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Gradual Sensitivity Typing
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Reasoning about the sensitivity of functionswith respect to their inputs has interesting applications in various
areas. In order to check and enforce sensitivity, several approaches have been developed, notably sensitivity
type systems. In these systems, sensitivity can be seen as an effect in the sense of type-and-effects systems as
originally proposed by Gifford and Lucassen. Because type-and-effect systems can make certain useful pro-
gramming patterns tedious or overly conservative, there is value in bringing the benefits of gradual typing to
these disciplines in order to ease their adoption. In this work, we motivate, formalize, and prototype gradual
sensitivity typing. The language GSoul supports both the unrestricted unknown sensitivity and bounded im-
precision in the form of intervals. Gradual sensitivity typing allows programmers to smoothly evolve typed
programs without any static sensitivity information towards hardened programs with a mix of static and
dynamic sensitivity checking. In particular, we show that gradual sensitivity supports recursive functions
for which fully static checking would be overly conservative, seamlessly enabling exact runtime sensitivity
checks. GSoul satisfies both the gradual guarantees and sensitivity type soundness, known as metric preser-
vation. We establish that, in general, gradual metric preservation is termination insensitive, and that one can
achieve termination-sensitive gradual metric preservation by hardening specifications to bounded impreci-
sion. We implement a prototype that provides an interactive test bed for gradual sensitivity typing. This work
opens the door to gradualizing other typing disciplines that rely on function sensitivity.

1 INTRODUCTION

Function sensitivity, also called Lipschitz continuity, is an upper bound of how much the output
may change given an input perturbation. More formally, a function 5 is B-sensitive if for all G and~,
|5 (G) − 5 (~) | ≤ B |G − ~ |. Sensitivity has a very important role in different computer science fields,
such as control theory [Zames 1996], dynamic systems [Bournez et al. 2010], program analysis
[Chaudhuri et al. 2011] and differential privacy [Dwork and Roth 2014]. For example, in the latter,
a function 5 can be forced to comply with privacy requirements by adding random noise to the
results. The added noise has to be sufficient to guarantee privacy but also tight enough to avoid
compromising the utility of the secured result. This is usually achieved by calibrating the amount
of noise using the sensitivity of the function.
Many approaches have been proposed to reason about sensitivity, either statically [Abuah et al.

2022; D’Antoni et al. 2013; Gaboardi et al. 2013; Near et al. 2019; Reed and Pierce 2010; Toro et al.
2023; Winograd-Cort et al. 2017; Zhang et al. 2019], or dynamically [Abuah et al. 2021]. Handling
sensitivity statically as an effect in the sense of type-and-effects systems [Gifford and Lucassen
1986] has the advantage of providing strong guarantees statically. However, type-and-effect sys-
tems can make certain useful programming patterns tedious or overly conservative. Combining
the advantages of static and dynamic typechecking is a very active area with a long history, but,
to the best of our knowledge, sensitivity has not been explored under this perspective. One promi-
nent approach for combining static and dynamic typechecking is gradual typing [Siek and Taha
2006]. Gradual typing supports the smooth transition between dynamic and static checkingwithin
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2 Damián Arquez, Matías Toro, and Éric Tanter

the same language by introducing imprecise types and consistent relations. Imprecision is han-
dled optimistically during static typechecking, and is backed by runtime checks in order to de-
tect potential violations of static assumptions. Hence, the programmer is able to choose at a fine-
grained level which portions of the program are dynamically checked andwhich ones are statically
checked. Gradual typing has been studied in many settings such as subtyping [Garcia et al. 2016;
Siek and Taha 2007], references [Herman et al. 2010; Siek et al. 2015b], ownership [Sergey and Clarke
2012], information-flow typing [Disney and Flanagan 2011; Fennell and Thiemann 2013] and re-
finement types [Lehmann and Tanter 2017], among (many) others.
Additionally, the fact that sensitivity is a quantity makes static reasoning even more challeng-

ing, and forces simply-typed approaches to over-approximate the sensitivity of some recursive
functions as being infinite, specially when the sensitivity depends on the number of recursive
calls. This can make writing some recursive functions very hard, unless one considers depen-
dent typing [Gaboardi et al. 2013]. Also, the potential for divergence in a language introduces
the possibility of different interpretations of sensitivity type soundness, known as metric preser-

