An Algorithm for the Constrained Longest Common Subsequence and Substring Problem

Rao Li
Dept. of Computer Science, Engineering, and Mathematics
University of South Carolina Aiken
Aiken, SC 29801 USA
Email:raol@usca.edu
Jyotishmoy Deka
Dept. of Electrical Engineering
Tezpur University
Tezpur, Assam 784028
India
Email: jyotishmoydeka62@gmail.com
Kaushik Deka
Dept. of Computer Science and Engineering
National Institute of Technology Silchar
Cachar, Assam 788010
India
Email: jagatdeka20@gmail.com

Dorothy Li
 12000 Market Street, Unit 63
 Reston, VA 20190
 USA
 Email: dorothy.li1994@gmail.com

Aug. 1, 2023

Abstract

Let Σ be an alphabet. For two strings X, Y, and a constrained string P over the alphabet Σ, the constrained longest common subsequence and substring problem for two strings X and Y with respect to P is to find a longest string Z which is a subsequence of X, a substring of Y, and has P as a subsequence. In this paper, we propose an algorithm for the constrained longest common subsequence and substring problem for two strings with a constrained string.

Keywords: longest common subsequence, longest common substring, longest common subsequence and substring, constrained longest common subsequence

1. Introduction

Let Σ be an alphabet and S a string over Σ. A subsequence of a string S over an alphabet Σ is obatined by deleting zero or more letters of S. A substring of a string S is a subsequence of S consists of consecutive letters in S. The longest common subsequence problem (LCSSeq) for two strings is to find a longest string which is a subsequence of both strings. The longest common substring (LCSStr) problem for two strings is to find a longest string which is a substring of both strings. Both the
longest common subsequence problem and the longest common substring problem have been well-studied in last several decades. More details on the studies for the first problem can be found in [1], [2], [4], [6], [7], [8], [9], and [11] and the second problem can be found in [3] and [13].

Tsai [12] extended the longest common subsequence problem for two strings to the constrained longest common subsequence (CLCSSeq) probelm for two strings. For two strings X, Y, and a constrained string P, the constrained longest common subsequence problem for two strings X and Y with respect to P is to find a string Z such that Z is a longest common subsequence for X and Y and P is a subsequence of Z. Tsai [12] designed an $O\left(|X|^{2}|Y|^{2}|P|\right)$ time algorithm for the CLCSSeq problem for two strings, where $|X|,|Y|$, and $|P|$ denote the lengths of the strings X, Y, and P, respectively. Chin et al. [5] improved Tsai's algorithm and designed an $O(|X||Y||P|)$ time algorithm for the CLCSSeq problem for two strings X and Y and a constrained string P.

Motivated by LCSSeq and LCSStr problems, Li et. al [10] introduced the longest common subsequence and substring (LCSSeqSStr) problem for two strings. For two strings X, Y, the longest common subsequence and substring problem for X and Y is to find a longest string which is a subsequence of X and a substring of Y. They also designed an $O(|X||Y|)$ time algorithm for LCSSeqSStr problem for two strings X and Y in [10].

Motivated by Tsai's extension of LCSSeq to CLCSSeq for two strings, we introduce the constrained longest common subsequence and substring problem for two strings with respect to a constrained string. For two strings X, Y, and a constrained string P, the constrained longest common subsequence and substring (CLCSSeqSStr) problem for two strings X and Y with respect to P is to find a string Z such that Z is a longest
common subsequence of X, a substring of Y, and has P as a subsequence. Clearly, the CLCSSeq problem is a special CLCSSeqSStr problem with an empty constrained string. In this paper, we, using some ideas and techniques developed in [5], design an $O(|X||Y||P|)$ time algorithm for CLCSSeqSStr problem for two strings and a constrained string.

