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Abstract

We consider the second-order cone function (SOCF) f : Rn → R defined by

f(x) = cTx + d − ∥Ax + b∥, with parameters c ∈ Rn, d ∈ R, A ∈ Rm×n, and b ∈

Rm. Every SOCF is concave. We give necessary and sufficient conditions for strict

concavity of f . The parameters A and b are not uniquely determined. We show that

every SOCF can be written in the form f(x) = cTx+d−
√

δ2 + (x− x∗)TM(x− x∗).

We give necessary and sufficient conditions for the parameters c, d, δ, M = ATA,

and x∗ to be uniquely determined. We also give necessary and sufficient conditions

for f to be bounded above.
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1 Introduction

Second-order cone programming is an important convex optimization problem [9, 14, 19,

17]. A second-order cone constraint has the form ∥Ax + b∥ ≤ cTx + d, where ∥ · ∥ is

the Euclidean norm. This second-order cone constraint is equivalent to the inequality

f(x) ≥ 0, where f is what we call a second-order cone function. The solution set of the

constraint is convex, and the function f is concave [9, 15].

In the following definition, we use R to denote the set of real numbers and Rm×n

to denote the set of m × n matrices with real entries. Of course, m and n are positive

integers.

Definition 1. A second-order cone function (SOCF) is a function f : Rn → R that can

be written as

f(x) = cTx+ d− ∥Ax+ b∥ (1.1)

with parameters c ∈ Rn, d ∈ R, A ∈ Rm×n, and b ∈ Rm.

In second-order cone programming a linear function of x is minimized subject to one

or more second-order cone constraints, along with the constraint Fx = g, where F ∈ Rp×n

and g ∈ Rp. The solution set of Fx = g is an affine subspace, and we will show that the

restriction of an SOCF to an affine subspace is another SOCF. Thus, from a mathematical

point of view the constraint Fx = g is not necessary, although in applications it can be

convenient. In this paper we do not consider the constraint Fx = g but instead focus on

understanding the family of SOCFs.

There are interior-point methods for solving second-order cone programming problems.

These methods usually use SOCFs to impose the second-order cone constraints [12, 14, 15,

5]. Solvers for second-order cone programming problems include CVXOPT and MATLAB

[11, 2]. The study of second-order cone programming and its applications has continued

to generate interest for over three decades [18, 6, 19, 10, 7, 13, 4].
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The current research was started to get a deeper understanding of SOCFs to improve

interior-point algorithms for finding the weighted analytic center of a system of second-

order cone constraints [1, 3, 5]. The current work can lead to improved algorithms.

In this paper, we give a thorough description of the family of SOCFs. In the form of

Equation (1.1), the parameters A and b are not uniquely determined, since ∥Ax + b∥ =

∥Q(Ax+ b)∥ = ∥(QA)x+(Qb)∥ for any orthogonal m×m matrix Q. We show that every

SOCF can be written in the form

f(x) = cTx+ d−
√

δ2 + (x− x∗)TM(x− x∗),

with the parameters δ ≥ 0, x∗ ∈ Rn, and the positive semidefinite M = ATA ∈ Rn×n

replace the parameters A and b. We show that these new parameters are unique if and

only if M is positive definite.

It is known that every SOCF f is concave [9, 15]. We show that f is strictly concave

if and only if rank(A) = n and b ̸∈ col(A), where col(A) denotes the column space of A.

In terms of the new parameters, the SOCF is strictly concave if and only if M is positive

definite and δ > 0.

In the case where M is positive definite, we show that f is bounded above if and only

if cTM−1c ≤ 1. We show that the convex set {x ∈ Rn | f(x) ≥ 0} is bounded if and only

if M is positive definite and cTM−1c < 1.

Our results have computational implications for convex optimization problems involv-

ing second-order constraints such as the problem of minimizing weighted barrier functions

presented in [3, 1]. This is related to the problem of finding a weighted analytic center for

second-order cone constraints given in [5]. There are also computational implications for

the problem of computing the region of weighted analytic centers of a system of several

second-order cone constraints. This is under investigation as part of our current research

which is an extension of the work given in [5].
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In the problems presented in [3, 1, 5], the boundedness of the feasible region guarantees

the existence of a minimizer, and the strict convexity of the barrier function guarantees

the uniqueness of the minimizer. Also, the strict convexity of the barrier function affects

how quickly we can find the minimizer using these algorithms. The determination of

the strict concavity of f is related to the strict convexity of the barrier function. The

boundedness of the feasible region of the SOC constraints system is also related to the

boundedness of f . If a single f is bounded, then the feasible region of the SOC constraints

system is bounded.