vation [Reed and Pierce 2010]. Metric preservation is a hyperproperty that captures the bound
on how much the result of two similar computations may change given an input variation. In
the presence of possible divergence, the situation is similar to that of information flow security,
where both termination-sensitive and termination-insensitive notions of noninterference have
been studied [Goguen and Meseguer 1982; Heintze and Riecke 1998; Zdancewic 2002]. For met-
ric preservation, a termination-insensitive interpretation says that, if the function terminates on
both inputs, then the output differences is bounded [Abuah et al. 2021; Azevedo de Amorim et al.
2017]. A termination-sensitive interpretation says that, if the function terminates on the first input,
then it also terminates on the second, and the output differences is bounded [Gaboardi et al. 2013;
Reed and Pierce 2010]. Azevedo de Amorim et al. [2017] study a termination-insensitive character-
ization of metric preservation as well as the necessary conditions to establish when two programs
behave the same in terms of termination.

Contributions. This work studies the integration of gradual typing with sensitivity typing in
GSoul, and presents the following contributions:

• We introduce GSoul, a gradually-typed sensitivity lambda calculus with a latent type-and-
effect discipline, featuring novel support for explicit sensitivity polymorphism.Notably,GSoul
not only supports the unknown sensitivity—which stands for any sensitivity, possibly infinite—
but also a bounded form of imprecision in the form of sensitivity intervals. Bounded impreci-
sion provides programmers with a fine-grained mechanism to balance flexibility and static
checking.

• We establish that GSoul satisfies type safety and the gradual guarantee [Siek et al. 2015a].
• We study the sensitivity type soundness of GSoul proving that in general it satisfies a
termination-insensitive notion of metric preservation. In particular, we illustrate the novelty
of how the design of gradual metric preservation must be driven by pessimistic reasoning
in order to soundly account for the inherent optimism of gradual typing. Furthermore, we
prove that when imprecision is restricted to finite imprecision, a GSoul program satisfies
termination-sensitive metric preservation. These novel results highlight how the progressive
hardening of sensitivity information strengthens the property satisfied by a program.

After motivating gradual sensitivity typing with examples that illustrate the benefits of exploit-
ing imprecise sensitivity information (§2), we present a core subset of GSoul, GSmini, capturing
the key elements of gradual sensitivity typing (§3). We state the meta-theoretical properties of
GSmini, including type safety and the gradual guarantee (§4). We then study the sensitivity type
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Gradual Sensitivity Typing 3

soundness of GSmini, proving that in general it satisfies a termination-insensitive notion of met-
ric preservation (§5). In particular, We show that when imprecision is restricted to finite impreci-
sion, aGSmini program satisfies termination-sensitive metric preservation (§5.2). We then present
GSoul, which extends GSminiwith sum, product and recursive types (§6.1) and we revisit gradual
sensitivity soundness in the presence of these new features (§6.2). Finally, we discuss related work
(§7) and conclude (§8). We provide proofs of all the results in the supplementary material. Also, a
prototype implementation of GSoul is available (url omitted for anonymity).

2 GRADUAL SENSITIVITY TYPING IN ACTION

We begin with a few examples that illustrate the benefits of gradual sensitivity typing in GSoul.
Just like how gradual typing supports the whole spectrum between fully dynamic checking and
fully static checking, a language with gradual sensitivity typing supports the range between types
without any sensitivity information to fully static checking of sensitivities. We consider three
stages of sensitivity typing information: first, a program without sensitivity checking or guaran-
tees; second, a static variant of the program written in GSoul, highlighting a tension due to the
conservative nature of static sensitivity checking; third, a gradual version where some sensitivity
guarantees are established statically, and others are deferred to runtime checking, fully exploiting
the graduality of GSoul.

