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Abstract—Research on adaptive traffic signal control (ATSC) 

extends back to at least the 1960s, and many ATSC methods have 

been proposed over the years. This paper provides a review of this 

research and proposes a taxonomy for organizing it, accompanied 

by a consistent vocabulary for discussing the control concepts. We 

begin from the well-established concept of control generations. 

Next, we classify the ATSC methods according to their topo-

graphic structure (local-only, system/hierarchical), time resolution 

of decision-making (continuous versus planning-horizon), type of 

decision (rule-based or optimization), objective function, cy-

clic/acyclic nature, and additional subcategories relevant to cer-

tain “families” of methods. These various elements of system con-

trol are organized into a taxonomy of ATSC to help future re-

searchers understand the wide diversity of algorithmic approaches 

to the signal control problem that have been proposed to date, and 

which can be updated or expanded to incorporate future research. 

Index Terms—traffic control, traffic signals, adaptive control, 

adaptive traffic signal control 

I. INTRODUCTION 

Traffic signal control is an important interdisciplinary prob-

lem in transportation engineering. Methods of signal control 

that adjust signal timing in response to traffic conditions are 

generally referred to as adaptive traffic signal control (ATSC). 

Many different methods of ATSC have been proposed, and 

there are thousands of publications on this subject in the litera-

ture. The objective of this paper is to survey the literature on 

ATSC and develop a taxonomy to organize the literature. 

ATSC is a challenging topic to review comprehensively. A 

search for the phrase “adaptive traffic signal” on Compendex 

returns 1,767 results when filtered by the controlled vocabulary 

“traffic signals” (there are over 7,000 results without this filter). 

Other search phrases are also relevant. It is infeasible to com-

prehensively examine every publication. However, by examin-

ing a broad cross-section of the literature, it is possible to iden-

tify certain trends and commonalities. 

One difficulty in discussing ATSC in multiple disciplines is 

the lack of a consistent vocabulary. Even the definition of 

“adaptive” is not uniform. ATSC could be defined as self-reg-

ulating control based on real-time traffic data, but this definition 

is loose enough to include actuated control, which is not nor-

mally considered “adaptive.” Alternatively, the term “adaptive” 

could be reserved only for “real-time” control, similar to the 

Traffic Control Systems Handbook [1], but this excludes adap-

tive adjustments to conventional timing plans. Some authors do 

not use the term “adaptive” at all. This paper proposes a vocab-

ulary for discussing ATSC. 

Some previous publications have included some relatively 
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extensive reviews of ATSC. Katwijk et al. [2] proposed a tax-

onomy of ATSC, but limited their discussion to local intersec-

tion control, and their taxonomy focuses on optimization meth-

ods. Papageorgiou et al. [3] reviewed control strategies for ur-

ban road network, freeway networks and route guidance. Signal 

control was one subtopic in the broader review, so details of 

ATSC are not discussed. Stevanovic prepared a synthesis of 

ATSC deployments [4] which includes descriptions of several 

methods provided by the vendors. This review focused mainly 

on commercial ATSC systems. 

Some reviews focused on ATSC for a particular situation or 

a family of strategies. Wei et al. [5] surveyed signal control 

strategies that use Reinforcement Learning (RL) framework. 

Jing et al. [6] and Wang et al. [7] reviewed ATSC strategies for 

connected vehicle environments. A recent review of computa-

tional intelligence in traffic signal control was presented by 

Qadri et al. [8], examining papers published between 2015-

2020 and classifying them according to several criteria. 

The present paper seeks to review ATSC more generally, but 

to limit its scope to the most useful work for potential field de-

ployment, we focus on methods that can be applied to multiple 

phases where opposing turning movements are permitted to ter-

minate independently, with the exception of other papers that 

make significant methodological contributions. The paper be-

gins with a review of basic signal control concepts. Next, we 

describe the literature search and criteria for paper selection. 

After this, we present the criteria for the taxonomy. Finally, we 

present the organization of the works into the taxonomy. 

This paper employs numerous acronyms which are explained 

by Table VII in the Appendix. 

II. BACKGROUND 

This section provides a brief description of signal control 

methods in general and elements of the history of their devel-

opment. 

1) Fixed-Time Control 

The first traffic signals on public streets were human-oper-

ated, with automatic control emerging in the 1920s [9]. The 

need for coordination of multiple intersections and variation by 

time of day were recognized from the beginning and are the ba-

sis of conventional control methods that are still widely used. 

The simplest signals transfer the right-of-way between two 

streets, under “two-phase” control (Figure 1a). The need to ac-

commodate crossing turns (e.g., the left turns in right-hand 

drive countries) led to the inclusion of additional phases, 
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leading to “four-phase” control (Figure 1b). “Eight-phase” con-

trol incorporates two rings that permit the opposing crossing 

turns to start or end independently, subject to phase compatibil-

ity constraints (Figure 1c). Eight-phase control is widely used 

in North America [10]. Elsewhere, stage-based control is more 

common, which can achieve similar operation although the 

phase sequence may be more constrained. 

In conventional coordinated control, the basic elements that 

comprise a timing plan are the cycle, offset, and splits (COS). 

The cycle (or cycle length) is the amount of time within which 

all phases must be served. The use of a common cycle length 

causes these patterns to repeat in successive cycles, as long as 

the controllers are synchronized. The time difference between 

each intersection’s local timing and a common system reference 

point is the offset. Finally, the share of the cycle length appor-

tioned to each phase is the split of that phase. 

2) Actuated Control 

Actuation allows the service of phases and the duration of 

green to be adjusted in response to changing traffic demands, as 

measured by detectors. Detectors generally identify when vehi-

cles are waiting for service on a movement, or if there is still 

traffic being served on a phase currently in service. Because ac-

tuation uses a relatively simple set of rules, it is not generally 

considered to be a form of “adaptive” control. 

Under fully-actuated control, all phases are actuated and are 

served in a constant sequence (with the possibility of skipping 

phases that have no demand) and with green times varying ac-

cording to demand. There is no fixed cycle length, but an effec-

tive cycle length that is the consequence of phase durations de-

termined by the actuation rules. Some authors have observed 

that for random vehicle arrivals (such as at isolated intersec-

tions), the performance of fully-actuated control is nearly opti-

mal in terms of delay [11]. 

3) Actuated-Coordinated Control 

Actuated-coordinated signal control uses the same COS 

framework as fixed-time control, but the phase durations are 

adjustable by actuation, subject to constraints that maintain syn-

chronization. As under fully-actuated control, phases may be 

skipped if there is no demand, and their green times may be 

truncated if there is more split time than the amount of demand 

present for the phase in that cycle. This permits other phases to 

access the yielded time, which can help if their demand exceeds 

what the split can handle. The coordinated phases receive spe-

cial treatment. The controller cannot skip the coordinated 

phases, and it cannot terminate them unless it is within a portion 

of the cycle where there is sufficient time to serve the split for 

the other phases and return to the coordinated phases prior to 

the start of their split. Numerous settings are available to fine-

tune this operation. For a more detailed description, readers 

may consult the Signal Timing Manual [10]. 

In the United States, fully-actuated control without coordina-

tion is generally used at isolated intersections or on arterial cor-

ridors during low volume conditions. Actuated-coordinated 

control is very common on arterial streets, while fixed-time 

control is mostly limited to some central business districts 

where the need to serve pedestrians during every cycle limits 

the utility of actuation. Other countries vary considerably in use 

of actuation. 

4) Advanced Control Methods 

Conventional control methods can provide an efficient oper-

ation when the settings are well-timed for expected traffic con-

ditions. Timing plans can be designed to robustly accommodate 

some amounts of variation [12], but large variations can lead to 

inefficient operation. Timing plans are usually developed from 

traffic counts obtained on a particular date, but traffic is highly 

variable and changes over time, making it difficult to keep tim-

ing plans updated. 

One important distinction exists within the definition of gen-

erations: the use or non-use of COS. Some acyclic control meth-

ods do not use COS. However, being acyclic is not a necessary 

or sufficient condition for being adaptive. Fully-actuated con-

trol is acyclic, and some adaptive methods operate within a 

COS framework. 

In the US, a key research effort in the mid-20th century was 

the Urban Traffic Control System (UTSC) project [13], which 

started in the 1960s and continued until the early 1980s. This 

project introduced the notion of “generations” of signal control. 

