
ar
X

iv
:2

30
8.

01
32

2v
1

 [
cs

.D
S]

 2
 A

ug
 2

02
3 An Algorithm for the Constrained

Longest Common Subsequence and

Substring Problem

Rao Li

Dept. of Computer Science, Engineering, and Mathematics
University of South Carolina Aiken

Aiken, SC 29801
USA

Email: raol@usca.edu

Jyotishmoy Deka
Dept. of Electrical Engineering

Tezpur University
Tezpur, Assam 784028

India

Email: jyotishmoydeka62@gmail.com

Kaushik Deka
Dept. of Computer Science and Engineering

National Institute of Technology Silchar
Cachar, Assam 788010

India
Email: jagatdeka20@gmail.com

1

http://arxiv.org/abs/2308.01322v1

Dorothy Li
12000 Market Street, Unit 63

Reston, VA 20190
USA

Email: dorothy.li1994@gmail.com

Aug. 1, 2023

Abstract

Let Σ be an alphabet. For two strings X, Y , and

a constrained string P over the alphabet Σ, the con-

strained longest common subsequence and substring prob-

lem for two stringsX and Y with respect to P is to find a

longest string Z which is a subsequence ofX, a substring

of Y , and has P as a subsequence. In this paper, we pro-

pose an algorithm for the constrained longest common

subsequence and substring problem for two strings with

a constrained string.

Keywords: longest common subsequence, longest
common substring, longest common
subsequence and substring, constrained
longest common subsequence

1. Introduction

Let Σ be an alphabet and S a string over Σ. A subsequence
of a string S over an alphabet Σ is obatined by deleting zero or
more letters of S. A substring of a string S is a subsequence of
S consists of consecutive letters in S. The longest common sub-
sequence problem (LCSSeq) for two strings is to find a longest
string which is a subsequence of both strings. The longest com-
mon substring (LCSStr) problem for two strings is to find a
longest string which is a substring of both strings. Both the

2

longest common subsequence problem and the longest common
substring problem have been well-studied in last several decades.
More details on the studies for the first problem can be found
in [1], [2], [4], [6], [7], [8], [9], and [11] and the second problem
can be found in [3] and [13].

Tsai [12] extended the longest common subsequence problem
for two strings to the constrained longest common subsequence
(CLCSSeq) probelm for two strings. For two strings X , Y , and
a constrained string P , the constrained longest common subse-
quence problem for two strings X and Y with respect to P is
to find a string Z such that Z is a longest common subsequence
for X and Y and P is a subsequence of Z. Tsai [12] designed
an O(|X|2|Y |2|P |) time algorithm for the CLCSSeq problem for
two strings, where |X|, |Y |, and |P | denote the lengths of the
strings X , Y , and P , respectively. Chin et al. [5] improved
Tsai’s algorithm and designed an O(|X||Y ||P |) time algorithm
for the CLCSSeq problem for two strings X and Y and a con-
strained string P .

Motivated by LCSSeq and LCSStr problems, Li et. al [10]
introduced the longest common subsequence and substring (LC-
SSeqSStr) problem for two strings. For two strings X , Y , the
longest common subsequence and substring problem for X and
Y is to find a longest string which is a subsequence of X and a
substring of Y . They also designed an O(|X||Y |) time algorithm
for LCSSeqSStr problem for two strings X and Y in [10].

Motivated by Tsai’s extension of LCSSeq to CLCSSeq for
two strings, we introduce the constrained longest common sub-
sequence and substring problem for two strings with respect to
a constrained string. For two strings X , Y , and a constrained
string P , the constrained longest common subsequence and sub-
string (CLCSSeqSStr) problem for two strings X and Y with
respect to P is to find a string Z such that Z is a longest

3

common subsequence of X , a substring of Y , and has P as a
subsequence. Clearly, the CLCSSeq problem is a special CLC-
SSeqSStr problem with an empty constrained string. In this
paper, we, using some ideas and techniques developed in [5], de-
sign an O(|X||Y ||P |) time algorithm for CLCSSeqSStr problem
for two strings and a constrained string.

2. The Recursions in the Algorithm

In order to present our algorithm, we need to establish some
recursions to be used in our algorithm. Before establishing the
recursions, we need some notations as follows. For a given string
S = s1s2...sl over an alphabet Σ, the size of S, denoted |S|, is
defined as the number of letters in S. The i prefix of S is defined
as Si = s1s2...si, where 1 ≤ i ≤ l. Conventionally, S0 is defined
as an empty string. The l suffixes of S are the strings of s1s2...sl,
s2s3...sl, ..., sl−1sl, and sl. Let X = x1x2...xm and Y = y1y2...yn
be two strings and P = p1p2...pr a constrained string. We define
Z[i, j, k] as a string satisfying the following conditions, where
1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ r,

(1) it is a subsequence of Xi,
(2) it is a suffix of Yj,
(3) it has Pk as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible.