Privacy without any sensitivity typing. Suppose that an ORM (Object-Relational Mapping) auto-
matically generates utility functions from a static schema provided by the programmer: given a
list of persons of some database represented by a table Person(name, age, height, grade), each
function computes the sum of some attribute, such as sumAges and sumGrades for summing all ages
and grades, respectively. The programmer wants to publish the averages of different (countable)
columns of Person. Given that the sum needs to be computed for multiple columns, the program-
mer abstracts the different sum functions into a map from column names to their respective func-
tions. Each column is represented by a particular symbol, written as an alpha-numerical identifier
prefixed by :, such as :age and :grade.

let db = loadDB();

let targetCols = List(:grade, ..., :age);

let sumsMap = Map(:grade => sumGrades, ..., :age => sumAges);

let sums = targetCols.map(fn (col) => sumsMap[col](db));

After testing the behavior of the program, the programmerworries about differential privacy [Dwork and Roth
2014] and notes that the privacy of some individuals may be violated if this information is publicly
released. For this reason, to make the generic sum an differentially-private computation, the pro-
grammer decides to use the laplace function to add random noise to the result. If a function f is
s-sensitive in x, then the noise has to be at least Laplace(s/n) to formally guarantee n-differential
privacy, where n is known as the privacy budget. The programmer then creates the (curried) func-
tion private, which applies its first argument f to its second argument, adding random noise to
the result. In this case the programmer is optimistically assuming that f is at most 10-sensitive:1

let epsilon = 0.1;

def private(f: DB -> Number)(db: DB): Number {

f(db) + laplace(10/epsilon);

};

let sums = targetCols.map(fn (col) => private (sumsMap[col])(db));

1The distance between two DBs is the number of records on which they differ [Dwork and Roth 2014; Reed and Pierce
2010].
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4 Damián Arquez, Matías Toro, and Éric Tanter

The programmer now publishes the results, but unfortunately it is later revealed that privacy
is violated when :age is in the list targetCols. Indeed, while a sensitivity of 10 is a sound upper
bound for sumGrades, when grades range between 1 and 10, it is unsound for ages. To further
explain, adding or removing a person from the database can change the result of sumGrades at
most by 10, but the same operation can change the result of sumAges by far more. Assuming that
people do not live beyond 120 years, sumAges could be soundly treated as a 120-sensitive function,
but no less. Therefore, private adds too little noise in that case, but the programming language
does not provide any help in detecting this problem.

Static sensitivity typing. Using sensitivity types, as provided in languages such as Fuzz [Reed and Pierce
2010], Duet [Near et al. 2019] and Jazz [Toro et al. 2023], the problem described above can be stati-
cally detected. Sensitivity typing extends types with sensitivity information in order to verify that
a program respects a given sensitivity specification. A sensitivity B is represented by a positive
real number (including zero) or infinity ∞. Sensitivities can be used in types; for instance, the
type R[1A1 + 2A2] characterizes numerical expressions that are 1-sensitive in the resource A1, and
2-sensitive in A2. The polynomial notation 1A1 + 2A2 is syntactic sugar for a sensitivity effect that
describes a computation that is 1-sensitive and 2-sensitive in the resources A1 and A2, respectively.
Ordering between sensitivities, denoted ≤, induces a covariant notion of subtyping <:. For exam-
ple, R[1A1 + 3A2] <: R[2A1 + 4A2], because 1 ≤ 2 and 3 ≤ 4.
In GSoul, variables can be declared as resources by using the res modifier in let-bindings. This

makes available a resource with the same name as the program variable, which can be used in
the sensitivity annotations of types. As an example, the database schema can be decorated so the
generated functions are given a sensitivity type: the types of sumGrades and sumAges are now
[r](DB[r] -> Number[10r]) and [r](DB[r] -> Number[120r]), respectively. Notice that both
functions are polymorphic in the resource, denoted by the [r] annotation before the parentheses.
Finally, the programmer can make the sensitivity specification of private manifest by requiring
that the passed function be at most 10-sensitive, since the noise Laplace(10/n) only guarantees
privacy for 10-sensitive computations. Notice thatwemay alsowant tomake private polymorphic
on the resource; the syntax def f[r](...) is used to parametrize the function f on a resource.

let res db = loadDB();

...

def private[r](f: DB[r] -> Number[10r])(db: DB[r]): Number {

f(db) + laplace(10/epsilon);

};

Using these sensitivity-typed functions, directly applying private to sumAges is a static type error
because DB[db] -> Number[120db]—the type of sumAges instantiated with the resource db—is not
a subtype of DB[db] -> Number[10db], the expected type of the argument of private (because
120 � 10). Therefore, using static sensitivity types has turned the (silent) privacy issue of the pro-
gram into a static type error.

