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Abstract: In some models of physics beyond the Standard Model (SM), one of the

leading low energy consequences of the model appears in the form of the chromo-electric

dipole moments (CEDMs) of the gluons and light quarks. We examine if these CEDMs can

be distinguished from the QCD θ-term through the experimentally measurable nuclear and

atomic electric dipole moments (EDMs) in both cases with and without the Peccei-Quinn

(PQ) mechanism solving the strong CP problem. We find that the nucleon EDMs show

a distinctive pattern when the EDMs are dominantly induced by the light quark CEDMs

without the PQ mechanism. In the presence of the PQ mechanism, the QCD θ-parameter

corresponds to the vacuum value of the axion field, which might be induced either by

CEDMs or by UV-originated PQ breaking other than the QCD anomaly, for instance the

PQ breaking by quantum gravity effects. We find that in case with the PQ mechanism

the nucleon EDMs have a similar pattern regardless of what is the dominant source of

EDMs among the CEDMs and θ-term, unless there is a significant cancellation between

the contributions from different sources. In contrast, some nuclei or atomic EDMs can have

characteristic patterns significantly depending on the dominant source of EDMs, which may

allow identifying the dominant source among the CEDMs and θ-term. Yet, discriminating

the gluon CEDM from the QCD θ-parameter necessitates additional knowledge of low

energy parameters induced by the gluon CEDM, which is not available at the moment.

Our results imply that EDMs can reveal unambiguous sign of CEDMs while identifying

the origin of the axion vacuum value, however it requires further knowledge of low energy

parameters induced by the gluon CEDM.
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1 Introduction

Permanent electric dipole moments (EDM) of particles are known to provide a sensitive tool

to probe CP violation beyond the Standard Model (SM) of particle physics. Furthermore,

the sensitivity of the experimental search for EDMs is expected to be significantly improved

within the foreseeable future (see e.g. [1]). As is well known, CP violation in the SM (up to

dim = 4 operators) can be described by the two angle parameters, the Kobayashi-Maskawa

phase δKM inducing CP violation in the weak interactions and the QCD angle θ̄ for CP

violation in the strong interactions. These two angle parameters are determined by the SM

parameters as [2, 3]

δKM = arg · det([YuY
†
u , YdY

†
d ]), θ̄ = θ0 + arg · det(YuYd), (1.1)

where Yu and Yd are the complex Yukawa couplings of the 3 generations of the up-type

and down-type quarks, and θ0 is the bare QCD angle. CP violating phenomena associated

with δKM have been experimentally well tested, implying δKM = O(1) [4]. On the other
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hand, CP violation by θ̄ in the strong interactions is not observed yet, which results in the

stringent upper bound [5–9]

|θ̄| ≲ 10−10. (1.2)

Although δKM is of order unity, EDMs induced by δKM are highly suppressed by the

involved quark masses and mixing parameters [10]. As a result they all have a value

well below the current experimental bounds. On the other hand, θ̄ can generate hadronic

EDMs near the current bound, if θ̄ has a value near 10−10. Generically there can also

be CP-violating interactions beyond the SM (BSM), which may result in EDMs again

near the current experimental bounds. Therefore, once a nonzero hadronic EDM were

detected experimentally, one of the key questions is whether it originates from θ̄ or from

BSM CP violation. To answer this question, one needs to measure multiple EDMs in the

experimental side, and examine in the theory side if the observed pattern of EDMs can be

explained by θ̄ or requires an alternative source of CP violation. Previous studies along

this line include [11–14]. Generically one may consider an effective theory defined at a scale

around the QCD scale, involving the flavor-conserving CP-odd effective interactions

∆L =
g2s

32π2
θ̄GaµνG̃aµν +

∑
i

λiOi, (1.3)

and examine which region of the parameter space of {θ̄, λi} can explain the observed

pattern of EDMs, where Oi denote the non-renormalizable (dim > 4) flavor-conserving

CP-odd local operators of light fields, which would describe the low energy consequence of

generic BSM physics existing at higher energy scales, and λi are their Wilson coefficients.

Such effective interactions then include the chromo-electric dipole moments (CEDMs) of

the gluons and light quarks, EDMs of the light quarks and leptons, and various forms of

four-fermion operators (see e.g. [12, 14]).

In view of the expression (1.1) for δKM and θ̄, the smallness of θ̄ requires a severe fine-

tuning. An appealing solution to this problem is to introduce a global U(1) Peccei-Quinn

(PQ) symmetry [15–17] (see e.g. [18–20] for reviews) which is non-linearly realized at least

in low energy limits, under which the associated Nambu-Goldstone boson, the axion a(x),

transforms as

U(1)PQ : a(x) → a(x) + constant. (1.4)

A key assumption involved in this solution is that U(1)PQ is broken dominantly by the

QCD anomaly, i.e. by the axion coupling to the gluons of the form

g2s
32π2

a(x)

fa
GaµνG̃aµν , (1.5)

to the extent that the resulting axion vacuum value is small enough to satisfy

θ̄ =
⟨a(x)⟩
fa

≲ 10−10. (1.6)
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Yet, the PQ mechanism does not predict the value of θ̄ = ⟨a⟩/fa. Generically there can

be a variety of model-dependent physics generating nonzero axion vacuum value, which may

give any value of θ̄ below 10−10. It includes for instance (i) BSM physics generating the CP-

odd effective interactions
∑

i λiOi in (1.3), which would shift the axion vacuum value when

it is combined with the U(1)PQ-breaking by the QCD anomaly, as well as (ii) additional,

typically UV-originated, U(1)PQ-breaking other than the QCD anomaly, e.g. quantum

gravity effects, which would by itself generate an axion potential at the corresponding

UV scale. EDMs then may provide a way to discriminate these two potentially dominant

origins of the axion vacuum value from each other, since the origin (i) affects EDMs both

directly and through the induced axion vacuum value, while the origin (ii) affects EDMs

mostly through the induced axion vacuum value. This suggests that EDMs can provide

information not only on BSM CP violation, but also on the origin of the axion vacuum

value, therefore on the quality of the PQ symmetry characterized by the strength of UV-

originated U(1)PQ-breaking other than the QCD anomaly.

In this paper, we examine if certain class of BSM CP violations can give rise to a

distinguishable pattern of nucleon and atomic EDMs from the pattern due to θ̄, in both

cases with and without the PQ mechanism. We also examine if these EDMs can identify

the origin of the axion vacuum value, specifically if they can discriminate the axion vacuum

value θ̄UV = ⟨a⟩UV/fa induced by the origin (ii) from θ̄BSM = ⟨a⟩BSM/fa induced by the

origin (i). For simplicity, we focus on BSM CP violation whose low energy consequence

appears mainly in the form of the gluon and quark CEDMs around the weak scale.

We first find that the nucleon EDMs show a distinctive pattern when the EDMs are

dominantly induced by the light quark CEDMs without the PQ mechanism. In the presence

of the PQ mechanism, CEDMs need to be compared with θ̄UV. We then find that the

nucleon EDMs due to the gluon or light quark CEDMs in the presence of the PQ mechanism

have a similar pattern as those due to θ̄UV, unless there is a significant cancellation between

the contributions from different sources. Note that in this case the EDMs due to CEDMs

include the contributions from θ̄BSM induced by CEDMs. In contrast, some light nuclei and

atomic EDMs due to the light quark CEDMs have characteristic patterns distinguishable

from the pattern due to θ̄UV. Yet those EDMs can not unambiguously distinguish the

gluon CEDM from θ̄UV, mainly due to the lack of knowledge about low energy parameters

induced by the gluon CEDM. Our results imply that EDMs can provide an unambiguous

sign of BSM CP violation while identifying the origin of the axion vacuum value, however

it requires further knowledge on low energy parameters associated with BSM CP violation.

The organization of this paper is as follows. In the next section, we briefly discuss the

quality of the PQ symmetry which is about the axion vacuum value in the presence of both

BSM CP violation and UV-originated U(1)PQ breaking other than the QCD anomaly. In

section 3, we discuss BSM CP violation mediated mainly by the SM gauge bosons and/or

the Higgs boson, as well as the resulting CEDMs of the gluons and light quarks at low

energy scales. Section 4 is devoted to the analysis of nuclear and atomic EDMs induced

by θ̄ and the gluon and quark CEDMs in both cases with and without the PQ mechanism.

In section 5, we provide some examples of BSM models yielding low energy CP violations

dominated by the gluon and light quark CEDMs. Section 6 is the conclusion.
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2 PQ quality with BSM CP violation

In models with QCD axion, the axion potential is generically given by

V (a) = VQCD(a) + δV (a) (2.1)

where

VQCD(a) ≃ − f2πm
2
π

(mu +md)

√
m2
u +m2

d + 2mumd cos(a/fa) (2.2)

is the axion potential induced by the U(1)PQ-breaking by the QCD anomaly [20], i.e. the

axion coupling (1.5), which has the global minimum1 at ⟨a⟩ = 0, and δV denotes the

model-dependent additional axion potential which has a minimum at ⟨a⟩ ̸= 0. Here mu,d

are the light quark masses.

Generically there can be two different sources of δV . The first is the combined effect of

the PQ-breaking by the QCD anomaly and a CP violating effective interaction of gluons

and/or light quarks around the QCD scale where the QCD anomaly becomes important.

This includes, first of all, the SM contribution [21]

δVSM ∼ 10−19f2πm
2
π sin δKM sin(a/fa), (2.3)

which results in

θ̄SM =
⟨a⟩SM
fa

∼ 10−19 sin δKM, (2.4)

which is too small to be phenomenologically interesting in the near future. On the other

hand, in the presence of BSM physics generating CP-odd effective interactions around the

QCD scale, the resulting θ̄ might be as large as 10−10. For instance, for the effective

interactions given by

Leff =
∑
i

λiOi, (2.5)

where Oi are non-renormalizable flavor-conserving CP-odd effective interactions of the

gluons and/or light quarks and λi are the associated Wilson coefficients, one finds

fa
∂δVBSM

∂a

∣∣∣∣
a=0

∼
∑
i

λi

∫
d4x

〈 g2s
32π2

GG̃(x)Oi(0)
〉
a=0

. (2.6)

The resulting shift of the axion vacuum value is given by

θ̄BSM =
⟨a⟩BSM

fa
∼
∑

i λi
∫
d4x

〈
g2s

32π2GG̃(x)Oi(0)
〉
a=0

f2πm
2
π

(2.7)

which can have any value below 10−10.

