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Abstract

Reliable health indicators of industrial systems that can accurately
represent the evolution of the true health conditions is of paramount im-
portance for condition monitoring, fault detection and reliable prediction
of the remaining useful lifetime. However, constructing such indicators
is a non-trivial task and typically requires domain specific knowledge.
With the current trend of increasing complexity of industrial systems,
the construction and monitoring of health indicators becomes even more
challenging. Given that health indicators are commonly employed to pre-
dict the end of life, a crucial criterion for reliable health indicators is
their capability to discern a degradation trend. However, trending can
pose challenges due to the variability of operating conditions. An optimal
transformation of health indicators would therefore be one that converts
degradation dynamics into a coordinate system where degradation trends
exhibit linearity. Koopman theory framework is well-suited to address
these challenges. In this work, we demonstrate the successful extension
of the previously proposed Deep Koopman Operator approach to learn
the dynamics of industrial systems by transforming them into linearized
coordinate systems, resulting in a latent representation that provides suf-
ficient information for estimating the system’s remaining useful life. Ad-
ditionally, we propose a novel Koopman-Inspired Degradation Model for
degradation modelling of dynamical systems with control. The proposed
approach effectively disentangles the impact of degradation and imposed
control on the latent dynamics. The algorithm consistently outperforms in
predicting the remaining useful life of CNC milling machine cutters and
Li-ion batteries, whether operated under constant and varying current
loads. Furthermore, we highlight the utility of learned Koopman-inspired
degradation operators analyzing the influence of imposed control on the
system’s health state.
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1 Introduction

Constructing reliable health indicators is crucial for predictive maintenance.
The construction of such indicators is a non-trivial task and requires domain
specific knowledge. We highlight that the current trend of increasing real time
monitoring data and computational resources availability provides both oppor-
tunities and challenges. The modern data-driven approaches [1] deliver the
means to tackle increased data availability and allow forward prediction of the
remaining useful life (RUL), as well as construction of health indicators. While
forward RUL prediction requires extensive sets of run-to-failure trajectories for
training, data-driven construction of robust system’s health indicators can be
more promising approach. Formulating precise requirements for construction of
health indicators is a challenging task, however, three common characteristics
can be highlighted: trendability, prognosability, and monotonicity [2].

Estimation of the system’s state of health can be performed by utilizing the
knowledge of underlying physics and mechanisms governing the degradation
process [3, 4]. Such degradation models provide high interpretability and gen-
eralizability, but their usefulness is restricted due to limited applicability and
reliance on simplifications and assumptions. Another approach is to leverage
modern deep learning techniques to extract health indicators and estimate RUL
using these indicators [5]. Alternatively, deep learning-based methods can be
employed for forward RUL prediction, which involves a direct mapping from
sensor readings to RUL. However, it is important to note that forward RUL
prediction necessitates a substantial amount of data for supervision [6, 7, 8].
Incorporating physics and prior system knowledge into data-driven model train-
ing has been shown to enhance predictions [9, 10] and reduce data requirements
[11]. However, typically in industrial systems , preventive maintenance is widely
practiced to mitigate the potential consequences of failures. This practice, while
beneficial for risk reduction, often leads to a limited availability of ground truth
run-to-failure data. Furthermore, the challenge of constructing universal trend-
able representations of system’s health state remains unresolved. A vital require-
ment for reliable health indicators is their ability to discern a degradation trends
accurately. Hence, an optimal transformation of health indicators would involve
converting degradation dynamics into a coordinate system where degradation
trends exhibit linearity. In this context, we propose to utilize the capabilities
offered by Koopman’s operator theory.