Claim 1. Let Uk = uk
1
uk
2
...uk

hk
be a longest string which is a sub-

sequence of X , a substring of Y , and has Pk as a subsequence.
Then hk = max{ |Z[i, j, k]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r }.

Proof of Claim 1. For each i with 1 ≤ i ≤ m, each j with
1 ≤ j ≤ n, and each k with 1 ≤ k ≤ r, we, from the def-
inition of Z[i, j, k], have that Z[i, j, k] is a subsequence of X ,
a substring of Y , and has Pk as a subsequence. By the def-
inition of Uk, we have that |Z[i, j, k]| ≤ |Uk| = hk. Thus

4

max{ |Z[i, j, k]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r } ≤ hk.

Since Uk = uk
1
uk
2
...uk

hk
is a longest string which is a subse-

quence of X , a substring of Y , and has Pk as a subsequence,
there is an index s and an index t such that uk

hk
= xs and

uk
hk

= yt such that Uk = uk
1
uk
2
...uk

hk
is a subsequence of Xs, a

suffix of Yt, and has Pk as a subsequence. From the definition of
Z[i, j, k], we have that hk ≤ |Z[s, t, k]| ≤ max{ |Z[i, j, k]| : 1 ≤
i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r }.

Hence hk = max{ |Z[i, j, k]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤
r } and the proof of Claim 1 is complete.

Claim 2. Suppose that Xi = x1x2...xi, Yj = y1y2...yj, and
P = p1p2...pk, where 1 ≤ i ≤ m and 1 ≤ j ≤ n, 1 ≤ k ≤ r. If
Z[i, j, k] = z1z2...za is a string satisfying conditions (1), (2), (3),
and (4) above. Then we have only the following possible cases
and the statement in each case is true.

Case 1. xi = yj = pk. We have |Z[i, j, k]| = |Z[i− 1, j − 1, k −
1]|+ 1 in this case.

Case 2. xi = yj 6= pk. We have |Z[i, j, k]| = |Z[i−1, j−1, k]|+1
in this case.

Case 3. xi 6= yj, xi 6= pk, and yj = pk. We have |Z[i, j, k]| =
|Z[i− 1, j, k|| in this case.

Case 4. xi 6= yj, xi 6= pk, and yj 6= pk. We have |Z[i, j, k]| =
|Z[i− 1, j, k|| in this case.

Case 5. xi 6= yj, xi = pk, and yj 6= pk. This case does not
happen.

Proof of Claim 2. The five cases can be figured out in the

5

following way. Firstly, we have two cases of xi = yj or xi 6= yj.
When xi = yj, we just can have two possible cases of xi = yj =
pk or xi = yj 6= pk. When xi 6= yj, we just can have three
possible cases of xi 6= pk and yj = pk, xi 6= pk and yj 6= pk, or
xi = pk and yj 6= pk. Next we will prove the statements in the
five cases.

Case 1. Since Z[i, j, k] = z1z2...za is a suffix of Yj, we have that
za = yj = xi = pk. Let W = w1w2...wb = Z[i − 1, j − 1, k − 1]
be a string satisfying the following conditions,

- it is a subsequence of Xi−1.
- it is a suffix of Yj−1,
- it has Pk−1 as a subsequence,
- under (1), (2) and (3), its length is as large as possible.

Note that z1z2...za−1 is a string which is a subsequence of Xi−1,
a suffix of Yj−1, and has Pk−1 as a subsequence. By the defini-
tion ofW = w1w2...wb, we have that a−1 ≤ b. Namely, a ≤ b+1.

Note that w1w2...wbza is a string satisfying following conditions,

- it is a subsequence of Xi,
- it is a suffix of Yj ,
- it has Pk as a subsequence.

By the definition of Z[i, j, k] = z1z2...za, we have that b+1 ≤ a.
Thus a = b+ 1 and |Z[i, j, k]| = |Z[i− 1, j − 1, k − 1]|+ 1.

Case 2. Since Z[i, j, k] = z1z2...za is a suffix of Yj, we have that
za = yj = xi 6= pk. Let U = u1u2...uc = Z[i − 1, j − 1, k] be a
string satisfying the following conditions,

- it is a subsequence of Xi−1,
- it is a suffix of Yj−1,

6

- it has Pk as a subsequenc,
- under (1), (2) and (3), its length is as large as possible.