Table I presents a description of the UTSC control generations. 

This offers a useful framework for discussing ATSC. 

System-level signal timing optimization is a NP-complete 

problem [14] and is consequently difficult to solve within a 

fraction of a second. Real-time ATSC strategies must therefore 

consider a tradeoff between performance and computational ef-

ficiency. Detailed knowledge of these strategies is needed to 

propose further refinements to these strategies or to implement 

them in the real world. However, the sheer number of ATSC 

strategies that have been proposed makes this challenging. The 
 

Figure 1 Conventional multiphase signal control: (a) two-phase; (b) four-

phase; (c) eight-phase. 
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UTSC generations are useful for establishing a high-level per-

spective on ATSC, but they do not offer much classification be-

yond the relationship of the algorithms to the COS paradigm. 

To better survey the field of ATSC, this paper presents a taxon-

omy of adaptive strategies incorporating multiple criteria. 

III. LITERATURE SEARCH METHODOLOGY  

To develop a taxonomy of ATSC, we first conducted an ex-

tensive literature search. Relevant works were identified by 

searching for keywords with Google Scholar and Compendex. 

Additional searches were made with IEEE Xplore, ScienceDi-

rect, arXiv, Scopus, and Web of Science. The following criteria 

were used to select articles for further review: 

• Clarity. The underlying signal control algorithm needed to 

be clearly and adequately explained. 

• More Seminal Work. Some ATSC methods were discussed 

by several papers, with some having derivative works. For 

these families of methods, we selected either the original 

publication or one that provided the most illuminating de-

scription of the control method. 

• Multiphase accommodation. We focused on methods that 

are able to handle eight-phase control, with the exception 

of papers that present novel algorithmic contributions de-

spite being limited to other phasing schemes. 

• Method of evaluation. Because so much prior work has 

been demonstrated only in simulation, we did not use con-

sider field evaluation as a criteria for selection. We tended 

to select works that included comparisons against well-

timed and realistic conventional control. 

• Importance of the Work. The number of citations a paper 

accumulated was considered a measure of its importance to 

the ATSC literature. Some papers that were frequently 

cited by others were included, even if they did not meet all 

of the above criteria. 

The initial search identified over 1700 articles. Using the 

above criteria, 137 articles were selected for a more detailed 

read. From that number, 88 ATSC methods were used to de-

velop the taxonomy presented here. The selected articles were 

then rereviewed to identify characteristics of the control 

methods, and that information was used to develop a taxonomy. 

IV. MAJOR TAXONOMY ELEMENTS 

This section presents findings of the literature search, focus-

ing on criteria that served as the foundation for the taxonomy, 

which is presented later. More detailed information from the 

surveyed papers are summarized in Tables IV–VII, which have 

been included in the appendix. 

A. Control Generation 

The UTCS generations are a starting point for classifying 

ATSC methods. Here we briefly describe developments in ad-

vanced signal control relative to each control generation. 

1) First-Generation (Traffic Responsive) Control 

First-generation control (1-GC) uses measurements of vol-

ume and occupancy from detectors distributed throughout the 

network to select COS patterns from a predefined library. 1-GC 

control allows these to be selected according to measured de-

mand rather than transitions at arbitrary times of day. The pat-

tern library can be simple or complex depending on the number 

of scenarios considered by the system designer. 

In practice, 1-GC is commonly referred to as “traffic respon-

sive” control. Perhaps the earliest attempt at 1-GC control was 

a 1938 attempt at adjusting cycle length using field measure-

ments of traffic demand [15] and analog computing equipment. 

The first commercially available system was the “PR System” 

developed in the 1950s (as reported in several papers, although 

few details can be found). The City of Toronto built one of the 

earliest area-wide 1-GC systems in the early 1960s [17]. Today, 

1-GC methods have been integrated into various advanced traf-

fic management system (ATMS) software packages. A sum-

mary of 1-GC methods is presented in Table V in the appendix. 

2) Second-Generation Control 

Second-generation control (2-GC) measures traffic condi-

tions and makes adjustments to COS patterns. These adjust-

ments can be made at predefined intervals (e.g., once every five 

minutes) or in real time. 

Some early 2-GC control methods were developed as part of 

the UTCS project [18], [19]. In the 1970s, SCATS was devel-

oped in Australia [20] and SCOOT in the UK [21]. SCATS and 

SCOOT have been widely used internationally. In the US in the 

early 2000s, ACS-Lite was developed to try to add 2-GC capa-

bilities to existing traffic signal systems [22]. 

SCOOT predicts the amount of delay and number of stops 

for a typical cycle using measurements of link inflows and a 

platoon dispersion model [21], [23]. SCATS incorporates both 

traffic-responsive capabilities as well as adaptive COS adjust-

ments [20]. Under ACS-Lite, existing COS patterns in the con-

troller are implemented according to the time-of-day schedule, 

or by independent traffic responsive control [24]. ACS-Lite 

measures conditions for at least two cycles and incrementally 

adjusts the splits and offsets in the existing plan. More recent 

implementations have added cycle length adjustments. 

Some 2-GC methods are able to optimize and implement new 

COS settings in real time. Several studies have explored real-

TABLE I GENERATIONS OF ADAPTIVE TRAFFIC SIGNAL CONTROL 

Number Description 

0 Conventional control. Groups of signals use COS timing 

plans that are selected by time-of-day control. Fully-actu-
ated control is used for isolated intersections and sometimes 

for low volume conditions. 

1 Traffic Responsive COS Pattern Selection. Measure-

ments of volume and occupancy are made at various loca-
tions throughout the network, and quantities derived from 

these are used to select from pre-programmed COS timing 

plans, instead of time-of-day control. 

2 Adaptive COS Pattern Adjustment. Similar to conven-
tional control, with the addition of adaptive adjustments 

that change the timing plans according to measured condi-
tions. 

3 Real-Time Adaptive Control. These control methods gen-

erally do not use COS, and either replace or augment fully-

actuated control with an alternative phase-switching deci-

sion method. 
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time determination of splits [25]–[29]. Others have optimized 

each of the COS component over each intersection of the sys-

tem [30]–[32]. An example is IN-TUC, which has been de-

ployed in Greece, Germany, and the UK. The initial versions of 

this method optimized only splits, and later expanded to include 

online optimization of offsets and cycle length as well. 

A summary of 2-GC control methods is presented in Table 

VI in the appendix. 

3) Third-Generation (Real-Time) Control 

Third-generation control (3-GC) includes methods that re-

place the COS paradigm with an alternative scheme for sched-

uling phases. Many 3-GC methods are acyclic, although some 

methods have been formulated for local control that is con-

strained within a cyclic or pseudo-cyclic system-level control. 

Collectively, the 3-GC methods exhibit much greater variety 

than the 1-GC and 2-GC methods, so they require more criteria 

for classification. 

The first known paper on real-time traffic signal control was 

published by Miller [33], with another paper by Dunne and 

Potts [34] being published around the same time. Research un-

der the NCHRP program explored some of these early ideas for 

potential real-world application [35]. The UTCS project ex-

plored 3-GC control in greater detail, under different volume 

conditions [13], [36]–[38], yielding three methods: SOLIS for 

lower traffic volumes; CYRANO for moderate traffic volume; 

and CIC for high traffic volume. After the end of the UTCS 

project, federal research in the US continued to invest in addi-

tional systems. Some of the most frequently cited of these are 

OPAC [39], RHODES [40], and ALLONS-D [41], [42]. Many 

other methods have been proposed. A summary of 3-GC control 

methods is presented in Table VII in the appendix. 

B. Control Scope 

ATSC methods may execute control decisions for a single 

intersection (local) or multiple intersections (system). 

1) Local Control 

Most early publications on real-time ATSC focused on a sin-

gle intersection. Miller’s seminal work [33] considered a phase-

switching decision for two-phase control using the criterion of 

whether more delay is saved than caused by switching phases 

at the present moment. Dunne and Potts proposed a similar rule-

based approach, also for a two-phase intersection [34]. Green 

and Hartley [43] considered similar rules for two, four, and 

eight-phase intersections. 

