,
2019; Cai et al., 2021; Sheffet, 2017; Wang, 2018) on differentially private linear regression do not
consider possible record linkage pre-processing. If the data are linked beforehand, directly apply-
ing their algorithms to the imperfectly linked data is not ideal. It is well known that overlooking
the linkage errors leads to substantial bias even with a high linkage accuracy (Neter et al., 1965;
Scheuren & Winkler, 1993). Figure 2 showcases a toy example of record linkage, where mismatches,
if treated as true, change the sign of the slope estimate. Our illustrative application later in
the paper confirms this, where around 90% of the records are correctly linked, and the estimators
ignoring linkage errors end up with large biases.
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first name last name x

Shurong Lin 1
Erik K 2
Elliot P 3

S Li 4

Dataset A

first name last name y

S L 2
Eric K 4
Eliot P 6

Sharon Li 8

Dataset B
Figure 2. A toy example of record linkage with mismatches (dashed links).
The true dataset (X,y) is {(1, 2), (2, 4), (3, 6), (4, 8)}, yielding a slop estimate β̂1 = 2, while
the linked set (X, z) is given by {(1, 8), (2, 4), (3, 6), (4, 2)}, yielding β̂1 = −1.6.

Accompanying the estimators resulting from our algorithms, we provide mean-squared error
bounds under typical regularity assumptions and record linkage schemes. When no linkage errors
are present (i.e., a special case in our scenario), our result in Theorem 4.4 improves upon the noisy
gradient method proposed in Cai et al. (2021) by using zero-concentrated differential privacy (zCDP,
Bun and Steinke (2016)) to enable tighter bounds on privacy cost (see Lemma 2.3). Additionally,
we have presented (approximate) theoretical variances for β̂priv resulting from both proposed al-
gorithms. There appear to be very few other works that have addressed the issue of uncertainty.
Two that we are aware of are Alabi (2022), who provided confidence bounds for the univariate case,
and Sheffet (2017), who provided confidence intervals dependent on differential privacy noise. Our
work focuses on the multivariate case and appears to be the first to directly work on exact variances
rather than relying on bounds.

The remainder of this paper is organized as follows. Section 2 provides preliminaries on linear
regression with linked data and differential privacy. We propose our two algorithms in Section
3 and present the relevant theoretical results in Section 4. In Section 5, we conduct a series of
simulation studies and an application to synthetic data. Section 6 concludes and discusses future
work. Complete proofs of all theorems can be found in the supplementary materials.

2. Preliminaries

In this section, we review the background results of linear regression after record linkage upon
which we build our work, and fundamental concepts from differential privacy. Related work on
linear regression with linked data and record linkage with privacy awareness are discussed.

2.1. Linear Regression with Record Linkage. Let (X,ΦX) and (y,Φy) be two datasets that
refer to the same group of n entities, with unknown one-to-one correspondence. The quasi-identifiers
ΦX and Φy are used to perform the linkage procedure. Let (X, z) be the linked data where z is a
permutation of y. Consider the following model for z:

(2.1) P(zi = yj) = qij , i, j = 1, . . . , n,

then
∑n

j=1 qij = 1 for all i and
∑n

i=1 qij = 1 for all j. Thus, qii is the probability of the ith record
being linked correctly. Let Q = (qij), which we call the matching probability matrix (MPM), a
doubly stochastic matrix. The matrix Q can be estimated, for example, through bootstrapping
(Chipperfield, 2020; Chipperfield & Chambers, 2015). In some cases, estimating Q can require
inference on only a single parameter (e.g., in the exchangeable linkage error (ELE) model described
in Section 2.1.1).
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For the fixed-design homoskedastic linear model (1.1), when inference is done after record linkage
based on (X, z), Lahiri and Larsen (2005) proposed an unbiased estimator

(2.2) β̂RL = (W⊤W )−1W⊤z,

where W = QX. Let wi be the i-th row vector of W , then wi =
∑n

j=1 qijxj . Note that E(zi) =
w⊤

i β, where the expectation is taken over both linkage uncertainties and y. Transforming X into
W offers bias correction for regression estimation after record linkage.

In addition, the variance of β̂RL is given by

(2.3) ΣRL def
= Var(β̂RL) = (W⊤W )−1W⊤ΣzW (W⊤W )−1,

where Σz
def
= Var(z). Lahiri and Larsen (2005) provide the following characterization of the first

two moments of z.

Lemma 2.1 (Theorem A.1, Lahiri and Larsen, 2005). Under the model described by (1.1) and
(2.1), we have for i, j = 1, . . . , n

• E(zi) = w⊤
i β;

• Var(zi) = σ2 + β⊤Aiβ with Ai =
∑n

j=1 qij(xj −wi)(xj −wi)
⊤;

• Cov(zi, zj) = β⊤Aijβ with Aij =
∑n

u=1

∑n
v ̸=u qiuqjv(xi −wu)(xj −wv)

⊤.

Note that Σz involves the true coefficients β and Σz = σ2Id + h(β, Q,X) where h(β, Q,X) is
a function of β, Q,X as elaborated in Lemma 2.1. Compared to the covariance of y, Σz has an
additional component h(β, Q,X) due to the uncertainty of record linkage.

2.1.1. Structural Schemes of MPM. The matching probability matrix (MPM) Q is generally as-
sumed to have a simple structure. Two schemes used commonly in the literature are as follows.
Blocking Scheme. It is assumed that the MPM is a block diagonal matrix, which means the true
matches only happen within blocks. Blocking significantly reduces the number of pairs for compar-
ison and allows scalable record linkage. This scheme is used in almost all real-world applications,
and different methods for blocking have been developed (Christen, 2012; Christophides et al., 2020;
Steorts et al., 2014).
Exchangeable Linkage Errors (ELE) Model. The ELE model (Chambers, 2009) assumes ho-
mogeneous linkage accuracy and errors:

(2.4)
P(correct linkage) = qii = γ,

P(incorrect linkage) = qij =
1− γ

n− 1
for i ̸= j.

The ELE model has been adopted in recent works, such as Chambers et al. (2021) and Chambers
et al. (2023), for various estimation problems. Even though (2.4) may oversimplify the reality, it
is a representative model for a secondary analyst who has minimum information about the linkage
quality. When blocking is used, the homogeneous linkage accuracy assumption is imposed within
individual blocks. In other words, it still allows heterogeneous linkage accuracy between blocks.

2.2. Differential Privacy. Let X be some data space, and D,D′ ∈ Xn be two neighboring datasets
of size n which only differ in one record. Such a relation is denoted by D ∼ D′.

Definition 1 ((ϵ, δ)-DP, Dwork and Roth, 2014). For ϵ > 0, δ ≥ 0, a randomized algorithm A:
Xn → R is (ϵ, δ)-differentially private if, for all D ∼ D′ ∈ Xn and any O ⊆ R,

(2.5) P(A(D) ∈ O) ≤ eϵ · P(A(D′) ∈ O) + δ.
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The expression (2.5) controls the distance between the output distributions on two neighboring
datasets through the privacy budget ϵ and δ. Intuitively, differential privacy ensures that D is not
distinguishable from D′ based on the outputs. Thus, ϵ should be small enough for the privacy level
to be meaningful. Typically, ϵ ∈ (10−3, 10) and δ = o(1/n).

Differential privacy enjoys the following properties that facilitate the construction of differentially
private algorithms.

Proposition 2.1 (Basic composition, Dwork and Roth, 2014). If f1 is (ϵ1, δ1)-DP and f2 is (ϵ2, δ2)-
DP, then f := (f1, f2) is (ϵ1 + ϵ2, δ1 + δ2)-DP.

Proposition 2.2 (Post-processing, Dwork and Roth, 2014). If f is (ϵ, δ)-DP, for any deterministic
mapping g that takes f(D) as an input, then g(f(D)) is (ϵ, δ)-DP.

Generally, a differentially private algorithm is constructed by adding random noise from a certain
structured distribution, such as the Laplace or Gaussian distributions. A notion central to the
amount of noise we add is the sensitivity of the estimation function we desire to release privately.

Definition 2 (ℓ2-sensitivity). Let f : Xn → Rd be an algorithm. The ℓ2-sensitivity of f is defined
as

(2.6) ∆f = max
D∼D′∈Xn

∥f(D)− f(D′)∥2.

The sensitivity of a function characterizes how much the output would change if one record in
the dataset changes. To achieve (ϵ, δ)-DP, the amount of noise we need depends on both the budget
and the sensitivity. The Gaussian Mechanism is a canonical example that will be employed herein,
which does just that.

Lemma 2.2 (Gaussian mechanism, Dwork and Roth (2014)). Let 0 < ϵ < 1 and δ > 0. For an
algorithm f on the dataset D, the Gaussian Mechanism A(·) defined as

(2.7) A(D) := f(D) + u,

where u ∼ N (0, 2 ln(1.25/δ)(∆f/ϵ)
2), is (ϵ, δ)-DP.