Note that z1z2...za−1 is a string which is a subsequence of Xi−1,
a suffix of Yj−1, and has Pk as a subsequence. By the definition
of U = u1u2...uc = Z[i − 1, j − 1, k], we have that a − 1 ≤ c.
Namely, a ≤ c+ 1.

Note that u1u2...uc is a string satisfying the following conditions,

- it is a subsequence of Xi−1,
- it is a suffix of Yj−1,
- it has Pk as a subsequence.

Thus u1u2...ucyj is a string which is a subsequence of Xi, a
suffix of Yj , and has Pk as a subsequence. By the definition of
Z[i, j, k] = z1z2...za, we have that c+1 ≤ a. Thus a = c+1 and
|Z[i, j, k]| = |Z[i− 1, j − 1, k]|+ 1.

Case 3. Since Z[i, j, k] = z1z2...za is a suffix of Yj, we have that
za = yj = pk 6= xi. Let V = v1v2...vd = Z[i − 1, j, k] be a string
satisfying the following conditions,

- it is a subsequence of Xi−1,
- it is a suffix of Yj,
- it has Pk as a subsequence,
- under (1), (2) and (3), its length is as large as possible.

Note that z1z2...za is a string which is a subsequence of Xi−1, a
suffix of Yj , and has Pk as a subsequence. By the definition of
V = v1v2...vd = Z[i− 1, j, k], we have that a ≤ d.

Note that v1v2...vd is a string satisfying conditions,

- it is a subsequence of Xi−1,

7

- it is a suffix of Yj ,
- it has Pk as a subsequence.

Thus v1v2...vd is a string which is a subsequence of Xi, a suf-
fix of Yj , and has Pk as a subsequence. By the definition of
Z[i, j, k] = z1z2...za, we have that d ≤ a. Thus a = d and
|Z[i, j, k]| = |Z[i− 1, j, k]|.

Case 4. Since Z[i, j, k] = z1z2...za is a suffix of Yj, we have that
za = yj 6= pk, za = yj 6= xi, and xi 6= pk. Let Q = q1q2...qe =
Z[i− 1, j, k] be a string satisfying the following conditions,

- it is a subsequence of Xi−1,
- it is a suffix of Yj,
- it has Pk as a subsequence,
- under (1), (2) and (3), its length is as large as possible.

Note that z1z2...za is a string which is a subsequence of Xi−1, a
suffix of Yj , and has Pk as a subsequence. By the definition of
Q = q1q2...qe = Z[i− 1, j, k], we have that a ≤ e.

Note that q1q2...qe is a string satisfying the following conditions,

- it is a subsequence of Xi−1,
- it is a suffix of Yj ,
- it has Pk as a subsequence.

Thus q1q2...qe is a string which is a subsequence of Xi, a suf-
fix of Yj , and has Pk as a subsequence. By the definition of
Z[i, j, k] = z1z2...za, we have that e ≤ a. Thus a = e and
|Z[i, j, k]| = |Z[i− 1, j, k]|.

Case 5. Since Z[i, j, k] = z1z2...za is a suffix of Yj, we have
that za = yj 6= xi = pk. Since z1z2...za is a subsequence of Xi

and xi 6= za, we have that za appears before xi on Xi. Since

8

xi = pk on Xi, p1p2...pk cannot be a subsequence of z1z2...za, a
conradiction. Note that since this case does not happen, we will
not deal with this case in our algorithm.

Therefore the proof of Claim 2 is complete.

The following Claim 3 which will used in our algorithm demon-
strates the implications of the condition that there is not a
string which is a subsequence of Xi = x1x2...xi, a suffix of
Yj = y1y2...yj , and has Pk = p1p2...pk as a subsequence.

Claim 3. Suppose there is not a string which is a subsequence of
Xi = x1x2...xi, a suffix of Yj = y1y2...yj, and has Pk = p1p2...pk
as a subsequence.

[1]. If xi = yj = pk, then there is not a string which is a subse-
quence of Xi−1 = x1x2...xi−1, a suffix of Yj−1 = y1y2...yj−1, and
has Pk−1 = p1p2...pk−1 as a subsequence.

[2]. If xi = yj 6= pk, then there is not a string which is a subse-
quence of Xi−1 = x1x2...xi−1, a suffix of Yj−1 = y1y2...yj−1, and
has Pk = p1p2...pk as a subsequence.

[3]. If xi 6= yj, xi 6= pk, and yj = pk, then there is not a
string which is a subsequence of Xi−1 = x1x2...xi−1, a suffix of
Yj = y1y2...yj , and has Pk = p1p2...pk as a subsequence.