1Here the axion field is defined in such a way that ⟨a⟩/fa is identified as the QCD angle θ̄ violating CP

in the strong interactions, which can be always done by an appropriate constant shift of the axion field.
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The second potentially dominant source of δV is additional, typically UV-originated,

PQ breaking other than the QCD anomaly. For instance, it has been argued that generically

quantum gravity does not respect global symmetries, so can generate a U(1)PQ-breaking

axion potential around the scale of quantum gravity [22–25]. Study of axions in string

theory and also of axionic Euclidean wormholes imply that string/brane instantons or

gravitational wormholes generate (For reviews, see for instance [26, 27].)

δVUV = Λ4
UVe

−Sins cos(a/fa + δUV), (2.8)

where ΛUV is a model-dependent UV scale2, Sins is the Euclidean action of the associated

string/brane instanton or of the Euclidean wormhole, and δUV is a phase angle which is

generically of order unity. This shifts the axion vacuum value as

θ̄UV =
⟨a⟩UV

fa
∼ e−SinsΛ4

UV sin δUV/f
2
πm

2
π (2.9)

which again can have any value below 10−10.

As noted in the previous section, the above two origins of nonzero axion vacuum value

may give distinguishable patterns of EDMs because the effective interaction (2.5) affects

EDMs both directly and through the induced axion vacuum value, while the additional

U(1)PQ breaking generating the axion potential (2.8) affects EDMs mostly through the

induced axion vacuum value. As we will see, for the case that BSM CP violation around

the QCD scale is dominated by the gluon and light quark CEDMs, the two origins can give

distinguishable patterns of EDMs.

3 BSM CP violation mediated by the SM gauge and Higgs bosons

As for BSM CP violation, for simplicity, our analysis focuses on a class of BSM scenarios

in which the new physics sector communicates with the SM sector dominantly through the

SM gauge interactions and/or the couplings to the SM Higgs boson, which has been dubbed

“universal” theories [30]. The new physics sector can generally involve CP-violating (CPV)

interactions. In such cases integrating out heavy fields of the new physics sector would give

rise to CP-odd dimension-six operators composed of the SM gauge fields and the Higgs

field as follows,

LCPV(µ = Λ) =c
G̃
fabcGaµα G

bδ
µ G̃

cα
δ + c

W̃
ϵabcW aµ

α W bδ
µ W̃

cα
δ

+ |H|2
(
c
HG̃

GaµνG̃
aµν + c

HW̃
W a
µνW̃

aµν + c
HB̃

BµνB̃
µν
)

+ c
HW̃B

H†τaHW̃ a
µνB

µν

(3.1)

with the Wilson coefficients ci defined at a certain scale µ = Λ which is around the mass

scale of the heavy fields in the new physics sector. Here fabc is the structure constant

for the color gauge group SU(3)c, ϵ
abc is the structure constant for the weak gauge group

2Often it is given by Λ4
UV ∼ m3/2M

3
Pl or m

2
3/2M

2
Pl [26, 28, 29] for axions in string theory, where MPl ≃

2× 1018 GeV is the reduced Planck scale and m3/2 is the gravitino mass.
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SU(2)W , and τa is the Pauli matrix for SU(2)W . At one-loop level the following operators

can also be induced either directly or by the renormalization group evolution (RGE) of the

operators in Eq. (3.1):∑
q=u,d

∑
X=G,W,B

i(cqX)ijQ̄Liσ
µνXµνqRjH

(∗) +
∑

X=W,B

i(ceX)ijL̄iσ
µνXµνeRjH

(∗) + h.c., (3.2)

where i, j are flavor indices, and H(∗) ≡ H or H∗ in order to make the operators invariant

under the SM gauge group. The CP violating phenomenology of the lagrangian (3.1) and

(3.2) was first analyzed in [31]. The full one-loop RG equations of the involved operators

over the scales between the BSM scale and the electroweak scale are given in appendix A

using the results of [32–35]. Here we only show the dominant RGE effect involving the

QCD coupling and the flavor-diagonal part:

16π2
dc
G̃

d lnµ
= (Nc + 2nF )g2scG̃ ,

16π2
d(cqG)ii
d lnµ

= −
(

8

3
Nc +

5

Nc
− 2

3
nF

)
g2s(cqG)ii + (Yq)ii

(
−4gscHG̃ + 3Ncg

2
scG̃
)
,

16π2
dc
HG̃

d lnµ
= −2

3
(11Nc − 2nF )g2scHG̃ + (2igsTr[YucuG + YdcdG] + h.c.) ,

(3.3)

where Nc = 3 is the number of the QCD color, nF = 6 is the number of the Dirac quarks,

and (Yq)ii is the flavor-diagonal quark Yukawa coupling.

Below the electroweak scale the Higgs field and W/Z-field are integrated out. Con-

sequently, the leading effective CPV interactions from the operators in Eq. (3.1) and Eq.

(3.2) are given by

LCPV(µ = mW ) =
1

3
wfabcGaµα G

bδ
µ G̃

cα
δ − i

2

∑
q

d̃qgsq̄σ
µνGµνγ5q −

i

2

∑
f=q,ℓ

dfef̄σ
µνFµνγ5f

+
g2s

32π2
θ(mW )GaµνG̃

aµν ,

(3.4)

where θ(mW ) includes the threshold correction from the c
HG̃

-term in Eq. (3.1), and the

Wilson coefficients are determined by the following matching conditions at µ = mW :

1

3
w = cG̃ ,

gsd̃qi =
√

2v(cqG)ii ,

e dfi =
√

2v(swcfW + cwcfB)ii .

(3.5)

Here v = 246 GeV, sw = sin θw, cw = cos θw with the weak mixing angle θw, and q

and ℓ stand for active light Dirac quarks and leptons, respectively. Thus, the low energy

CPV effect mediated by gauge and Higgs interactions is characterized mainly by the gluon

chromo-electric dipole moment (CEDM) (= the Weinberg three-gluon operator), quark

CEDMs, and quark and lepton electric dipole moments (EDMs). On the other hand, the
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new physics contributions to the QCD θ-parameter would be indistinguishable from the

SM bare value.

Since the lepton EDMs from the SM are predicted to be far below the current experi-

mental bounds [10, 36, 37], we may be able to distinguish BSM CPV from the SM one by

the lepton EDMs if the lepton EDMs from new physics are sizable. On the other hand,

in this work, we will examine whether one can discriminate BSM CPV by means of the

hadronic EDMs. Furthermore, we will focus on the case that the low energy CPV is char-

acterized mainly by the gluon and quark CEDMs, while the quark EDMs are subdominant.

We will discuss in section 5 that it is typically the case if the lightest new physics sector

communicating with the SM through gauge and Higgs interactions carries the QCD color.

More general studies including the case that the quark EDMs are potentially dominant

source of CPV are subject to future work [38].

The CP violation through the gluon and quark CEDMs will give rise to electric dipole

moments of nucleons and atoms below the QCD scale. In order to estimate the nucleon

and atomic EDMs, we need to bring the Wilson coefficients down to the QCD scale (∼ 1

GeV) through the RGE. This running effect is important because the QCD gauge coupling

becomes large (g2s/4π
2 ∼ 1) near the QCD scale. The relevant RGE equations at leading

order are given by [39–43]

dK

d lnµ
=

g2s
16π2

γK, (3.6)

where K ≡ (K1 K2 K3)
T are defined as

K1(µ) =
dq(µ)

mqQq
, K2(µ) =

d̃q(µ)

mq
, K3(µ) =

w(µ)

gs
, (3.7)

and the anomalous dimension matrix γ is

γ ≡

 γe γeq 0

0 γq γGq
0 0 γG

 =

 8CF 8CF 0

0 16CF − 4Nc −2Nc

0 0 Nc + 2nf + β0

 . (3.8)

Here CF = (N2
c −1)/2Nc = 4/3 is the quadratic Casimir, Nc = 3 is the number of color, nf

is the number of active light Dirac quarks, and β0 ≡ (33− 2nf )/3. The color fine structure

constant αs = g2s/4π and the quark mass run according to

dαs
d lnµ

= −2β0
α2
s

4π
,

dmq

d lnµ
= −8

αs
4π
mq . (3.9)

Using Eq. (3.9), the analytic solution to the RGE equations is obtained as [42]

K1(µ) = ηκeK1(Λ) +
γqe

γe − γq
(ηκe − ηκq)K2(Λ)

+

[
γGqγqeη

κe

(γq − γe)(γG − γe)
+

γGqγqeη
κq

(γe − γq)(γG − γq)
+

γGqγqeη
κG

(γe − γG)(γq − γG)

]
K3(Λ),

K2(µ) = ηκqK2(Λ) +
γGq

γq − γG
[ηκq − ηκG ]K3(Λ),
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K3(µ) = ηκGK3(Λ), (3.10)

where η = αs(Λ)/αs(µ) and κx = γx/(2β0).

For the renormalization scale µ < mc and the BSM scale Λ ≥ 1 TeV, we derive the

following analytic relations from Eq. (3.3) and Eq. (3.10):

w(µ) =

(
gs(mc)

gs(µ)

)(
gs(mb)

gs(mc)

) 33
25
(
gs(mt)

gs(mb)

) 39
23
(
gs(Λ)

gs(mt)

) 15
7

w(Λ), (3.11)

∆d̃q(µ) =
mq(µ)

gs(Λ)

[
9

13

{(
gs(mc)

gs(µ)

) 28
27

−
(
gs(mc)

gs(µ)

)2
}(

gs(mb)

gs(mc)

) 58
25
(
gs(mt)

gs(mb)

) 62
23
(
gs(Λ)

gs(mt)

) 22
7

+
3

5

(
gs(mc)

gs(µ)

) 28
27

{(
gs(mb)

gs(mc)

) 28
25

−
(
gs(mb)

gs(mc)

) 58
25

}(
gs(mt)

gs(mb)

) 62
23
(
gs(Λ)

gs(mt)

) 22
7

+
9

17

(
gs(mc)

gs(µ)

) 28
27
(
gs(mb)

gs(mc)

) 28
25

{(
gs(mt)

gs(mb)

) 28
23

−
(
gs(mt)

gs(mb)

) 62
23

}(
gs(Λ)

gs(mt)

) 22
7

+
9

19

(
gs(mc)

gs(µ)

) 28
27
(
gs(mb)

gs(mc)

) 28
25
(
gs(mt)

gs(mb)

) 28
23

{(
gs(Λ)

gs(mt)

) 4
3

−
(
gs(Λ)

gs(mt)

) 22
7

}]
w(Λ),

(3.12)

where ∆d̃q(µ) is the RG-induced contribution to the quark CEDM from the gluon CEDM.