The Koopman’s operator theory [12] provides a flexible framework for mod-
elling nonlinear dynamical systems. This theory offers a way to discover intrinsic
coordinate systems where nonlinear dynamics can be expressed in a linear form.
Acquiring linear representations of highly nonlinear systems is particularly valu-
able for controlling and predicting their dynamic behaviour. Initially, the deep
learning capabilities were employed in [13] to approximate the eigenfunctions
of Koopman operators. The work of Yeung et al.[14] introduced deep dynamic
mode decomposition, which outperformed the existing extended dynamic mode
decomposition by an order of magnitude in long-term forecasting [15]. Another
extension using deep learning, proposed in [16], addresses fine-scale dynamics by
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downscaling a learned coarse model. Several recent works, such as [17, 18, 19]
have demonstrated the application of deep learning-based Koopman approaches
for optimal control of non-linear dynamical systems. Its probabilistic extension
within reinforcement learning framework, as demonstrated in [20], has shown
superior performance in terms of modelling and control, as well as increased
robustness against large disturbances . However, the proposed setups in these
approaches imply a linear mapping of control to Koopman invariant subspace,
which limits the choice of the observables. Moreover, these setups may be not
applicable for determining the slow dynamics of degradation since the Koopman
operator is independent of the imposed control.

This work aims to develop a flexible approach for constructing health state
representation of dynamical systems. To the best of our knowledge, there have
been no prior works that attempt to learn hidden health parameters in unsuper-
vised manner using Koopman operator framework. Our objective is to predict
RUL of dynamical systems using the latent state representation obtained from
the Deep Koopman Operators (DKO). Additionally, we propose a novel algo-
rithm called Koopman-Inspired Degradataion Model (KIDM) to learn the dy-
namics of dynamical systems with control and predict their RUL. This approach
enables us to leverage the influence of control on the latent state representation
and learn the degradataion of hidden parameters that determine the system’s
dynamics.

In this work we will demonstrate the applicability of DKO in learning the
dynamics of industrial systems and utilizing the learned observables space for
accurate prediction of the system’s RUL. We will also demonstrate that the
KIDM is capable of generating informative observables to determine the degra-
dation trend. Both DKO and KIDM exhibit robustness even when only a single
ground truth run-to-failure trajectory is available for unseen cases, making them
less dependent on extensive run-to-failure data. Additionally, we will conduct
ablation studies to evaluate the significance of the Koopman operator compo-
nents in the proposed algorithms. The results will reveal that incorporating a
loss term for multiple future steps prediction improves the robustness of DKO
and KIDM, leading to reduced RUL prediction errors. Furthermore, we will
demonstrate that forward RUL prediction model struggles to determine the
degradation trend due to the lack of ground truth run-to-failure data. We will
further show that contrary to other ablated models , the KIDM algorithm ex-
hibits a superior performance in terms of RUL prediction. Additionally, we will
conduct an analysis of the extrapolation capabilities of KIDM and show how
the learned Koopman-inspired operators can be further examined to assess the
influence of imposed control on the system’s degradation process.

The remainder of the paper is organized as follows. In the first part of sec-
ond chapter we briefly outline key concepts of Koopman theory and describe
previously proposed Deep Koopman Operator (DKO) framework. Second part
describes the newly proposed Koopman-inspired degradation model (KIDM).
We then report in the third chapter case studies used to evaluate the perfor-
mance of DKO and KIDM. Chapters four and five present the results of our
studies and conclude the results respectively.
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2 Background on Koopman Operator Theory
and Deep Koopman Operator

In this chapter, we first present a fundamental background on the Koopman
operator theory. Subsequently, we provide a concise overview of the original
Deep Koopman Operator approach.

The Koopman operator theory was introduced by Bernard Koopman in the
early 1930s [12] . It continues to be an active field of research, with recent de-
velopments focused on the deep Koopman Operator approach [21]. The Koop-
man operator provides a fundamental mathematical framework for analyzing
complex dynamical systems. This framework particularly valuable for study-
ing nonlinear dynamical systems, as it allows for a shift from specific governing
equations to a description of the dynamics in the system’s state space. Instead
of directly considering the finite-dimensional states of the system, which can
be highly complex and nonlinear, the Koopman operator approach maps the
system’s state into an infinite-dimensional space. In this space, the dynamics of
the system is described by a linear operator known as the Koopman operator.

A dynamical system can generally be described by the equation:

ẋ(t) = f(x(t)), (1)

where x ∈ Rn represents the system state, and f is a vector field that charac-
terizes the system dynamics [21]. In the general case, f is nonlinear.