Combining the basic composition rule and the Gaussian mechanism, for a sequence of functions
(f1, f2, . . . , fT ), let

ut ∼ N
(
0,

2T 2∆2
t ln(1.25T/δ)

ϵ2

)
,

where ∆t is the ℓ2-sensitivity of ft. Then, A := (f1 + u1, f2 + u2, . . . , ft + uT ) satisfies (ϵ, δ)-DP.
However, as T increases, this construction tends to add more noise than necessary due to the
loose composition. Instead, we could utilize zero-concentrated differential privacy (zCDP, Bun and
Steinke (2016)), another variant of DP, to achieve tighter composition for (ϵ, δ)-DP. The following
Lemma essentially captures the results from Bun and Steinke (2016), formulated for our purposes.

Lemma 2.3 (Better composition for (ϵ, δ)-DP via zCDP). Let ϵ > 0, δ > 0. For a sequence of
functions (f1, f2, . . . , fT ), let

(2.8) ut ∼ N
(
0,

T∆2
t

2ρ

)
,
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with ρ := ϵ + 2 ln(1/δ) − 2
√
(ϵ+ ln(1/δ)) ln(1/δ). Then, the randomized algorithm A := (f1 +

u1, f2 + u2, . . . , fT + uT ) satisfies (ϵ, δ)-DP. If ϵ ≤ 8 ln(1/δ)

2+
√
2

, it suffices to have

(2.9) ut ∼ N
(
0,

4T∆2
t ln(1/δ)

ϵ2

)
.

Please refer to the supplementary materials for details. Since, in most practical budget settings,
we have ϵ ≤ 8 ln(1/δ)

2+
√
2

, we will apply (2.9) for composition and analysis in the rest of the paper,
acknowledging that (2.8) is valid for all parameter ranges.

In Section 3, we shall employ Lemmas 2.2 and 2.3 in devising two distinct algorithms for linear
regression after record linkage.

2.3. Related Work. Linear regression with linked data is a fundamental statistical task that has
been explored in various articles. Scheuren and Winkler (1993) initially considered the linkage
model (2.1) for linear regression and proposed an estimator that is not generally unbiased. Later,
Lahiri and Larsen (2005) introduced an exactly unbiased OLS-like estimator given in (2.2) with
an expression for the variance, which outperformed the approach by Scheuren and Winkler (1993).
Besides, Chambers (2009) and Zhang and Tuoto (2021) offered a few other estimators. According to
their simulation studies, some of the estimators provided performance that was at most similar, but
not noticeably better, compared to the one proposed by Lahiri and Larsen (2005). Yet, Zhang and
Tuoto (2021) relaxed the condition by not assuming that the probability of correct linkage, qii in
the model (2.1), can be obtained or estimated. For more extensive reviews of this literature, Wang
et al. (2022) gave an account of the recent development of various methods on regression analysis
with linked datasets. Chambers et al. (2023) reviewed current research on robust regression of
linked data.

On the other hand, there is ongoing research on privacy-preserving record linkage (PPRL) in the
field of computer science. PPRL aims to privately link multiple sensitive datasets held by different
organizations when they are unwilling or not permitted to share their data with external parties due
to privacy and confidentiality concerns. To achieve privacy protection, techniques such as SMPC
and DP are combined with machine learning and deep learning methods for conducting PPRL
(Christen et al., 2020; Gkoulalas-Divanis et al., 2021; Ranbaduge et al., 2022). PPRL primarily
concerns data leakage during the linkage process and produces a linked dataset that can be used
for further analysis, yet most applications treat the linked data as if there were no linkage errors.
Neither the uncertainty propagation nor private release of the downstream analysis is considered
within the scope of PPRL.

Note that there are several articles on privacy-preserving analysis on vertically partitioned
databases. In these databases, the attributes are distributed among multiple parties, but common
unique identifiers exist to facilitate data linkage across the different parties. Unlike probabilistic
record linkage, vertically partitioned databases do not involve linkage errors. Du et al. (2004),
Gascón et al. (2017), Hall et al. (2011), and Sanil et al. (2004) discussed the implementations
of privacy-preserving linear regression protocols that prevent data disclosure across organizations,
whereas Dwork and Nissim (2004) considered data mining from the perspective of the private release
of statistical querying in a spirit similar to our work.
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3. Differentially Private Algorithms

The unbiased and simply structured estimator provided in (2.2) with a known closed-form vari-
ance makes it a suitable prototype to construct our private estimators. We introduce two differ-
entially private algorithms in the following, based on (1) noisy gradient descent, and (2) sufficient
statistics perturbation. As the names suggest, we mitigate privacy risk by perturbing either the gra-
dient or sufficient statistics during the computation of the linear model. Hereafter, if not specified
otherwise, ∥ · ∥ denotes the 2-norm.

3.1. Post-RL Noisy Gradient Descent. Gradient descent methods are ubiquitous in scientific
computing for numerous optimization problems. Within the framework of differential privacy,
Bassily et al. (2014) provided a noisy variant of the classic gradient descent algorithm. It was later
adapted by Cai et al. (2021) to solve the classic linear regression problem with faster convergence.
Leveraging the work by Bassily et al. (2014) and Cai et al. (2021), we tailor the noisy gradient
method for the post-RL linear regression model for (X, z) based on (1.1) and (2.1).

Let Ln(β)
def
= 1

2n (z−Wβ)⊤(z−Wβ) be the loss function, where recall W = QX. The minimizer
of Ln(β) is the non-private RL estimator proposed by Lahiri and Larsen (2005). Let ΠR(r) denote
the projection of r ∈ Rs onto the ℓ2 ball {r ∈ Rs : ∥r∥ ≤ R}. The post-RL noisy gradient descent
(NGD) algorithm is defined as follows.

Algorithm 1 Post-RL Noisy Gradient Descent
Input: Linked dataset (X, z) and matching probability matrix Q, privacy budget (ϵ, δ), noise scale

factor B, step size η, number of iterations T , truncation level R, feasibility C, initial value β0.
1: Let W = QX.
2: for t = 0 to T − 1 do

3: Generate ut ∼N
(
0, ω2Id

)
where ω =

2ηB
√
T ln(1/δ)

nϵ
.

4: Compute

(3.1) βt+1 = ΠC(β
t − η

n

n∑
i=1

(w⊤
i β

t −ΠR(zi))wi + ut).

5: end for
Output: β̂priv = βT .

Algorithm 1 is a modified version of the projected gradient descent that incorporates (1) post-RL
transformation of the design matrix, (2) addition of noise ut at each gradient step, and (3) use of
projection ΠR(·) on the response variable. The regular parameters, including η, T and C for the
projected gradient method, are specified in Theorem 4.4 for the discussion of the accuracy of β̂priv.
The injection of noise follows Lemma 2.3. The scale of the Gaussian noise ut at step t depends on
the privacy budget (ϵ, δ), and the noise scale factor B associated with the sensitivity in the update
function (3.1). The purpose of the projection on z is to bound the sensitivity of the gradient. With
a proper choice of R that scales up with

√
lnn (specified in Section 4), the projection does not

affect the accuracy of the final estimator with high probability.
The major challenge lies in calculating the sensitivity. In the non-RL least square regression, two

neighboring datasets D = (X,y) and D = (X ′,y′) differ in a single row, making it straightforward
to derive the sensitivity of the gradient of Ln(β) =

1
2n (y −Xβ)⊤(y −Xβ). Here, in the context
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of post-RL analysis, we consider two neighboring datasets containing both linking variables and
regression variables, denoted as D = (X,ΦX ,y,Φy) and D′ = (X ′,ΦX′ ,y′,Φy′), which differ in
the record of one individual. The change in one row of the quasi-identifiers ΦX and Φy may
affect more than one row of the matching probability matrix Q. As a result, the entries of the
transformed design matrix W = QX subject to change are not limited to one row as in the non-RL
case. Consequently, determining the sensitivity of the gradient of Ln(β) =

1
2n (z−Wβ)⊤(z−Wβ)

becomes non-trivial. This challenge distinguishes our work from Cai et al. (2021). However, we
will demonstrate in Section 4 that, under a condition on the structure of Q, the sensitivity can be
tracked.

3.2. Post-RL Sufficient Statistics Perturbation. Noise can be injected into the process besides
the gradient computation. Since the estimator interacts with the data through its (joint) sufficient
statistics, an efficient way is to perturb the sufficient statistics to protect the data. Such a technique,
sufficient statistics perturbation (SSP), has been used in previous works such as Foulds et al.
(2016), Vu and Slavkovic (2009), and Wang (2018). For the non-private OLS estimator β̂OLS =

(X⊤X)−1Xy, to perturb the joint sufficient statistics (X⊤X,Xy), it suffices to add noise to A⊤A

where A = (X | y) is the augmented matrix. Dwork et al. (2014) offered an algorithm, “Analyze
Gauss”, to privately release A⊤A. It was later utilized by Sheffet (2017) for private linear regression,
primarily perturbing the sufficient statistics.

In our work, we adapt the “Analyze Gauss” algorithm to linear regression after record linkage,

as shown in Algorithm 2. The noise scale factor B is the sensitivity of A⊤A
def
=

(
W⊤W W⊤z

z⊤W z⊤z

)
which is specified in Section 4. The gram matrix A⊤A exhibits properties that facilitate the com-
putation of its sensitivity. Algorithm 2 illustrates how incorporating the joint sufficient statistics
in a comprehensive form facilitates the deployment of differential privacy.