2. The Recursions in the Algorithm

In order to present our algorithm, we need to establish some recursions to be used in our algorithm. Before establishing the recursions, we need some notations as follows. For a given string $S=s_{1} s_{2} \ldots s_{l}$ over an alphabet Σ, the size of S, denoted $|S|$, is defined as the number of letters in S. The i prefix of S is defined as $S_{i}=s_{1} s_{2} \ldots s_{i}$, where $1 \leq i \leq l$. Conventionally, S_{0} is defined as an empty string. The l suffixes of S are the strings of $s_{1} s_{2} \ldots s_{l}$, $s_{2} s_{3} \ldots s_{l}, \ldots, s_{l-1} s_{l}$, and s_{l}. Let $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ be two strings and $P=p_{1} p_{2} \ldots p_{r}$ a constrained string. We define $Z[i, j, k]$ as a string satisfying the following conditions, where $1 \leq i \leq m, 1 \leq j \leq n$, and $1 \leq k \leq r$,
(1) it is a subsequence of X_{i},
(2) it is a suffix of Y_{j},
(3) it has P_{k} as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible.

Claim 1. Let $U^{k}=u_{1}^{k} u_{2}^{k} \ldots u_{h_{k}}^{k}$ be a longest string which is a subsequence of X, a substring of Y, and has P_{k} as a subsequence. Then $h_{k}=\max \{|Z[i, j, k]|: 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq r\}$.

Proof of Claim 1. For each i with $1 \leq i \leq m$, each j with $1 \leq j \leq n$, and each k with $1 \leq k \leq r$, we, from the definition of $Z[i, j, k]$, have that $Z[i, j, k]$ is a subsequence of X, a substring of Y, and has P_{k} as a subsequence. By the definition of U^{k}, we have that $|Z[i, j, k]| \leq\left|U^{k}\right|=h_{k}$. Thus
$\max \{|Z[i, j, k]|: 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq r\} \leq h_{k}$.
Since $U^{k}=u_{1}^{k} u_{2}^{k} \ldots u_{h_{k}}^{k}$ is a longest string which is a subsequence of X, a substring of Y, and has P_{k} as a subsequence, there is an index s and an index t such that $u_{h_{k}}^{k}=x_{s}$ and $u_{h_{k}}^{k}=y_{t}$ such that $U^{k}=u_{1}^{k} u_{2}^{k} \ldots u_{h_{k}}^{k}$ is a subsequence of X_{s}, a suffix of Y_{t}, and has P_{k} as a subsequence. From the definition of $Z[i, j, k]$, we have that $h_{k} \leq|Z[s, t, k]| \leq \max \{|Z[i, j, k]|: 1 \leq$ $i \leq m, 1 \leq j \leq n, 1 \leq k \leq r\}$.

Hence $h_{k}=\max \{|Z[i, j, k]|: 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq k \leq$ $r\}$ and the proof of Claim 1 is complete.

Claim 2. Suppose that $X_{i}=x_{1} x_{2} \ldots x_{i}, Y_{j}=y_{1} y_{2} \ldots y_{j}$, and $P=p_{1} p_{2} \ldots p_{k}$, where $1 \leq i \leq m$ and $1 \leq j \leq n, 1 \leq k \leq r$. If $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a string satisfying conditions (1), (2), (3), and (4) above. Then we have only the following possible cases and the statement in each case is true.

Case 1. $x_{i}=y_{j}=p_{k}$. We have $|Z[i, j, k]|=\mid Z[i-1, j-1, k-$ $1] \mid+1$ in this case.

Case 2. $x_{i}=y_{j} \neq p_{k}$. We have $|Z[i, j, k]|=|Z[i-1, j-1, k]|+1$ in this case.

Case 3. $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$. We have $|Z[i, j, k]|=$ $\mid Z[i-1, j, k| |$ in this case.

Case 4. $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$. We have $|Z[i, j, k]|=$ $\mid Z[i-1, j, k| |$ in this case.

Case 5. $x_{i} \neq y_{j}, x_{i}=p_{k}$, and $y_{j} \neq p_{k}$. This case does not happen.

Proof of Claim 2. The five cases can be figured out in the
following way. Firstly, we have two cases of $x_{i}=y_{j}$ or $x_{i} \neq y_{j}$. When $x_{i}=y_{j}$, we just can have two possible cases of $x_{i}=y_{j}=$ p_{k} or $x_{i}=y_{j} \neq p_{k}$. When $x_{i} \neq y_{j}$, we just can have three possible cases of $x_{i} \neq p_{k}$ and $y_{j}=p_{k}, x_{i} \neq p_{k}$ and $y_{j} \neq p_{k}$, or $x_{i}=p_{k}$ and $y_{j} \neq p_{k}$. Next we will prove the statements in the five cases.