The Koopman operator operates in an infinite-dimensional space, where the
basis functions of this space are typically selected as observables of the system
state. Observables refer to quantities that can be measured or observed [22]. We
refer to the space on which the Koopman operator acts as ”observables space”
or ”observables”.

The observables, denoted as y = ϕ(x) now need to satisfy the equation:

ẏ = Ky, (2)

where K is a linear operator that fully determines the system dynamics.
The process of discovering of observables space can be a challenging task. It

is possible that a finite-dimensional observables space does not exist for a given
system. In practice, the aim is to find a finite-dimensional approximation of the
observables. Modern deep learning methods have shown to be valuable tools in
addressing this challenge.

To leverage the capabilities of deep learning, an extension to the Koopman
operator framework was proposed in [13], known as the Deep Koopman Operator
(DKO). The DKO enables the learning of non-linear intrinsic coordinates that
linearize the system’s dynamics. The DKO architecture is built upon a modified
auto-encoder structure. The encoder network approximates the mapping to
observables space, while the decoder network performs the inverse mapping.
Simultaneously, a learnable linear operator is trained within the observables
space to capture the linear dynamics explicitly. Fig. 1 illustrates a schematic
representation of the DKO algorithm.
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Figure 1: Deep Koopman Operator architecture.

To learn an invertible mapping from the state to the observables space, the
state reconstruction loss, defined as Lrec = ∥xt − ψ(ϕ(xt))∥, is minimized. The
loss term aims to learn the reconstruction of the system state xt at the time step
t. To capture linear dynamics within the observables space, the linear dynamics
loss, that is defined as Llin = ∥ϕ(xt+m)−Kmϕ(xt)∥, is employed. This loss helps
in learning linear dynamics in the observables space by applying the learnable
Koopman operator over multiple time steps. Finally, the future state prediction
loss, represented by Lpred = ∥xt+m − ψ(Kmϕ(xk))∥ is introduced to minimize
the prediction error of future states and facilitate the learning of dynamics in the
initial state space. The overall training objective combines the aforementioned
losses as L = Lrec + Llin + Lpred.

3 Koopman-Inspired Degradation Model

Many dynamical systems are subject to external control, which categorizes them
as dynamical systems with control. Dynamical systems with control refer to
systems that describe the behavior of a physical process or a mathematical
model, taking into account the influence of an external control input. Dynamical
systems with control find extensive applications in various domains such as
engineering, physics, and other fields. They are particularly useful for designing
and optimizing complex systems, where the control input plays a crucial role in
shaping the system’s behavior and achieving desired outcomes.

Dynamical systems with control are typically described by their dynamics
equations:

ẋ = f(x, u), (3)

where x represents the state of the system, u represents the control inputs, and
the function f captures the system dynamics.

In practical applications, it is often more convenient to express the dynamics
in discrete-time form:

xt+1 = f(xt, ut), (4)

where t represents the discrete time step.
The original formulation of the Deep Koopman algorithm [13] does not incor-

porate control inputs, which limits its applicability to a narrower range systems.
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However, in many industrial systems, control inputs directly impact the degra-
dation process, thereby affecting the health indicators and the RUL of assets.
Therefore, considering control inputs is crucial for accurately modeling and pre-
dicting the behavior of such systems. Previous works [17, 18, 19, 20, 23] on
incorporating control inputs into DKO frameworks typically employ an archi-
tecture where the control vector ut at time t is multiplied by a linear matrix
and added to THE resulting observables. Consequently, the state at the time
t+ 1 is defined as:

x̂t+1 = ψ(Kϕ(xt) +But). (5)

However, this formulation implies that control inputs should be linearly
mapped to the observables space, potentially limiting the choice of observables.
In this work, we propose the Koopman-Inspired Degradation Model (KIDM)
as an extension to the Deep Koopman operator algorithm. KIDM enables
the inclusion of control inputs while preserving information about hidden sys-
tem health indicators. The proposed architecture follows the encoder-decoder
paradigm, where the system dynamics are lifted into a latent state space. How-
ever, instead of learning the inverse of observables, the decoder takes both the
latent state representation and the control vector as inputs to either recon-
struct the current state or predict the future state. This design allows the
encoder to extract information about the system’s response to a given control
input, thereby enabling determination of the current health state of the system.
Figure 2 illustrates the KIDM architecture.