DYPIC [44] precalculated optimal solutions for every possi-

ble link state, allowing the controller to “look up” the optimal 

control according to the reported conditions. DYPIC was orig-

inally intended to provide an “absolute standard of perfor-

mance” for comparing other control methods. 

All of the other control methods previously mentioned, in-

cluding those developed under UTCS and later studies, include 

a method of determining the local control. In general, these 

methods try to predict when traffic is expected to arrive at the 

intersection as well as how much traffic is presently queued, 

and then establishes a schedule for phase switching over a 

planning horizon, which optimizes some performance measure. 

Commonly, the methods try to minimize delay or a combination 

of delay and stops. The methods vary in their estimation meth-

ods, selection of internal model, formulation of an optimization 

criterion, and algorithm for determining the schedule. 

MOVA [45] is an enhancement of actuated control that uses 

a particular detection scheme to identify approaching and cross-

ing traffic, developing an internal model of vehicle positions. 

The decision to terminate the green tries to ensure that the initial 

queue has cleared and then can extend the green further to min-

imize delay and stops. 

PMSA was developed for local control under a connected ve-

hicle environment, and uses an embedded microsimulation 

model to optimize delay and stops [46]. Pandit et al. [47] pro-

posed an algorithm for VANETs where vehicles are aggregated 

into platoons, and the local level signal control problem is for-

mulated as a job scheduling problem. 

Some local control methods have features that facilitate co-

ordination, often as an emergent property of the local control. 

The method of coordination is a separate criterion, discussed 

later in this paper. 

2) System and Hierarchical Control 

Some control methods include a framework for managing 

signal timing across multiple intersections. Certain control 

methods are scoped for individual corridors or small areas, and 

generally have a single layer to manage system control. Others 

have multiple layers that permit multiple subsystems to be man-

aged. We term this design pattern as “hierarchical” control. 

The 2-GC control methods rely on the COS framework, 

which is itself a manner of system control. However, different 

control methods differ in the complexity of the system control 

layer. Many 3-GC methods employ hierarchical strategies to 

manage local and system needs. Typically, the system compo-

nent constrains the local control to facilitate coordination. For 

example, OPAC was originally formulated as a local control 

method, with certain provisions for multiple-intersection con-

trol. Coordination was later achieved through imposition of sys-

tem-level constraints, using a “virtual cycle length” [48]. Simi-

larly, the local control algorithm of RHODES (called COP) was 

initially developed for local intersections [49]. Additional lev-

els in the control hierarchy were then added to manage coordi-

nation. A decision-tree method called REALBAND [50] tracks 

platoon movements and then requests service of specific phases 

to serve these platoons. PAMSCOD [51] and MMITSS [52] are 

extensions of these concepts employing connected vehicle data, 

which implement alternative system-control logic. 

C. Responsiveness 

Some ATSC systems make model-based predictions about 

future states. This characteristic marks another way that differ-

ent systems can be classified. 

1) Reactive Control 

Reactive approaches use recent measurements of traffic. 

Both 1-GC and 2-GC methods tend to operate in this manner. 

The system state is measured over a few cycles or several 
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minutes, and a new timing plan or set of adjustments are calcu-

lated based on the recent system state. 

2) Proactive Control 

Proactive algorithms try to determine a control decision for a 

predicted future traffic state, using recent measurements, some-

times in combination with historical data. Proactive methods 

can be divided into two subcategories based on how frequently 

the control decision is made: within a planning horizon (every 

few minutes) or as a continuous decision (each time step). 

Planning Horizon. Many 3-GC control methods employ a 

planning horizon over which an optimal schedule for signal tim-

ing is determined. Some use a rolling horizon (Figure 2) 

wherein the control decision can be updated more frequently as 

the system state is refreshed. 

The difficulty in measuring and predicting traffic at greater 

distance from the intersection tends to limit the feasible dura-

tion of the planning horizon. However, computational complex-

ity limits the feasibility of shorter durations. Most algorithms 

described in the literature use longer planning horizons, with 

durations similar to typical cycle lengths under conventional 

control. Some control methods are able to vary the duration of 

the planning horizon. For example, ALLONS-D enlarges the 

existing planning horizon until all the projected queues are 

cleared [41]. Algorithms that use shorter horizons can tend to 

truncate the current phase before queues are fully cleared [53], 

[54]. One solution to mitigate this is to introduce a terminal cost 

to penalize truncation of a discharging queue. 

Continuous Decision. Rather than determining an optimal 

schedule in advance, some control methods continually decide 

whether to extend or terminate the current phase. The decision 

is made at very short time resolutions, similar to actuated con-

trol (e.g., 0.1–1 s). Computational efficiency is therefore criti-

cal, and such methods are often implemented as simple rule sets 

without complex modeling. 

D. Decision Method 

The next taxonomy criterion is the decision method em-

ployed as the kernel of the algorithm. Four categories were 

identified from the literature search: rule-based, max pressure, 

exact optimization, heuristic, simulation-based, and AI-based. 

1) Rule-Based 

Rule-based methods do not employ mathematical optimiza-

tion techniques, but instead use a series of relatively simple 

rules. These are generally limited to “if-then” rules and rela-

tively simple calculations and value comparisons. Such meth-

ods have low computational requirements and can be executed 

at high frequencies but preclude more complex modeling. 

2) Max Pressure 

Max Pressure (MP) control was first proposed by Varaiya 

[55]. In this method, a quantity called “pressure” is defined for 

each phase as a function of the current traffic state and a weight. 

In Varaiya’s initial work, queue length was selected as the 

weight. The group of phases having the greatest pressure is se-

lected for service. The initial theoretical work demonstrated that 

MP control optimizes network throughput when the mean arri-

val rate is less than the service rate (i.e., undersaturated condi-

tions). 

3) Exact Optimization Methods 

Exact optimization methods use a mathematical statement of 

the control problem, often incorporating a relatively complex 

traffic model, and derive an optimal solution. Several optimiza-

tion strategies are used within these methods, which offers a 

means of categorizing them further. 

Dynamic Programming (DP). DP is a mathematical optimi-

zation technique that finds control for a dynamic system over a 

period to minimize cost. DP divides up the overall problem into 

subproblems in such a way that solving the subproblems yields 

global optimum performance. Unlike other recursive solutions, 

DP stores incremental data. If certain subproblems need to be 

resolved multiple times, it is better to store their parameters to 

avoid repeating the same calculations. Thus, DP can be seen as 

a sort of time-efficient recursion. 

DP-based approaches for signal control use forward and 

backward recursion. The forward recursive algorithm usually 

calculates the performance function for the given parameters 

and stores the optimal performance value. The backward recur-

sive algorithm backtracks the optimal decision. OPAC, COP, 

PAA, and SPPORT [56] use prediction algorithms to develop 

an arrival table, and from this information establish a signal tim-

ing plan using DP. In OPAC and COP, phase duration and se-

quence are optimized. PAA uses a bi-level structure to handle 

eight-phase control. The upper level uses a forward recursive 

function to determine the “barrier length” (the time when the 

right-of-way is transferred from phases on one street to the other 

street). The lower-level function returns the optimized phase se-

quence and phase durations. 

Mixed Integer-Linear Programming (MILP). Optimization 

of traffic signal control often requires discrete values, which has 

encouraged use of mixed-integer linear programming. For ex-

ample, PAMSCOD [51] is a unified platoon-based formulation 

which performs online traffic signal optimization incorporating 

MILP to determine the optimal signal timing. 

Computational complexity is a limitation of MILP, leading 

to various strategies to scale the control methods. Islam and 
 

Figure 2. Planning Horizon. 
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Hajbabaie [57] limit the optimization process to the local inter-

section but maintain system level performance through implicit 

coordination. Fei et al. [29] extended this work to address un-

certainty in traffic demand and turning rates through two-stage 

stochastic programming. To make optimization scalable this 

strategy used decomposition algorithms and coordination was 

maintained through cycle-offset structure. Wang et al. [58] for-

mulated the MILP problem as a multi-intersection optimization 

problem within which vehicles can plan a path. This study uses 

Lagrangian decomposition with a subproblem approximation 

method to scale the optimization process. 

Branch-and-Bound (B&B). This strategy renders the optimi-

zation problem into a treelike structure. The branches of the tree 

represent subsets of the solution set. Branches are defined by 

upper and lower bounds. A detailed discussion of such algo-

rithms for two-phase control is presented by Shelby [54] Some 

algorithms such as ALLONS-D employ B&B in a pure form. 