Algorithm 2 Post-RL Sufficient Statistics Perturbation
Input: Linked dataset (X, z) and matching probability matrix Q, privacy budget (ϵ, δ), noise scale

factor B, truncation level R.
1: Let W = QX.
2: Generate a d×d symmetric Gaussian random matrix U whose upper triangle entries (including

the diagonal) are sampled i.i.d. from N (0, ω2) where ω =
B
√
2 ln(1.25/δ)

ϵ
.

3: Generate a d-dimensional Gaussian random vector u whose entries are sampled i.i.d. from
N (0, ω2).

4: if W⊤W + U is computationally singular then
5: Repeat steps 2 ∼ 3.
6: end if

Output: β̂priv = (W⊤W + U)−1(W⊤z∗ + u) where z∗ = (ΠR(z1), . . . ,ΠR(zn))
⊤.

Remark 3.1. In step 4, by post-processing, checking for singularity of W⊤W + U consumes no
extra privacy budget. In fact, the probability of W⊤W + U being singular decreases exponentially
as the sample size increases.

An alternative approach to implementing the SSP method is to add random noise separately to
each sufficient statistic. In this approach, the total privacy budget should be divided between X⊤X



Differentially Private Linear Regression with Linked Data 10

and Xy for the estimation of linear regression, as proposed by Wang (2018). However, treating
the joint statistics as a whole is more economical in terms of budgeting in general. Lin et al.
(2023) showed through comparison that splitting the total budget among the components results
in introducing larger noise on average. Although adding noise individually to the components of
interest allows for the private release of each quantity, it is not part of the goal of the estimation.

4. Theoretical Results

In this section, we provide the theoretical results of the two algorithms introduced in Section
3. The results are threefold: (1) differential privacy guarantees, (2) finite-sample error bounds,
and (3) variances of the private estimators. We present each of these along with a discussion of
the corresponding conditions as they relate to the main variables in our record linkage model. All
proofs for these results can be found in the supplementary materials.

4.1. Privacy Guarantees. The algorithms are designed to achieve certain privacy guarantees,
given the corresponding sensitivity, for the post-RL case:

Theorem 4.1 (Privacy Guarantees). Assume the following boundedness conditions hold:
(A1) There is a constant cx < ∞ such that ∥x∥2 ≤ cx.
(A2) Let Q and Q′ be the matching probability matrices (MPMs) resulting from the neighboring

datasets D and D′ and let Q ∼ Q′ denote such a relation. We assume that supQ∼Q′ ∥Q−Q′∥1 ≤ M

for some constant M < ∞, where ∥ · ∥1 is the entry-wise 1-norm.
Given the linked data (X, z) and the matching probability matrix Q for the regression problem in

(1.1), under Assumptions (A1) and (A2), it follows that

(1) Algorithm 1 satisfies (ϵ, δ)-differential privacy with

(4.1) B = Rcx(M + 4) + 2Cc2x(M + 2),

(2) Algorithm 2 satisfies (ϵ, δ)-differential privacy with

(4.2) B = Rcx(M + 4) + max{2c2x(M + 2), 2R2}.

Essentially, we assume that the data domain is bounded, which is critical for deriving a finite
sensitivity of the target function on the data. (A1) is a standard assumption for a bounded design
X. For the linking variables that are generally categorical, there are no analogous definitions of
“norm” for numerical vectors. Instead, (A2) is imposed on the MPM since it summarizes all the
information of the linking variables in the linkage model we consider. Specifically, we assume that
two MPMs produced by two neighboring datasets do not differ much in terms of the entry-wise 1
norm. This assumption characterizes a bounded linkage model.

The rationale of (A2) is supported by typical schemes imposed on the structures of MPM in
practice, as reviewed in Section 2.1.1. For example, with the blocking scheme, the size of each block
is manageably small (O(1)). When one record is altered, the fluctuation of the MPM is limited to at
most two blocks. Additionally, with the ELE model (2.4), as long as the changes to a single record
only affect a finite number of records, the linkage accuracy γ changes at most O(1/n). Therefore, we
have supQ∼Q′ ∥Q−Q′∥1 = O(1). In general, a robust record linkage approach should not produce
two considerably different MPMs from two neighboring datasets. Therefore, it is realistic to assume
a bounded linkage model.
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The proofs of Theorem 4.1 revolve around calculating the sensitivity of the target function in
each algorithm. Besides the upper bounds cx and M discussed above, the sensitivity also depends
on the truncation level R on the response. Truncation is commonly used in DP algorithm designs
when there are no priori bounds on the relevant quantities (e.g., Abadi et al. (2016)). In Section
4.2, we provide a specific choice of R and present an accuracy statement with high probability.

4.2. Finite-Sample Error Bounds. We study the accuracy of the proposed estimators by deriv-
ing the finite-sample error bounds. In the following, we introduce two more assumptions in addition
to (A1) and (A2):

(A3) The true parameter β satisfies ∥β∥2 ≤ c0 for some constant 0 < c0 < ∞.
(A4) The minimum and maximum eigenvalues of W⊤W/n satisfy

(4.3) 0 <
1

L
< dλmin

(
W⊤W

n

)
≤ dλmax

(
W⊤W

n

)
< L

for some constant 1 < L < ∞.
Assumption (A4) implies the smoothness and strong convexity of the loss function Ln(β) =

1
2n (z−Wβ)⊤(z−Wβ), which allows for a fast convergence rate for the gradient descent method in
Algorithm 1. On the other hand, for Algorithm 2, note that the term (W⊤W )−1 is a component of
sufficient statistics. Assumption (A4) offers a bound on the norm of (W⊤W )−1, which helps derive
the error bound of β̂priv. Let Assumption (A4’) be (A4) with W replaced by X and the constant
L replaced by L′. The larger of L and L′ can be chosen as the constant to satisfy both (A4) and
(A4’). Therefore, for convenience, we consider (A4) and (A4’) to be the same assumption. We

first obtain the accuracy of the non-private estimators, for comparison purposes.

Lemma 4.2. Let β̂OLS = argmin
β

(y −Xβ)⊤(y −Xβ) be the OLS estimator. Then, under (A4),

it follows that E∥β̂OLS − β∥2 = σ2 tr(X⊤X)−1 = Θ

(
σ2d2

n

)
.

Lemma 4.3. Let β̂RL = argmin
β

(z −Wβ)⊤(z −Wβ) be the non-private record linkage estimator,

and ΣRL be the covariance matrix of β̂RL. Then,

(4.4) E∥β̂RL − β∥2 = tr(ΣRL),

where ΣRL = (W⊤W )−1W⊤ΣzW (W⊤W )−1.

As a special case, when the linkage is perfect (i.e., Q is an identity matrix), the expected error
of β̂RL in (4.4) takes the reduced form σ2 tr(X⊤X)−1 which is exactly the lower bound obtained

by β̂OLS. Then, by Lemma 4.2, we know that E∥β̂RL − β∥2 is of order at least
σ2d2

n
under (A4).

From a secondary perspective regarding record linkage, it is beyond our scope to study how tr(ΣRL)

behaves in general.
For the two proposed algorithms, we present upper bounds of the excess squared error of the

private estimators, namely, ∥β̂priv − β̂RL∥2.

Theorem 4.4 (Post-RL NGD). Given the linked data (X, z) and the matching probability matrix
Q for the regression problem in (1.1), set the parameters of Algorithm 1 as follows:

• step size η = d/L, number of iterations T = ⌈L2 ln(c20n)⌉, feasibility C = c0, initialization
β0 = 0;
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• truncation level R = σ
√
2 lnn;

• noise scale factor B = Rcx(M + 4) + 2c0c
2
x(M + 2);

Under Assumptions (A1)-(A4), given δ = o(1/n), with probability at least 1− c1e
−c2 lnn − e−c3d

where c1, c2, c3 are constants (see the proof), it follows that

(4.5) ∥β̂priv − β̂RL∥2 =
1

n
+O

(
σ2d3 ln2 n ln(1/δ)

n2ϵ2

)
.

Theorem 4.5 (Post-RL SSP). Given the linked data (X, z) and the matching probability matrix
Q for the regression problem in (1.1), in Algorithm 2, set

• truncation level R = σ
√
2 lnn;

• noise scale factor B = Rcx(M + 4) + 2max{c2x(M + 2), R2}.
Under Assumptions (A1)-(A4), given δ = o(1/n), with probability at least 1 − c1e

−c2 lnn − e−c3d

where c1, c2, c3 are constants (see the proof),

(4.6) ∥β̂priv − β̂RL∥2 = O

(
σ4d3 ln2 n ln(1/δ)

n2ϵ2

)
.

In both algorithms, the response is projected with a level R = σ
√
2 lnn where σ2 is the ho-

moskedastic variance of the random error in linear model (1.1). Let E = {ΠR(zi) = zi,∀i ∈ [n]},
then E is a high-probability event. The error bound is analyzed under E , thus we obtain a statement
with high probability.