Case 1. Since $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j}=x_{i}=p_{k}$. Let $W=w_{1} w_{2} \ldots w_{b}=Z[i-1, j-1, k-1]$ be a string satisfying the following conditions,

- it is a subsequence of X_{i-1}.
- it is a suffix of Y_{j-1},
- it has P_{k-1} as a subsequence,
- under (1), (2) and (3), its length is as large as possible.

Note that $z_{1} z_{2} \ldots z_{a-1}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j-1}, and has P_{k-1} as a subsequence. By the definition of $W=w_{1} w_{2} \ldots w_{b}$, we have that $a-1 \leq b$. Namely, $a \leq b+1$.

Note that $w_{1} w_{2} \ldots w_{b} z_{a}$ is a string satisfying following conditions,

- it is a subsequence of X_{i},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence.

By the definition of $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$, we have that $b+1 \leq a$. Thus $a=b+1$ and $|Z[i, j, k]|=|Z[i-1, j-1, k-1]|+1$.

Case 2. Since $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j}=x_{i} \neq p_{k}$. Let $U=u_{1} u_{2} \ldots u_{c}=Z[i-1, j-1, k]$ be a string satisfying the following conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j-1},
- it has P_{k} as a subsequenc,
- under (1), (2) and (3), its length is as large as possible.

Note that $z_{1} z_{2} \ldots z_{a-1}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j-1}, and has P_{k} as a subsequence. By the definition of $U=u_{1} u_{2} \ldots u_{c}=Z[i-1, j-1, k]$, we have that $a-1 \leq c$. Namely, $a \leq c+1$.

Note that $u_{1} u_{2} \ldots u_{c}$ is a string satisfying the following conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j-1},
- it has P_{k} as a subsequence.

Thus $u_{1} u_{2} \ldots u_{c} y_{j}$ is a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$, we have that $c+1 \leq a$. Thus $a=c+1$ and $|Z[i, j, k]|=|Z[i-1, j-1, k]|+1$.

Case 3. Since $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j}=p_{k} \neq x_{i}$. Let $V=v_{1} v_{2} \ldots v_{d}=Z[i-1, j, k]$ be a string satisfying the following conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence,
- under (1), (2) and (3), its length is as large as possible.

Note that $z_{1} z_{2} \ldots z_{a}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $V=v_{1} v_{2} \ldots v_{d}=Z[i-1, j, k]$, we have that $a \leq d$.

Note that $v_{1} v_{2} \ldots v_{d}$ is a string satisfying conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence.

Thus $v_{1} v_{2} \ldots v_{d}$ is a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$, we have that $d \leq a$. Thus $a=d$ and $|Z[i, j, k]|=|Z[i-1, j, k]|$.

Case 4. Since $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j} \neq p_{k}, z_{a}=y_{j} \neq x_{i}$, and $x_{i} \neq p_{k}$. Let $Q=q_{1} q_{2} \ldots q_{e}=$ $Z[i-1, j, k]$ be a string satisfying the following conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence,
- under (1), (2) and (3), its length is as large as possible.

Note that $z_{1} z_{2} \ldots z_{a}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Q=q_{1} q_{2} \ldots q_{e}=Z[i-1, j, k]$, we have that $a \leq e$.

Note that $q_{1} q_{2} \ldots q_{e}$ is a string satisfying the following conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence.

Thus $q_{1} q_{2} \ldots q_{e}$ is a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$, we have that $e \leq a$. Thus $a=e$ and $|Z[i, j, k]|=|Z[i-1, j, k]|$.

Case 5. Since $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j} \neq x_{i}=p_{k}$. Since $z_{1} z_{2} \ldots z_{a}$ is a subsequence of X_{i} and $x_{i} \neq z_{a}$, we have that z_{a} appears before x_{i} on X_{i}. Since
$x_{i}=p_{k}$ on $X_{i}, p_{1} p_{2} \ldots p_{k}$ cannot be a subsequence of $z_{1} z_{2} \ldots z_{a}$, a conradiction. Note that since this case does not happen, we will not deal with this case in our algorithm.