Convex optimization algorithms perform well and more efficiently when the problem

is known to be bounded and the objective function is strictly convex. If a second-order

cone function is strictly concave, its gradient and Hessian matrix are defined, and the

Hessian is invertible. The corresponding barrier function is similarly well-behaved, and

Newton’s method and Newton-based methods work well for the problem. However, many

optimization problems are not bounded or have objective functions that are not strictly

convex. Our results would allow one to recognize convex optimization problems involving

second-order cone constraints (as in [3, 1, 5]) that can be solved efficiently, or to assist in

reformulating those that are hard to solve.

2 Properties of Second-Order Cone Functions

The SOCFs on R (that is, n = 1) are the simplest to understand, and give insight into

the general case.

Example 2. Consider f : R → R defined by Equation(1.1) with A = [ 10 ] and b =

[ −x∗
δ ]. Thus Ax + b = [ x−x∗

δ ], and ∥Ax + b∥ =
√
δ2 + (x− x∗)2, so f(x) = cx + d −√

δ2 + (x− x∗)2. Figure 1 shows several graphs with various values of the real parameters

δ, x∗, c, and d. If δ ̸= 0, then f is smooth and strictly concave, as shown by the solid
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Figure 1: Graphs of second-order cone functions f(x) = cx+ d−
√
δ2 + (x− x∗)2, as described

in Example 2. In each of the three plots, the parameters c, d, and x∗ are indicated. The dashed
curve has δ = 0, and the solid curve has δ = 0.2.

graphs. If δ = 0, then f(x) = dx + d − |x − x∗| is piecewise linear with a corner at

(x∗, cx∗+d), as shown by the dashed graphs. Note that f(x∗) = cx∗+d−|δ| for any value

of δ, so the solid graphs in Figure 1 (with δ = 0.2) pass a distance 0.2 below the corner

of the dashed graphs (with δ = 0), as indicated by the double arrows.

One important property of SOCFs is that their restriction to an affine subspace is

another SOCF. We will frequently restrict to a 1-dimensional affine subspace.

Remark 3. Let f : Rn → R be written in the form of Equation (1.1). The restriction of

f to the affine subspace {x0 +By | y ∈ Rk}, for some x0 ∈ Rn and B ∈ Rn×k is

f(x0 +By) = (cTB)y + (cTx0 + d)− ∥(AB)y + (Ax0 + b)∥,

which is an SOCF on Rk with the variable y.

Recall that a function f : Rn → R is concave provided that f((1 − t)x0 + tx1) ≥

(1 − t)f(x0) + tf(x1) for all x0 ̸= x1 ∈ Rn, and all t ∈ (0, 1). The function is strictly

concave if the inequality is strict. A twice differentiable function f : R → R is concave if

f ′′(x) ≤ 0 for all x, and strictly concave if the inequality is strict.

Lemma 4. Let f : R → R be the general SOCF of one variable, defined by f(x) =
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∥A(x− x∗)∥

Ax

−b

δ
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Figure 2: The geometry of an SOCF on R. In this case A ∈ R2 = R2×1. Note that Ax∗ is the
point in col(A) that is closest to −b. See Lemma 4.

cx+ d−∥Ax+ b∥ with parameters c, d ∈ R and A, b ∈ Rm. The function f is concave for

all parameters, and f is strictly concave if and only if A ̸= 0 and b ̸∈ col(A).

Proof. If A = 0, then f(x) = cx + d − ∥b∥ is linear, and hence concave but not strictly

concave. Assume A ̸= 0. Then Ax∗, where x∗ = −(AT b)/(ATA), is the point in col(A) =

span(A) closest to −b. Let δ = ∥Ax∗ + b∥ be the distance from Ax∗ to −b. Thus

∥Ax + b∥2 = δ2 + ∥A(x − x∗)∥2 by the Pythagorean theorem, and f(x) = cx + d −√
δ2 + ∥A(x− x∗)∥2 = cx + d−

√
δ2 + (ATA)(x− x∗)2. The constant ATA is a positive

real number. The geometry is shown in Figure 2. Note that δ = 0 if and only if b ∈ col(A).

If δ = 0, then f(x) = cx + d −
√
ATA|x − x∗| is piecewise linear with a downward bend

at x∗, and hence concave but not strictly concave.

So far, we have proved that f is concave but not strictly concave if A = 0 or b ∈ col(A).

Assume that A ̸= 0 and b ̸∈ col(A). Then δ > 0, and f strictly concave, since

f ′′(x) =
−δ2ATA(

δ2 + ATA(x− x∗)2
)3/2

is defined and negative for all x.