In this algorithm, we apply control inputs in two stages. First, the encoded
control inputs K̂i are applied to update the observables. This part of the algo-
rithms is considered as the gedradation operator in our research. Subsequently,
the control inputs and observables are passed to the decoder to reconstruct the
state vector. This setup, combined with the reconstruction loss, facilitates the
separation of the degradation caused by the applied control inputs from the
influence of the control on the state vector.

The encoder ϕ maps the state xt and control ut vectors to observables yt.
The predicted observables are concatenated with the control ut and passed to
the decoder ψ. The reconstruction loss Lrec is used learn invertible mappings
and reconstruct the state, as shown in Fig. 2(a). The reconstruction loss is
defined as:

Lrec = ∥xt − ψ(ϕ(xt, ut), ut)∥. (6)

In order to preserve linearity of dynamics in the latent space of KIDM we
use the linear dynamics loss Llin that is given by:

Llin = ∥ϕ(xt+m)− K̂t+mK̂t+m−1...K̂t+1ϕ(xt)∥, (7)

where we apply the predicted Koopman operators K̂i+1 to the observables
xi over multiple time steps.
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(a)

...

(b)

Figure 2: The architecture of Deep Koopman operator with control: (a) predic-
tion pipeline; (b) reconstruction pipeline.

Finally, we train the model to make future state predictions Fig. 2(b) with
the future step prediction loss:

Lpred = ∥xt+m − ψ(K̂t+mK̂t+m−1...K̂t+1ϕ(xt))∥. (8)

The proposed algorithm is trained by minimizing a combination of the re-
construction error, adherence of latent dynamics to linearity and the error of
state forecasting. The total loss is given by:

L = Lrec + Llin + Lpred. (9)

4 Case studies

This section describes the case studies that are used to evaluate the perfor-
mance of DKO and the proposed KIDM. The first subsection provides details
of the CNC milling machine case study. In the second and third subsections,
we provide details of the Li-ion battery degradation simulation under constant
and varying current load until the end of life (EoL).
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4.1 CNC milling machine

Measuring degradation in real time is typically challenging. In the majority of
cases, the ground truth information about the health condition is assessed only
at discrete and infrequent time points. Therefore, there are only a few case
studies that involve continuous monitoring of degradation. The CNC milling
machine dataset [24] is one of the few publicly available open source datasets
that provide continuous measurements of degradation. The dataset captures the
degradation process of high-speed CNCmilling machine cutters. Each cutter has
three flutes that experience wear during their lifetime, and the wear of the flutes
is considered as a health parameter. The cutters are used for a total of 315 cycles
under similar operating conditions. During each cycle, a set of sensors measures
acoustic emission, force and three-dimensional vibration. The measurements
are acquired at a frequency of 50 Hz. The dataset contains individual records
of different cutters with the ground truth health parameters provided for three
cutters. The total length of recordings ranges from 4.8 · 107 to 5.9 · 107.

The degradation of the cutter is of interest in our work due to the non-linear
wear accumulation on each flute. Therefore, we can assume that this measure
represents the health state and its non-linear evolution. We define the end of
life of each individual cutter as the point when the maximum flute wear reaches
150 · 10−3 mm. The sensor values are collected at a high-frequency. We further
process the signals to learn the dynamics in the frequency domain.

4.2 Li-ion battery under constant current load

For the second case study, we simulate the Li-ion battery under constant cur-
rent loads using the Prognostics Models Package [25]. This package employs
an electrochemistry-based model to accurately simulate 18650-type cells [26],
capturing significant electrochemical processes and aging effects.

The Li-ion battery model takes the current load as input parameter. Based
on this control input, the model estimates the voltage and temperature curves.
The battery model incorporates three hidden health parameters: the number of
available Li-ions qmax, internal resistance R0 and diffusion rate D.