In the NGD method, the bound consists of two parts on the RHS in (4.5). The first error term
1/n results from the convergence rate of gradient descent after T iterations. The second error term
is due to the addition of Gaussian noise for privacy and thus involves ϵ, δ. It is worth noting that
the choice in theory T = ⌈L2 ln(c20n)⌉ is, to some extent, conservative to ensure the first error term
is O (1/n), which is the same order as E∥β̂OLS − β∥2. However, more iterations give rise to larger
random noise being added to gradient updates due to a smaller privacy budget per iteration. In
practice, a smaller number of iterations may be favored for the tradeoff (see the experiment in
Section 5.2), especially when n is not sufficiently large.

For the SSP algorithm, the convergence rate in (4.6) depends on similar variables as in the NGD
algorithm. The major difference is that it is controlled by σ4 instead of σ2 due to the sensitivity of
the gram matrix A⊤A defined in Section 3.2. However, the SSP method has a faster convergence
rate when n is sufficiently large. As a result, the SSP estimator is more susceptible to a large
variance of the random error in the response variable whereas the NGD method is more robust. As
we shall see in Section 5, the performance of the two algorithms is different under various scenarios.

Putting together Lemma 4.3 and Theorems 4.4 and 4.5, we obtain a high probability error bound
for each algorithm as follows.

Corollary 4.1. Under the regularity conditions (A1)-(A4),
(i) (Post-RL NGD)

(4.7) E∥β̂priv − β∥2 = O

(
tr(ΣRL) +

σ2d3 ln2 n ln(1/δ)

n2ϵ2

)
with probability at least 1− c1e

−c2 lnn − e−c3d.
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(ii) (Post-RL SSP)

(4.8) E∥β̂priv − β∥2 = O

(
tr(ΣRL) +

σ4d3 ln2 n ln(1/δ)

n2ϵ2

)
with probability at least 1− c1e

−c2 lnn − e−c3d.

4.3. Variances. As discussed in the Introduction, although a few works (Alabi, 2022; Sheffet,
2017) have addressed uncertainty of DP estimators through confidence bounds and intervals, the
exact variance of DP estimators is rarely determined in most cases. Recent work, such as Lin
et al. (2023), has explored the variance of the private estimators for population proportions that
have fairly simple structures. The main barrier to the inspection of variance is that if the noise
is injected into the intermediate steps of the estimation process other than the output, then it is
difficult to track the variability that noise introduces to the output estimator due to the intricate
nature of the algorithm.

The NGD and SSP algorithms are two examples where noise is added in the middle of the
estimation process. The operations like function composition and taking the inverse complicate the
inspection of the variance of the output estimator β̂priv. To address this issue, we investigate the
variance of β̂priv for the two algorithms by studying the variances of two proxy estimators. The
theoretical variances of the proxy estimators can be used to approximate those of β̂priv.

Theorem 4.6 (Variance for Post-RL NGD). In Algorithm 1 , if we consider the estimator without
projections

(4.9) βt+1 = βt − η

n
W⊤(Wβt − z) + ut,

then the variance of the T th iterate is given by

(4.10) Σ =

T∑
t=1

(Id −A)t−1 ·B⊤ΣzB ·
T∑

t=1

(Id −A)t−1 + ω2
T∑

t=1

(Id −A)2t−2,

where Id is the identity matrix of size d, A def
=

η

n
W⊤W , B def

=
η

n
W , and ω2 is the variance of ut.

Remark 4.1. In the non-private case where ω2 = 0, let T → ∞, in which case

Σ → A−1B⊤ΣzBA−1 = (W⊤W )−1W⊤ΣzW (W⊤W )−1 = ΣRL,

which is exactly the variance of β̂RL given in (2.3).

The estimator in Algorithm 1 is a projected variant of (4.9). The use of projection with level C
on βt+1 in (3.1) impedes the exact analysis of variance for β̂priv. Instead, we provide the variance in
(4.10) for the non-projected estimator as a conservative variance for β̂priv. The level of projection,
the scale of noise, and the number of iterations together determine how conservative it is. From
Remark 4.1, we know that as T increases, the first term in the RHS of (4.10) is getting close to ΣRL.

The second term, ω2
T∑

t=1

(Id − A)2t−2, then summarizes the cumulative variability resulting from

adding random noise at each iteration. Note that this term does not converge by simply increasing
T , due to the fact that a smaller budget leads to larger noise at each iteration.
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Theorem 4.7 (Variance for Post-RL SSP). For Algorithm 2, let β̂′ = β̂RL + (W⊤W )−1u −
(W⊤W )−1 ·U(β̂RL + (W⊤W )−1u), then β̂priv − β̂′ p→ 0 as n → ∞. The variance of β̂′ is given by

(4.11) Σ = ΣRL + ω2(W⊤W )−1(Id +Σ0 +Σ1 +Σ2)(W
⊤W )−1,

where ΣRL = Cov(β̂RL) and the entries of Σ0, Σ1 and Σ2 are given by

• (Σ0)kk =
∑d

i=1 β
2
i for k = 1, ..., d; (Σ0)kl = βkβl for k ̸= l.

• (Σ1)kk =
∑d

i=1 Σ
RL
ii for k = 1, ..., d; (Σ1)kl = ΣRL

kl for k ̸= l.

• (Σ2)kk =
∑d

i=1 Σ
′
ii for k = 1, ..., d; (Σ2)kl = Σ′

kl for k ̸= l, where Σ′ def
= ω2(W⊤W )−2.

Remark 4.2. As shown in the proof of 4.7 (see the supplemental), the proxy estimator β̂′ is a
first-order approximation for β̂priv using Taylor series for the term (I + U(W⊤W )−1)−1 which
appears in the decomposition of β̂priv.

The variance of β̂′ also consists of two parts: the variance of the non-private estimator β̂RL and
the additional variation due to the noise injected for privacy purposes. Given Assumption (A4), we
have ∥(W⊤W )−1∥ = O(d/n) that appears in Σ1 and Σ2. As n increases, the dominant component
of the second term would be ω2(W⊤W )−1(Id +Σ0)(W

⊤W )−1.

5. Numerical Results

To evaluate the finite-sample performance of the proposed algorithms, we conduct a series of
simulation studies and an application to a synthetic dataset that contains real data.

5.1. Simulation Studies. In this section, we conduct simulation studies to assess the performance
of the two proposed algorithms for simple linear regression with linked data. The non-private
OLS estimator and RL estimator β̂RL by Lahiri and Larsen (2005) are included as benchmarks.
The private, non-RL counterpart methods are also performed in the absence of linkage errors for
comparison.

For each simulation, a fixed design matrix X and an matching probability matrix Q are produced
and a total of 1000 repetitions are run over the randomness of both the intrinsic error e ∼ N (0, σ2In)

of the regression model and the noise injected for privacy. Figure 3 displays the ℓ2 relative error
and both empirical and theoretical variances for the two settings.

Two sets of simulations are conducted to explore the performance with varying sample size n

and σ, the homoskedastic variance of the random error in linear model (1.1). The parameters are
set as follows:

• ELE linkage model: blockwise linkage accuracy γi characterizing Q, block size ni = 25.
– Settings 1 and 2: γi ∈ uniform(0.6, 0.9), M = 1 in Assumption (A2).
– Setting 3: the linkage accuracy γi ≡ γ which varies from 0.6 to 1, while M scales from

1 to 0.
• regression model: x1, . . . , xn

i.i.d.∼ uniform(−1, 1), true regression coefficient β = 1.
– Setting 1: n varies from 3,000 to 10,000, σ is fixed at 1.
– Setting 2: n is fixed at 10, 000, σ varies from 0.5 to 1.8.
– Setting 3: n is fixed at 10, 000, σ is fixed at 1.

• privacy budget: ϵ = 1, δ = 1/n1.1.
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Figure 3. Average ℓ2-error and variance (theoretical versus empirical), with (ϵ, δ) = (1, 8.5×
10−5), against n and σ, respectively.
The “RL-NGD” and “RL-SSP” algorithms are our proposed post-RL approaches applied to
the linked data, compared with the non-RL “NGD” and “SSP” methods applied to (X,y)
(i.e., with no linkage errors). The non-private “OLS” and “RL-OLS” (Lahiri & Larsen, 2005)
results are also plotted for benchmarking. The number of iterations for “RL-NGD” results
fall within the range of (210, 260).
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In setting 1, where σ is fixed at 1, Figure 3a shows the errors of all methods decrease with a
growing sample size. Due to the linkage errors, the post-RL methods, including β̂RL and our two
algorithms (denoted as “RL-OLS”, “RL-NGD”, and “RL-SSP” in the figures) run on the linked data
(X, z), naturally always yield larger errors than their counterparts run on (X,y) when no linkage
has to be done beforehand. In this case, with σ = 1, post-RL SSP outperforms post-RL NGD
in terms of both accuracy and variance. However, as σ increases, post-RL NGD algorithm starts
perform better, as depicted in Figure 3c with varying σ. The error grows linearly for post-RL
NGD and quadratically for post-RL SSP, which aligns with the theoretical results on the error
bounds presented in Section 4.2. Similar trends are observed for comparison of the non-RL NGD
and SSP algorithms. In Figure 3e, where linkage error tends to zero, the post-RL versions of the
three estimators approach the corresponding non-RL versions. NGD and SSP methods have strictly
larger error than OLS due to the cost of privacy.