Numerically the above equations give

w(1 GeV) ≃ 0.33

(
gs(Λ)

gs(1 TeV)

) 15
7

w(Λ), (3.13)

∆d̃q
mq

(1 GeV) ≃
[

0.19

(
gs(Λ)

gs(1 TeV)

) 1
3

− 0.06

(
gs(Λ)

gs(1 TeV)

) 15
7

]
w(Λ). (3.14)

For instance, for the BSM scale Λ = 1 TeV or 10 TeV, we obtain the following numerical

relations which will be useful later

∆d̃q
mq

(1 GeV) ≃
{

0.41w(1 GeV) Λ = 1 TeV,

0.53w(1 GeV) Λ = 10 TeV.
(3.15)

The Wilson coefficients around the QCD scale obtained from the above procedure can

be matched to hadronic CPV observables such as nucleon EDMs and CP-odd pion-nucleon

interactions by a variety of methods. In the next section, we will discuss the resultant

nuclear and atomic EDMs from the gluon and quark CEDMs.

4 Nuclear and Atomic EDMs

We have discussed that the BSM CP violation mediated by gauge and Higgs interactions

can appear as the gluon and quark CEDMs below the weak scale. The QCD θ̄-parameter

may be another dominant source of hadronic CP violation. In this section we estimate the
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nuclear and atomic EDMs from those CPV operators by matching conditions around the

QCD scale ∼ 1 GeV in both cases with and without the PQ mechanism. We will then

examine whether the resultant EDM profiles can tell us the origins of CP violation and the

quality of the PQ symmetry.

4.1 Nucleon EDMs

The nucleon EDMs from the QCD θ̄-parameter and quark (C)EDMs were computed in

[44–46] with QCD sum rules. In this approach the nucleon EDMs are associated with the

QCD θ̄-parameter and quark (C)EDMs at the renormalization scale µ = 1 GeV as

dN (θ̄, d̃q, dq) = −c0
m3
N ⟨q̄q⟩
λ2N

ΘN (θ̄, d̃q, dq), (N = p, n) (4.1)

where c0 = 1.8 × 10−2, mN is the nucleon mass, ⟨q̄q⟩ = −(0.225 GeV)3 is the quark

condensate, λN = −0.0436(131) GeV3 is the coupling between the physical nucleon state

and the corresponding interpolating field in the QCD sum rules approach, and

Θp(θ̄, d̃q, dq) =χm∗

[
(4eu − ed)

(
θ̄ − m2

0

2

d̃s
ms

)
+
m2

0

2
(d̃u − d̃d)

(
4eu
md

+
ed
mu

)]
+

1

8
(2κ+ ξ)(4eud̃u − edd̃d) + (4du − dd),

Θn(θ̄, d̃q, dq) =χm∗

[
(4ed − eu)

(
θ̄ − m2

0

2

d̃s
ms

)
+
m2

0

2
(d̃d − d̃u)

(
4ed
mu

+
eu
md

)]
+

1

8
(2κ+ ξ)(4edd̃d − eud̃u) + (4dd − du).

(4.2)

Here m∗ ≡ (
∑

q=u,d,sm
−1
q )−1 ≃ mumd/(mu + md), and eq denotes the electromagnetic

(EM) charge of the quark q. We have also the various susceptibilities of quark condensates

defined as [44]:

⟨q̄σµνq⟩ = eqχFµν⟨q̄q⟩, gs⟨q̄Gµνq⟩ = eqκFµν⟨q̄q⟩,
gs⟨q̄Gµνσµνq⟩ = m2

0⟨q̄q⟩, 2gs⟨q̄γ5G̃µνq⟩ = ieqξFµν⟨q̄q⟩,
(4.3)

whose values are given as

χ = −5.7(6) GeV−2, m2
0 = 0.8(1) GeV2,

κ = −0.34(10), ξ = −0.74(20).
(4.4)

On the other hand, the gluon CEDM (Weinberg operator) contribution to the nu-

cleon EDMs was first evaluated in [47] by Naive Dimensional Analysis (NDA) as dN (w) ≈
O(efπw) for w defined at the matching scale µ∗ ≃ 225 MeV which has been chosen by the

condition αs(µ∗)/4π ≃ 1/6 for which the one loop QCD beta function is comparable to

the two loop QCD beta function. Later QCD sum rules were used in [48, 49] to compute

the one-particle reducible contribution which is obtained by the chiral rotation of the CP-

odd nucleon mass. This contribution is proportional to the nucleon anomalous magnetic
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moment µanN as3

dN (w) = −µanN
3gsm

2
0

32π2
w ln

M2

µ2IR
(N = p, n), (4.5)

where gs and w are defined at µ = 1 GeV, M is the Borel mass in the sum-rule calculation,

and µIR is the IR cut-off. The theoretical uncertainty of the above result is about 50%

which originates mostly from M/µIR which is taken to be
√

2 ≤ M/µIR ≤ 2
√

2 in [49].

Inserting the experimentally measured nucleon anomalous magnetic moments [4]

µanp = (2.79 − 1)
e

2mp
= 1.79

e

2mp
, µann = −1.91

e

2mp
, (4.6)

which correspond to the respective anomalous magnetic moments with the “bare” magnetic

moments subtracted, one finds the above one-particle reducible contribution Eq. (4.5) is

about factor two smaller than the NDA estimation. Recently the one-particle irreducible

contribution was also calculated in [50] by the non-relativistic quark model, which is about 5

times smaller than the one-particle reducible contribution with the opposite sign. Including

both contributions [50], the sum rule calculation leads to

dp(w) = −18w eMeV, dn(w) = 20w eMeV (4.7)

with about 60% uncertainty, where w is defined at µ = 1 GeV.

Using the central values for the involved parameters, we obtain from Eq. (4.1) and

Eq. (4.7)

dp(θ̄, d̃q, dq, w) = − 0.46 × 10−16θ̄ e cm + e
(
−0.17d̃u + 0.12d̃d + 0.0098d̃s

)
+ 0.36du − 0.09dd − 18w eMeV,

dn(θ̄, d̃q, dq, w) = 0.31 × 10−16θ̄ e cm + e
(
−0.13d̃u + 0.16d̃d − 0.0066d̃s

)
− 0.09du + 0.36dd + 20w eMeV.

(4.8)

If the strong CP problem is resolved by the PQ mechanism, θ̄ is no longer a constant

parameter, but the vacuum expectation value (VEV) of the QCD axion, which is not inde-

pendent of hadronic CPV operators. As outlined in Section 2, there can be two potentially

competing contributions to the axion VEV:

θ̄PQ ≡ ⟨a⟩
fa

= θ̄UV + θ̄BSM, (4.9)

where θ̄UV is the axion VEV induced by PQ-breaking other than the QCD anomaly, e.g.

the one in Eq. (2.9) which is induced by quantum gravity instantons at UV scales, while

θ̄BSM arises from a combined effect of the PQ-breaking by the QCD anomaly and BSM

CP-violation as in Eq. (2.7). In our case, θ̄UV is essentially a free parameter whose size

3As it arises from chiral rotation, this one-particle reducible contribution is induced only by the chi-

rality violating anomalous part of the nucleon magnetic moment. We thank Nadoka Yamanaka for useful

correspondence on this point.
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is characterizing the quality of the PQ symmetry, while θ̄BSM from the gluon and quark

CEDMs are given by

θ̄BSM =
m2

0

2

∑
q=u,d,s

d̃q
mq

+ O(4πf2πw), (4.10)

where the piece from the quark CEDMs is calculated with QCD sum rules [44] at the

matching scale µ = 1 GeV, while the piece from the gluon CEDM is estimated with NDA

at the different matching scale4 µ∗ ≃ 225 MeV. Replacing θ̄ in Eq. (4.2) with θ̄PQ, we

obtain

ΘPQ
p (θ̄UV, d̃q, dq) =χm∗(4eu − ed)θ̄UV −

(
1

8
(2κ+ ξ) +

1

2
χm2

0

)
(4eud̃u − edd̃d) + (4du − dd),

ΘPQ
n (θ̄UV, d̃q, dq) =χm∗(4ed − eu)θ̄UV +

(
1

8
(2κ+ ξ) +

1

2
χm2

0

)
(4edd̃d − eud̃u) + (4dd − du),

(4.11)

where notably the strange quark CEDM d̃s contribution is cancelled [44], and the gluon

CEDM contribution via θ̄PQ is ignored, since it is actually negligible compared to the direct

contribution in Eq. (4.7) due to the chiral suppression (∼ m∗/4πfπ). Numerically we then

find

dPQp (θ̄UV, d̃q, dq, w) = − 0.46 × 10−16θ̄UV e cm − e
(

0.58d̃u + 0.073d̃d

)
+ 0.36du − 0.089dd − 18w eMeV,

dPQn (θ̄UV, d̃q, dq, w) = 0.31 × 10−16θ̄UV e cm + e
(

0.15d̃u + 0.29d̃d

)
− 0.089du + 0.36dd + 20w eMeV,

(4.12)

for the nucleon EDMs in the presence of the PQ mechanism.