Issues with fully-static checking. Static typing is necessarily conservative in order to be sound,
and at times this precaution conflicts with useful programming patterns. In particular, the map
of sum functions, sumsMap, has a generic type that specifies that it maps symbols to functions
from DB[Person] to Number: this uniform characterization of the map is extremely useful, but
can be too stringent when function types also include sensitivity information. Assuming that
sumAges is the most sensitive function in the map, then the only sound type to give to sumsMap is
Map<Column, [r](DB[r] -> Number[120r])>. Doing so means that private(sumsMap[col])(db)
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Gradual Sensitivity Typing 5

from our example program is now statically rejected. But this is so even if targetCols does not in-
clude :age, despite the fact that, semantically, privacy would not be violated. A possible fix would
be to change the expected argument type and the amount of noise introduced in private to con-
sider 120-sensitive functions. But then the noise applied to sumsMap(:grade) would be excessive,
making the result useless.
Another problematic restriction of static sensitivity typingmanifests when considering recursive

functions. For instance, the Fuzz typing rule for fixpoints is [Reed and Pierce 2010]:

Γ, 5 :∞ g1 ⊸ g2 ⊢ 4 : g1 ⊸ g2

∞Γ ⊢ fix 5 .4 : g1 ⊸ g2

For recursive definitions that happen to capture external variables, i.e. not provided as arguments,
this rule reports the fixpoint as infinitely sensitive in such variables, as observable in the conclusion
of the rule where Γ is scaled by ∞. Azevedo de Amorim et al. [2017] also identify this issue and
design a fixpoint rule that provides a better bound for a particular class of recursive constructs,
such as exponentially decaying lists, but their rule does not cover the general case and the practical
usefulness of such types is left as future work.
A second limitation arises for functions on which the sensitivity with respect to an argument

depends on the number of recursive calls. As a simple example, consider the following definition
of a recursive scale function (using concrete Fuzz syntax), that receives a factor and a value to be
scaled:

scale 0 v = 0

scale n v = v + scale (n-1) v

The only possible Fuzz type for this function is scale : R → R → R, deeming the function
infinitely sensitive in both arguments (as expressed by the use of arrows →, instead of lollipops
⊸). Notice that the sensitivity on the scaled value — the second argument — depends on the value
of the factor argument. Therefore, the static sensitivity type system has to over-approximate the
sensitivity of the function as infinite. Whereas some of these issues could be tackled by using dy-
namic typing [Abuah et al. 2021] or dependent typing [Gaboardi et al. 2013], such solutions come
with their own set of drawbacks, such as the loss of static guarantees or the complexity of the type
system, respectively.

Gradual sensitivities. GSoul supports gradual sensitivity typing, which can elegantly address
the limitations of static sensitivity typing, simply relying on runtime checking whenever desired.
First, using gradual sensitivities, one can give sumsMap an imprecise sensitivity type, satisfying

type checking and deferring necessary checks to runtime. To support gradual sensitivity typing,
sensitivities in GSoul are extended with an unknown sensitivity ?, akin to the unknown type
of gradual typing [Siek and Taha 2006]. Intuitively, ? represents any sensitivity and allows the
programmer to introduce imprecision in the sensitivity information, relying on optimistic static
checking, backed by runtime checks.
Gradual sensitivity ordering ≤̃ is defined by plausibility: an unknown sensitivity ? is plausi-

bly both smaller and greater than any other sensitivity, i.e. ? ≤̃ B and B ≤̃ ?, for any sensitivity B .