Figures 3b, 3d and 3f illustrate the empirical variances (EMP) against the theoretical variances
(THR) of the proxy estimators given in Section 4.3. The theoretical variance of post-RL NGD closely
aligns with the empirical variance at the chosen level of projection C. Recall that the theoretical
variance would be exact when no projection is applied. Thus, with a lower level of projection on the
gradient update, we anticipate it to be conservative. On the other hand, the theoretical variance
of post-RL SSP approximates well with moderately large n and small σ. However, in scenarios
with small n and/or large σ, our theoretical variance may underestimate the reality due to the
approximation’s reliance on a first-order Taylor expansion. Therefore, one can include higher-order
terms for better approximation. In setting 3, where n and σ are fixed, as the linkage error vanishes,
the variance reduces as a result of the smaller DP noise needed.

5.2. Application to Synthetic Data. Due to privacy concerns, pairs of datasets containing per-
sonal information, which serve as quasi-identifiers, are typically not made public. We instead synthe-
size from a pair of generated quasi-identifiers datasets and real data for regression, as in Chambers
et al. (2021). For quasi-identifiers, we take advantage of the datasets generated by the Freely Ex-
tensible Biomedical Record Linkage (Febrl), which are available in the module RecordLinkage by
Bruin (2022) in Python. The pair of datasets for linkage we use correspond to 5000 individuals.
The domain indicator (state) is used for blocking. The record linkage is performed based on the
Jaro-Winkler score (Jaro, 1989) or exact comparison on 6 quasi-identifiers (names, date of birth,
address, etc.). The maximum score is 6 for pairs that have exact alignment. A threshold of 4 is
chosen to link the records. For those left unlinked, we assign random links to ensure one-to-one
linkage. A unique identifier is available in the dataset for verification purposes. The resulting
linkage accuracy for the 9 blocks are γ = (0.880, 0.903, 0.918, 0.938, 0.905, 0.875, 0.898, 0.917, 0.898),
making the overall accuracy 92.5%. We adopt the ELE model for Q and estimate it using γ.

On the other hand, an anonymous dataset for regression comes from the Survey on Household
Income and Wealth (SHIW) from the Bank of Italy (2012). The net disposable income and con-
sumption are the explanatory variable X and the response y, respectively. Since the SHIW dataset
is larger, consisting of 8151 data points, we drop the outliers and randomly draw 5000 records and
synthesize them with the Febrl dataset. Figure 4 depicts the setup of the synthesization process.
Using the unique identifier from the Ferlb dataset, the regression variables (X,y) are appended
to the quasi-identifiers (ΦA,ΦB), resulting in two separate datasets: (ΦA, X) and (ΦB ,y). Then,
record linkage is performed by comparing ΦA and ΦB to output the linked data (X, z) and the
matrix Q.
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Ferlb: (ΦA,ΦB)

SHIW: (X,y)

(ΦA, X)

(ΦB ,y)

(X, z, Q)
synthesize output

Figure 4. Synthesization. The Ferlb dataset provides quasi-identifiers (ΦA,ΦB), and the
SHIW dataset provides regression variables (X,y).

To apply the proposed DP algorithms to the synthesized dataset, we set the (hyper)parameters
as follows. The privacy budget is given by (ϵ, δ) = (1, 8.5 × 10−5). The variance of the random
error, σ2, is estimated by the MSE. The upper bounds in Assumptions (A1)-(A3) are set as: M = 1,
c0 = 1, cx = max(X) = 2.78. In the NDG method, the projection level C is set to 1.2.

To illustrate the importance of propagating linkage uncertainty when conducting downstream
regression, we also apply the non-RL version of NGD and SSP algorithms. We obtain the non-RL
regression results by running post-RL NGD and post-RL SSP methods with M set to 0 and without
converting X into W . This is equivalent to applying the non-RL methods discussed in Cai et al.
(2021) and Sheffet (2017) to the linked set (X, z) as if it were perfectly linked.

NGD on (X, z) Post-RL NGD NGD on (X, z)
(fewer iterations)

Post-RL NGD
(fewer iterations)

SSP on (X, z) Post-RL SSP

0.4

0.6

0.8

1.0

1.2

Figure 5. Boxplots of DP estimates based on 1000 repetitions with (ϵ, δ) = (1, 8.5× 10−5).
The red dashed line indicates the OLS estimate. The proposed post-RL algorithms are
compared with the non-RL “NGD” and “SSP” methods applied to (X, z) (i.e., without
accounting present linkage errors). The third and fourth columns represent the two NGD
methods running for T = ⌈L2 ln(c20n)/3⌉ iterations.

Figure 5 displays the boxplots of the estimates of each algorithm. For each algorithm, a total
of 1000 repetitions are done in order to reflect the randomness of the injected noise for privacy
purposes. The variables X and y are standardized before conducting simple linear regression. The
OLS estimator on (X,y) (dashed line) is plotted for comparison. As can be seen, the DP estimators
by running (non-RL) NGD and SSP on (X,z) directly are excessively biased as a consequence of
ignoring linkage errors, even when the overall linkage accuracy is as high as 92.5%. Conversely,
the results of post-RL NGD and post-RL SSP yields estimates centered around the OLS estimator
but with higher variances, attributed to the cost of bias correction. Post-RL NGD is more flexible
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due to hyperparameter tuning. Additionally, we run the NGD methods for fewer iterations with
T = ⌈L2 ln(c20n)/3⌉, which is one-third of the value recommended by theory. We have found that this
approach yields smaller variance while still producing accurate results in finite samples. Therefore,
the theoretical number of iterations T = ⌈L2 ln(c20n)⌉ may be conservative in some circumstances.
Moderately reducing T may lead to better results.

6. Discussion

In this paper, we propose two differentially private algorithms for linear regression on a linked
dataset that contains linkage errors, by leveraging the existing work on (1) linear regression after
record linkage, and (2) differentially private linear regression. Figure 6 displays the connections
among the related areas at a high level, including PPRL and SMPC mentioned in Sections 1 and
2.3. Our work is the first one to simultaneously consider the linkage uncertainty propagation and
the privatization of the output. It also complements the area of PPRL where the main concern is
the data leakage among different parties. However, we do not discuss how to link the records in
the first place and thus the security issues of the linkage process are beyond our scope. Instead,
we treat record linkage from a secondary perspective: we begin with linked data prepared by an
external entity and we have limited information about the linkage quality.

Record linkage
Regression
analysis

Secure protocol
Private output

Our scope

Statistical RL model

PPRL
DP-based

methodSMPC

Figure 6. Diagram of related research areas. A secure protocol ensures no data is revealed
to external parties during the linkage process.

Specifically, we propose two post-RL algorithms based on the noisy gradient descent and sufficient
statistics perturbation methods from the DP literature. We provide privacy guarantees and finite-
sample error bounds for these algorithms and discuss the variances of the private estimators. Our
simulation studies and the application demonstrate the following: (1) the proposed estimators
converge as the sample size increases; (2) post-RL linear regression incurs a higher cost than the
non-RL counterpart in terms of the privacy-accuracy tradeoff; (3) The NGD method is flexible
with hyperparameter tuning and can be applied to more general optimization problems; (4) SSP is
specific to the least-squares problem, offering greater budget efficiency and more accurate results
provided that the random error of the regression model is not too large.

There are different directions to extend our work. Note that there may be different scenarios
of linking between the two datasets of the same set of entities. Assuming one-to-one linkage, as
in our paper, is a canonical scenario. Although we do not explore it, we expect that our methods
can be extended to other scenarios (e.g., one-to-many linkage) where Q still makes sense. Extra
assumptions may be required when determining the relevant sensitivities for privacy purposes.
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One can also consider record linkage from a primary perspective. In addition to the traditional
Fellegi–Sunter model, Bayesian approaches and machine learning-based methods have gained pop-
ularity. The record linkage may take forms other than the matching probability matrix adopted
here. Furthermore, when privacy concerns arise during the linkage process involving different par-
ties, PPRL and SMPC protocols become essential. Tackling all the challenges depicted in Figure 6
simultaneously with a single efficient tool is of great practical use and significance. This interdisci-
plinary challenge requires expertise in both statistics and computer science.

Another important direction is exploring related statistical problems in the post-RL context,
with or without privacy constraints. For example, confidence intervals and hypothesis testing are
fundamental statistical inference tools. Other potential problems that interest statisticians include
high-dimensional linear regression and ridge regression.

Appendix A. Proofs

A.1. Lemmas. The lemmas here support the proofs in Section A.2.

Lemma A.1. If the minimum and maximum eigenvalues of W⊤W/n satisfy 0 < a < λmin(W
⊤W/n) ≤

λmax(W
⊤W/n) < b for some constant 1 < L < ∞, then the loss function Ln(β) =

1
2n (z−Wβ)⊤(z−

Wβ) is b-smooth and a-strongly convex.