RHODES uses B&B in a hybrid framework with DP. MILP so-

lution methods contain B&B algorithms at their core. 

Linear Quadratic Regulator and variations. Due to the dy-

namic nature of traffic, optimal feedback control methods such 

as model predictive control (MPC) or the linear-quadratic reg-

ulator (LQR) algorithm have been tested to solve this problem. 

LQR is often used for linear systems where the objective func-

tion is quadratic. INTUC used LQR and balanced the number 

of vehicles on links in the network by tapered split timing [25], 

[31]. A possible limitation of LQR is that it works on an infinite 

time interval, and long-term prediction of traffic is prone to er-

ror. Wang et al. [26] proposed the use of MPC, which works 

over a prediction horizon. These studies enhanced the store-

and-forward mathematical model of traffic control originally 

developed by Gazis [59]. 

4) Heuristic Methods 

Heuristic approaches employ loosely defined rules to find a 

solution. These solutions tend to be locally optimal rather than 

globally optimal. However, the need for computational effi-

ciency, and the error inherent in predicting future traffic states 

can limit the practicality of identifying a global optimum solu-

tion. In other words, as the adage goes, “perfect is the enemy of 

good.” 

Several previous studies [60]–[63] used genetic algorithms 

(GA), which are heuristic methods that simulates the biological 

process of natural selection. Liang et al. [60] proposed a method 

that identifies platoons in traffic stream using connected vehicle 

data and determines the signal timing with a GA. GABNOR 

[61] uses a GA stopping criterion determined by a time limit to 

apply a GA solution for 2-GC. Several other heuristic based 

methods have also been used to optimize signal timing, such as 

the Box algorithm [64], Tabu search [65] and Hill-climbing 

[66]. 

5) Simulation-based optimization 

An alternative to modeling is the use of simulation. Rather 

than attempting to model traffic states, potential outcomes are 

modeled by simulation. These may vary from rudimentary em-

bedded simulations to the execution of simulation software. 

Because of the potential computational complexity, simulation-

based methods are challenging to implement with real-time 

control, but some studies have nonetheless explored this option. 

DYPIC [44] uses predetermined solutions for any given com-

bination of demands on two phases. For every possible combi-

nation of traffic states for the simple two-phase scenario, an op-

timal control decision is determined by previously run simula-

tions. The control method is therefore more similar to a lookup 

function. 

PMSA [46] is a decentralized control method for use with 

V2I communication using a 15-second horizon for collecting 

vehicle location, speed, and headway information. Over the 

planning horizon, microsimulation is used to determine a solu-

tion that minimizes delay. 

6) Artificial Intelligence (AI) Based Approaches 

Recent advances in the field of AI have inspired researchers 

to apply it to the problem of signal control. The most common 

methods of AI seen in the literature on signal control are fuzzy 

logic, neural networks (NN), and reinforcement learning (RL).  

Fuzzy Logic. Fuzzy logic is useful for solving nondetermin-

istic and non-linear problems. The core concept of fuzzy logic 

is the replacement of the strict binary or Boolean absolute con-

ditions of true (1) or false (0) with intermediate values repre-

senting a state that lies somewhere between the two. This is in-

tended to emulate human decision making. 

In human control of traffic signals, an experienced operator 

quickly reaches a decision based on their previous qualitative 

knowledge. Several researchers [67]–[71] have used fuzzy 

logic in signal control, mostly for relatively simple intersection 

configurations. Nakatsuyama et al. [72] incorporated local 

fuzzy control with fuzzy offset control for one-way arterial 

movement. Wei et al. [73] used fuzzy logic to control isolated 

intersections with through and left turn movements. 

Chiu [74] proposed a self-organizing method integrating a set 

of 46 fuzzy decision rules to determine the signal timing. The 

local controller also considered the signal timing of adjacent in-

tersections to minimize number of stops on the major street. 

Fuzzy logic has been integrated with other processes in ap-

plication to signal control. Xie [75] developed a RL-based 

framework with fuzzy logic to differentiate between congested 

and uncongested traffic conditions. A multi-agent independent 

RL method was used for arterial level signal control. 

Reinforcement Learning (RL). RL has been used extensively 

in robotics and automation, and several researchers have ex-

plored its application to signal control. In RL, any decision-

making element is an “agent,” and the problem conditions are 

the “environment.” The signal controller is an agent. RL-based 

signal control learns from the performance that results from its 

previous control decisions. RL-based methods can be model-

based or model-free, depending on whether an agent is predict-

ing environmental responses or using direct feedback. The con-

trol algorithms can learn both from the results of their own ac-

tions, or they can be trained by previous data. In a sense, DYPIC 

foreshadowed by effectively creating a training data set that was 

populated to include every possible traffic state. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

Thorpe [76] applied RL to control of a two-phase isolated 

signal using a Q-table, which is computationally expensive. Ab-

dulhai et al. [77] proposed a Q-learning method for system con-

trol that updated input state matrix based on projected flow 

from adjacent intersections, the agent also has the flexibility to 

update signal timing based on the projected flow. 

RL methods have received considerable attention recently, 

and a summary of RL-based methods is presented in Table VI. 

E. Coordination Mechanism 

The mechanism used for coordinating multiple intersections 

is a key feature of ATSC and offers another criterion for classi-

fying ATSC methods. 

1) Emergent Coordination 

Some ATSC methods do not include any explicit coordina-

tion method, but some have demonstrated a potential for emer-

gent coordination that occurs as a natural consequence of the 

local control algorithm. 

A 1966 paper [78] on fully-actuated control describes a pos-

sible “platoon carryover effect,” which is perhaps the first time 

the notion of emergent coordination appears in the literature. 

However, the paper stops short of actually demonstrating this 

potential. 

Gershenson et al. [79], [80] proposed an algorithm that con-

sists of a phase-switching ruleset that tries to keep platoons to-

gether, extends green based on the balance of approaching and 

waiting traffic, and adjusts for downstream blockages. Another 

decentralized algorithm was proposed by Lämmer et al. [81] 

which used a predictive method to minimize waiting times, at-

tempting to prevent queue formation, which also exhibits self-

organizing potential. 

Cesme and Furth proposed a method of self-organizing con-

trol [82] based on conventional fully-actuated control where a 

secondary extension is implemented to serve platoons on the 

major movements, subject to other criteria. Another decentral-

ized approach proposed by Islam and Hajbabaie [57] maxim-

izes throughput. Some other authors have described methods of 

“platoon accommodation” which have similar characteristics, 

although they focus on control of isolated intersections and do 

not explore system effects [83], [84]. A recent pilot study of a 

rule-based decentralized method [85] that scheduled the service 

of minor street traffic during sufficient gaps in major street traf-

fic, which is similar in character to some of these methods. 

Another implicit method of coordination is the use of up-

stream intersection traffic flow and signal state data to project 

vehicle arrivals within the rolling horizon periods of down-

stream intersections. OPAC-III used this form of implicit coor-

dination, followed by several subsqequent studies [41], [57], 

[86]–[88]. Several RL based algorithms [75], [77], [89]–[92] 

used multi-agent cooperation where projected traffic flows and 

shared signal state data facilitated coordination. 

A distinction should be drawn between using information 

from multiple intersections and implementing control for mul-

tiple intersections. For example, ALLONS-D is a local control 

method, for which a variant, ALLONS-I, utilizes additional in-

formation from adjacent intersections [41]. Within ALLONS-I, 

intersections can share data with each other but the control 

scope is local. SURTRAC [86] employs a similar approach 

where intersections share data with their neighbors, but the lo-

cal scheduling algorithm is decentralized. 

2) Cycle-Offset-Split Paradigm 

2-GC control uses the COS paradigm for coordination. Thus, 

2-GC methods are largely focused on adjusting the governing 

parameters (the cycle length, offset, and splits). 

SCOOT adjusts cycle length, offset, and splits according to 

measured demand flows and an internal platoon dispersion 

model. A model of cyclic traffic flows is developed that is sim-

ilar to the model used in offline optimizer TRANSYT [44]. The 

settings are adjusted collectively to minimize a performance in-

dex consisting of delay and stops. 