In the first set of experiments, we simulate the battery discharge under the
constant current Id of 1A until the state of charge reaches 5% of its maximum
capacity. Then, the battery is charged with a constant current of −1A until
reaching 95% state of charge. The charge and discharge phases alternate se-
quentially without a rest phase. This process is repeated until reaching the end
of life (EoL), which is defined as when the battery’s capacity reaches 80% of its
initial battery capacity. We randomly sample the initial number of Li-ions and
internal resistance. The number of Li-ions qmax is drawn uniformly from the
interval [7500 ions, 7600 ions], and for the internal resistance R0, we draw uni-
formly from the interval [0.107215 Ohm, 0.127215 Ohm]. We use 70 trajectories
for model training and 30 traejctories for testing.

An example of a discharge-charge cycle of the battery, simulated under a
constant current load is shown in Figure 3.
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Figure 3: Sample discharge-charge cycle of the healthy Li-ion battery under
constant current load. Id = 1A.

4.3 Li-ion battery under varying current load

The two data cases described above serve as examples of dynamical systems
without external control. In the latter case, the system undergoes a constant
current load throughout its entire lifetime, rendering the impact of control neg-
ligible since it remains the same. To evaluate the performance of the KIDM
algorithm, we simulate a Li-ion battery under a varying current load until it
reaches the EoL [25]. The battery is governed by piecewise constant current
load, where the current magnitude and the transition point for the next current
are randomly selected. We initialize the batteries with random initial condi-
tions, aligning them with the intervals of initial conditions used for the battery
under the constant current load.

The simulation of a fully charged battery starts with the discharge phase,
where the current load follows a partially linear profile. The current load Id is
uniformly sampled from the interval [1.5A; 2.5A] . Once the current is selected,
the next transition point is randomly chosen from the interval of [100, 300]
timesteps. Once the battery’s state of charge reaches 0.05 of maximum charge
value, a rest period of 30 timesteps begins, corresponding to 1 minute with
a simulation step dt = 2 seconds. Afterward, the battery is charged with a
constant current of -3 A current until the state of charges reaches 0.95. The cycle
then repeats until the capacity falls below the insufficient capacity threshold.
We define the EoL as the point when the battery’s capacity reaches 80% of
maximum capacity. For model training we use 100 run-to-failure trajectories
and 100 trajectories for testing.

Figure 4 illustrates the voltage and control curves for one discharge-rest-
charge cycle of a healthy battery. Additionally, we use the battery temperature
curves to represent the battery state.

In this work, we use the state vector x and the control vector u as inputs
to the encoder network (see Fig. 5). The state vector contains the voltage and
battery temperature curves, while the control vector u represents the current
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Figure 4: Sample discharge-rest-charge cycle of the healthy Li-ion battery under
varying current load. Id ∼ U(1.5A, 2.5A).

load applied to the battery.

...
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Figure 5: KIDM inputs for Li-ion battery under varying current load case.

5 Results

5.1 Deep Koopman Operator

To evaluate the performance of the DKO, we utilize two data cases: a CNC
milling machine cutter and Li-ion battery operated under a constant current
load. In the former case, we demonstrate the successful application of DKO to
high-frequency time series. Additionally, in the latter case, we showcase the ro-
bustness of DKO against imposed noise and utilize its latent state representation
to estimate the RUL.
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5.1.1 CNC milling machine cutter

The sensor measurements for the CNC milling machine cutters are acquired at a
high frequency of 50 Hz. To train the DKO algorithm, we preprocess the initial
data using the denoising sparse wavelet network (DeSpaWN) [27]. DeSpaWN
applies a cascade fast discrete wavelet transform (FDWT) with coefficient de-
noising. This method allows us to obtain a sparse representation of the high
frequency signal. We train DeSpaWN using eight FDWT decomposition levels
and extract informative features, such as the average and maximum values of
the FDWT decomposition coefficients, as well as the absolute reconstruction
error of each signal. Fig. 6 displays a sample of the average DeSpaWN coeffi-
cient value for dynamometer measurements in the x direction. We segment the
high frequency recording data for each cutter using a window size of 100, which
corresponds to a recording of two seconds in length. This results in 2.4 · 105
tokens that are subsampled with a stride of102 . For model training, we use
two trajectories, and one trajectory is reserved for testing. The features of each
segment are concatenated within one token and are feed into the DKO encoder.
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Figure 6: The average of DeSpaWN coefficients for dynamometer measurements
in x direction. The series are subsampled with 105 stride for visualization. The
measurements correspond to the cutter number six.