Theorem 5. Every second-order cone function f is concave. Furthermore, f is strictly

concave if and only if rank(A) = n and b ̸∈ col(A), using the parameters in Definition 1.
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Proof. Let x0 ̸= x1 ∈ Rn, and define v = x1 − x0. Let g : R → R be defined by

g(t) := f((1 − t)x0 + tx1) = f(x0 + tv) = cT (x0 + tv) + d − ∥A(x0 + tv) + b∥. It follows

directly from the definition that f is (strictly) concave if and only if g is (strictly) concave

for all x0 ̸= x1. Note that Av ∈ Rm. If Av = 0, then g is linear. If Av ̸= 0, then

g(t) = c̃ t+ d̃−
√

δ̃2 + ∥Av∥2(t− t∗)2,

where c̃ = cTv, d̃ = cTx0 + d, δ̃ = ∥A(x0 + t∗v) + b∥, and t∗ = −(Av)T (Ax0+b)
(Av)TAv

are all real

numbers. Thus, g is a second-order cone function of one variable. By Lemma 4, g is

concave for all choices of x0 and x1, and hence f is concave.

Since A ∈ Rm×n, it follows that rank(A) ≤ n. If rank(A) < n then ATA is singular,

and there exist x0 ̸= x1 = x0 + v such that Av = 0 and hence g is linear. If b ∈ col(A)

then there exist x0 such that Ax0 + b = 0. Thus t∗ = 0 and δ̃ = 0, and g is piecewise

linear with a downward corner. Thus, if rank(A) < n or b ∈ col(A) (or both), we can

find x0 ̸= x1 such that g is concave but not strictly concave, and hence f is not strictly

concave.

Now assume rank(A) = n and b ̸∈ col(A). It follows that Av ̸= 0 and δ̃ > 0 for all

x0 ̸= x1. Lemma 4 implies that g is strictly concave for all x0 ̸= x1, and it follows that f

is strictly concave.

Note that A ∈ Rn×n cannot satisfy rank(A) = n and b ̸∈ col(A). Therefore, any SOCF

with A ∈ Rn×n is concave but not strictly concave.

Example 6. We give four examples of SOCFs on R2, with different truth values of

rank(A) = 2 or b ∈ col(A). These SOCFs have c = 0 and d = 0, so f(x) = −∥Ax + b∥.

See Figure 3.

(a) A =
[
1 0
0 1
0 0

]
and b =

[
0
0
0.3

]
yields f(x) = −

√
0.09 + x2

1 + x2
2.

(b) A = [ 1 0
0 1 ] and b = [ 00 ] yields f(x) = −

√
x2
1 + x2

2.
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(a) (b)

(c) (d)

Figure 3: Graphs of the four SOCFs on R2 defined in Example 6. Note that the graph of the
SOCF (b) is indeed a cone. The top row shows functions with rank(A) = 2 and the bottom row
shows rank(A) = 1. The left column shows b ̸∈ col(A) and the right column shows b ∈ col(A).
All the functions graphed are concave, but only the upper left function is strictly concave, in
agreement with Theorem 5.
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(c) A =
[
1 0
0 0
0 0

]
and b =

[
0
0
0.3

]
yields f(x) = −

√
0.09 + x2

1.

(d) A = [ 1 0
0 0 ] and b = [ 00 ] yields f(x) = −|x1|.

Notice that we have frequently rewritten ∥Ax + b∥ in terms of a square root, as in

Examples 2 and 6. We have also noted that ∥Ax+ b∥ = ∥QAx+Qb∥ for any orthogonal

matrix Q, so many different choices of A and b define the same SOCF. The next theorem

describes a useful way to write an SOCF.

This theorem uses the Moore-Penrose Inverse of a matrix, also called the pseudoin-

verse, which has many interesting properties found in [16]. For example, x = A+b is the

least squares solution to Ax = b, where A+ ∈ Rn×m is the pseudoinverse of A ∈ Rm×n.

The next theorem mentions the well-known fact that ATA is a positive semidefinite

matrix, which means that it is symmetric with non-negative eigenvalues. A positive

definite matrix is a symmetric matrix with all positive eigenvalues. If A ∈ Rm×n then

ATA is positive definite if and only if the rank of A is n.

Theorem 7. Every SOCF of the form f(x) = cTx+ d− ∥Ax+ b∥ is identically equal to

f(x) = cTx+ d−
√

δ2 + (x− x∗)TM(x− x∗), (2.1)

where M = ATA is positive semidefinite, x∗ = −A+b, and δ = ∥Ax∗ + b∥.