As mentioned in the previous section, in this work we focus on gauge and/or Higgs-

mediated CPV from a new physics sector which is charged under the QCD gauge group. In

this case, typically the quark EDMs dq are subdominant compared with the quark CEDMs

d̃q. Thus we will neglect the contributions from the quark EDMs in what follows. In this

class of models, moreover, the quark chirality violation in the quark CEDM operators is

from the SM Yukawa couplings. It implies that

d̃q(µ) = mqK2(µ) (4.13)

with the flavor-independent running coefficient K2(µ) as defined in Eq. (3.7). By this

relation Eq. (4.8) becomes

dp(θ̄, K2, w) = −0.46 × 10−16θ̄ e cm + 1.1K2 eMeV − 18w eMeV,

dn(θ̄, K2, w) = 0.31 × 10−16θ̄ e cm − 0.15K2 eMeV + 20w eMeV
(4.14)

4For the matching scale of NDA, in this paper we simply use µ∗ ≃ 225 MeV as in [47]. Note that this

is just a matter of choice as there is no systematic way to estimate the uncertainty of NDA.
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for K2 and w defined at µ = 1 GeV. On the other hand, if the PQ mechanism is working

for resolving the strong CP problem, Eq. (4.12) yields

dPQp (θ̄UV,K2, w) = −0.46 × 10−16θ̄UV e cm − 1.7K2 eMeV − 18w eMeV,

dPQn (θ̄UV,K2, w) = 0.31 × 10−16θ̄UV e cm + 1.7K2 eMeV + 20w eMeV
(4.15)

again for K2 and w defined at µ = 1 GeV. Note that here dPQN (K2) includes the contribution

from θ̄BSM induced by the quark CEDM d̃q = mqK2.

From the numerical values in Eq. (4.14) and Eq. (4.15), one can observe that

dp(θ̄, w) ≈ −dn(θ̄, w), (4.16)

dPQp (θ̄UV,K2, w) ≈ −dPQn (θ̄UV,K2, w), (4.17)

unless there is a significant cancellation among the different contributions, while

dp(K2) ≈ −7dn(K2). (4.18)

These approximate relations can be confirmed more precisely by the analytic results Eq.

(4.2), Eq. (4.5), and Eq. (4.11) from QCD sum rules. Imposing the relation Eq. (4.13) in

Eq. (4.2) and Eq. (4.11), we find5

dp(θ̄)

dn(θ̄)
=
dPQp (θ̄UV)

dPQn (θ̄UV)
≃ 4eu − ed

4ed − eu
= −3

2
, (4.19)

dp(K2)

dn(K2)
≃ − 2κ+ ξ − 3χm2

0

2κ+ ξ − 0.7χm2
0

≃ −7(1), (4.20)

dPQp (K2)

dPQn (K2)
≃ 4eumu − edmd

4edmd − eumu
≃ −1. (4.21)

where we have used md/mu ≃ 2. On the other hand, using Eq. (4.5) and the result of [50],

we get

dp(w)

dn(w)
≃ dPQp (w)

dPQn (w)
≃ −0.89(2). (4.22)

Given other estimates of the nucleon EDMs based on chiral perturbation theory [7,

51, 52], lattice-QCD calculations [53–57], and their discrepancy with the sum rule results,

one may trust the above ratios derived from QCD sum rules up to about 50% uncertainty.

Then Eqs. (4.19)-(4.22) confirm the approximate relations in Eqs. (4.16)-(4.18) up to such

an uncertainty.

Based on the above discussion and the RG evolution of CEDMs discussed in the pre-

vious section, in Fig. 1 we depict the nucleon EDM ratio dp/dn in three different scenarios

5As can be noticed from Eq.(4.20), the magnitude of dp(K2)/dn(K2) is significantly larger than the unity

partly because of a cancellation among different contributions to dn(K2). Note that dN (K2) (N = p, n)

involve the two isospin-violating parameters eu−ed and d̃u− d̃d (see Eq. (4.2)), therefore there is no reason

that dp(K2)/dn(K2) is close to the unity.
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that the dominant source of EDMs is i) θ̄, or ii) the quark CEDM given by d̃q = mqK2

at the BSM scale Λ near TeV, or iii) the gluon CEDM at Λ, either without (left) or with

(right) the PQ mechanism. We note that our result reproduces the figures in [13, 14], while

we include the gluon CEDM-dominance as well as the cases without the PQ mechanism

beyond the previous works. Our results show that the nucleon EDMs can discern only

the scenario ii) without the PQ mechanism, i.e. the quark CEDM-dominated CP violation

without QCD axion, from the other scenarios.6 In the presence of the PQ mechanism,

dp ≈ −dn in all three scenarios i), ii) and iii). Note that EDMs in the scenarios ii) and

iii) with the PQ mechanism include the contribution from the axion vacuum value θ̄BSM

induced by CEDMs, and the scenario i) with the PQ mechanism corresponds to the case

that the dominant source of EDMs is θ̄UV induced by UV-originated PQ breaking such as

quantum gravity effects. Our results also imply that the nucleon EDMs can not tell us

about the origin of non-zero axion vacuum value, for instance they can not discriminate θ̄UV

from θ̄BSM. Thus, we need to look for other CPV observables beyond the nucleon EDMs

in order to get information on the quality of the PQ symmetry. In the next subsection, we

will discuss the use of some nuclei or atomic EDMs for this purpose.

-1.0 -0.5 0.0 0.5 1.0

-4

-2

0

2

4

-1.0 -0.5 0.0 0.5 1.0

-4
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Figure 1. The predicted ratios of the proton EDM to the neutron EDM depending on the different

origins of CP violation without (left) or with (right) the PQ mechanism. The shaded regions denote

the cases where the nucleon EDMs originate dominantly from i) the QCD θ̄-parameter (gray), ii)

the quark CEDMs (red), and iii) the gluon CEDM (i.e. the Weinberg operator) (green). Here we

assume that the CEDMs are generated at the BSM scale Λ = 1 TeV and subsequently follow the

RGE down to the low energy scales. However our results are not sensitive to the value of Λ.

6The BSM CP violating operators responsible for the CEDMs can give quadratically [13, 14] or loga-

rithmically [39, 41] divergent radiative correction to θ̄, which is likely to provide the dominant source of

EDMs unless it is cancelled by the PQ mechanism. For this reason, [13, 14] exclude the scenarios of BSM

CP violation without the PQ mechanism, in which θ̄ is small enough to be subdominant compared to the

CEDMs. Here we include these scenarios as an open possibility and examine their experimental testability

by EDM data. One may simply fine tune θ̄ to be small enough even in the presence of BSM CP violation, or

there may exist unknown UV mechanism yielding small θ̄ together with certain form of BSM CP violations.
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4.2 Nuclei or Atomic EDMs

In the previous subsection, we have noticed that the nucleon EDMs provide only a limited

information on the dominant source of CPV and the origin of the axion vacuum value. In

this subsection, we examine whether some nuclei or atomic EDMs are capable of improving

the situation.

It has been known that certain nuclei or atomic EDMs are sensitive to CP-odd nuclear

forces like the CPV pion-nucleon couplings (see e.g. [58]). Important examples include

light nuclei such as D (deuteron) and 3He++ (helion) whose EDMs might be measured by

the storage ring method [59]. The EDMs of diamagnetic heavy atoms like 225Ra and 129Xe

are also such examples [14, 60]. The EDMs of polar molecules such as ThO, HfF+, and

BaF can also be sensitive to the CPV pion-nucleon couplings via the CPV electron-nucleon

interaction ēγ5eN̄N mediated by the neutral pion [14, 61]. Then they may play a role in

disentangling the sources of CP violation in the future, although the current sensitivity is

not yet competitive to other nuclei or atomic EDMs in terms of hadronic CP violation.

Therefore, in this work we will focus on nuclei and diamagnetic atomic EDMs.

We use the results of [62] for the EDMs of D and 3He++, yielding

dD = 0.94(1)(dn + dp) +
[
0.18(2)ḡ1−0.75(14)∆π

]
e fm, (4.23)

dHe = 0.9dn − 0.03(1)dp

+
[
0.11(1)ḡ0 + 0.14(2)ḡ1−0.63(15)∆π− (0.04(2)C1 − 0.09(2)C2) fm−3

]
e fm, (4.24)

where ḡ0,1,∆π, and C1,2 are the CPV couplings of pions and nucleons defined as

ḡ0N̄ σ⃗ · π⃗N + ḡ1π3N̄N +mN∆ππ3π⃗ · π⃗
+ C1N̄NDµ(N †SµN) + C2N̄ σ⃗N ·Dµ(N †σ⃗SµN).

Here σ⃗ = (σ1, σ2, σ3) denotes the Pauli matrices for the isospin, N = (p, n)T is the isospin-

doublet nucleon field, and π⃗ = (π1, π2, π3) is the isospin-triplet pion field. We note that the

deuteron EDM dD is not sensitive to ḡ0, C1 and C2 due to the spin and isospin structure

of the deuteron [62].

We also consider the atomic EDMs of heavy nuclei 225Ra and 129Xe, using the following

results of [14, 63] for 225Ra and [60, 64] for 129Xe:

dRa = 7.7 × 10−4
[
(2.5 ± 7.5)ḡ0 − (65 ± 40)ḡ1−(1.1(3.3)C1 − 3.2(2.1)C2) fm−3

]
e fm,

(4.25)

dXe = 1.3 × 10−5dn − 10−5 [1.6ḡ0 + 1.7ḡ1] e fm. (4.26)

The Radium EDM dRa is sensitive to CPV nuclear forces with relatively weak dependence

on the nucleon EDMs due to its octupole deformation [63, 65, 66]. However, its dependence

on ∆π is not currently well known. Also for the Xenon EDM dXe, unfortunately the

associated nuclear matrix elements for the contributions from C1,2 and ∆π are not available

at the moment. In what follows, we will discuss possible implications of the above results,

and also examine how important the currently unavailable matrix elements are for EDM

analysis.
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4.2.1 CPV pion-nucleon couplings ḡ0 and ḡ1

The CPV pion-nucleon couplings ḡ0 and ḡ1 have been computed by various methods in-

cluding QCD sum rules and chiral perturbation theory. The contributions from the QCD

θ̄-parameter were estimated in [62, 67] using chiral symmetry relation between CPV pion-

nucleon couplings and quark mass corrections to baryon masses. It results in

ḡ0(θ̄) =
δmN

2fπ

1 − ϵ2

2ϵ
θ̄ = (15.7 ± 1.7) × 10−3θ̄, (4.27)

ḡ1(θ̄) =

(
8c1mN

ϵ(1 − ϵ2)

16fπmN

m4
π

m2
K −m2

π

+ O
(
ϵ
m4
π

m3
Nfπ

))
θ̄ = −(3.4 ± 2.4) × 10−3θ̄,

(4.28)

where δmN = mn −mp = 2.49(17) MeV, ϵ = (md −mu)/2m̄ = 0.37(3), c1 = 1.0(3)GeV−1

is related to the nucleon sigma term [68] as σπN = −4c1m
2
π + O(m3

π) [69], fπ = 92.2 MeV,

mK = 495 MeV, and mπ = 135 MeV. Here ḡ1 is subject to large theoretical uncertainty,

since the Next-to-Leading Order (NLO) correction is as large as the Leading Order (LO)

contribution, and it is uncertain how fast the convergence of the estimation from chiral

perturbation theory is. In the presence of the PQ mechanism, θ̄ in Eq. (4.27) and Eq.