To learn the dynamics of the degradation process of the cutters, we use a
DKO composed of a feed-forward encoder and decoder, each composed of five
fully-connected layers with 100 neurons, followed by scaled exponential linear
unit (SELU) activations [28]. The dimension of the observables embedding
space is set to 10. The model is optimized using the Adam algorithm [29] with
a learning rate of 0.0001 and a weight decay of 10−7 . Among the three labeled
cutter datasets, two are used for training a model, while the remaining dataset
is reserved for testing. The obtained mapping to the observables space is then
used to predict RUL of the cutters using simple linear regression (LR). We com-
pare the performance of DKO in the RUL prediction task with an autoencoder
(AE) by removing the Koopman operator part of DKO, which also serves as an
ablation study. Additionally, we compare the predictions with a feed-forward

11



neural network (FNN) trained on the input features similar to those of the DKO
encoder. The RUL predictions based on the observables of DKO demonstrate
slightly lower error, as shown in Table 1.

MSE, 10−2 MAE, 10−2 MAPE, 10−2

AE+LR 2.49±1.5 11.03±3.22 42.52±17.20
FNN 1.94±1.21 9.9±2.90 35.95±11.43

DKO+LR 1.30±1.04 8.52±2.94 30.74±1.84

Table 1: Prediction error of the CNC milling machines RUL. The standard
deviation is calculated over 5 independent initializations.

The DKO approach has demonstrated its capability to accurately determine
the degradataion trend using only one run-to-failure trajectory, as depicted in
Fig. 7. In contrast, the AE method failed to accurately determine the RUL
trend for one of the cutters. The intervals of RUL overestimation observed in
the DKO approach correspond to periods of slow wear accumulation and involve
dissimilar operating conditions.
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Figure 7: Sample CNC milling machie RUL prediction. Predictions are
smoothed with Gaussian filter σ = 5.

5.1.2 Li-ion battery under constant current load

Estimation of RUL based on learned representation. The DKO algo-
rithm was trained using Li-ion battery degradation trajectories under constant
current load. We used100 full trajectories for training and 100 trajectories for
testing. The time series were sliced into windows of 100 points, corresponding
to a 200-seconds interval. The state space of battery dynamics was represented
by voltage, temperature and current signals. The mappings ϕ and ψ were imple-
mented as feed-forward networks, each consisting of five fully-connected layers
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with 100 neurons followed by SELU activations [28]. The algorithm was opti-
mised using the Adam algorithm [29] with a learning rate of 0.0001 and weight
decay of 10−7. The dimensions of observables space is set to five. The linear dy-
namics loss Llin and future step prediction loss Lpred for DKO were calculated
over 10 consecutive time steps.

Once the dynamics of the battery are learned by DKO on several training
trajectories, we use the pretrained encoder to map the battery states to the
Koopman observables space. As a result of the model construction, the dy-
namics in the observables space become linear. We train LR on the Koopman
observables to predict the RUL of the Li-ion battery. Since obtaining extensive
data with ground truth RUL is rarely feasible in real-life applications, we use
the observables of a single full run-to-failure battery trajectory to train LR for
the RUL prediction task. We compare the performance of LR model in the RUL
prediction task with the LR model on the latent space of a pretrained autoen-
coder (AE) model. To ensure a fair comparison, we use the same architecture
for the encoder and decoder parts of both DKO and AE. Additionally, we eval-
uate the predictions of a FNN trained to predict the RUL on one run-to-failure
trajectory [Table 2].