Proof. It is well-known that the least squares solution to Ax = −b is x∗ = −A+b, and

that Ax∗ = −AA+b is the orthogonal projection of −b onto col(A). That is, Ax∗ is the

point in col(A) that is closest to −b. Thus, the distance squared from Ax to −b is the
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distance squared from Ax to Ax∗ plus the distance squared from Ax∗ to −b. That is,

∥Ax+ b∥2 = ∥Ax− Ax∗∥2 + ∥Ax∗ + b∥2

= ∥A(x− x∗)∥2 + ∥Ax∗ + b∥2

= (x− x∗)
TATA(x− x∗) + ∥Ax∗ + b∥2

= (x− x∗)
TM(x− x∗) + δ2.

The last equality uses the definitions of M and δ. The result follows.

Remark 8. For A ∈ Rm×n, note that rank(A) = n if and only if ATA ∈ Rn×n is positive

definite. The definition of δ in Theorem 7 makes it clear that b ∈ col(A) if and only if

δ = 0. Therefore Theorem 5 implies that an SOCF written in the form of Equation (2.1)

is strictly concave if and only if M is positive definite and δ > 0.

Example 9. The left half of Figure 4 shows the critical point and one contour of the

SOCF f(x) = −∥Ax+ b∥, with

A =


1 0

−1 1

0 2

 , b =


1

1

−1

 .

The right part of the same Figure shows the geometry behind Theorem 7, which describes

how to write the function in the form f(x) = −
√
δ2 + (x− x∗)TM(x− x∗). Calculations

show

A+ =
1

9

5 −4 2

1 1 4

 , M = ATA =

 2 −1

−1 5

 , x∗ =
(
1
9
, 2
9

)
, and δ = 5

3
.

The image of the square in R2 under A is the light blue parallelogram in R3, shown on
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Figure 4: The geometry of the second-order cone function f(x) = −∥Ax + b∥, with A ∈
R3×2 and b ∈ R3 defined in Example 9. The function can also be written as f(x) =
−
√
δ2 + (x− x∗)TM(x− x∗), were M = ATA. The maximum of f is at x∗ = −A+b, and

the maximum value is f(x∗) = −δ. The orthogonal projection of −b onto the column space of
A is Ax∗ = −AA+b. The distance from Ax∗ to −b is δ. One contour of f is shown. The image
of this contour is a circle of points in col(B) that are equidistant from −b.

the right side of Figure 4. The vectors in R3 are the first (blue) and second (red) column

of A. These span the column space of A in R3. The dot in R2 is x∗, and the dot in the

column space is Ax∗ = −AA+b = (1/9, 1/9, 4/9), which is the orthogonal projection of

−b onto col(A). The other dot in R3 is −b. The distance from Ax∗ to −b is δ = 5/3, so

f(x∗) = −5/3. The ellipse on the left is the contour of f with height −2. The image of

the ellipse under A is the circle on the right, with is the set of points in the column space

that are distance 2 from −b.

The proof Theorem 10, to follow, is subtle. While it is obvious that changing one

parameter will change the function f , it is difficult to eliminate the possibility that more

than one parameter can be changed while leaving the function unchanged. For example,

with the form of Equation (1.1), the function f is unchanged when A 7→ QA and b 7→ Qb

for an orthogonal matrix Q. The strategy in the proof is to uniquely determine one
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parameter at a time in a specific order.

Theorem 10. Assume an SOCF is written in the form of Equation (2.1), and that the

same SOCF is written with possibly different parameters satisfying the same requirements,

so

f(x) = cTx+ d−
√
δ2 + (x− x∗)TM(x− x∗) = c̃Tx+ d̃−

√
δ̃2 + (x− x̃∗)TM̃(x− x̃∗)

for all x.

• If M = 0 (the zero matrix), then c̃ = c, M̃ = 0, d̃− δ̃ = d− δ, and x̃∗ arbitrary, and

• if M ̸= 0, then c̃ = c, d̃ = d, δ̃ = δ, M̃ = M , and Mx̃∗ = Mx∗.

As a consequence, the parameterization of an SOCF in the form of Equation (2.1) is

unique if and only if M is positive definite.

Proof. Recall that M, M̃ are positive semidefinite. It follows that Mv = 0 if and only if

vTMv = 0. Also, recall that δ, δ̃ are non-negative real numbers.