Therefore the proof of Claim 2 is complete.
The following Claim 3 which will used in our algorithm demonstrates the implications of the condition that there is not a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.

Claim 3. Suppose there is not a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.
[1]. If $x_{i}=y_{j}=p_{k}$, then there is not a string which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k-1}=p_{1} p_{2} \ldots p_{k-1}$ as a subsequence.
[2]. If $x_{i}=y_{j} \neq p_{k}$, then there is not a string which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.
[3]. If $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$, then there is not a string which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.
[4]. If $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$, then there is not a string which is a subsequence for $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.

Proof of Claim 3. We next will prove the statements in the four cases.
[1]. Now we have that $x_{i}=y_{j}=p_{k}$. Suppose, to the con-
trary, that there is a string W_{1} which is a subsequence of $X_{i-1}=$ $x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P=p_{1} p_{2} \ldots p_{k-1}$ as a subsequence. Then $W_{1} x_{i}$ is a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.
[2]. Now we have that $x_{i}=y_{j} \neq p_{k}$. Suppose, to the contrary, that there is a string W_{2} which is a subsequence of $X_{i-1}=$ $x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence. Then $W_{2} x_{i}$ is a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.
[3]. Now we have that $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$. Suppose, to the contrary, that there is a string W_{3} which is a subsequence for $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence. Then W_{3} is a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.
[4]. Now we have that $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$. Suppose, to the contrary, that there is a string W_{4} which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence. Then W_{4} is a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots x_{i}$, a suffix of $Y=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.

Therefore the proof of Claim 3 is complete.

3. The Algorithm

Now we can present our algorithm. We assume that $X=$ $x_{1} x_{2} \ldots x_{m}, Y=y_{1} y_{2} \ldots y_{n}$, and $P=p_{1} p_{2} \ldots p_{r}$. Let M be a three dimensional array of size $(m+1)(n+1)(r+1)$. It can be thought as a collection of $(r+1)$ two dimensional arrays of size $(m+1)(n+1)$.

The cells $M[i][j][k]$, where $0 \leq i \leq m, 0 \leq j \leq n$, and $0 \leq k \leq r$, store the lengths of longest strings such that each of them is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. If either $i<r$ or $j<r$, there is not a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. This situation is represented by setting $M[i][j][k]=-\infty$, where ∞ can be any number which is greater than the larger one between m and n. Now we can fill in some boundary cells in array M.

If $i=0$ and $k=0$ or $j=0$ and $k=0$, the length of a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence is zero. Thus $M[0][j][0]=0$, where $0 \leq j \leq n$ and $M[i][0][0]=0$, where $0 \leq i \leq m$.

If $k=0$ or P is an empty string. The CLCSSeqSStr problem for two strings X and Y and a constrained string P becomes the LCSSeqSStr problem for two strings X and Y. The cells of $M[i][j][0]$, where $1 \leq i \leq m$ and $1 \leq j \leq n$, can be filled in by the following rules. If $x_{i}=y_{j}$, then $M[i][j]=M[i-1][j-1]+1$. If $x_{i} \neq y_{j}$, then $M[i][j]=M[i-1][j]$. The detailed proofs for the truth of the rules can be found in [10].

If $i=0$ and $k \geq 1$, there is not a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. Thus $M[0][j][k]=-\infty$, where $0 \leq j \leq n$ and $1 \leq k \leq r$.

If $j=0$ and $k \geq 1$, there is not a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P as a subsequence. Thus $M[i][0][k]=-\infty$, where $0 \leq i \leq m$ and $1 \leq k \leq r$.

Next we will fill in the remaining cells $M[i][j][k]$, where $i \geq 1$, $j \geq 1$, and $k \geq 1$.

If $i \geq 1, j \geq 1, k \geq 1$, and $x_{i}=y_{j}=p_{k}$, then $M[i][j][k]=$ $M[i-1][j-1][k-1]+1$.

If $i \geq 1, j \geq 1, k \geq 1$, and $x_{i}=y_{j} \neq p_{k}$, then $M[i][j][k]=$ $M[i-1][j-1][k]+1$.