MSE, 10−2 MAE, 10−2 MAPE, 10−2

AE+LR 0.09±0.05 2.50±0.84 25.14±9.23
FNN 2.09±0.48 12.40±1.73 69.53±16.49

DKO+LR 0.13±0.04 2.98±0.58 28.07±14.81

Table 2: RUL prediction error of the Li-ion battery operated under constant
current load. The standard deviation is calculated over 5 independent initial-
izations.

The linear model demonstrates comparable performance on both the Koop-
man observables space and the latent space of the AE. Both embeddings of the
battery state provide sufficient information enough to accurately determine the
degradation trend under constant operating conditions [Fig. 8]. However, the
FNN fails to accurately predict the RUL due to the limited amount of available
training data.
Evaluation of robustness to noise. Noise sensitivity studies provide valuable
information into the reliability and stability of developed models. To evaluate
the robustness to noise of DKO and the ablated models, we conducted addi-
tional experiments on simulation data with increased levels of measurement
noise ranging from 0.01 to 1. These experiments revealed that LR trained on
DKO embeddings (DKO+LR) exhibited higher robustness to noise and demon-
strated lower RUL prediction errors compared to other models [Table 3]. The
results of the study are illustrated in Fig. 9, where the mean and standard
deviation were calculated over five independent initializations.
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Figure 8: Sample Li-ion battery with constant current RUL prediction.

MSE, 10−2 MAE, 10−2 MAPE, 10−2

AE+LR 3.43±0.26 15.16±0.50 161.83±7.85
FNN 5.94±1.17 19.38±1.91 139.30±16.10

DKO+LR 1.67±0.14 10.24±0.40 86.43±10.26

Table 3: RUL prediction error of the Li-ion battery operated under constant
current load with imposed measurement noise. The standard deviation is cal-
culated over five independent initializations.

5.2 Koopman-Ispired Degradataion Model

Estimation of RUL based on learned representation. For the following
experiment, we use the KIDM encoder ϕ and decoder ψ, implemented as feed-
forward networks with five fully-connected layers. Each layer consists of 100
neurons and is followed by SELU activations. The model is optimized using
the Adam algorithm with a learning rate of 0.0001 and a weight decay of 10−7.
Similar to previous casy study, we set the observables dimensions to five.

In this experiment, we train KIDM on simulation data of a Li-ion battery
operated under varying discharge current loads, denoted as Id ∼ U(1.5A; 2.5A).
The learned observables space is then used to train a LR model using a full
run-to-failure trajectory with ground truth RUL. Furthermore, we conduct an
ablation study by removing the linear dynamics and future steps prediction part
of the KIDM, resulting in an encoder-decoder model referred to as Koopman-
Insipred Degradation Model’s Autoencoder (KIDMAE). Additionally, we com-
pare the performance of the KIDM algorithm with a basic autoencoder (AE)
trained on similar input features. The results, as shown in Table 4, demonstrate
the superior performance of the KIDM algorithm in the RUL prediction task
with a linear model.

Fig. 10 displays a sample RUL prediction for one of the test batteries using
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Figure 9: The RUL prediction MSE of battery under constant current load for
different measurement noise levels of simulator. The shaded areas correspond
to 1 standard deviation from mean.

MSE, 10−2 MAE, 10−2 MAPE, 10−2

AE+LR 3.19±0.12 14.36±0.33 47.41±0.63
KIDMAE+LR 2.66±0.03 12.56±0.09 42.95±0.56
KIDM+LR 0.33±0.03 4.65±0.18 13.97±0.76

Table 4: RUL prediction error of battery operated under varying current load.
The standard deviation is calculated over 5 independent initializations.

the KIDM algorithm. It is evident from the figure that the algorithm successfully
determined the degradation trend.
Early lifetime RUL estimation. In the real life industrial applications, early
lifetime RUL predictions may help in optimizing maintenance strategies and en-
hancing overall assets reliability. In this regard, we further evaluate performance
of the approach in determining the degradation trend by considering the data
corresponding to the first 30% of the battery’s lifetime. The linear model is
trained on this reduced data and used to predict the RUL for the next 70% of
the battery’s lifetime. In this thask, KIDM demonstrates an order of magnitude
lower MSE [Table 5].