For nonzero v ∈ Rn and t ∈ [0,∞), we consider the function f(vt) and its asymptotic

behavior as t → ∞. If vTMv = 0, then f(vt) = cTv t+ d−
√

δ2 + xT
∗Mx∗. If v

TMv ̸= 0,

then

f(vt) = cTv t+ d−
√

δ2 + (vt− x∗)TM(vt− x∗)

= cTv t+ d−
√

vTMv t2 − 2vTMx∗t+ xT
∗Mx∗ + δ2

= cTv t+ d−
√
vTMv t

√
1 +

−2vTMx∗ t+ xT
∗Mx∗ + δ2

vTMv t2

=
(
cTv −

√
vTMv

)
t+ d+

vTMx∗√
vTMv

+O(1/t) as t → ∞. (2.2)

The third equation uses the fact that t ≥ 0, and the fourth equation uses the Taylor series
√
1 + ε = 1 + ε/2 + O(ε2) as ε → 0. The fourth equation describes the slant asymptote



13

of the graph of f(vt), and is crucial for the remainder of the proof.

For all v ̸= 0, Equation (2.2) implies that

f(vt)− f(−vt)

2
=


cTv t if vTMv = 0

cTv t+ vTMx∗
vTMv

+O(1/t) if vTMv ̸= 0.

(2.3)

A similar expression where c is replaced by c̃ holds. If vTMv = 0, then c̃Tv = cTv. If

vTMv ̸= 0, then the slope of the slant asymptote is the same for both sets of parameters,

so again c̃Tv = cTv. This holds for all v, so c̃ = c.

For all v ̸= 0, Equation (2.2) implies that

f(vt) + f(−vt)

2
=


d−

√
δ2 + xT

∗Mx∗ if vTMv = 0

d−
√
vTMv t+O(1/t) if vTMv ̸= 0,

(2.4)

along with a similar expression where d is replaced by d̃, etc. If M̃ ̸= M , then there is

some vector v such that vTM̃v ̸= vTMv. This leads to a contradiction since the slope of

the slant asymptote in Equation (2.4) would be different. Thus, M̃ = M .

Assume M = 0. Then f(x) = cTx+d− δ = cTx+ d̃− δ̃, since c̃ = c, and M̃ = M = 0.

Thus, d̃− δ̃ = d− δ.

Assume M ̸= 0. Then there exists v ∈ Rn that satisfies Mv ̸= 0. Using Equation (2.4)

with vTM̃v = vTMv ̸= 0, we find that d̃ = d. At this point we conclude, from the equality

of the two expressions for f , that δ2+(x−x∗)
TM(x−x∗) = δ̃2+(x− x̃∗)

TM(x− x̃∗)
T for

all x. Expanding the quadratic term and canceling like terms, we find that δ2−2xTMx∗ =

δ̃2 − 2xTMx̃∗ for all x. Thus δ̃ = δ and Mx̃∗ = Mx∗.

Now we show that the parameterization of f is unique if and only if M is positive

definite. If M is not positive definite there exist x∗ ̸= x̃∗ such that Mx̃∗ = Mx∗. If M is

positive definite then M ̸= 0 and M is invertible, so x̃∗ = x∗ and all of the parameters
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are unique.

Example 11. Let f(x1, x2) = −
√

4 + (x1 − 1)2 be the SOCF on R2 defined by c = 0,

d = 0, δ = 2, M = [ 1 0
0 0 ], and x∗ = (1, 0). Note that M is not positive definite. The null

space of M is span{(0, 1)}. The parameterization is not unique since any x∗ ∈ {(1, a) |

a ∈ R} yields the same SOCF.

While many choices of A and b in the form of Equation (1.1) yield the same function,

there is a canonical choice for A and b starting with the function in the form of Equation

(2.1). Recall that a positive semidefinite matrix M has a unique positive semidefinite

square root, denoted M1/2.

Theorem 12. Let M ∈ Rn×n be positive semidefinite, x∗ ∈ Rn, and δ ∈ R. Then

δ2 + (x− x∗)
TM(x− x∗) = ∥Ax+ b∥2 for

A =

M1/2

0

 , and b =

−M1/2x∗

δ

 .

The last row of A ∈ R(n+1)×n is all 0s, and the last component of b ∈ Rn+1 is δ.

Proof. Note that M1/2 is symmetric, and

Ax+ b =

M1/2x

0

+

−M1/2x∗

δ

 =

M1/2(x− x∗)

δ

 .

Thus ∥Ax+ b∥2 = δ2 + (x− x∗)
TM1/2M1/2(x− x∗) = δ2 + (x− x∗)

TM(x− x∗).

Remark 13. It follows from this theorem that any SOCF can be defined in the form

of Equation (1.1) with A ∈ R(n+1)×n. While A is an m × n matrix with any m, using

m > n+ 1 is never needed.
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Recall that any non-constant SOCF is not bounded below, since it is concave. We give

necessary and sufficient conditions for an SOCF to be bounded above with two theorems.