ACS-Lite [22] in its original form adjusts the offset and 

splits. The system measures arriving traffic to create cyclic pro-

files of the flow rate, similar to their representation in TRAN-

SYT. The splits are adjusted to balance the level of utilization 

while offsets are adjusted to maximize the number of arrivals 

on green. Extensions of ACS-Lite, such as Kadence [93], have 

added an incremental cycle length adjustment. 

ACDSS [27] was developed for use in midtown Manhattan, 

New York City, which has a famously dense and semiregular 

urban street grid. The system operates on two levels. In the first 

level, offsets and splits are selected from a library of existing 

timing plans. For congested conditions, offsets are selected to 

restrict or meter vehicle inflows. A second level adjust the splits 

to balance queues and reduce spillback. 

3) Weighted Priority 

Using biasing multipliers or putting weights on phases is a 

time-efficient way of achieving system-wide performance in 

decentralized adaptive signal control. 

ALLONS-D [41] used a tree-searching algorithm to mini-

mize delay when planning phase sequence and duration. An ar-

rival table was developed with data from upstream detectors. 

Weights in the objective function for certain phases are used to 

account for the system effects of local controller decisions. 

PAA [52] uses a similar approach for higher amounts of traffic, 

since serving the major movement under low volume is not 

likely to have a significant impact on performance. 

4) Pseudo-Cyclic Operation 

Some methods eliminate the COS paradigm yet retain a con-

trol structure that functions similarly to a signal cycle (albeit 

more flexibly). In VFC-OPAC [48], the local cycle reference 

point is allowed to vary between yield points. The yield points 

are defined by the virtual cycle length and offsets. The local 

control uses a modified version of OPAC for local signal tim-

ing. A second control layer optimizes offsets, while a third con-

trol layer calculates a system-wide virtual cycle length. 

5) Fixed priority request 

Priority control provides preferential treatment for special 

modes of traffic (often public transportation). Some research 

has proposed the handling of coordination as a priority request. 
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One approach is to make this a fixed (constantly recurring) re-

quest, since it is expected that such traffic will exist on the ma-

jor street most of the time. Zamanipour et al. [94] proposed to 

treat coordination as a fixed priority request. PAA [52] inte-

grated this in a bi-level optimization framework for arterial pro-

gression. Beak et al. [95] extended this work by adding an offset 

refiner. 

6) Platoon-Based Priority Request 

Another approach to handling coordination via priority re-

quest is to make the requests conditional on the existence of 

platoons in the traffic flow. 

REALBAND [50] creates requests based on observed pla-

toon movements. To deal with conflicts where multiple pla-

toons are approaching an intersection on incompatible phases, 

a decision tree is used to determine the minimum delay option. 

The platoon priority requests are handled by the local control 

logic as an additional constraint. 

Das et al. [96] presented the addition of platoon-based prior-

ity requests to the MMITSS system, which also handles transit 

and other priority requests. 

7) Iterative Approach 

Some other control methods have used an iterative process to 

establish coordination. Yang et al. [97] used such an approach 

for system control. Initially, arrival flows are estimated by a 

model, which is used to optimize signal timing plan. The flows 

are estimated again on the next step and the timing is reopti-

mized. The process continues until the performances converges. 

ALLONS-I [41] uses repeated simulation to calculate the effect 

of each local controller on its neighbors. 

8) Max-Plus Algorithm 

Most RL-based system-level methods use multi-agent RL. 

Although it is possible in theory to use a centralized agent to 

control all intersections, this is impractical to implement. 

Van der Pol et al. [98] and Kuyer et al. [99] used an explicit 

coordination mechanism using the max-plus algorithm [100]. 

In multi-agent decision making, a coordination graph decom-

poses the global reward function into a sum of local terms. Each 

agent selects the optimal action by variable elimination. How-

ever, this variable elimination process is time consuming and 

not feasible for real-time control. The max-plus algorithm is an 

approximate alternative to variable elimination. In a series of 

iterations, agents share information with each other, and a final 

decision is reached based on the local pay-off function as well 

as the global payoff of the network. 

V. ADDITIONAL TAXONOMY ELEMENTS 

This section presents other traffic signal elements that sub-

stantially affect the nature of the control, but which are second-

ary to defining the overall algorithm structure. 

A. Cyclic Nature 

A cycle length is often used as an explicit coordination mech-

anism. By ensuring that all phases are served within a specific 

interval, it is possible to establish a reliably repeating pattern. 

However, the use of a common cycle length for many intersec-

tions can be inefficient since many of the intersections may be 

forced to operate with a non-optimal cycle length. Another 

strategy is to gather intersections into smaller size groups for 

coordination, which may help reduce opportunities for speeding 

[101]. 

Lee et al. [102], [103] proposed a real-time group-based hi-

erarchical ATSC method which uses COS. To scale the optimi-

zation, system level group-based solutions are computed in the 

current cycle and implemented in the next cycle. The current 

cycle is tuned at the local level to address real-time changes. 

Most 3-GC methods are acyclic, although many incorporate 

other constraints having a potentially similar influence as cycle 

length, such as the duration of the planning horizon. 

Similarities can be drawn between conventional coordination 

and 3-GC methods. For instance, if a local controller falls out 

of coordination because of a timing disruption, the controller 

will go into a “transition” mode where it adjusts force-off points 

to resynchronize. This is similar in nature to how 3-GC control 

schedules phase transition times in advance, although 3-GC 

control optimizes an explicit objective function, whereas coor-

dination transition uses rulesets to resynchronize the signal.0 

B. Multiphase Accommodation.  

Many early investigations into ATSC were limited to two-

phase signals. The addition of more phases (and multiple rings) 

into the decision process can tremendously increase the solution 

space and computational complexity. The type of phase and 

phase sequence options is an important description of the capa-

bility of an ATSC method. 

C. Phase Sequence 

ATSC methods vary in their ability to handle phase se-

quences (i.e., the order in which phases are served). The added 

ability to change the phase sequence offers another degree of 

freedom for the control method to adjust the signal timing to fit 

traffic conditions. 

In practice, some agencies avoid changing phase sequences 

from one cycle to the next, out of caution that transgressing road 

user expectancy may induce violations of the signal. 

D. Detection 

The type of detection, design of detection zones, and place-

ment of detectors plays an important role in signal control, in-

cluding both actuated and adaptive control. 

At present, most detectors in the US are point detectors that 

report occupancy when a vehicle is within the detection zone. 

Some of these can send pulses when new vehicles are identified 

in the zone. Detectors may be positioned close to the stop bar, 

or at an upstream location. Conventional detection zone design 

practices are described elsewhere in greater detail [104]. 

Some ATSC methods are designed to use existing detection 

schemes to encourage implementation. ACS-Lite [99], for ex-

ample, uses stop bar detection on every phase to optimize splits, 

and uses upstream detection to optimize offsets. The method is 

intended for detector locations used in practice with existing 

conventional control. The self-organizing method proposed by 
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Cesme and Furth [82] uses conventional detector locations but 

adds a set of detectors at a location further upstream than typical 

practice to measure arrivals more in advance. 

In future, Connected Vehicle (CV) technology is anticipated 

to provide continuous position and speed data. Several studies 

[46], [51], [52], [57], [95] have proposed methods of control 

using this type of data that may be able to extend the perfor-

mance of local control. At present, CVs have a low market pen-

etration rate, and it is not clear when it will become sufficiently 

large to enable real-time ATSC. A further challenge is the iden-

tification of non-motorized users. 

Some types of detectors, such as radar and LiDAR, are able 

to provide vehicle position and speed data continuously [105], 

[106]. This effectively creates one-way V2I communication. At 

present, such data is rarely used directly for signal control but 

is instead translated into equivalent presence data for detection 

zones. Gates [107] and Sharma [108] proposed applications of 

such data for conventional signal control. Day et al. demon-

strated the use of upstream detector data for actuated control in 

a pilot field study [85]. A proof-of-concept study by Shams and 

Day [109] showed the potential performance of using trajectory 

data to replace conventional stop bar detectors.  

E. Traffic Quantification (Input Data)  

ATSC algorithms rely on data to measure the current traffic 

state and produce a decision. The type of data required by the 

control method offers another criterion for classification. 