Notice that ≤̃ is not transitive: 2 ≤̃ ? and ? ≤̃ 1, but 2 �̃ 1. Analogous to the simple sensitivities set-
ting, plausible ordering induces a notion of consistent subtyping <̃:, e.g. Number[r] -> Number[?r]

is a consistent subtype of Number[r] -> Number[r], where r is a resource in scope (because
? ≤̃ 1). This notion of consistent subtyping is akin to that studied for other gradual typing disci-
plines [Bañados Schwerter et al. 2014; Garcia et al. 2016; Lehmann and Tanter 2017; Siek and Taha
2007], but here focused only on the sensitivity information conveyed in types.
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6 Damián Arquez, Matías Toro, and Éric Tanter

The programmer can introduce imprecision by using the unknown sensitivity to describe the
type of sumsMap (using the ::<_> notation), preserving the fact that it maps symbols to functions:

let sumsMap = Map::<Column, [r](DB[r] -> Number[?r])>(...);

As ? is plausibly smaller than any other gradual sensitivity, the type of sumsMap(col) is now
compatiblewith the type of f in the signature of private, because ?db <̃: 10db, and so the program
is well-typed. In gradual typing, the flexibility afforded by consistent relations such as consistent
subtyping is backed by runtime checks at the boundaries between types of different precision,
ensuring at runtime that no static assumptions are silently violated. In the example, if col is :age,
a runtime error is raised when private is applied, signalling that a function that is more than
10-sensitive has been passed as argument. If col is :grade, no runtime error occurs.

Notice that in the example, some sensitivity types are fully precise (private, sumAges, sumGrades)
while others are fully imprecise (sumsMap). Gradual sensitivity information can also be partially

precise, such as ?db + 2r. Thismeans that programmers can selectively and progressively consider
abiding to a static sensitivity discipline as needed, and obtain feedback and guarantees accordingly,
both statically and dynamically.
Additionally, compared to fully static typing, gradual sensitivity typing offers a simple and effec-

tive alternative to handle recursive functions in an exact, albeit dynamically-checked,manner. For
recursive functions that capture external variables, the programmer can use the unknown sensitiv-
ity to defer the sensitivity check to runtime, where the number of recursive calls can be observed.
Additionally, for functions on which the sensitivity with respect to an argument depends on the
number of recursive calls, consider the folowing example of a recursive definition of the scale

function described before, now using GSoul syntax:

def scale[r](n: Number, v: Number[r]):...= (n == 0) ? 0 : v + scale(n - 1, v);

As explained above, the only sound static type for the return value of scale is Number[∞r] (writ-
ten in the dots), unless we are willing to adopt the complexity of dependent typing [Gaboardi et al.
2013]. With gradual sensitivities, we can simply declare scale to have unknown sensitivity in the
resource r by annotating the return value as Number[?r]. Then, assuming f requires an argument
that is at most 10-sensitive in x, we obtain the following behavior:

f(scale(10, x)) // typechecks, runs successfully

f(scale(11, x)) // typechecks, fails at runtime

Therefore, gradual sensitivity typing not only allows programmers to choose between static
and dynamic checking as they see fit, it can also accommodate features that are too conservatively
handled by the static discipline. We revisit this example providing the necessary technical details
in §6.1.

Bounded imprecision. In standard gradual typing, the unknown type ? can stand for any type
whatsoever. For instance, even if Int → ? is only partially imprecise, it denotes infinitely many
function types, i.e. those with Int as domain. Likewise, gradual sensitivities need not be restricted
to unbounded imprecision: while ? denotes any sensitivity, we also support gradual sensitivities
as bounded intervals such as [1, 2]. For instance, revisiting our previous example, the values of the
map sumsMap can be given the more precise type DB[db] -> Number[10..120db], without losing
asmuch information aswhen using the unknown sensitivity.2 For instance, consider two functions
f5 and f10 that require their argument to be at most 5-sensitive and 10-sensitive with respect to
db, respectively. Then, depending on the declared sensitivity of the values in sumsMap, we have:

2Note that for concrete GSoul syntax we use the a..b notation for intervals, instead of the [0, 1 ] notation used in the
paper.
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Gradual Sensitivity Typing 7

Declared sensitivity f5(sumsMap(:grade)) f10(sumsMap(:grade))

0..120db fails at runtime runs successfully
10..120db fails statically runs successfully