(4.28) is replaced by θ̄PQ = ⟨a⟩/fa in Eq. (4.9), which is determined by the two independent

contributions, θ̄UV induced by UV-originated PQ breaking such as quantum gravity effects

and θ̄BSM that originates from the light quark or gluon CEDMs at low energy scales as in

Eq. (4.10).

The contributions from the quark CEDMs to the CPV pion-nucleon couplings were

estimated with QCD sum rules in [70], and recently the estimation was improved in [14]

using chiral symmetry relation and neglecting contribution related to the matrix elements

of quark chromomagnetic dipole moments based on the argument of [71]. Using the result

of [14], we get

ḡ0(d̃q) ≃ m2
0

8fπ

δg0 dδmN

dm̄ϵ
(d̃u + d̃d) −

(1 − ϵ2)δmN

ϵ

∑
q=u,d,s

d̃q
mq

 ≃ −0.004(5)K2 GeV2,

(4.29)

ḡ1(d̃q) ≃ δg1
1

2fπ
(d̃u − d̃d)

m2
0

2

σπN
m̄

= −0.095(31)K2 GeV2, (4.30)

at the matching scale µ = 1 GeV, where we assumed the relation d̃q = mqK2 for the final

expression. Here dδmN/dm̄ϵ ≃ δmN/m̄ϵ = 2.49(17) MeV/m̄ϵ for m̄ = (mu + md)/2 =

3.37(8) MeV, σπN = 59.1(35) MeV, and δg0,g1 = (1.0 ± 0.3) are introduced to account for

theoretical uncertainty.

Finally, the gluon CEDM (Weinberg operator) contribution to ḡ1 was computed with

QCD sum rules and chiral perturbation theory in [60] as

ḡ1(w) ≃ ⟨0|Lw|π0⟩
(
σπN
f2πm

2
π

+
5g2Amπ

64πf4π

)
≃ ±(2.6 ± 1.5) × 10−3wGeV2, (4.31)
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at the matching scale µ = 1 GeV, where Lw = 1
3wf

abcGaµα Gbδµ G̃
cα
δ is the Weinberg operator,

and gA = 1.27. Here the sign ambiguity is from the matrix element of the Weinberg

operator estimated by QCD sum rules. On the other hand, to our knowledge, there has

been no dedicated study of ḡ0 originating from the gluon CEDM so far. However, the

contributions to ḡ0 and ḡ1 from the gluon CEDM at µ = 1 GeV are expected to be

negligible compared to the accompanying RG-induced quark CEDM contributions. This

can be explicitly seen for ḡ1(w) by applying Eq. (3.15) to Eq. (4.30) and Eq. (4.31),

yielding

ḡ1(∆d̃q) = O(10) × ḡ1(w), (4.32)

where ∆d̃q is the RG-induced quark CEDM at µ = 1 GeV, which is always accompanying

w at µ = 1 GeV. For ḡ0(w), if we use the NDA estimation

ḡ0(w) ∼ (mu +md)O(4πfπw), (4.33)

it is somewhat bigger than ḡ0(∆d̃q) obtained from Eq. (4.29), but still significantly smaller

than ḡ1(∆d̃q).

We note that the QCD sum rule results for ḡ0(θ̄) and ḡ0(d̃q) in Eqs. (4.27) and

(4.29) are compatible with the NDA estimation implying ḡ0(θ̄) ∼ 4πm∗θ̄/Λχ and ḡ0(d̃q) ∼
(d̃u + d̃d)Λχ for the matching scale µ∗ ≃ 225 MeV, where Λχ = 4πfπ. The QCD sum

rule result for ḡ1(w) in Eq. (4.31) also is compatible with the NDA estimation implying

ḡ1(w) ∼ (mu−md)Λχw. On the other hand, the QCD sum rule results for ḡ1(θ̄) and ḡ1(d̃q)

in Eqs. (4.28) and (4.30) are about one order of magnitude bigger than the NDA estimation

implying ḡ1(θ̄) ∼ 4πm∗(mu −md)θ̄/Λ
2
χ and ḡ1(d̃q) ∼ (d̃u − d̃d)Λχ. This is partly due to

that σπN = (mu +md)⟨N |ūu+ d̄d|N⟩/4 ≃ 59 MeV is significantly larger than mu +md at

µ∗ ≃ 225 MeV. As we will see, such large values of ḡ1(θ̄) and ḡ1(d̃q) play an important role

in our subsequent analysis.

The nuclei and atomic EDMs in Eqs. (4.23)-(4.26) have better or comparable sensi-

tivity on ḡ1 compared to ḡ0, and ḡ1(d̃q) is predicted to be an order of magnitude larger

than ḡ0(d̃q) in Eq. (4.29) and Eq. (4.30). Eqs. (4.29)-(4.33) also imply that ḡ1(∆d̃q) for

the RG-induced ∆d̃q at µ = 1 GeV is about an order of magnitude larger than ḡ0,1(w)

for w at µ = 1 GeV, unless ḡ0(w) is unreasonably bigger than the NDA estimation Eq.

(4.33). We can then ignore the contributions from ḡ0,1(w) and ḡ0(∆d̃q) while focusing only

on the contribution from ḡ1(∆dq), when we estimate the EDMs that originate from the

gluon CEDM generated at the BSM scale Λ.

With the above observations, let us consider the ratio ḡ1/mndn which may have certain

characteristic values depending on CPV origins. Assuming the relation d̃q = mqK2 which

is valid for the gauge and Higgs mediated CPV, we find

eḡ1(θ̄)

mndn(θ̄)
=

eḡPQ1 (θ̄UV)

mnd
PQ
n (θ̄UV)

≈ −(2.3 ± 2.1), (4.34)

eḡ1(K2)

mndn(K2)
≈ (6.6 ± 4.8) × 102, (4.35)
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eḡPQ1 (K2)

mnd
PQ
n (K2)

≈ −(72 ± 50), (4.36)

eḡ1(∆K2, w)

mndn(∆K2, w)
≃ eḡPQ1 (∆K2, w)

mnd
PQ
n (∆K2, w)

≈ −(5.0 ± 3.5) r(Λ), (4.37)

where K2 ≡ (d̃q/mq)1 GeV, ∆K2(Λ) ≡ (∆d̃q/mq)1 GeV for the RG-induced quark CEDM

∆d̃q that originates from the gluon CEDM at Λ, and r(Λ) ≡ (∆K2(Λ)/w)1 GeV = 0.41 (for

Λ = 1 TeV), 0.53 (for Λ = 10 TeV) as given in Eq. (3.15). Note that here ḡPQ1 (K2, w) and

dPQn (K2, w) include the contributions from the axion vacuum value θ̄BSM induced by the

CEDMs, i.e.

ḡPQ1 (K2, w) = ḡ1(K2, w) + ḡ1(θBSM(K2, w)),

dPQn (K2, w) = dn(K2, w) + dn(θBSM(K2, w)).

From Eqs. (4.34)-(4.37), we see that the quark CEDM-dominated CPV scenarios pre-

dict clearly different value of ḡ1/mndn from the θ̄-dominant case regardless of the PQ mech-

anism. Moreover, the predicted central values are quite different depending on whether

there is a QCD axion or not, although they are subject to large uncertainties. On the other

hand, Eq. (4.37) shows that the gluon CEDM-dominated CPV at high scale Λ predicts

similar value of ḡ1/mndn as the θ̄-dominant case, again regardless of the PQ mechanism.

Thus, it would be still challenging to discriminate the gluon CEDM-dominant scenario

from the θ̄-dominant case even via hadronic CPV observables sensitive to the coupling ḡ1.

Yet, if we look at some elements such as 3He++ (Eq. (4.24)) and 129Xe (Eq. (4.26)), which

are equally sensitive to ḡ0 as well as ḡ1, the θ̄-dominant scenario might be distinguishable

from the gluon CEDM-dominant case by the relatively large ḡ0(θ̄) compared to ḡ1(θ̄).

4.2.2 CPV three-pion coupling ∆π and four-nucleon couplings C1, C2

Currently there is no dedicated study for computation of the CPV three-pion coupling ∆π

and the four-nucleon couplings C1, C2 from CPV sources such as θ̄ and CEDMs. Thus

in this analysis we will use the NDA estimation for them to get an idea of their possible

impacts on EDM patterns. The NDA rules taking into account the chiral symmetry and

the isospin symmetry tell us that

∆π(θ̄, d̃q, w) ∼ 4π
(mu −md)m∗

Λ2
χ

θ̄ + Λχ(d̃u − d̃d) + (mu −md)Λχw, (4.38)

C1(θ̄, d̃q, w) ∼ C2(θ̄, d̃q, w) ∼ (4π)2
m∗
Λ4
χ

θ̄ +
4π

Λ2
χ

(d̃u + d̃d) +
4π

Λχ
w, (4.39)

where Λχ = 4πfπ, m∗ ≃ mumd/(mu +md), and the matching scale is µ∗ ≃ 225 MeV given

by αs(µ∗)/4π ≃ 1/6 [47] for which the one loop QCD beta function is comparable to the

two loop QCD beta function. In the following, the above NDA relations will be assumed

to hold up to the sign.