The next theorem assumes that M is positive definite, and the case where M is positive

semidefinite is handled in Theorem 16.

Theorem 14. The SOCF f : Rn → R written in the form (2.1),

f(x) = cTx+ d−
√

δ2 + (x− x∗)TM(x− x∗),

with M positive definite, is bounded above if and only if cTM−1c ≤ 1. More specifically,

1. if cTM−1c < 1 and δ = 0, then x∗ is the unique critical point of f , and f(x∗) =

cTx∗ + d is the global maximum value of f ,

2. if cTM−1c = 1 and δ = 0, then every point in the ray {x∗ + tM−1c | t ≥ 0} is a

critical point of f , on which f attains its maximum value of f(x∗) = cTx∗ + d,

3. if cTM−1c > 1 and δ = 0, then x∗ is the unique critical point of f , but f is not

bounded above,

4. if cTM−1c < 1 and δ > 0, then xcp := x∗+
δM−1c√

1− cTM−1c
is the unique critical point

of f , and f(xcp) = cTxcp + d− δ
√
1− cTM−1c is the global maximum value of f ,

5. if cTM−1c = 1 and δ > 0, then f has no critical points and f does not have a global

maximum value, but f is bounded above by cTx∗ + d, and

6. if cTM−1c > 1 and δ > 0, then f has no critical points and f is not bounded above.

Proof. To simplify the proof, we will analyze the SOCF f̃(x) := cTx−
√
δ2 + xTMx. Note

that f(x + x∗) = f̃(x) + (d + cTx∗), and f̃(x − x∗) = f(x) − d + cTx∗, so we can easily

relate the critical points, and the upper bounds, of f and f̃ .
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Case I: δ = 0. In this case f̃(x) = cTx −
√
xTMx. Let v be any nonzero vector in

Rn. Since vTMv > 0, the function t 7→ f̃(vt) = (cTv)t −
√
vTMv |t| is not differentiable

at t = 0. Thus 0 ∈ Rn is a critical point of f̃ at which f̃ is not differentiable, and f has a

critical point at x∗. To determine if f̃ has a global maximum at 0, define gv : [0,∞) → R

by gv(t) = f̃(vt) = (cTv)t− t
√
vTMv. Note that gv is a linear function giving the value of

f̃ along a ray starting at 0 ∈ Rn with the direction vector v. The function f̃ is bounded

above if and only if the slope of gv is non-positive for all directions v.

Let E = {x ∈ Rn | xTMx = 1}. Note that E is an ellipsoid centered at 0, since

M is positive definite. Furthermore, gv(0) = 0, so f̃ is bounded above if and only if

the maximum value of f̃ , restricted to E , is non-positive. We compute this maximum

value using the method of Lagrange multipliers. The extreme values of f̃ restricted to E

occur at places where ∇(cTx) = λ∇
√
xTMx. This is equivalent to c = λMx/

√
xTMx,

or λMx = c since xTMx = 1 on E . Thus, the extrema of f̃ are at x = 1
λ
M−1c, where

λ is determined by xTMx = 1. Thus 1
λ2 c

TM−1MMc = 1, so λ2 = cTM−1c. There are

two antipodal points on E , x± = ±1√
cTM−1c

M−1c, with extreme values of f̃ restricted to E .

We see that f̃(x±) = cTx± − 1 = ±
√
cTM−1c − 1. The maximum value of f̃ restricted

to E is
√
cTM−1c − 1, which occurs at x+. Thus, the maximum slope of gv occurs when

v is a positive scalar multiple of M−1c, and that maximum slope has the same sign as
√
cTM−1c− 1, Thus, f̃ is bounded above if and only if cTM−1c ≤ 1.

If cTM−1c < 1, then 0 is the unique critical point of f̃ , and f̃(0) = 0 is the global

maximum value of f̃ . Thus x∗ is the unique critical point of f , and f(x∗) = cTx∗+d is the

global maximum value of f . This proves part 1 in the theorem. If cTM−1c = 1, then the

linear function gv has slope 0 when v = M−1c, and f̃ achieves its maximum value of 0 at

each point on the ray from 0 through M−1c. Every point in this ray, C = {tM−1c | t ≥ 0},

is a critical point. Translating this result to the original f proves part 2. If cTM−1c > 1,

then the slope of gv is positive for some v. Thus f̃ has an isolated critical point at 0, but
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f̃ is not bounded above. This proves part 3 of the theorem.