120db (, 120..120db) fails statically fails statically

In the second column, we can observe that the use of 10..120db provides the programmer
earlier feedback than when using 0..120db. In particular, with such a bounded type, we know
statically that the argument passed to f5 is definitely not less than 10-sensitive. Therefore, the type
system can reject the program during typechecking. Additionally, the third column shows how the
use of a supertype, instead of an imprecise type, needlessly rejects a valid program. Indeed, the
use of 10..120db in the type of sumsMap provides the best balance between flexibility and static
guarantees.
Although in the table we are only varying the lower bound of the interval, the same reason-

ing applies to the upper bound. For example, consider a function f120 that requires its argu-
ment to be at most 120-sensitive with respect to db. Then, one benefit of using 10..120db in
f120(sumsMap(:grade)) would be that there is no need for a runtime check, as we know stati-
cally that the passed argument to f120 is definitely not more than 120-sensitive, in contrast to the
upper bound being ∞ (which is the case when using the unknown sensitivity).
Intervals as a form of imprecision have already been explored by Toro et al. [2018] for the run-

time semantics of a gradual security language. The difference here is that we use them not only in
the runtime semantics but also in the surface syntax, both being valid design choices, as pointed
out by Toro et al. Focusing on the runtime semantics of GSoul, the use of intervals is crucial
for (1) enforcing modular type-based invariants (§3.3); (2) designing a gradual interpretation of
sensitivity soundness, specially when dealing with optimistic static assumptions where the lower
bound of intervals is used as the worst-case scenario for the main theorem (§5.1); and (3) provid-
ing a stronger soundness property for gradual sensitivity typing, whenever the upper bound of
sensitivity intervals can be bounded to not be infinite (§5.2).

3 GSMINI: GRADUAL SENSITIVITY TYPING

We now present GSmini, a core language with gradual sensitivity typing, which we later extend to
GSoul (§6). We use green for sensitivity related variables, and blue for the rest of the math nota-
tion. The semantics of the language are initially based on Sax [Toro et al. 2023] and its latent type-
and-effect discipline, here extended with ascriptions and explicit resource polymorphism. GSmini
(and its extension, GSoul) is crafted by following the principles of the Abstracting Gradual Typ-
ing methodology [Garcia et al. 2016]. However, this paper only discusses the interesting aspects
of the language, instead of detailing the gradualization process, as the application of AGT to vari-
ous settings is already well-documented in the literature [Garcia et al. 2016; Lehmann and Tanter
2017; Malewski et al. 2021; Toro et al. 2018, 2019; Toro and Tanter 2017, 2020]. Nevertheless, for
the curious reader, we present a static sensitivity language, Soul, and the technical details of its
AGT-driven gradualization in the supplementary material.

3.1 Syntax

The syntax of GSmini is presented in Figure 1. We aim to support imprecision only in the sensi-
tivity parts of the type system. Therefore, the “dynamic” end of the spectrum is simply typed. As
explained and illustrated in §2, we support both unbounded imprecision via the fully-unknown
sensitivity ? and bounded imprecision via sensitivity intervals such as [1, 2]. A gradual sensitivity
is defined as a valid interval of two static sensitivities where the lower bound is less than or equal
to the upper bound. A sensitivity B is a positive real number or infinity, where ∞ · 0 = 0 · ∞ = 0

and B · ∞ = ∞ · B = ∞ if B > 0. This way, a gradual sensitivity captures the plausibility of a
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2 ∈ R ∪ B, G ∈ Var, 4 ∈ Expr, A ∈ Res, 8 ∈ GSens, Ξ ∈ GSEff, 6 ∈ GType, � ∈ GType
Σ

8 ::= [B, B] (with sugar ? , [0,∞] and B , [B, B]) (gradual sensitivities)

Ξ ::= 8A + · · · + 8A (gradual sensitivity effects)

6 ::= R | B | � → � | ∀A .� (gradual types)

� ::= 6 [Ξ] (gradual type-and-effects)

4 ::= 2 | op 4 | G | _(G : �).4 | 4 4 | ΛA .4 | 4 [Ξ] | 4 ::� (expressions)