If ∆π obeys the above NDA estimation, and also ḡ1(θ̄, d̃q) are given by the QCD sum

rule results Eqs. (4.28) and (4.30), the contributions from ∆π(θ̄, d̃q) to dD and dHe in
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Eq. (4.23) and Eq. (4.24) are negligible compared to the contributions from ḡ1(θ̄, d̃q).

Considering that the contribution of ḡ1(w) is overridden by the contribution from ḡ1(∆d̃q),

∆π(w) can also be ignored for the analysis of dD and dHe under the same assumption.

Although it is not known yet how dRa and dXe depend on ∆π, if the sensitivity to ∆π is

similar to that of ḡ1, ∆π can be similarly ignored for the analysis of dRa and dXe. Therefore

in the following analysis for EDM patterns we will ignore ∆π(θ̄, d̃q, w).

On the other hand, concerning the four-nucleon couplings C1, C2, one can see from

Eq. (4.24) and Eq. (4.25) that C1,2 fm−3 ∼ 4πf3πC1,2 should be compared with ḡ0,1 in

order to estimate their relative importance for nuclei or atomic EDMs. Then we find

that the contributions from C1,2(θ̄, d̃q) are at least an order of magnitude smaller than

the contribution from ḡ0,1(θ̄, d̃q). In contrast, the contributions from C1,2(w) are larger

than the ones from ḡ0,1(w) and ḡ0(∆d̃q), but comparable to that from ḡ1(∆d̃q). This is

because the four-nucleon couplings C1,2 are not suppressed by the light quark masses.

Therefore C1,2 can be potentially important if the CP violation is mainly sourced by the

gluon CEDM generated at the BSM scale Λ. In the next subsection, we will examine

how C1,2(w) obeying the NDA estimation can affect EDM patterns depending on their

(currently unknown) signs.

4.2.3 Predicted ratios of nuclei and atomic EDMs to the neutron EDM

In Fig. 2, Fig. 3, and Fig. 4, we depict the ratios of various nuclei or atomic EDMs to the

neutron EDM for the BSM CPV scenarios that we are concerned with. As anticipated, the

quark CEDM-dominant scenario at the BSM scale Λ with (blue) or without (red) the PQ

mechanism shows clearly different pattern from the other scenarios, while the difference

between the gluon CEDM-dominance (orange or green) at Λ and the θ̄-dominance (gray)

is less clear. As was noticed in the previous subsections, the deuteron EDM is determined

mainly by the nucleon EDMs and ḡ1(θ̄, d̃q,∆d̃q), both of which have been evaluated by

QCD sum rules. We then use those sum rule results to obtain dD/dn depicted in Fig. 2.

On the other hand, for the helion EDM there can be important contributions from the

unknown CP-odd four-nucleon couplings C1(w) and C2(w) induced by the gluon CEDM.

Therefore in Fig. 3 we plot dHe/dn for four possible sign combinations of C1(w) and C2(w)

while assuming that the size of those couplings obeys the NDA as in Eq. (4.39). Our results

indicate that at least half of those possible cases can unambiguously disentangle the gluon

CEDM-dominance from the θ̄-dominance. The Xenon EDM dXe in Fig. 4 also might be

able to distinguish between the gluon CEDM and the θ̄-parameter via its sensitivity on the

coupling ḡ0, if the unknown contribution from C1(w) and C2(w) is negligible. We simply

assume without justification that it is the case, and plot the resulting dXe/dn in Fig. 4.

In the θ̄-dominant scenario with the PQ mechanism, the axion VEV is by definition

induced dominantly by UV-originated PQ-breaking other than the QCD anomaly such as

quantum gravity effects, i.e. θ̄PQ ≃ θ̄UV. On the other hand, in the gluon or quark CEDM-

dominance scenarios, θ̄PQ ≃ θ̄BSM again by definition. As dHe and dXe may discriminate

the θ̄-dominance from the gluon or quark CEDM-dominance, regardless of the presence

of the PQ mechanism, future measurements of those EDMs may provide information not
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only on BSM CP violation, but also on the origin of the axion VEV, so on the quality of

the PQ symmetry.

-1.0 -0.5 0.0 0.5 1.0
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2
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Figure 2. The predicted range of the deuteron EDM compared with the neutron EDM from the

CPV sources under consideration. The shaded regions denote the cases where the EDMs originate

dominantly from i) the QCD θ̄-parameter (gray), ii) the quark CEDMs without (red) or with (blue)

QCD axion, and iii) the gluon CEDM without (green) or with (orange) QCD axion. Here we assume

that the CEDMs are generated at Λ = 1 TeV, but the results are not sensitive to the value of Λ.

5 BSM examples

Here we discuss specific BSM examples which communicate with the SM sector mainly

through gauge and Higgs interactions. As we have discussed in section 3, their CP violation

will be therefore manifested dominantly via the gluon and quark CEDMs.

5.1 Vector-like Quarks

Vector-Like Quarks (VLQs) may be among the simplest new physics scenarios which trans-

mit CPV to the SM by gauge and Higgs interactions. For CP violation, we consider a

general renormalizable lagrangian for a VLQ ψ + ψc with a real singlet scalar [72]

L ⊃ − (mψψψ
c + yψSψψ

c + h.c.) − 1

2
m2
SS

2 −ASHS|H|2 + · · · , (5.1)

where the vector-like quark mass mψ and the Yukawa coupling yψ are complex parameters,

and H is the SM doublet Higgs field. Here we will discuss this model in some details,

because it has not been comprehensively studied before concerning its EDM signatures

beyond the scope of [72].

One can remove the phase of the fermion mass by chiral rotation so that a complex CP

phase appears in the Yukawa coupling only. Then we may write the lagrangian without

loss of generality as

L ⊃ −
(
mψΨ̄Ψ + yψ cosαSΨ̄Ψ + yψ sinαSΨ̄iγ5Ψ

)
− 1

2
m2
SS

2 −ASHS|H|2 + · · · , (5.2)
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Figure 3. The predicted range of 3He++ EDM compared with the neutron EDM from the

CPV sources under consideration. The four plots are obtained by assuming s1C1(w) = s2C2(w) =

w/fπ with (s1, s2) = (+1,+1) (top-left), (+1,−1) (top-right), (−1,+1) (bottom-left), and (−1,−1)

(bottom-right). The color code is the same as Fig. 2: i) the QCD θ̄-parameter (gray), ii) the quark

CEDMs without (red) or with (blue) QCD axion, and iii) the gluon CEDM without (green) or with

(orange) QCD axion. Here we assume that the CEDMs are generated at Λ = 1 TeV, but again the

results are not sensitive to the value of Λ.

where the parameters mψ and yψ are now real, and α denotes the CP phase. Here Ψ ≡
(ψ ψc∗)T is the Dirac field of the VLQ. If cosα sinα ̸= 0 (i.e. α ̸= 0, π/2), CP has to be

broken, because S couples to both the CP-even fermion bilinear and the CP-odd fermion

bilinear.

Assuming the VLQ and the singlet scalar are heavier than the electroweak scale, one

can integrate them out. The effective lagrangian below the mass scales of the VLQ and

the singlet scalar is then given by some of the operators in Eq. (3.1) from the first two

diagrams in Fig. 5.

LCPV(µ = Λ) =c
G̃
fabcGaµα G

bδ
µ G̃

cα
δ + c

W̃
ϵabcW aµ

α W bδ
µ W̃

cα
δ

+ |H|2
(
c
HG̃

GaµνG̃
aµν + c

HW̃
W a
µνW̃

aµν + c
HB̃

BµνB̃
µν
) (5.3)

with [47, 73]

c
X̃

= − 1

12

g3X
(4π)4

y2ψ
m2
ψ

cαsα 2Tr(T 2
X(Ψ))h(τ), (5.4)

c
HX̃

= − g2X
32π2

yψ
mΨ

sα
ASH
m2
S

2Tr(T 2
X(Ψ)) f(τ), (5.5)

– 20 –



-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-0.00010

-0.00005

0.00000

0.00005

0.00010

Figure 4. The predicted range of 225Ra and 129Xe EDMs compared with the neutron EDM from

the CPV sources under consideration. The color code is the same as Fig. 2: i) the QCD θ̄-parameter

(gray), ii) the quark CEDMs without (red) or with (blue) QCD axion, and iii) the gluon CEDM

without (green) or with (orange) QCD axion. The plot for dXe is obtained by neglecting (potentially

important) unknown contributions from CPV four-nucleons contact interactions C1,2(w), while dRa

turns out to be not so sensitive to them if the NDA estimations for C1,2(w) are correct. Here we

assume that the CEDMs are generated at Λ = 1 TeV, but again the results are not sensitive to the

value of Λ.

where X = G,W, or B, TX(Ψ) is the representation of Ψ in the gauge group associated

with the gauge field X, τ ≡ m2
ψ/m

2
S , and the loop functions h(τ) and f(τ) are given by

h(τ) = 4τ2
∫ 1

0
dx

∫ 1

0
dy

x3y3(1 − x)

[τx(1 − xy) + (1 − x)(1 − y)]2
, (5.6)

f(τ) = −2τ

∫ 1

0
dx

1

x
ln[1 − x(1 − x)/τ ],

=

−τ
[
ln
(
1+

√
1−4τ

1−
√
1−4τ

)
− iπ

]2
, τ < 1/4

4τ arcsin2(1/2
√
τ), τ ≥ 1/4

. (5.7)

We note that the asymptotic behavior of the loop functions:

h(τ) ≃
{
−4τ ln τ (τ ≪ 1)

1 (τ ≫ 1)
, f(τ) ≃

{
τ2 (τ ≪ 1)

1 (τ ≫ 1)
(5.8)

The RG equations Eq. (3.3) tells us that the operators in Eq. (3.2) are also induced at

low energies by RG mixing through the third diagram in Fig. 5, and consequently around

the weak scale the following operators in Eq. (3.4) are generated7

LCPV(µ = mW ) =
1

3!
wfabcϵαβγδGaµαG

b
βγG

cµ
δ − i

2

∑
q

(
d̃qgsq̄σ

µνGµνγ5q + dqeq̄σ
µνFµνγ5q

)
.