Some ATSC methods use flow measurements. The quintes-

sential example is the measurement of cyclic flow profiles by 

SCOOT [21], [23]. Other ATSC methods develop tables of ve-

hicle estimated times of arrival (ETAs). Both types of data are 

developed from detector input, with varying degrees of model-

ing used to project the flow pattern forward in time. 

The use of disaggregated data can increase the size of the 

state space, significantly increasing the computational com-

plexity. To solve this problem, several researchers have simpli-

fied arrival patterns as platoons or clusters of vehicles. The was 

pioneered in the offline optimizer MITROP, which used sim-

plified flow profile shapes [110]. SURTRAC [86] and PAM-

SCOD [51] use clusters to lower the computational burden of 

the algorithm. Datesh et al. [111] grouped vehicles using k-

means clustering for a two-phase control scheme. 

F. Multimodal Compatibility 

While signal control mainly exists because of motor vehicle 

traffic, there are many other modes present at intersections, in-

cluding pedestrians, bicycles, and transit. Emergency vehicles 

and freight may also be considered additional modes. ATSC 

methods vary in the degree to which they accommodate these 

and incorporate them into decision making. 

Previously, researchers have investigated the operational 

benefits of prioritizing transit [112]–[115]. Some methods such 

as PAMSCOD [51] and PAA [52] allow transit priority requests 

as additional constraints to the optimization formulation. Other 

strategies [21], [25], [44], [45], [86] integrate transit movement 

into the algorithm structure. 

In general, the handling of non-motorized traffic is an 

underexplored subject in ATSC. Several researchers [27], [51], 

[94] have explored ways to include pedestrians or bicyclists in 

the optimization framework, but the studies tend to focus on 

motorized traffic (both private vehicle and public transporta-

tion). 

G. Handling of Oversaturation 

Signal timing for oversaturated networks is complex and re-

quires extensive analysis [116], [117]. Most ATSC methods 

(and most conventional signal timing plans, for that matter) are 

designed for undersaturated conditions where intersections 

have adequate capacity for their demands and where it is possi-

ble to coordinate intersections for progressive traffic flow. For 

oversaturated networks, however, not all movements may have 

adequate capacity and the role of coordination is more to avoid 

gridlock and permit as much throughput as possible, rather than 

promoting smooth flow. 

SCOOT [21], [23] uses specific offsets for congested condi-

tions and also has a “gating” function that meters traffic at se-

lected locations. IMPOST [118]–[120] controls the growth of 

queues on a saturated approach by metering traffic to maintain 

stable queues. ACDSS implements certain control strategies to 

manage congestion including the use of specific offsets for 

oversaturation. Cesme and Furth [121] proposed strategies for 

oversaturated signal control by preventing spillback and starva-

tion. Temporary spillbacks were allowed at upstream intersec-

tions to prevent starvation at downstream critical intersections, 

and vice versa. 

VI. TRENDS IN ATSC RESEARCH 

Table II shows the year frequency distribution by publication 

date of selected taxonomy elements for the 84 ATSC methods 

selected from the literature to develop the taxonomy. The table 

shows the number of control methods, as opposed to the number 

of papers published. The earliest publication date was used to 

place each method in the table. 

Early ATSC methods were mainly reactive, including 1-GC 

and 2-GC methods. Today, most field-deployed ATSC methods 

are still in this category. Considerably more research effort—at 

least in terms of numbers of papers in the scientific literature—

has been invested in developing 3-GC control. Consequently 

there are more variations of 3-GC control than the earlier gen-

erations, and the number of publications on 3-GC control has 

greatly increased in recent years. 

The implementation of 3-GC control methods was challeng-

ing in the early history of ATSC. Despite these limitations, sev-

eral 3-GC methods were developed and tested. Since the year 

2000, the number of decision methods tested for 3-GC has 

greatly increased, introducing novel concepts such as self-or-

ganizing and max pressure control. It seems that most concepts 

that emerge in the computer and control engineering spaces 

eventually find their way to a traffic signal application. AI-

based approaches have recently become popular. ML-based al-

gorithms do not require pre-specified models of the environ-

ment, and the control agents in RL can automatically learn re-

lationships between action and reward. Modeling traffic signal 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

control while considering traffic flow and route choice is a com-

plicated task. It is unsurprising that methods that sidestep model 

specification have attracted attention. Although this is a rela-

tively new field, there has been a lot of work in this space, and 

17 out of the 84 selected ATSC methods included here involve 

RL, despite this being a relatively new category. 

VII. TAXONOMY OF ADAPTIVE METHODS 

Figure 3 presents an illustration of the ATSC taxonomy that 

was developed by a read through the literature as described to 

determine the categories described earlier. Certain elements are 

specific to 3-GC methods (or to RL-based methods, which are 

a subcategory of 3-GC), and are not included. Detailed catego-

rization of the selected methods, including these subcategory 

classifications, are presented by Tables III–VI in the Appendix. 

Major categories in the ATSC taxonomy include the reactive 

or proactive nature of the control; the control generation, using 

the UTCS definitions; the control scope; the method of coming 

to a decision; and the coordination mechanism. Additional cat-

egories include the cyclic or acyclic nature of the control 

method; the flexibility of phase sequencing; types of input data; 

and type of detection required. 

Traffic signal control has been evolving with the improve-

ment in technology. Historically, developers of ATSC methods 

have had to balance computational and operational efficiency. 

Traffic responsive (1-GC) strategies used relatively simple cal-

culations to select patterns from a preexisting library of options. 

Pattern-adjusting (2-GC) algorithms introduced incremental 

adjustments of these patterns through improved measurements 

and modeling techniques. Real-time control (3-GC) methods 

have continually introduced increasingly complex strategies for 

modeling and optimization. 

VIII. CONCLUSION 

This study reviewed existing literature to develop a taxon-

omy of adaptive traffic signal control. This included an initial 

selection of over 1700 articles, of which 137 describing 86 

ATSC methods were selected for a more detailed read to gather 

the information needed for the taxonomy. While this does not 

necessarily represent an exhaustive search of the literature, we 

believe this is a representative sample of the most widely cited 

and influential works in this area of study. A comprehensive 

review of this literature is challenging because of the variety of 

works reported in the literature. In fact, the tremendous amount 

of variety, which is continually increasing as new ideas are ap-

plied to the signal control problem, was the primary inspiration 

for the development of the taxonomy. 

We anticipate that this taxonomy will be useful for future re-

searchers to survey the literature on ATSC and understand the 

scale of the preceding work in this space. As the amount of lit-

erature continues to accumulate in this area of study, the need 

for such a document is increasing. In future, it is likely that ad-

ditional branches and categories will be necessitated as technol-

ogy improves both on the infrastructure and vehicle side. For 

example, in some future era, the possibilities of integrated ve-

hicle routing [122], [123] or of automated intersection control 

[124], [125] may necessitate additional top level categories 

(i.e., additional control generations). As these developments 

arise, it will be useful to occasionally update and expand the 

taxonomy presented here. 

TABLE II DISTRIBUTION OF SELECTED ATSC ALGORITHMS BY PUBLICATION DATE 

Category Generation Decision Method Scope 1980 or earlier 1981–90 1991–2000 2001–10 2011–22 All Years 

Reactive 1-GC All S 1 
  

1 
 

2 

2-GC (pattern 

adjusting) 

All S/H 1 1 1 3   6 

Proactive 2-GC (real-time) All S 
   

3 9 12 

3-GC,  

Continuous  
Decision 

Self-Organizing L 
   

2 1 3 

Max Pressure L 
    

4 4 

Rule-based (others) L 4 
  

2 2 6 

RL H/L 
  

1 7 9 17 

Fuzzy Logic H/L 1 1 1 2 
 

5 

Total, Continuous 

Decision 

(all) 3 1 2 13 16 35 

3-GC, Planning 

Horizon 

DP H/L 1 2 
 

4 3 10 

MILP H/L 1 
  

1 6 8 

B&B H/L 
  

2 
  

2 

Heuristic H/L 
   

2 4 6 

Other Methods H/L 
   

3 2 6 

Total, Planning  

Horizon 

(all) 2 2 2 10 15 32 

3-GC, All Types (all) 5 3 4 23 31 66 

Total, All ATSC Selected for Review 9 4 5 30 40 88 

Scope: H = Hierarchical, L = Local, S = System 
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X. APPENDIX 