Fig. 1. Syntax of Gradual Sensitivity Types

sensitivity being any number within the range. Naturally, the unknown sensitivity ? is just syn-
tactic sugar for the interval [0,∞], and a fully precise sensitivity B is sugar for the interval [B, B].
For example, the gradual sensitivity effect [0, 5]A1 + [0,∞]A2 + [3, 3]A3 is the desugared version of
[0, 5]A1 + ?A2 + 3A3.
Expressions 4 include constants, primitive operations, variables, lambda expressions, applica-

tions, resource abstractions, sensitivity effect applications, and ascriptions.
A type6 can be the real number typeR, the boolean typeB, a function type� → � , or a resource

quantification ∀A .� . A type-and-effect� is a tuple 6 [Ξ] associating a type6 and a sensitivity effect
Ξ, which is a mapping between resource variables A and gradual sensitivities 8 . Across the paper,
we use meta-variables G,~, I (written in blue) for lambda-bound variables and A (written in green)
for resource variables. For simplicity we write effects as first-order polynomials, e.g. Ξ = A1 + ?A2
is a sensitivity effect where Ξ(A1) = 1, Ξ(A2) = ?, and Ξ(A ) = 0 for any other resource A in scope.
Note that the homogeneous type-and-effect syntax allows us to encode latent effects without

having to annotate arrows or other type constructors. For example, the type-and-effect of an ex-
pression that reduces to a function has the form (61 [Ξ1] → 62 [Ξ2]) [Ξ], where Ξ1 is the expected
effect of the argument, Ξ2 is called the latent effect of the produced function and Ξ is the effect
of evaluating the expression. As usual in type-and-effect systems, a latent effect ensures that the
effect of the body of the produced function is accounted for upon each function application.

3.2 A Gradual Sensitivity Type System

The typing rules for GSmini are presented in Figure 2. The judgment Γ;Ω ⊢B 4 : � establishes
that expression 4 has type-and-effect � under type-and-effect environment Γ and resource set Ω ,
where Γ is a mapping from variables to type-and-effects and Ω is a set of the resource variables in
scope. Typing rules are standard except for the handling of sensitivity effects. (�const) and (�Λ)

report no effect, ∅, as they are introduction forms and thus no resource variables are being used.
Constants 2 are typed using the auxiliary function C~(2), and primitive n-ary operations op are
given meaning by the function Xop , which handles the treatment of sensitivity information. The
effect of addition X+ is computed by adding the effect of each sub-expression. The addition of sen-
sitivity effects is defined by adding the sensitivities of each variable, i.e. (Ξ1 + 81A ) + (Ξ2 + 82A ) =

(Ξ1 + Ξ2) + (81 + 82)A . Addition (+), multiplication (∗), join (g) and meet (f) of gradual sensitivi-
ties is defined bound-wise, i.e. for addition: [B1, B2] + [B3, B4] = [B1 + B3, B2 + B4]. The join and meet
of two static sensitivities is the maximum and minimum of both, respectively. The effect of a
comparison X≤ scales to infinite the addition of the sensitivity effects of each sub-expression be-
cause a small variation on one of the sub-expression could change the result from true to false,
which are considered ∞ apart [Reed and Pierce 2010]. The scaling of effects is defined naturally:
8 (Ξ + 8′A ) = 8Ξ + (8 ∗ 8′)A . Lastly, the effect of a multiplication X∗ is computed scaling the addition
of the sensitivity effects of each sub-expression by ∞. The choice of syntax for types ensure that
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latent effects are naturally captured by introduction rules, while being standard. In contrast to
previous work [Near et al. 2019; Reed and Pierce 2010; Toro et al. 2023], resources are explicitly
introduced using resource abstraction ΛA .4 , where the resource variable A is bound in the body 4 .
As expected, rule (�Λ) is the only one that extends the resource variables set Ω . The judgment
Ω ⊢ � ensures that the type-and-effect� only contains resources contained in Ω and can be found
in the supplementary material.
For (�app)we follow the presentation of Garcia et al. [2016] of using partial meta-functions dom

and cod to extract the domain and codomain of a function type-and-effect. However, we have to
adapt these functions to work on a type-and-effect system. In particular, the cod function reports
not only the effect of reducing the expression to a value, Ξ, but also the latent effect of the function,
contained in �2, and the effect of reducing the expression to a function. We do this by leveraging
the L+M operator that sums a given effect to a type-and-effect. This way, we account for the latent
effect of the body at application time. More generally, we define 6 [Ξ] LopMΞ′