(5.9)

7If the VLQ Ψ is charged under the electromagnetism U(1)em, the electron EDM is also generated, which

we are not concerned with here.
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Figure 5. The diagrams for the dimension-six CPV operators from a VLQ and a singlet scalar.

The blob in the third diagram is from the second diagram. If the VLQ is charged under the

electroweak gauge groups, the gluons can be replaced by the electroweak gauge bosons.

The sizes of the Wilson coefficients are roughly

w ∼ g3s
(4π)4

y2ψ
Λ2
s2α, d̃q ∼

g2s
(4π)4

yψ
Λ

mq

v
sαsξ, dq ∼

e2

(4π)4
yψ
Λ

mq

v
sαsξ (5.10)

where Λ ∼ mψ ∼ mS and ξ is the Higgs-singlet scalar mixing angle sξ ∼ ASHv/m
2
S .

Therefore, the quark EDMs are relatively small compared with the quark CEDMs by the

factor α/αs, and the quark EDMs’ contribution to the nuclear and atomic EDMs can be

neglected.
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Figure 6. The neutron EDM from a CPV VLQ by the Weinberg operator (left) and the RGE

induced quark CEDMs (right) with vanishing singlet scalar-Higgs mixing (ξ = 0). For the plot,

we choose the Yukawa coupling yψ = 1 and the CP angle α = 1. The Weinberg operator gives a

dominant contribution to the neutron EDM for the vanishing mixing angle.

In Fig. 6, we estimate the neutron EDM from the CPV VLQs in terms of VLQ mass

mQ and singlet scalar mass mS assuming the CP angle α = 1, no S-H mixing (ξ = 0),
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and the Yukawa coupling yψ = 1. Even without S-H mixing, non-zero quark CEDMs are

induced by the RGE from the Weinberg operator as can be seen from Eq. (3.10). However,

the figure shows that the neutron EDM is dominantly given by the Weinberg operator with

about 10% correction from the RGE-induced quark CEDMs.

In Fig. 7, on the other hand, we consider a non-vanishing S-H mixing sin ξ ≃ v/mS

for which sizable quark CEDMs are generated at the UV scale Λ = min(mψ,mS). For

this case, the corrections from the RGE are not important for neutron EDM, and the

neutron EDM is mostly determined by the quark CEDMs in viable parameter space with

dn < 10−26 e cm. The contribution from the Weinberg operator is rather small below 5%.
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Figure 7. The neutron EDM from a CPV VLQ by the quark CEDMs (left) and the ratio of the

neutron EDM from the Weinberg operator to the one from the quark CEDMs (right) with non-

vanishing singlet scalar-Higgs mixing sin ξ ≃ v/mS . For the plot, we choose the Yukawa coupling

yψ = 1 and the CP angle α = 1. The quark CEDMs give a dominant contribution to the neutron

EDM for the non-vanishing mixing angle.

5.2 Supersymmetry

In supersymmetric (SUSY) extensions of the SM, the dominant CP violating operator is

determined by details of the mass spectrum of SUSY particles.

Even in the simplest phenomenologically viable scenarios, such as the MSSM, there are

multiple new sources of CPV, which can have a significant impact on the phenomenology

of the model. In the case that sfermions are as light as the gauginos and Higgsinos, the

leading CPV operator is typically the quark CEDM [74] generated by the 1-loop diagram

such as the one shown on the right side of Fig. 8. CPV is generated by the complex

nature of the SUSY breaking parameters, as typically many of them contain a non-zero

phase that remains even after performing field redefinitions in gaugino and Higgsino masses.
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Other complex parameters of the MSSM include, e.g., squark or slepton mass matrices and

bilinear or trilinear couplings;8 for extensive discussion of these terms, we refer to [74–76].

In fact, these one-loop diagrams involving CPV complex parameters are enhanced by

a potentially large tanβ. This can easily lead in a generic SUSY scenario to an electron

or neutron EDM that is much larger than experiments allow. The discrepancy between

such theoretical expectation and experimental results is called the SUSY CP problem and

several explanations for it have been investigated in the literature, an overview of some of

them can be found in [74].

An apparent solution to evade these constraints is to assume that some SUSY particles

are very heavy or that the CPV phases are aligned or canceled by other effects. Another,

more complete, possibility is to consider specific scenarios of SUSY breaking that achieve

this by some well-motivated mechanism, such as split SUSY [77–79] or natural SUSY [80–

82].

The former scenario assumes that the scalar superpartners are much heavier than the

fermionic ones, such as gauginos and higgsinos. This can suppress the EDMs from one-

loop diagrams involving scalars, but it also enhances the EDMs from two-loop diagrams

involving gauginos. For example, the gluino can induce a large EDM for the quarks through

its interaction with the gluon. In fact, the split (or high scale) SUSY is an excellent example

in which the SUSY CPV is dominantly mediated by gauge and Higgs interactions with the

SM sector [46, 83]. In particular, the gluon CEDM shown on the left of Fig. 8 can be

the dominant CPV operator if the gluino has a mass comparable to that of charginos and

neutralinos [46].

On the other hand, the natural SUSY is a scenario where only the superpartners that

are relevant for electroweak symmetry breaking, such as stops and higgsinos, are light. Such

spectrum typically avoids problems associated with fine-tuning, while at the same time it

introduces new sources of CPV from the Higgs sector. For example, a new tree-level

interaction between the Higgs and a singlet field (introduced, e.g., to solve the so-called µ

problem) can generate a large EDM for the electron or quarks through two-loop Barr-Zee

type diagrams [76].

The extended Higgs sector of the MSSM - which is required to cancel the chiral anoma-

lies - is another source of SUSY contributions to EDMs. It consists of two Higgs doublets,

which result in five physical Higgs bosons: two CP-even scalars h, H, one CP-odd pseu-

doscalar A, and two charged scalars H±. The exchange of these Higgs bosons at one-loop

level can induce EDMs for quarks and leptons through their Yukawa couplings and their

CKM matrix elements. In fact, this type of Higgs sector is a special case of the more general

class of models known as type II Two-Higgs-Doublet Models (2HDMs) that predict such

extended scalar sector; we discuss them in the next section. The EDMs from the extended

Higgs sector of the MSSM depend on the masses and couplings of the Higgs bosons, as well

as the CPV phase in the Higgs potential.

Another possibility for SUSY contributions to EDMs is the R-parity violating (RPV)

8We do not discuss them further because they are either subdominant or do not lead to the form of

EDM operators we study.
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MSSM, which allows for lepton and baryon number violating interactions among the super-

partners. The RPV MSSM does not introduce new one-loop diagrams contributing to the

EDMs [84], and the leading contribution takes place at the two-loop level, mainly through

the Barr-Zee type diagrams, which involve a loop of charged particles and a loop of neutral

particles. However, the discussion of the RPV MSSM is beyond the scope of this work,

while an extensive discussion can be found in [85].

g̃

fLfL fR

f̃

g̃, χ̃±, χ̃0

H

g

Figure 8. The diagrams illustrating the dimension-six CPV operators generated in supersym-

metric extensions of the SM. The blob in the first diagram denotes the gluino CEDM originating

from the CP phase of gluino mass.

5.3 2HDMs

2HDMs are a class of models that can mediate CP violation through heavy beyond the

Standard Model (BSM) Higgs bosons, 3 neutral and 2 charged ones, with a Z2 symme-

try imposed to suppress the flavor-changing neutral currents, see [86, 87] for an extended

discussion of its EDM phenomenology. CPV phases can enter through both Yukawa inter-

actions, parameterized in general by arbitrary complex matrices,9 and by the CPV terms

in the potential of neutral scalars.

Compared to the Higgs sector of the MSSM, the 2HDM can potentially exhibit more

significant CPV effects, due to the possible presence of physical CP-violating phases in the

Higgs sector. These CPV phases can exist even if all the input parameters are real and, in

contrast to the MSSM, cannot be rotated away by field redefinitions, owing to the absence

of R-symmetry. Thus, even if the input parameters are chosen to be real, spontaneous

symmetry breaking in the 2HDM can give rise to CPV, which does not hold for MSSM at

the tree level. On the other hand, in the MSSM, CP violation can arise from the complex

phases of the soft SUSY-breaking parameters or from loop-level effects, as discussed in the

previous section, even if the Higgs sector parameters are chosen to be real.

2HDMs are characterized by a rich EDM phenomenology, which depends largely on

how the Higgs doublets couple to the SM fermions, and therefore fall into several types -

see, e.g., [88] for an overview. In these models, the quark CEDMs are the dominant CPV

operators, and they can be generated by the top quark loops, as illustrated in Fig. 9,

which also involves the exchange of neutral and charged Higgs bosons. Another significant

9The special case of phases described by a scalar matrix corresponds to the so-called Aligned 2HDM.
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source of CPV emerges from the CEDM of the gluon [86]. In contrast, the CPV four-

fermion operators, which arise from the exchange of two heavy Higgs bosons, are typically

negligible. This takes place because they are suppressed by the product of two small Yukawa

couplings and the absence of the potentially large factor tan3 β; the parameter tanβ is the

ratio of the vacuum expectation values of the two Higgs doublets, which determines the

strength of the Yukawa couplings. Therefore, the EDMs in 2HDMs with a Z2 symmetry

are mainly sensitive to the quark and gluon CEDMs.

γ5
φ0
i (H

±)
t

t(b)

φ0
i

t

fL fR

H

Figure 9. The diagrams depict the dimension-six CPV operators originating from 2HDMs. Here,

ϕ0i = h,H0, A0 denotes the neutral Higgs bosons. The left panel illustrates the generation of the

Weinberg operator, while the right one presents the generation of the quark CEDM.

6 Conclusions

Since the SM predictions of the nuclear and atomic EDMs from the Kobayashi-Maskawa

phase are well below the current and near-future experimental bounds, the observation of

non-vanishing EDM in near future indicates that the underlying CP violation is due to the

QCD θ-parameter or a BSM source. In this work, we have examined whether future EDM

measurements of nucleons and some nuclei/atoms can give us information not only on the

origin of CP violation, but also on the PQ mechanism for the dynamical relaxation of the

QCD θ-parameter.