Proof. Since ∇Ln(β) =
1
n (W

⊤Wβ −W⊤z), then for any β1,β2,

(∇Ln(β1)−∇Ln(β2))
⊤(β1 − β2) = (β1 − β2)

⊤W⊤W

n
(β1 − β2)

≥ λmin

(
W⊤W

n

)
∥β1 − β2∥2

≥ a∥β1 − β2∥2.

By definition, Ln(β) is a-strongly convex.
For smoothness, we have

∥∇Ln(β1)−∇Ln(β2)∥ =

∥∥∥∥W⊤W

n
(β1 − β2)

∥∥∥∥
≤
∥∥∥∥W⊤W

n

∥∥∥∥ ∥β1 − β2∥

= λmax

(
W⊤W

n

)
∥β1 − β2∥

≤ b∥β1 − β2∥.

The second equality is due to the fact that ∥A∥ = |λmax(A)| for symmetric matrix A. By definition,
Ln(β) is b-smooth.

One can have a neater proof using alternative definitions (See Eq. (4) and (10) in Robert
M. Gower and Hendrikx, 2019 for a twice differentiable function:

(1)f is µ–strongly convex if λmin(∇2f) ≥ µ;
(1)f is L-smooth if λmax(∇2f) ≤ L.

□

Lemma A.2 (Bubeck, 2015, Proof of Theorem 3.10.). Let f be α-strongly convex and β-smooth
on X , and x∗ be the minimizer of f on X . Then projected gradient descent with step size η = 1

β
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satisfies for t ≥ 0,

∥xt+1 − x∗∥2 ≤
(
1− α

β

)
∥xt − x∗∥2.

Lemma A.3. ∥a+ b∥2 ≤ (1 + c2)∥a∥2 + (1 + 1/c2)∥b∥2 for any scalar c ̸= 0.

Proof. Since

c2∥a∥2 + 1

c2
∥b∥2 − 2∥a∥∥b∥ =

(
∥ca∥ −

∥∥∥∥1cb
∥∥∥∥)2

≥ 0,

it follows that

∥a+ b∥2 ≤ (∥a∥+ ∥b∥)2 ≤ ∥a∥2 + ∥b∥2 + 2∥a∥∥b∥ ≤ (1 + c2)∥a∥2 + (1 +
1

c2
)∥b∥2.

□

Lemma A.4 (Cai et al., 2021, Lemma A.2). For X1, ..., Xk
i.i.d.∼ χ2

d, ζ > 0, 0 < ρ < 1,

P

 k∑
j=1

ζρjXj >
ρζd

1− ρ
+ s

 ≤ exp

(
−min

(
(1− ρ2)s2

8ρ2ζ2d
,

s

8ρζ

))
.

Lemma A.5 (Sheffet, 2017, Proof of Proposition D.2). For any invertible matrix A and any matrix
B such that (I +BA−1) is invertible,

(A+B)−1 = A−1 −A−1(I +BA−1)−1BA−1.

Lemma A.6. Let X be a d × d symmetric random matrix with i.i.d upper triangle entries. Each
entry has mean 0 and variance σ2. Let y be a d-dimensional random vector, which has mean µ and
covariance matrix Σ. Let ΣXy denote the covariance matrix of Xy. Then, the diagonal entries of
ΣXy are given by

(A.1) (ΣXy)kk = σ2
d∑

i=1

(µ2
i +Σii);

the off-diagonal entries are

(A.2) (ΣXy)kl = σ2(µkµl +Σkl) for k ̸= l.

Proof. Let X = (x1,x2, ...,xd) where xi = (xi1, xi2, ..., xid)
T and y = (y1, y2, ..., yd)

T . Then,

(A.3) Xy =

d∑
i=1

xiyi.

Therefore,

(A.4) Var(Xy) = Var

(
d∑

i=1

xiyi

)
=

d∑
i=1

Var(xiyi) +

d∑
i ̸=j

Cov(xiyi,xjyj).
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For the first term,
Var(xiyi) = E[Var(xiyi | yi)] + Var[E(xiyi | yi)]

= E[y2i Var(xi | yi)] + Var[yiE(xi | yi)]

= E(y2i )Var(xi) + Var(yi)E(xi)

= σ2(µ2
i +Σii)Id.

For i ̸= j,
Cov(xiyi,xjyj) = E[xiyi(xjyj)

T ]− E(xiyi)E(xjyj)

= E[(yiyj)xix
T
j ]− E(xi)E(yi)E(xj)E(yj)

= E(yiyj)E(xix
T
j ),

where
E(yiyj) = E(yi)E(yj) + Cov(yi, yj) = µiµj +Σij ,

and E(xix
T
j ) is a d × d matrix with the (j, i) entry being σ2 and 0 other wise. Putting Var(xiyi)

and Cov(xiyi,xjyj) back in (A.4), we know that Var(Xy) has the diagonal entries

σ2
d∑

i=1

(µ2
i +Σii)

and the (k, l) off-diagonal entry
σ2(µkµl +Σkl).

□

Remark A.1. In Lemma A.6, Var(Xy) is given by σ2(µµT +Σ) with the diagonal entries replaced
by its trace.

Lemma A.7. Let X be a d×d random matrix with EX = 0d×d. Let y be a d-dimensional random
vector that is independent of X. Then, Cov(y, Xy) = 0d×d.

Proof.
Cov(y, Xy) = E[(y − Ey)(Xy − EXy)⊤]

= E[(y − Ey)(Xy − EXEy)⊤]

= E[(y − Ey)(Xy)⊤]

= Eyy⊤EX⊤ − EyEy⊤EX⊤ = 0d×d.

□

Lemma A.8. Let X be a d×d random matrix with EX = 0d×d. Let y be a d-dimensional random
vector. Let z be another d-dimensional random vector that is independent of both X and y and
Ez = 0d. Then, Cov(Xy, Xz) = 0d×d.

Proof.
Cov(Xy, Xz) = E[(Xy − EXy)(Xz − EXz)⊤]

= E[(Xy − EXEy)(Xz − EXEz)⊤]

= E[Xyz⊤X⊤].

Since z is independent of both X and y and the entries of z appear linearly in every entry of
Xyz⊤X⊤. By the zero-expectation of z, Cov(Xy, Xz) = 0d×d.

□
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A.2. Proofs. This section provides the proofs for theorems and lemmas presented in the paper.
To derive this tighter composition for (ϵ, δ)-DP, we utilize the notion of zero-concentrated differ-

ential privacy (zCDP, Bun and Steinke, 2016), defined as follows.

Definition 3 (ρ-zCDP). A randomized mechanism M : Xn → Y is ρ-zero-concentrated-differentially
private (ρ-zCDP) if, for all x ∼ x′ ∈ Xn differing on a single entry and all α ∈ (1,∞),

Dα(M(x)∥M(x′)) ≤ ρα,

where Dα(M(x)∥M(x′)) is the α-Rényi divergence Erven and Harremos, 2014 between the distri-
bution of M(x) and the distribution of M(x′).

Proof of Lemma 2.3. Bun and Steinke, 2016 have shown that, like the classic (ϵ, δ)-DP notion,
ρ-zCDP enjoys properties including basic composition and post-processing. The corresponding
Gaussian mechanism (Proposition 1.6, Bun and Steinke, 2016) states that an algorithm f is ρ-

zCDP after adding Gaussian noise N
(
0,

∆2
f

2ρ

)
to it. In addition, they have shown that ρ-zCDP

implies (ρ+ 2
√

ρ ln(1/δ), δ)-DP (Proposition 1.3, Bun and Steinke, 2016).
Therefore, to achieve (ϵ, δ)-DP, it suffices for the algorithm to be ρ-zCDP with ρ := ϵ+2 ln(1/δ)−

2
√

(ϵ+ ln(1/δ)) ln(1/δ). Using the Gaussian mechanism and basic composition rule of ρ-zCDP, it
suffices to add noise

ut ∼ N
(
0,

T∆2
t

2ρ

)

to ft for all t. Note that if ϵ ≤ 8 ln(1/δ)

2+
√
2

, then ρ ≥ ϵ2

8 ln(1/δ) . Therefore, it suffices to add noise

ut ∼ N
(
0,

4T∆2
t ln(1/δ)

ϵ2

)

to ft for all t.
□

Proof of Theorem 4.1(i). By the composition proposition of differential privacy, to establish that
Algorithm 1 (Post-RL Noisy Gradient Descent) satisfies (ϵ, δ)-differential privacy it suffices to show
that the computation of βt+1 is (ϵ/T, δ/T )-differentially private. According to the Gaussian mech-
anism Theorem 2.1, showing the latter boils down to proving that the sensitivity is controlled at
each gradient step. Let gt+1(βt;X,y, Q) =

∑n
i=1(w

⊤
i β

t − ΠR(zi))wi. We will show that the
ℓ2-sensitivity of gt+1, denoted by ∆g, is bounded by B.