[4]. If xi 6= yj, xi 6= pk, and yj 6= pk, then there is not a
string which is a subsequence for Xi−1 = x1x2...xi−1, a suffix of
Yj = y1y2...yj , and has Pk = p1p2...pk as a subsequence.

Proof of Claim 3. We next will prove the statements in the
four cases.

[1]. Now we have that xi = yj = pk. Suppose, to the con-

9

trary, that there is a string W1 which is a subsequence of Xi−1 =
x1x2...xi−1, a suffix of Yj−1 = y1y2...yj−1, and has P = p1p2...pk−1

as a subsequence. Then W1xi is a string which is a subse-
quence of Xi = x1x2...xi, a suffix of Yj = y1y2...yj , and has
Pk = p1p2...pk as a subsequence, a contradiction.

[2]. Now we have that xi = yj 6= pk. Suppose, to the contrary,
that there is a string W2 which is a subsequence of Xi−1 =
x1x2...xi−1, a suffix of Y = y1y2...yj−1, and has Pk = p1p2...pk as
a subsequence. Then W2xi is a string which is a subsequence of
Xi = x1x2...xi, a suffix of Yj = y1y2...yj, and has Pk = p1p2...pk
as a subsequence, a contradiction.

[3]. Now we have that xi 6= yj, xi 6= pk, and yj = pk. Sup-
pose, to the contrary, that there is a string W3 which is a subse-
quence for Xi−1 = x1x2...xi−1, a suffix of Yj = y1y2...yj , and has
Pk = p1p2...pk as a subsequence. Then W3 is a string which is a
subsequence of Xi = x1x2...xi, a suffix of Yj = y1y2...yj, and has
Pk = p1p2...pk as a subsequence, a contradiction.

[4]. Now we have that xi 6= yj, xi 6= pk, and yj 6= pk. Sup-
pose, to the contrary, that there is a string W4 which is a subse-
quence of Xi−1 = x1x2...xi−1, a suffix of Yj = y1y2...yj, and has
Pk = p1p2...pk as a subsequence. Then W4 is a string which is a
subsequence of Xi = x1x2...xi, a suffix of Y = y1y2...yj , and has
Pk = p1p2...pk as a subsequence, a contradiction.

Therefore the proof of Claim 3 is complete.

3. The Algorithm

Now we can present our algorithm. We assume that X =
x1x2...xm, Y = y1y2...yn, and P = p1p2...pr. LetM be a three di-
mensional array of size (m+1)(n+1)(r+1). It can be thought as
a collection of (r+1) two dimensional arrays of size (m+1)(n+1).

10

The cellsM [i][j][k], where 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ r,
store the lengths of longest strings such that each of them is a
subsequence of Xi, a suffix of Yj, and has Pk as a subsequence.
If either i < r or j < r, there is not a string which is a subse-
quence of Xi, a suffix of Yj, and has Pk as a subsequence. This
situation is represented by setting M [i][j][k] = −∞, where ∞
can be any number which is greater than the larger one between
m and n. Now we can fill in some boundary cells in array M .

If i = 0 and k = 0 or j = 0 and k = 0, the length of a string
which is a subsequence of Xi, a suffix of Yj, and has Pk as a
subsequence is zero. Thus M [0][j][0] = 0, where 0 ≤ j ≤ n and
M [i][0][0] = 0, where 0 ≤ i ≤ m.

If k = 0 or P is an empty string. The CLCSSeqSStr problem
for two strings X and Y and a constrained string P becomes
the LCSSeqSStr problem for two strings X and Y . The cells of
M [i][j][0], where 1 ≤ i ≤ m and 1 ≤ j ≤ n, can be filled in by
the following rules. If xi = yj, then M [i][j] = M [i−1][j−1]+1.
If xi 6= yj, then M [i][j] = M [i − 1][j]. The detailed proofs for
the truth of the rules can be found in [10].

If i = 0 and k ≥ 1, there is not a string which is a subse-
quence of Xi, a suffix of Yj, and has Pk as a subsequence. Thus
M [0][j][k] = −∞, where 0 ≤ j ≤ n and 1 ≤ k ≤ r.

If j = 0 and k ≥ 1, there is not a string which is a subse-
quence of Xi, a suffix of Yj, and has P as a subsequence. Thus
M [i][0][k] = −∞, where 0 ≤ i ≤ m and 1 ≤ k ≤ r.

Next we will fill in the remaining cellsM [i][j][k], where i ≥ 1,
j ≥ 1, and k ≥ 1.

If i ≥ 1, j ≥ 1, k ≥ 1, and xi = yj = pk, then M [i][j][k] =
M [i− 1][j − 1][k − 1] + 1.