Case II: δ > 0. The gradient of f̃ at x is

∇f̃(x) = c− Mx√
δ2 + xTMx

.

In this case f̃ is smooth, and the critical points of f̃ are solutions to ∇f̃(x) = 0. Since M

is positive definite, f̃ is strictly concave by Theorem 5 and f̃ has at most one critical point.

If f̃ has a critical point then it must be a global maximum and hence f̃ is bounded above.

Denote the critical point of f̃ as xcp, if it exists, satisfies Mxcp = c
√
δ2 + xcp

TMxcp. It

follows that the critical point is a scalar multiple ofM−1c. Let xcp = αM−1c. The scalar α

satisfies α =
√

δ2 + α2(M−1c)TM(M−1c) =
√
δ2 + α2cTM−1c. If cTM−1c < 1 the unique

solution is αs = δ/
√
1− cTM−1c, and if cTM−1c ≥ 1 there are no solutions for α. Thus

if cTM−1c < 1 the function f̃ has the critical point αsM
−1c, and the critical point of f is

xcp = x∗ + αsM
−1c, and a calculation of f(xcp) completes the proof of part 4.

We have already seen that f̃ , and therefore f , has no critical points when cTM−1c ≥ 1.

The results about boundedness and upper bounds need the following asymptotic analysis.

When ∥x∥ is large then xTMx is large of order O(∥x∥2) becauseM is positive definite, and
√
δ2 + xTMx =

√
xTMx

√
1 + δ2/(xTMx) >

√
xTMx. The Taylor expansion

√
1 + ε =

1+ ε/2+O(ε2) shows that
√
δ2 + xTMx =

√
xTMx

(
1+ δ2/(2xTMx) +O(∥x∥−4

)
. Thus,

an SOCF with δ > 0 is always less than the corresponding SOCF with δ = 0, and the

difference approaches 0 as ∥x∥ → ∞. Parts 5 and 6 of the theorem follow.

Example 15. Figure 5 shows the contour diagrams of 6 SOCFs of the form f(x) =

cTx −
√
δ2 + xTMx, with M =

[
2 −1
−1 5

]
. The eigenvalues of M are (7 ±

√
13)/2, so M

is positive definite and Theorem 14 applies with the parameters d = 0 and x∗ = (0, 0).

A calculation shows that M−1 = 1
9
[ 5 1
1 2 ]. The other parameters are δ = 0 in the top row,

δ = 1 in the bottom row, c = (0.7, 0.7) in the left column, c = (1, 1) in the middle column,
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cTM−1c < 1 cTM−1c = 1 cTM−1c > 1

δ = 0
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Figure 5: Contour plots of six different second-order cone functions defined in Example 15.
All functions have the same positive definite matrix M . The parameters c and δ are chosen to
illustrate Theorem 14, which says that f is bounded above if and only if cTM−1c ≤ 1. The six
parts of Theorem 14 correspond to the six contour plots. The contour with f(x) = −1 is a thick
red curve, and the spacing between contours is ∆f = 0.5.
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and c = (1.3, 1.3) in the right column. These values of c give cTM−1c = 0.72, 1, and

1.32, respectively. In the top row (0, 0) is always a critical point and f(0, 0) = 0. In the

top middle figure the contour with height 0 is the ray in the direction M−1c =
(
2
3
, 1
3

)
. In

the bottom left figure we find that xcp =
(
1.4
3
, 0.7

3

)
/
√
1− .72 ≈ (0.65, 0.33) and f(xcp) =

−
√
1− .72 ≈ −.71. In the bottom middle figure f is bounded above by 0.

Theorem 16. The SOCF f : Rn → R written in the form (2.1),

f(x) = cTx+ d−
√

δ2 + (x− x∗)TM(x− x∗),

with M positive semidefinite is bounded above if and only if c ∈ col(M) and cTM+c ≤ 1.

Proof. Since M is symmetric, the Fundamental Theorem of Linear Algebra states that

the null space of M is the orthogonal complement of the column space of M . We can

write any x ∈ Rn as x = xn + xr for unique xn ∈ N(M) and xr ∈ col(M). Similarly,

we split c = cn + cr. For a fixed x∗, we write x ∈ Rn as x = x∗ + xn + xr. Thus

M(x− x∗) = M(xn + xr) = Mxr, and the general second-order cone function is

f(x∗ + xn + xr) = cTnxn + cTr xr + (cTx∗ + d)−
√

δ2 + xr
TMxr.

Assume c ̸∈ col(M). Then cn ̸= 0 and f is not bounded since f(x∗ + xn) = cTnxn +

(cTx∗ + d− δ) is an unbounded linear function.