If $i \geq 1, j \geq 1, k \geq 1$, and $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$, then $M[i][j][k]=M[i-1][j][k]$.

If $i \geq 1, j \geq 1, k \geq 1$, and $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$, then $M[i][j][k]=M[i-1][j][k]$.

Notice that Claim 1 implies that if a longest string which is a subsequence of $X=X_{m}$, a substring of $Y=Y_{n}$, and has $P=P_{r}$ as a subsequence exists then its length is equal to $\max \{|Z[i, j, r]|: 1 \leq i \leq m, 1 \leq j \leq n\}=\max \{M[i][j][r]:$ $1 \leq i \leq m, 1 \leq j \leq n\}$. Hence, a longest string which is a subsequence of X, a substring of Y, and has P as a subsequence can be found in the following way. Define one variable called maxLength which eventually represents the length of a longest string which is a subsequence of X, a substring of Y, and has P as a subsequence and its initial value is 0 . Define another variable called lastIndexOn Y which eventually represents the last index of the desired string which is a substring of Y and its initial value is n. Visit all the cells of $M[i][j][r]$, where $0 \leq i \leq m$ and $0 \leq j \leq n$, in the last two dimensional array created in the algorithm above by using a loop embedded another loop. During the visitation, if $M[i][j][r]>$ maxLength, then update maxLength and lastIndexOnY as $M[i][j][r]$ and j, respectively. After finishing the visitation of all the cells of $M[i][j][r]$, where $0 \leq i \leq m$ and $0 \leq j \leq n$, we return the substring of Y between (lastIndexOnY - maxLength) and lastIndexOnY.

The correctness of the above algorithm is ensured by Claim 1, Claim 2, and Claim 3. It is clear that both time complexity and space complexity of the above algorithm are $O((m+1)(n+$ 1) $(r+1))=O(m n r)$.

We implemented our algorithm in Java and the program can be found at "https://sciences.usca.edu/math/~mathdept/rli/ CLCSSeqSStr/CLCSubseqSubstr.pdf".

References

[1] A. Apostolico, String editing and longest common subsequences, in: G. Rozenberg and A. Salomaa (Eds.), Linear Modeling: Background and Application, in: Handbook of Formal Languages, Vol. 2, Springer-Verlag, Berlin, 1997.
[2] A. Apostolico, Chapter 13: General pattern matching, in: M. J. Atallah (Ed.), Handbook of Algorithms and Theory of Computation, CRC, Boca Raton, FL, 1998.
[3] D. Gusfield, II: Suffix Trees and Their Uses, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.
[4] L. Bergroth, H. Hakonen, and T. Raita, A survey of longest common subsequence algorithms, in: SPIRE, A Coruña, Spain, 2000.
[5] F. Y. L. Chin, A. De Santis, A. L. Ferrara, N. L. Ho, and S. K. Kim, A simple algorithm for the constrained sequence problems, Information Processing Letters 90 (2004) 175179.
[6] T. Cormen, C. Leiserson, and R. Rivest, Section 16.3: Longest common subsequence, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.
[7] D. Hirschberg, A linear space algorithm for computing maximal common subsequences, Communications of the ACM 18 (1975) 341343.
[8] D. Hirschberg, Serial computations of Levenshtein distances, in: A. Apostolico and Z. Galil (Eds.), Pattern Matching Algorithms, Oxford University Press, Oxford, 1997.
[9] J. Hunt and T. Szymanski, A fast algorithm for computing longest common subsequences, Communications of the ACM 20 (1977) 350353.
[10] R. Li, J. Deka, and K. Deka, An algorithm for the longest common subsequence and substring problem, manuscript, July 2023. The implementation of the algorithm in Java can be found at "https://sciences.usca.edu/math/ ${ }^{\text {m mathdept }}$ /rli/LCSSeqSStr/LCSS.pdf".
[11] C. Rick, New algorithms for the longest common subsequence problem, Research Report No. 85123-CS, University of Bonn, 1994.
[12] Y. T. Tsai, The constrained longest common subsequence problem, Information Processing Letters 88 (2003) 173-176.
[13] P. Weiner, Linear pattern matching algorithms. In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, October 1517, 1973, pp. 111 (1973).