MSE, 10−2 MAE, 10−2 MAPE, 10−2

AE+LR 3.47±0.78 15.41±1.94 58.18±9.96
KIDMAE+LR 3.84±1.67 15.88±4.44 86.96±23.32
KIDM+LR 0.74±0.43 7.54±3.13 35.48±14.13

Table 5: RUL prediction error of linear model trained on first 30% of battery
lifetime. The standard deviation is calculated over five independent initializa-
tions.
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Figure 10: Sample battery under varying current RUL prediction. Predictions
are smoothed with Gaussian filter σ = 5.

Evaluation of extrapolation capabilities. To test the extrapolation ca-
pabilities of the KIDM algorithm, we examine the data of batteries simulated
under different operating conditions. Specifically, we consider different intervals
of discharge currents, namely I ∼ U(1A, 1.5A) and I ∼ U(2.5A, 3A). The re-
sults [Table 6] show that KIDM exhibits better performance on the data with
currents drawn from the interval [2.5A; 3A] . This difference in performance
may be attributed to the significantly slower degradation of battery health pa-
rameters under the currents drawn from the interval [1A; 1.5A] .

MSE, 10−2 MAE, 10−2 MAPE, 10−2

I ∼ U(1A, 1.5A)
AE+LR 15.11±2.84 31.4±2.52 108.03±10.67

KIDMAE+LR 9.98±1.12 26.64±1.32 83.46±8.18
KIDM+LR 3.12±0.58 14.53±1.44 40.34±2.58

I ∼ U(2.5A, 3A)
AE+LR 11.32±4.85 26.46±5.62 91.85±19.67

KIDMAE+LR 15.31±3.37 30.21±3.06 112.07±12.03
KIDM+LR 1.19±0.87 8.85±3.87 31.48±10.41

Table 6: Results of extrapolation study of RUL prediction for battery operated
under varying current load. The standard deviation is calculated over 5 inde-
pendent initializations.

Analysis of the latent dynamics. To gain a deeper understanding of the
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learned dynamics and the long-term behavior of the system, we analyse the pre-
dicted Koopman operators for batteries operated under different current ranges.
Specifically, we examine their eigenvalue distributions [Fig. 11].
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Figure 11: Eigenvalues of learned Koopman operators for different intervals of
operating conditions.

Each point on the plot represents one embedding with 200 points. We ob-
serve several clusters of complex conjugate eigenvalues, indicating the presence
of fast dynamics. As expected, points corresponding to rest and charge periods
overlap . However, the most interesting cluster consists of real eigenvalues dis-
tributed in the interval Re(λ) ∈ [0; 0.6] . This cluster captures the long-term
dynamics associated with the degradation of battery health parameters. No-
tably, we observe that lower currents impose significantly less degradation on
the battery, which can explain the higher RUL prediction error for this current
interval.

6 Conclusion

In this research, the DKO approach demonstrated its ability to learn hidden
health parameters of dynamical systems without supervision. We have shown
that the learned state representation can be effectively used to estimate the
RUL of a system. Ablation studies indicated that incorporating multiple steps
prediction loss helps in building a more robust model that can estimate the
degradation trend using a linear model for unseen CNC milling machine cutters
and Li-ion batteries operated under constant current load.

Additionally, we proposed a novel approach called KIDM, inspired by DKO,
to model degradation in systems under varying controls. The architecture of the
KIDM model allows for minimizing the influence of controls on the observables
space by separating the imposed degradataion and the controls applied to sys-
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tem. The KIDM model demonstrated superior performance in RUL prediction
for Li-ion batteries operated under varying current loads. Moreover, we showed
that the learned Koopman operators can be analyzed in terms of their influence
on the system’s health parameters.

In real-world applications, extensive ground truth run-to-failure data is often
not available. However, we have demonstrated that both DKO and KIDM are
robust in solving the RUL prediction task even with only one run-to-failure
trajectory.

In this work, we have applied feed-forward neural networks to approximate
the mapping to the Koopman observables space. For future research directions,
more advanced architectures could be explored to improve the mapping to ob-
servables space. We believe that the approach can we successfully applied to
model degradation of more complex real world dynamical systems.
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