In the presence of the PQ mechanism, BSM CP violation affects EDMs both directly

and by shifting the axion vacuum value when combined with the PQ breaking by the QCD

anomaly. On the other hand, PQ breaking other than the QCD anomaly, e.g. quantum

gravity effects, which typically takes place at UV scales and characterizes the quality of the

PQ symmetry, affects the EDMs mostly by shifting the axion vacuum value. By this reason,

the pattern of EDMs of different elements can be sensitive to the existence of the QCD

axion and the quality of the associated PQ symmetry, in addition to providing information

on the effective operators describing BSM CP violation at low energy scales.

To be concrete and for simplicity, we focus on a class of BSM scenarios where BSM CP

violation is dominantly mediated to the SM sector by the SM gauge and Higgs interactions.

In this class of BSM scenarios, flavor-conserving CP violation around the QCD scale may

appear dominantly in the form of the gluon and light quark CEDMs and/or the QCD θ-
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term. Motivated examples include vector-like quarks and certain parameter spaces of the

MSSM and the 2 Higgs-doublet models.

We find that the nucleon EDMs show a distinctive pattern when the EDMs are dom-

inantly induced by the light quark CEDMs without the PQ mechanism. In the presence

of the PQ mechanism, the axion vacuum value which determines the QCD θ-parameter

might be induced either by CEDMs or by UV-originated PQ breaking other than the QCD

anomaly, for instance the PQ breaking by quantum gravity effects. We find that in case

with the PQ mechanism the nucleon EDMs have a similar pattern regardless of what is

the dominant source of EDMs among the CEDMs and θ-term, unless there is a significant

cancellation between the contributions from different sources. In contrast, some nuclei or

atomic EDMs can have characteristic patterns significantly depending on the dominant

source of EDMs, which may allow identifying the dominant source of CP violation among

the CEDMs and θ-term. Yet, discriminating the gluon CEDM from the QCD θ-parameter

necessitates additional knowledge of low energy parameters induced by the gluon CEDM,

which is not available at the moment. Our results imply that EDMs can reveal unam-

biguous sign of BSM CPV while identifying the origin of the axion vacuum value, however

it requires further knowledge of low energy parameters associated with BSM CPV. More

extensive studies on this matter with additional BSM CPV sources and hadronic/leptonic

CPV observables are subject to future work [38].
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A RGE of the CPV dimension-six operators

In the gauge and Higgs mediated CP violation, the CPV effect above the electroweak scale

appears through the following dimension-six operators of the SM gauge fields and the Higgs

field, as given in Eq. (3.1) and (3.2):

LCPV = c
G̃
fabcGaµα G

bδ
µ G̃

cα
δ + c

W̃
ϵabcW aµ

α W bδ
µ W̃

cα
δ

+ |H|2
(
c
HG̃

GaµνG̃
aµν + c

HW̃
W a
µνW̃

aµν + c
HB̃

BµνB̃
µν
)

+ c
HW̃B

H†τaHW̃ a
µνB

µν

+

∑
q=u,d

∑
X=G,W,B

i(cqX)ijQ̄Liσ
µνXµνqRjH

(∗) +
∑

X=W,B

i(ceX)ijL̄iσ
µνXµνeRjH

(∗) + h.c.


(A.1)

where the Wilson coefficients cα (α = G̃, W̃ , ...) are all real-valued, i, j denotes flavor indices,

and H(∗) ≡ H or H∗ in order to make the operators invariant under the SM gauge groups.

The RG equations of the above dimension-six operators at one-loop are given in [32–

35]. Here we use the Yukawa couplings defined as

LYukawa = −
[
(Yu)ij ūRiQLjH + (Yd)ij d̄RiQLjH

∗ + (Ye)ij ēRiLjH
∗ + h.c.

]
(A.2)
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with the flavor indices i, j. The other parameters appearing in the following RG equations

are cA,3 = Nc, cA,2 = 2, cF,3 = (N2
c − 1)/2Nc, cF,2 = 3/4, b0,3 = 11Nc/3 − 2nF /3,

b0,2 = 22/3 − 1/6 − (Nc + 1), b0,1 = −1/6 − (11Nc/9 + 3) with Nc = 3, and qψ denotes

the U(1)Y hypercharge of the field ψ. The RG equations for the operators in Eq. (A.1) at

one-loop are then given by

16π2
dc
G̃

d lnµ
= (12cA,3 − 3b0,3)g

2
3cG̃ , (A.3)

16π2
dc
W̃

d lnµ
= (12cA,2 − 3b0,2)g

2
2cW̃ , (A.4)

16π2
dc
HG̃

d lnµ
=

(
−6q2Hg

2
1 −

9

2
g22 − 2b0,3g

2
3

)
c
HG̃

+ (2ig3Tr[YucuG + YdcdG] + h.c.) ,

(A.5)

16π2
dc
HW̃

d lnµ
= −15g32cW̃ +

(
−6q2Hg

2
1 −

5

2
g22 − 2b0,2g

2
2

)
c
HW̃

+ 2g1g2qHcHW̃B
, (A.6)

16π2
dc
HB̃

d lnµ
=

(
2q2Hg

2
1 −

9

2
g22 − 2b0,1g

2
1

)
c
HB̃

+ 6g1g2qHcHW̃B
, (A.7)

16π2
dc
HW̃B

d lnµ
= 6g1g

2
2qHcW̃ +

(
−2q2Hg

2
1 +

9

2
g22 − b0,1g

2
1 − b0,2g

2
2

)
c
HW̃B

+4g1g2qHcHB̃ + 4g1g2qHcHW̃ , (A.8)

16π2
d(cuG)ij
d lnµ

=
[
(10cF,3 − 4cA,3 − b0,3) g

2
3 − 3cF,2g

2
2 +

(
−3q2u + 8quqQ − 3q2Q

)
g21
]

(cuG)ij

+ 8cF,2g2g3(cuW )ij + 4g1g3(qu + qQ)(cuB)ij

+ Im
[
−4(Y †

u )ijg3(cHG + ic
HG̃

) + 3g23cA,3(Y
†
u )ij

(
cG + ic

G̃

)]
,

(A.9)

16π2
d(cuW )ij
d lnµ

=
[
2cF,3g

2
3 + (3cF,2 − b0,2) g

2
2 +

(
−3q2u + 8quqQ − 3q2Q

)
g21
]

(cuW )ij

+ 2cF,3g2g3(cuG)ij + g1g2(3qQ − qu)(cuB)ij

− Im
(

(Y †
u )ij

[
g2(cHW + ic

HW̃
) − g1(qQ + qu)(cHWB + ic

HW̃B
)
])
,

(A.10)

16π2
d(cuB)ij
d lnµ

=
[
2cF,3g

2
3 − 3cF,2g

2
2 +

(
3q2u + 4quqQ + 3q2Q − b0,1

)
g21
]

(cuB)ij

+ 4cF,3g1g3 (qu + qQ) (cuG)ij + 4cF,2g1g2(3qQ − qu)(cuW )ij

− Im

(
(Y †
u )ij

[
2g1(qQ + qu)(cHB + ic

HB̃
) − 3

2
g2(cHWB + ic

HW̃B
)

])
,

(A.11)

16π2
d(cdG)ij
d lnµ

=
[
(10cF,3 − 4cA,3 − b0,3) g

2
3 − 3cF,2g

2
2 +

(
−3q2d + 8qdqQ − 3q2Q

)
g21
]

(cdG)ij

+ 8cF,2g2g3(cdW )ij + 4g1g3(qd + qQ)(cdB)ij

+ Im
[
−4(Y †

d )ijg3(cHG + ic
HG̃

) + 3g23cA,3(Y
†
d )ij

(
cG + ic

G̃

)]
,

(A.12)
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16π2
d(cdW )ij
d lnµ

=
[
2cF,3g

2
3 + (3cF,2 − b0,2) g

2
2 +

(
−3q2d + 8qdqQ − 3q2Q

)
g21
]

(cdW )ij

+ 2cF,3g2g3(cdG)ij + g1g2(3qQ − qd)(cdB)ij

− Im
(

(Y †
d )ij

[
g2(cHW + ic

HW̃
) + g1(qQ + qd)(cHWB + ic

HW̃B
)
])
,

(A.13)

16π2
d(cdB)ij
d lnµ

=
[
2cF,3g

2
3 − 3cF,2g

2
2 +

(
3q2d + 4qdqQ + 3q2Q − b0,1

)
g21
]

(cdB)ij

+ 4cF,3g1g3 (qd + qQ) (cdG)ij + 4cF,2g1g2(3qQ − qd)(cdW )ij

− Im

(
(Y †
d )ij

[
2g1(qQ + qd)(cHB + ic

HB̃
) +

3

2
g2(cHWB + ic

HW̃B
)

])
,

(A.14)

16π2
d(ceW )ij
d lnµ

=
[
(3cF,2 − b0,2) g

2
2 +

(
−3q2e + 8qeqL − 3q2L

)
g21
]

(ceW )ij + g1g2(3qL − qe)(ceB)ij

− Im
(

(Y †
e )ij

[
g2(cHW + ic

HW̃
) + g1(qL + qe)(cHWB + ic

HW̃B
)
])
,

(A.15)

16π2
d(ceB)ij
d lnµ

=
[
−3cF,2g

2
2 +

(
3q2e + 4qeqL + 3q2L − b0,1

)
g21
]

(ceB)ij + 4cF,2g1g2(3qL − qe)(ceW )ij

− Im

(
(Y †
e )ij

[
2g1(qL + qe)(cHB + ic

HB̃
) +

3

2
g2(cHWB + ic

HW̃B
)

])
.

(A.16)

The RG equations for cqX and ceX in Eqs. (A.9)-(A.16) involve the Wilson coefficients of

the following CP-even operators through the complex phase of the Yukawa couplings:

LCP-even = cGf
abcGaµα G

bδ
µ G

cα
δ + |H|2

(
cHGG

a
µνG

aµν + cHWW
a
µνW

aµν + cHBBµνB
µν
)

+ cHWBH
†τaHW a

µνB
µν .

(A.17)
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