11

If i ≥ 1, j ≥ 1, k ≥ 1, and xi = yj 6= pk, then M [i][j][k] =
M [i− 1][j − 1][k] + 1.

If i ≥ 1, j ≥ 1, k ≥ 1, and xi 6= yj, xi 6= pk, and yj = pk, then
M [i][j][k] = M [i− 1][j][k].

If i ≥ 1, j ≥ 1, k ≥ 1, and xi 6= yj, xi 6= pk, and yj 6= pk, then
M [i][j][k] = M [i− 1][j][k].

Notice that Claim 1 implies that if a longest string which is
a subsequence of X = Xm, a substring of Y = Yn, and has
P = Pr as a subsequence exists then its length is equal to
max{ |Z[i, j, r]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n } = max{M [i][j][r] :
1 ≤ i ≤ m, 1 ≤ j ≤ n } . Hence, a longest string which is a
subsequence of X , a substring of Y , and has P as a subsequence
can be found in the following way. Define one variable called
maxLength which eventually represents the length of a longest
string which is a subsequence of X , a substring of Y , and has P
as a subsequence and its initial value is 0. Define another vari-
able called lastIndexOnY which eventually represents the last
index of the desired string which is a substring of Y and its ini-
tial value is n. Visit all the cells of M [i][j][r], where 0 ≤ i ≤ m

and 0 ≤ j ≤ n, in the last two dimensional array created in
the algorithm above by using a loop embedded another loop.
During the visitation, if M [i][j][r] > maxLength, then update
maxLength and lastIndexOnY asM [i][j][r] and j, respectively.
After finishing the visitation of all the cells of M [i][j][r], where
0 ≤ i ≤ m and 0 ≤ j ≤ n, we return the substring of Y between
(lastIndexOnY −maxLength) and lastIndexOnY .

The correctness of the above algorithm is ensured by Claim
1, Claim 2, and Claim 3. It is clear that both time complexity
and space complexity of the above algorithm are O((m+1)(n+
1)(r + 1)) = O(mnr).

12

We implemented our algorithm in Java and the program can
be found at “https://sciences.usca.edu/math/˜mathdept/rli/
CLCSSeqSStr/CLCSubseqSubstr.pdf”.

References

[1] A. Apostolico, String editing and longest common subse-
quences, in: G. Rozenberg and A. Salomaa (Eds.), Linear
Modeling: Background and Application, in: Handbook of
Formal Languages, Vol. 2, Springer-Verlag, Berlin, 1997.

[2] A. Apostolico, Chapter 13: General pattern matching, in:
M. J. Atallah (Ed.), Handbook of Algorithms and Theory
of Computation, CRC, Boca Raton, FL, 1998.

[3] D. Gusfield, II: Suffix Trees and Their Uses, Algorithms
on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University Press, 1997.

[4] L. Bergroth, H. Hakonen, and T. Raita, A survey of longest
common subsequence algorithms, in: SPIRE, A Coruña,
Spain, 2000.

[5] F. Y. L. Chin, A. De Santis, A. L. Ferrara, N. L. Ho, and S.
K. Kim, A simple algorithm for the constrained sequence
problems, Information Processing Letters 90 (2004) 175-
179.

[6] T. Cormen, C. Leiserson, and R. Rivest, Section 16.3:
Longest common subsequence, Introduction to Algorithms,
MIT Press, Cambridge, MA, 1990.

[7] D. Hirschberg, A linear space algorithm for computing max-
imal common subsequences, Communications of the ACM
18 (1975) 341343.

13

[8] D. Hirschberg, Serial computations of Levenshtein dis-
tances, in: A. Apostolico and Z. Galil (Eds.), Pattern
Matching Algorithms, Oxford University Press, Oxford,
1997.

[9] J. Hunt and T. Szymanski, A fast algorithm for comput-
ing longest common subsequences, Communications of the
ACM 20 (1977) 350353.

[10] R. Li, J. Deka, and K. Deka, An algorithm for the longest
common subsequence and substring problem, manuscript,
July 2023. The implementation of the algorithm in Java can
be found at “https://sciences.usca.edu/math/˜mathdept
/rli/LCSSeqSStr/LCSS.pdf”.

[11] C. Rick, New algorithms for the longest common subse-
quence problem, Research Report No. 85123-CS, University
of Bonn, 1994.

[12] Y. T. Tsai, The constrained longest common subsequence
problem, Information Processing Letters 88 (2003) 173-176.

[13] P. Weiner, Linear pattern matching algorithms. In: 14th
Annual Symposium on Switching and Automata Theory,
Iowa City, Iowa, USA, October 1517, 1973, pp. 111 (1973).

14