TABLE III FIRST-GENERATION ALGORITHMS 

No. System Scope Traffic Quantification Objective Function Pattern Selection Mechanism 

1 1 UTCS 1-GC [18] S Traffic volume Delay Time-of-day, operator selection, matched pattern 

2 2 Abbas et al. [126] S Occupancy, delay from simu-
lation 

Delay, stops Used genetic algorithm to select appropriate plan 

Scope: D = Distributed, H = Hierarchical, L = Local, S = System 

TABLE IV SECOND-GENERATION ALGORITHMS 

No. System Scope Traffic Quantification Objective Function Cycle Length 

Adjustment 

Offset Adjustment Split Adjustment 

3  UTCS 2-GC 
[18] 

S Historical data Delay Online optimization 
every 5 min 

CIC adjusts to accommo-
date queue in every cycle; 
if flow is over a threshold 
value offset will not be ad-
justed 

CIC adjusts based on rela-
tive approach volume in 
every cycle 

4  SCOOT [21], 
[23] 

S Arrival flow profile Delay  Incrementally up-
dated to serve critical 
subarea intersection 

Incremental adjustment by 
nominal values, based on 
flow profile  

Checks if stage change is 
better earlier or later 

5  SCATS [20] S Degree of saturation, 
link flow 

Degree of saturation Incrementally up-
dated based on degree 
of saturation  

Weighted priority; offset 
have linear relation with 
cycle length 

Incremental adjustment 
based on current degree of 
saturation 

6  ACS-Lite [22]  S Occupancy Degree of saturation; ar-
rival on green 

None Adjusts offsets with some 
fixed step 

Incremental adjustment 
based on degree of satura-
tion 

7  Kadence [93]  S Occupancy, degree of 
saturation 

Degree of saturation, ar-
rival on green, traffic 
conflict area 

Incremental adjust-
ment based on current 
degree of saturation 

Adjust offset within a range Incremental adjustment 
based on degree of satura-
tion 

8  IN-TUC [31] S Number of vehicles Balance of vehicles, 
queue, and stops 

Fixed Fixed Traffic control is solved as 
Linear Quadratic (LQ) 
problem, optimizes only 
split value 

9  Wang et al. 
[26] 

S Detector occupancy/ 
Number of vehicles 

Intersection utilization 
(ratio of throughput and 
capacity) 

Fixed Fixed Traffic control is solved as 
Model Predictive Control 
(MPC) problem, optimizes 
only split value 

10  ACDSS [27] S Volume, speed, occu-
pancy, travel time 

Balance queue storage 
ratio 

Fixed Import timing plan from li-
brary, Centrally offsets are 
tapered 

 

Local controller can shift 
splits to prevent spillback 

11  Ma et al [127] S Vehicle arrival flow Delay  Fixed Fixed Can extend split beyond 
the initial split value in co-
ordinated phases; non co-
ordinated phases may trun-
cate early but will not get 
extension.  

12  McKenney et 
al. [28] 

S Number of vehicles Queue length Fixed Fixed Split is a function of num-
ber of vehicles and cycle 
length 
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No. System Scope Traffic Quantification Objective Function Cycle Length 

Adjustment 

Offset Adjustment Split Adjustment 

13  Li et al. [128]  S Queue length Queue spillback risk Fixed Fixed Split is adjusted cycle by 
cycle 

 

14  Zheng et al. 
[129] 

S Number of vehicles Minimize delay Fixed Fixed Formulated the problem as 
non-linear programming 
and optimized splits 

15  Fei et al. [29] S Number of vehicles Maximize throughput Fixed Fixed This is a two-stage sto-
chastic integer program to 
address uncertainty in traf-
fic demand and vehicle 
turn. This method opti-
mizes split time cycle by 
cycle 

16  IN-TUC [31] S Number of vehicles Balance of vehicles, 
queue, and stops 

Feedback regulator 
optimizes cycle 

Feedback regulator opti-
mizes offset 

LQR optimizes split 

17  RT/ IMPOST 
[119] 

S Queue length Throughput MILP MILP MILP 

18  Lian et al. [30] S Queue length Maximize splits with 
weight per phase 

Linear programming Linear programming Linear programming 

19  Sun et al. [32] S Queue length Terminate oversaturation 
period and minimize de-
lay 

Fixed Fixed Quasi-optimal feedback 
control strategy to opti-
mize split 

20  Lee et al. 
[102], [103] 

S Occupancy Minimize delay Non-linear optimiza-
tion for cycle 

 

None Max pressure for second-
by-second split decision 

Scope: H = Hierarchical, L = Local, S = System 

 

TABLE V THIRD-GENERATION ALGORITHMS 

No. System Scope Type Traffic Quantification Cyclic Objective Func-

tion 

Optimization Method Network Control 

21  Miller [33] L CD Arrival time No Delay Rule-based None 

22  Dunne and Potts [34] L CD Queue length No Queue length Rule-based None 

23  UTCS 3-GC [18]  S PH Arrival time No Delay MILP None 

24  Yu et al. [130] L PH Arrival time No Delay MILP None 

25  MOVA [45] L CD Vehicle presence, Arrival 
time 

No Minimize mar-
ginal delay 

Rule-based None 

26  Gershenson [80], 
[131] 

L CD Number of vehicles No N/A Rule-based Emergent 

27  Kwatirayo et al. [132] L CD Number of vehicles No N/A Rule-based None 

28  Lammer et al. [133]  L CD Number of vehicles No N/A Rule-based Emergent 

29  Chandan et al. [134] L CD Speed, position, number of 
vehicles 

No N/A Rule-based None 

30  Li et al. [135] L PH Queue length No Maximize inter-
section utilization 

Rule-based None 

31  Bang et al. [136] L CD Queue length No Travel time, 
number of stops 

Rule-based None 

32  Pandit et al. [47] L PH Arrival table No Delay Job schedule None 

33  DYPIC [44] L PH Arrival table No Total delay DP None 

34  Yin et al. [137] L PH Arrival table No Queue length DP None 

35  Yu et al. [138] L PH Number of vehicles No Queue length DP None 

36  Kamal et al. [139]  L PH Arrival time No Throughput Bi-level non-linear optimization None 

37  CRONOS [64] L PH Arrival table No Total delay Box algorithm None 

38  Lee et al. [62] L PH Number of vehicles No Total delay GA None 

39  Shenoda et al. [65] L PH Arrival table No Stopped delay Tabu search None 

40  PMSA [46] L PH N/A No Delay Simulation-based None 

41  Pappis et al. [67] L CD Number of vehicles, queue No N/A Fuzzy logic None 

42  Murat et al. [68] L CD Longest queue on red; ve-
hicle arrival on green;  

No N/A Fuzzy logic None 
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No. System Scope Type Traffic Quantification Cyclic Objective Func-

tion 

Optimization Method Network Control 

43  Trabia et al. [70] L CD Arrival time; queue No N/A Fuzzy logic None 

44  Niittymäki  et al. [71] L CD Arrival time, pedestrian 
waiting time  

No N/A Fuzzy logic None 

45  Nakatsuyama  et al. 
[72] 

L CD Number of vehicles, queue No N/A Fuzzy logic None 

46  Talukdar et al. [106] L PH Number of vehicles No Delay Rule-based None 

47  OPAC [48], [140], 
[141] 

D PH Arrival Table No Delay; or pre-
ferred function 

DP Pseudo-cyclic opera-
tion, area wide coor-
dination 

48  PRODYN [142] D PH Not specified No Delay DP Emergent  

49  ALLONS-D [41] D PH Queue length No Delay B&B Emergent; weighted 
priority 

50  ALLONS-I [41] D PH Queue length No Total delay B&B Iterative approach 

51  RHODES [40], [49], 
[50] 

H PH Arrival Table No Total delay, 
queue length 

DP Platoon request  

52  SchIC [143] and 
SURTRAC [86] 

D PH Queue length, Arrival ta-
ble 

No any preferred 
function can be 
used 

DP Emergent 

53  PAA [52] D PH Arrival table No Total delay, 
queue length 

DP Priority request; 
weighted priority 

54  Katwijk [87] D PH Arrival table No Delay; or pre-
ferred function 

DP Iterative approach 

55  Yang et al. [97]  D PH Vehicle flow No Delay DP Iterative approach 

56  PAMSCOD [51] D PH Arrival table No Total delay, 
queue length 

MILP Platoon priority re-
quest 

57  DC-Approach [57] D PH Number of vehicles No Throughput with 
queue penalty 

MILP Emergent  

58  DC-Approach [88]  D PH Number of vehicles No Throughput with 
queue penalty 

MILP Emergent  

59  Varaiya  [55] D PH Queue length No Pressure (queue 
length) 

Max Pressure Emergent  

60  Kouvelas et al. [144]  D CD Queue length Yes Rule-based Max Pressure Emergent  

61  Sun et al. [145]  D PH upstream and downstream 
queue length 

Yes Rule-based Max Pressure Emergent  

62  Levin et al.[146] D PH upstream and downstream 
queue length 

Yes Rule-based Max Pressure Emergent 

63  IDSTOP [14]  S PH Volume Yes Number of 
weighted trips 

GA COS 

64  Liang et al. [60] D PH Vehicle speed, position No Delay Intelligent tree search, GA Platoon-based phase 
sequencing and phase 
duration 