Without loss of generality, we assume the neighboring data sets (X,ΦX ,y,Φy) and (X ′,ΦX′ ,y′,Φy′)

differ in the j-th record. Recall z is a permutation of y satisfying qij = P (zi = yi). Let z′ be a
copy of z but with the entry yj changed to y′j . Recall in the record linkage linear model elaborated
in Lahiri and Larsen, 2005, wi =

∑n
j=1 qijxj , which are convex combinations of rows of X. We

can write wi =
∑

k ̸=j qikxk + qijxj and w′
i =

∑
k ̸=j q

′
ikxk + q′ijx

′
j . From assumption (A1) that
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∥x∥ < cx with probability 1, we know ∥wi∥ < cx almost surely. Then, we have

(A.5)

∥wi −w′
i∥ =

∥∥∥∥∥∥
∑

k ̸=j

qikxk + qijxj

−

∑
k ̸=j

q′ikxk + q′ijx
′
j

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
k ̸=j

(qik − q′ik)xk + (qijxj − q′ijx
′
j)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
k ̸=j

(qik − q′ik)xk + (qij − q′ij)xj + q′ij(xj − x′
j)

∥∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

(qik − q′ik)xk

∥∥∥∥∥+ ∥∥q′ij(xj − x′
j)
∥∥

≤ cx

(
n∑

k=1

|qik − q′ik|+ 2q′ij

)
.

Since Q′ is a doubly stochastic matrix,
∑n

i=1 q
′
ij = 1 for any j. By the arbitrariness of index j,

it follows that

(A.6) max
(X,y,Q)∼(X′,y′,Q′)

n∑
i=1

∥wi −w′
i∥ ≤

n∑
i=1

cx

(
n∑

k=1

|qik − q′ik|+ 2q′ij

)
= cx(∥Q−Q′∥1 + 2).

The sensitivity of gt+1 is
(A.7)
∆g = max

(X,y,Q)∼(X′,y′,Q′)

∥∥gt+1(βt;X,y, Q)− gt+1(βt;X ′,y′, Q′)
∥∥

= max
(X,y,Q)∼(X′,y′,Q′)

∥∥∥∥∥
n∑

i=1

(w⊤
i β

t −ΠR(zi))wi −
n∑

i=1

(w′T
i βt −ΠR(z

′
i))w

′
i

∥∥∥∥∥
≤ max

(X,y,Q)∼(X′,y′,Q′)

n∑
i=1

∥∥w⊤
i β

twi −w′T
i βtw′

i

∥∥+ max
(X,y,Q)∼(X′,y′,Q′)

n∑
i=1

∥ΠR(zi)wi −ΠR(z
′
i)w

′
i∥

=: ∆1 +∆2.

We use ∆1 and ∆2 to denote the two terms on the right of (A.7), respectively. To bound the
first term ∆1, since

∥w⊤
i β

twi −w′T
i βtw′

i∥ = ∥w⊤
i β

t(wi −w′
i +w′

i)−w′T
i βtw′

i∥

= ∥w⊤
i β

t(wi −w′
i) +w⊤

i β
tw′

i −w′T
i βtw′

i∥

= ∥w⊤
i β

t(wi −w′
i) + (wi −w′

i)
Tβtw′

i∥

≤ ∥w⊤
i β

t(wi −w′
i)∥+ ∥(wi −w′

i)
Tβtw′

i∥

≤ ∥wi∥∥βt∥∥wi −w′
i∥+ ∥wi −w′

i∥∥βt∥∥w′
i∥,

then by (A.6), ∆1 can be controlled:

(A.8) ∆1 ≤ max
(X,y,Q)∼(X′,y′,Q′)

n∑
i=1

2Ccx∥wi −w′
i∥ ≤ 2Cc2x(∥Q−Q′∥1 + 2) ≤ 2Cc2x(M + 2).
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For the second term ∆2 = max(X,y,Q)∼(X′,y′,Q′)

∑n
i=1 ∥ΠR(zi)wi −ΠR(z

′
i)w

′
i∥, since

(A.9)

∥ΠR(zi)wi −ΠR(z
′
i)w

′
i∥ = ∥ΠR(zi)(wi −w′

i) + (ΠR(zi)−ΠR(z
′
i))w

′
i∥

≤ ∥ΠR(zi)(wi −w′
i)∥+ ∥(ΠR(zi)−ΠR(z

′
i))w

′
i∥

≤ R∥(wi −w′
i)∥+ cx∥ΠR(zi)−ΠR(z

′
i)∥.

Then,

(A.10)

∆2 ≤ max
(X,y,Q)∼(X′,y′,Q′)

n∑
i=1

(R∥(wi −w′
i)∥+ cx∥ΠR(zi)−ΠR(z

′
i)∥)

= (Rcx(∥Q−Q′∥1 + 2) + 2Rcx).

≤ Rcx(M + 4).

It follows that
∆g ≤ ∆1 +∆2 ≤ 2Cc2x(M + 2) +Rcx(M + 4).

□

Proof of Theorem 4.1(ii). We now show that Algorithm 2 (Post-RL sufficient statistics perturba-
tion) is (ϵ, δ)-differentially private. Let A = (W | z) be the augmented matrix considering linkage
errors. Then A⊤A contains sufficient statistics for the β. Thus, it suffices to show that the sensi-
tivity of A⊤A is controlled by B = Rcx(M + 4) + max{2c2x(M + 2), 2R2}.

Let A′ = (W ′ | z′), where W ′ and z′ come from any neighboring data set, as in the proof of
Theorem 4.1 (i). We have

A⊤A−A′⊤A′ =

(
W⊤W −W ′⊤W ′ 0

0 z⊤z − z′⊤z′

)
+

(
0 W⊤z −W ′⊤z′

z⊤W − z′⊤W ′ 0

)
=: A1 +A2.

By the properties of the norm of block matrices,

∥A1∥ ≤ max{∥W⊤W −W ′⊤W ′∥, ∥z⊤z − z′⊤z′∥}

and
∥A2∥ = ∥W⊤z −W ′⊤z′∥

= ∥W⊤z −W ′⊤z +W ′⊤z −W ′⊤z′∥

≤ ∥(W −W ′)⊤z∥+ ∥W ′⊤(z − z′)∥.
We have

∥W⊤W −W ′⊤W ′∥ = ∥
n∑
i

wiw
⊤
i −

n∑
i

w′
iw

′⊤
i ∥

≤
n∑
i

∥wi(wi −w′
i)

⊤ + (wi −w′
i)w

′⊤
i ∥

≤ 2cx

n∑
i

∥wi −w′
i∥

≤ 2c2x(M + 2),

and
∥z⊤z − z′⊤z′∥ = |y2j − y′2j | ≤ 2R2.
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Note that we can swap the rows of z′ and Q′, such that z and z′ only differ in one record and it
does not change the estimation using Q′ and z′ after swapping. Then,

∥A1∥ ≤ max{2c2x(M + 2), 2R2}.

Since

∥(W −W ′)⊤z∥ = ∥
n∑
i

(wi −w′
i)zi∥ ≤ R

n∑
i

∥wi −w′
i∥ ≤ Rcx(M + 2)

and

∥W ′⊤(z − z′)∥ = ∥
n∑
i

w′
i(zi − z′i)∥ =

n∑
i

∥wi∥|zi − z′i| ≤ cx

n∑
i

|zi − z′i| ≤ 2Rcx,

we have
∥A2∥ ≤ Rcx(M + 4).

Putting the upper bounds together, we derive

max
A,A′

∥A⊤A−A′⊤A′∥ ≤ Rcx(M + 4) + max{2c2x(M + 2), 2R2}.

□

Proof of Lemma 4.2. To establish the behavior of the expected squared-error loss of β̂OLS, first
note that since

0 <
1

L
< dλmin

(
X⊤X

n

)
≤ dλmax

(
X⊤X

n

)
< L,

we have
d

Ln
< λmax(X

⊤X)−1 ≤ λmax(X
⊤X)−1 <

dL

n
.

Therefore, tr(X⊤X)−1 =
∑d

i=1 λi((X
⊤X)−1) = Θ(d2/n) where λi, i = 1, . . . , d are the eigenval-

ues of (X⊤X)−1. □

Proof of Lemma 4.3. Note that β̂RL is an unbiased estimator for β, and hence

(A.11)

E∥β̂RL − β∥2 = E

[
d∑

i=1

(β̂RL
i − βi)

2

]

=
d∑

i=1

E(β̂RL
i − βi)

2

=

d∑
i=1

Var(β̂RL
i )

= tr(ΣRL).

□

Proof of Theorem 4.4. To establish an upper bound of the excess error of the private estimator,
i.e., ∥β̂priv − β̂RL∥2, for Algorithm 1, we work under the event E = {ΠR(zi) = zi,∀i ∈ [n]}. By
the concentration bound of the Gaussian distribution, with the choice of R = σ

√
2 lnn, P(E) ≥

1− c1 exp(−c2 lnn) where c1 and c2 are constants.
Recall that the loss function Ln(β)

def
= 1

2n (z − Wβ)⊤(z − Wβ). The assumption about the
eigenvalues of W⊤W/n implies that Ln(β) is L

d -smooth and 1
dL -strongly convex. See the proof in
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Lemma A.1. Under E , the iterate βt+1 = ΠC(β
t−η∇Ln(β

t)+ut). Let β̂t+1 = ΠC(β
t−η∇Ln(β

t))

be the unperturbed iterate, then ∥βt+1 − β̂t+1∥ ≤ ∥ut∥. Since (A3) says that ∥β∥ ≤ c0, we can
assume ∥β̂RL∥ ≤ c0 without loss of generality where β̂RL = argmin

β
Ln(β). Then, β̂RL is the same

as β̂RL def
= argmin

∥β∥≤C

Ln(β) by setting C = c0. By Lemma A.2, with η = d
L , it then follows that

∥β̂t+1 − β̂RL∥2 ≤
(
1− 1

L2

)
∥βt − β̂RL∥2.