Assume c ∈ col(M), so cn = 0. Define g : col(M) → R by

g(xr) := f(x∗ + xn + xr) = cTr xr + (cTx∗ + d)−
√
δ2 + xr

TMxr.

Note that M , restricted to col(M) is a nonsingular map, so we can apply Theorem 14 to
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g as follows. The pseudo-inverse of M satisfies

M+(xn + xr) = M+xr, MM+(xn + xr) = M+M(xn + xr) = xr.

Thus, the restriction of M+ to col(M) is the inverse of the restriction of M to col(M).

Theorem 14 says that g is bounded above if and only if cTr M
+cr ≤ 1. Note that cTM+c =

cTr M
+cr for any c ∈ Rn.

We have shown that f is not bounded above if c ̸∈ col(M). We have also shown that if

c ∈ col(M) then f is bounded above if and only if cTM+c ≤ 1. These two statements can

be combined into one: f is bounded above if and only if c ∈ col(M) and cTM+c ≤ 1.

Remark 17. If M is positive definite, then c ∈ col(M) = Rn and M+ = M−1. Thus

Theorem 16, in the case where M is positive definite, implies the that f is bounded above

if and only if cTM−1c ≤ 1, which is the first part of Theorem 14.

Example 18. Consider the SOCF on R2 with M = [ 4 0
0 0 ], d = 0, and x∗ = (0, 0),

f(x) = c1x1 + c2x2 −
√

δ2 + 4x2
1.

Note that f(0, x2) = c2x2 − δ is not bounded above if c2 ̸= 0. If c2 = 0 then f(x) =

c1x1 −
√

δ2 + 4x2
1 ≤ c1x1 − 2|x1| and f(x) → c1x1 − 2|x1| as x1 → ±∞. Thus, f is

bounded above if and only if c2 = 0 and c21 ≤ 4.

This observation is predicted by Theorem 16. The column space of M is col(M) =

{(a, 0) | a ∈ R}, so c ∈ col(M) is equivalent to c2 = 0. The pseudo-inverse of M is

M+ = 1
4
[ 1 0
0 0 ], so cTM+c = c21/4, and cTM−1c ≤ 1 is equivalent to c21 ≤ 4.

One of that main uses of SOCFs is to define convex sets for optimization problems.

Optimization over a bounded set is very different from optimization over an unbounded

set, so we finish this paper with a simple characterization.
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Theorem 19. Let f : Rn → R be defined by f(x) = cTx+d−
√
δ2 + (x− x∗)TM(x− x∗),

where M is positive semidefinite. Let R := {x ∈ Rn | f(x) ≥ 0}, and assume R ̸= ∅.

The feasible region R is closed and convex. Furthermore, R is bounded if and only if M

is positive definite and cTM−1c < 1.

Proof. The set R is convex since f is concave, and it is closed since f is continuous. We

now prove the last statement of the theorem by determining whether R is bounded or

unbounded for any SOCF.

First, assume M is not positive definite and c ̸∈ col(M). Theorem 16 says that f is

not bounded above and hence R is not bounded.

Second, assume M is not positive definite and c ∈ col(M). The proof of Theorem 16

shows that f(x + xn) = f(x) for all xn ∈ N(M). Choose x̃ ∈ R, which is possible since

R ≠ ∅. The affine subspace x̃+N(M) is a subset of R, so R is unbounded.

Finally, assume M is positive definite, and thus M−1 exists. The nonempty R is

bounded if and only if conditions 1 or 4 of Theorem 14 are satisfied. Thus, R is bounded

if and only if cTM−1c < 1. See Figure 5 for examples.

Remark 20. In the case where M is positive definite and cTM−1c < 1, the compact R

might be trivial. Let d̃ := d− δ
√
1− cTM−1c. The set R is the empty set if d̃ < 0, R is

the singleton set {xcp} if d̃ = 0, and R has a non-empty interior if d̃ > 0.

3 Conclusion

The second-order cone function has important application in optimization problems. Our

work gives necessary and sufficient conditions for strict concavity of a second-order cone

function. We show that every SOCF can be written in the form f(x) = cTx + d −√
δ2 + (x− x∗)TM(x− x∗), which has unique parameters in many cases. This alternative

parameterization gives a deep understanding of the family of SOCFs. This alternative
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description leads to new results about SOCFs. We characterize the critical points and

global maxima of f , depending on the parameters. We give necessary and sufficient

conditions for f to be bounded above, and for the set {x ∈ Rn | f(x) ≥ 0} to be bounded.

Our results can lead to improved algorithms for optimization problems involving second-

order cone constraints.
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