65  Cesme et al.   [82] D CD Arrival Table No N/A Rule-based Emergent  

66  GASCAP Uncon-
gested flow  [147] 

D CD Number of approaching 
vehicles, vehicles in queue 

No N/A Rule-based Offset like mecha-
nism 

67  Araghi et al. [148]  D PH Queue length No Delay Cuckoo search optimization Emergent  

68  PODE [61] L PH Queue size, Arrival time  Delay  Piecewise optimization None 

69  GABNOR [61] S PH Arrival time  Delay GA System level delay 
minimization 

70  Saito et al. [66] L PH Traffic condition, geome-
try, signal 

Yes Delay Depth first search method and heu-
ristic based best first-method 

None 

Scope: H = Hierarchical, L = Local, S = System 

Type: CD = Continuous Decision, PH = Planning Horizon 

Optimization Method: B&B = Branch and Bound, DP = Dynamic Programming, GA = Genetic Algorithm, MILP = Mixed-Integer Linear Programming 

 

TABLE VI SUMMARY OF RL-BASED ALGORITHMS 

No. System RL Algorithm State Action Reward Coordination 

71  Thorpe et al. [76] SARSA Vehicle number and po-
sition 

Keep or switch Number of vehicles and num-
ber of vehicles per durations 

Local controller 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

18 

72  Abdulhai et al. [77] Q-learning Traffic volume Keep or switch Delay and throughput Multi-agent cooperation 

73  Xie [75] Neural Fuzzy Actor 
Critic RL 

queue length for each 
phase; signal state 

Keep or switch Throughput, queue length, re-
sidual queue 

Multi-agent cooperation 

74  Kuyer et al. [99] Q function updated 
using DP 

Vehicle position Keep or switch Waiting time Integrates max-plus algo-
rithms 

75  Tantawy et al. [89] Multi-agent RL and 
game theory 

Queue length, phase,  Keep or switch Delay Multi-agent cooperation 

76  Arel et al. [90] Q-learning Relative traffic flow Keep or switch Delay Multi-agent cooperation 

77  Cai et al. [149] Approximate Dy-
namic Programming 

Traffic arrival Keep or switch Queue length Local controller 

78  Balaji et al. [91] Q-learning Traffic flow/ queue 
(converted using Fuzzy) 

Keep or switch Total vehicle/ delay Multi-agent cooperation 
(adjacent intersections share 
vehicle occupancy) 

79  Khamis et al. [150] Q function updated 
using DP 

Queue Length Keep or switch Trip time, waiting time Multi-agent cooperation 

80  MASTraf [151] Q-learning and Ap-
proximate Dynamic 
Programming 

Number of vehicles, 
waiting time, signal state 

Keep or switch Throughput, waiting time Integrated max-plus algo-
rithm with multi-agent co-
operation 

81  Pol et al. [98] Deep Q-learning 
network 

Vehicle position; signal 
state 

Keep or switch Delay, decelerations, waiting 
time, signal condition 

Integrates max-plus algo-
rithm 

82  Nishi et al. [92] Graph convolutional 
neural nets 

Queue length; average 
velocity 

Keep or switch Travel time Multi-agent cooperation 

83  Wei et al. [152] Deep Q network Queue length, vehicle 
position, signal state 

Keep or switch Queue length, waiting time, 
travel time, delay, queue 
length 

Multi-agent cooperation 

84  Genders [153] nQN-TSC, RL TSC Density, queue, signal 
state, signal state time 

Keep or switch delay Local control 

85  Aslani et al. [154] Actor-critic and di-
rect exploration 

Number of vehicles on 
each approach 

Selects green time du-
ration from a prede-
fined set 

Total number of vehicles on 
all approaches 

Local control 

86  Guo et al. [155] Q-function approxi-
mation 

Queue length on each 
approach 

Extend up to a prede-
fined time or switch 

Queue length Local control 

87  Tan et al. [156] Deep RL Average travel time and 
queue length per ap-
proach 

Keep or switch Queue length, delay and 
throughput, residual queue 

Local control 

88  Fei et al. [29] Q-learning Number of vehicles in 
each cell; each intersec-
tion approach has 5 cells 
(length 30 m) per lane 

Keep or switch phase 
for next 3 seconds 

Queue length, queue length 
from downstream intersection 
penalty for excessive delay 

Multi-agent cooperation 
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TABLE VII ABBREVIATIONS USED IN THIS PAPER 

1-GC First-generation control 

2-GC Second-generation control 

3-GC Third-generation control 

ACDSS Adaptive Control with Integrated Decision Support 
System 

ACS-Lite Adaptive Control System-Lite 

ADP Approximate Dynamic Programming 

ALLONS-D Adaptive Limited Lookahead Optimization of Net-
work Signals-Decentralized  

ALLONS-I Adaptive Limited Lookahead Optimization of Net-
work Signals-Iterative  

ANN Artificial Neural Network 

ATSC Adaptive Traffic Signal Control 

B&B Branch and Bound 

CIC Critical Intersection Control 

COP Controlled Optimization of Phases 

COS Cycle Offset Split 

CV Connected Vehicle 

CYRANO CYcle-free Responsive Algorithm for Network Opti-
mization 

DC Distributed-Coordinated 

DP Dynamic Programming 

DYPIC Dynamic Programmed Intersection Control  

GA Genetic Algorithm 

GABNOR Genetic Algorithm Based Network Optimization in 
Real-time  

GASCAP Generalized Adaptive Signal Control Algorithm Pro-
ject  

I2V Infrastructure-to-Vehicle 

IMPOST Internal Metering Policy to Optimize Signal Timing 

INTUC Integrated Traffic-responsive Urban Control  

LP Linear Programming 

LQR Linear Quadratic Regulator 

MASTraf Multi-Agent System for network wide Traffic signal 
control with dynamic coordination  

MDP Markov Decision Process 

MILP Mixed Integer Linear Programming 

MOVA Microprocessor Optimized Vehicle Actuation 

MPC Model Predictive Control 

NCHRP National Cooperative Highway Research Program 

NLP Non-Linear Programming 

NN Neural Network 

OPAC Optimization Policies for Adaptive Control 

PAA Phase Allocation Algorithm 

PAMSCOD Platoon-based Arterial Multi-modal Signal Control 
with Online Data  

PI Performance Index 

PMSA Predictive Microscopic Simulation Algorithm  

PROTRACTS Purdue Real-Time Offset Transitioning Algorithm for 
Coordinated Traffic Signals  

RHODES Real-Time, Hierarchical, Optimized, Distributed and 
Effective System 

RL Reinforcement Learning 

SCAT Sydney Cooperative Adaptive Traffic 

SCOOT Split, Cycle, and Offset Optimization Technique 

SOLIS Signal Optimization using LInk Signatures 

SPPORT Signal Priority Procedure for Optimization in Real-
time 

SURTRAC Scalable Urban Traffic Control 

TRANSYT TRAffic Network StudY Tool 

UTCS Urban Traffic Control System 

V2I Vehicle-to-Infrastructure 

V2V Vehicle-to-Vehicle 

VFC-OPAC Virtual Fixed Cycle OPAC 

 