Let c ≥ 2 be some constant, then by Lemma A.3, we have the following for the noisy iterate βt+1:

∥βt+1 − β̂RL∥2 = ∥β̂t+1 − β̂RL + βt+1 − β̂t+1∥2

≤
(
1 +

1

cL2

)
∥β̂t+1 − β̂RL∥2 +

(
1 + cL2

)
∥ut∥2

≤
(
1 +

1

cL2

)(
1− 1

L2

)
∥βt − β̂RL∥2 +

(
1 + cL2

)
∥ut∥2

≤
(
1− c− 1

cL2

)
∥βt − β̂RL∥2 +

(
1 + cL2

)
∥ut∥2.

The above recursive formula yields

∥β̂priv − β̂RL∥2 ≤
(
1− c− 1

cL2

)T

∥β0 − β̂RL∥2 +
(
1 + cL2

) T−1∑
k=0

(
1− c− 1

cL2

)k

∥uT−1−k∥2.

Setting T =

⌈
ln(c20n)/ ln

(
1− c− 1

cL2

)⌉
, the first term

(
1− c− 1

cL2

)T

∥β0 − β̂RL∥2 ≤ 1

n
, given

that β0 = 0 and ∥β̂RL∥ ≤ c0. When c is sufficiently large, T can be set to
⌈
L2 ln(c20n)

⌉
.

To control the second term, we apply Lemma A.4 with ρ = 1−(c−1)/(cL2) and ζ = 2η2TB2 ln(1/δ)
n2ϵ2

which is the variance of uT−1−k for k = 1, ..., T − 1. Provided δ = o(1/n), let s = K1ζd for some
sufficiently large constant K1 so ρζd

1−ρ + s = Θ(ζd) where

ζd = 4η2TB2 ln(1/δ)

n2ϵ2
· d

= 4

(
d

L

)2 ⌈
L2 ln(c20n)

⌉
(σ
√
2 lnncx(M + 4) + 2c0c

2
x(M + 2))2

ln(1/δ)

n2ϵ2
· d

= O

(
σ2d3 ln2 n ln(1/δ)

n2ϵ2

)
.

That is, the noise term
T−1∑
k=0

(
1− c− 1

cL2

)k

∥uT−1−k∥2 is then controlled by a corresponding big-O

statement with probability at least 1− e−c3d, where c3 = min
(

(1−ρ2)K2
1

8ρ2 , K1

8ρ

)
, hence

∥β̂priv − β̂RL∥2 =
1

n
+O

(
σ2d3 ln2 n ln(1/δ)

n2ϵ2

)
.

□

Proof of Theorem 4.5. Algorithm 2 is also analyzed under E = {ΠR(zi) = zi,∀i = 1, . . . , n} as in
Theorem 4.5. Then, with R = σ

√
2 lnn, we have P(E) ≥ 1− c1 exp(−c2 lnn).
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By Lemma A.5,

(A.12) (W⊤W + U)−1 = (W⊤W )−1 − (W⊤W )−1 · (I + U(W⊤W )−1)−1 · U(W⊤W )−1.

Then,

(A.13)

β̂priv − β̂RL = (W⊤W + U)−1(W⊤z + u)− (W⊤W )−1W⊤z

= (W⊤W )−1u− (W⊤W )−1 · (I + U(W⊤W )−1)−1 · U(W⊤W )−1(W⊤z + u)

= (W⊤W )−1u− (W⊤W )−1 · (I + U(W⊤W )−1)−1 · U(β̂RL + (W⊤W )−1u)

To bound ∥β̂priv−β̂RL∥, we need to bound the norms of (W⊤W )−1, U , u, and (I+U(W⊤W )−1)−1.
First, by the assumption (A4):

0 <
1

L
< dλmin

(
W⊤W

n

)
≤ dλmax

(
W⊤W

n

)
< L

for some constant 1 < L < ∞, we have

d

Ln
≤ λmin(W

⊤W )−1 ≤ λmax(W
⊤W )−1 ≤ Ld

n
.

Then,

(A.14) ∥(W⊤W )−1∥ = λmax(W
⊤W )−1 = O

(
d

n

)
.

Recall from Algorithm 2 that U is a Gaussian symmetric matrix with upper triangle given by iid
N(0, ω). The Gaussian concentration bounds give that w.p. ≥ 1− e−c3d, we have

(A.15) ∥U∥ = O(ω
√
d) = O

(
σ2 lnn

√
d ln(1/δ)

ϵ

)
.

The result (A.15) is from random matrix theory Vershynin, 2018, Corollary 4.4.8. Since the vector
norm is bounded by the norm of the matrix that contains the vector as a column, thus we also have

(A.16) ∥u∥ = O

(
σ2 lnn

√
d ln(1/δ)

ϵ

)
.

For ∥(I + U(W⊤W )−1)−1∥, consider its Taylor series:

(A.17) (I + U(W⊤W )−1)−1 =

∞∑
i=0

(−U(W⊤W )−1)i

W. p. ≥ 1− e−c3d,

∥U(W⊤W )−1∥ ≤ ∥U∥∥(W⊤W )−1∥ = O

(
σ2d lnn

√
d ln(1/δ)

nϵ

)
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is going to zero as n → ∞. Therefore, the Taylor Series (A.17) converges. Then,

(A.18)

∥(I + U(W⊤W )−1)−1∥ = ∥
∞∑
i=0

(−U(W⊤W )−1)i∥

≤
∞∑
i=0

∥(−U(W⊤W )−1)i∥

≤
∞∑
i=0

∥U(W⊤W )−1)∥i

=
1

1− ∥U(W⊤W )−1)−1∥
= O(1)

w.p. ≥ 1− e−c3d. Plugging all the bounds into (A.13), we have derived

∥β̂priv − β̂RL∥2 = O

(
σ4d3 ln2 n ln(1/δ)

n2ϵ2

)
.

□

Proof of Corollary 4.1. The proof is completed by using the inequality

∥β̂priv − β∥2 ≤ 2(∥β̂RL − β∥2 + ∥β̂priv − β̂RL∥2).

□

Proof of Theorem 4.6. Consider the non-projected estimator

(A.19) βt+1 = βt − η

n
W⊤(Wβt − z) + ut.

Let A
def
=

η

n
W⊤W and B

def
=

η

n
W . From the recursive form βt+1 = (Id − A)βt + B⊤z + ut, we

derive for β̂priv def
= βT :

(A.20) β̂priv = (Id −A)Tβ0 +

T∑
t=1

(Id −A)t−1(B⊤z + uT−t).

Then,

(A.21) Var(β̂priv) =

T∑
t=1

(Id −A)t−1 ·B⊤ΣzB ·
T∑

t=1

(Id −A)t−1 + ω2
T∑

t=1

(Id −A)2t−2.

□

Proof of Theorem 4.7. By rewriting β̂priv as in (A.13) and ignoring the remainder of the first-order
Taylor expansion in (A.17), we have

(A.22) β̂priv = β̂RL + (W⊤W )−1u− (W⊤W )−1U β̂RL − (W⊤W )−1U(W⊤W )−1u.

Then,

(A.23)

Var(β̂priv) = Var(β̂RL) + Var[(W⊤W )−1u] + Var[(W⊤W )−1U β̂RL]

+ Var[(W⊤W )−1U(W⊤W )−1u]− 2Cov(β̂RL, (W⊤W )−1U β̂RL)

− 2Cov((W⊤W )−1u, (W⊤W )−1U(W⊤W )−1u)

+ 2Cov((W⊤W )−1U β̂RL, (W⊤W )−1U(W⊤W )−1u).
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Since u ∼ N (0, ω2Id), we have

Var((W⊤W )−1u) = ω2(W⊤W )−2.

For the third term, let Σ1
def
= Var(U β̂RL). By Lemma A.6,

(Σ1)kk = ω2
d∑

i=1

(β2
i +ΣRL

ii )

and
(Σ1)kl = ω2(βkβl +ΣRL

kl ).

For the fourth term, let Σ2
def
= Var(U(W⊤W )−1u) and let Σ′ = Var((W⊤W )−1u) = ω2(W⊤W )−2.

(Σ2)kk = ω2
d∑

i=1

Σ′
ii

and
(Σ2)kl = ω2Σ′

kl.

On the other hand, the covariances in (A.23) are all zeros by Lemmas A.7 and A.8 due to the
independencies and zero expectations of U and u. Then putting them together, we have

(A.24) Σ = ΣRL + (W⊤W )−1(ω2Id +Σ1 +Σ2)(W
⊤W )−1.

Note that Σ1 and Σ2 have a common factor ω2. By rescaling Σ1 and Σ2, we have the expression
for Σ as stated in the theorem.

□
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