= 6 [Ξ op Ξ′], where
op denotes a binary operation between two sensitivity effects.
Rule (� inst) removes a resource from scope by instantiating it with a sensitivity effectΞ. We use

a meta-function inst that works in a similar fashion to cod, but also performs a substitution of the
resource A with the sensitivity effect passed as argument. A sensitivity effect substitution, [Ξ1/A ]Ξ,
replaces all occurrences of A in Ξ by Ξ1. For example, [2A2 + A3/A1] (3A1 + ?A2) = 3(2A2 + A3) + ?A2 =

(6 + ?)A2 + 3A3 = [6,∞]A2 + 3A3.
As previously mentioned, GSmini relies on a relaxed notion of subtyping, consistent subtyping.

Instead of checking for exact subtyping, consistent subtyping check if it is plausible that a type is
a subtype of another. We start by defining consistent subtyping for gradual sensitivities:

Definition 1 (Consistent Sensitivity Subtyping). [B1, B2] ≤̃ [B3, B4] if and only if B1 ≤ B4.

The intuition behind this definition is that a gradual sensitivity 81 is optimistically less or equal
to another, 82, if there exists a sensitivity within 81 that is less or equal to another one within 82.
This is easily checkable by comparing the lower bound of 81 with the upper bound of 82, which
corresponds to the best-case scenario, an expected behavior for an optimistic subtyping relation.
Consistent subtyping for effects, types and type-and-effects, denoted by <̃:, is defined naturally
from Definition 1 and can be found in the supplementary material.

Plausibility in the Type System. The type system of GSmini optimistically accepts judgments that
may hold during runtime. For instance, consider the open expression 4 = (G + G) ::R[?A ] ::R[A ],
a resource set Ω = A and a type environment Γ = G : R[A ]. Given that both R[2A ] <̃: R[?A ] and
R[?A ] <̃: R[A ] hold, the type derivation of Γ;Ω ⊢ 4 : R[A ] can be easily constructed using the
rule (�ascr) twice. This is because, given the removal of precision through the use of ?, for the
typechecker it is plausible that they might hold at runtime.

3.3 Accounting for Plausibility

Before moving on to the dynamic semantics of GSmini, we now present the mechanism for per-
forming runtime checks to ensure that the optimistic judgments hold at runtime. In our lan-
guage, this is done through the use of evidences, which are used to justify a single consistent
subtyping judgment and can be combined to (try to) justify transitivity of two consistent judg-
ments [Garcia et al. 2016]. As standard for consistent subtyping, an evidence Y is represented as a
pair of type-and-effects, written 〈�,�〉, each of which is at least as precise as the types involved
in the consistent subtyping relation. Precision in the context of gradual sensitivities corresponds
to interval inclusion. Formally, [B1, B2] is more precise than [B3, B4], written [B1, B2] ⊑ [B3, B4], if and
only if B1 ≥ B3 and B2 ≤ B4. Precision for gradual sensitivity effects, types and type-and-effects
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10 Damián Arquez, Matías Toro, and Éric Tanter

Well-typed gradual expressions Γ;Ω ⊢ 4 : �

(�const)

Γ;Ω ⊢B 2 : ty(2)[∅]

(�op)

Γ;Ω ⊢B 48 : �8 Xop (�8 ) = �

Γ;Ω ⊢B op 48 : �

(�Λ)

Γ;Ω, A ⊢ 4 : �

Γ;Ω ⊢ ΛA .4 : (∀A .�)[∅]

(�app)

Γ;Ω ⊢ 41 : �1

Γ;Ω ⊢ 42 : �2 �2 <̃: dom(�1)

Γ;Ω ⊢ 41 42 : cod(�1)

(� inst)

Γ;Ω ⊢ 4 : � Ω ⊢ Ξ

Γ;Ω ⊢ 4 [Ξ] : inst(�,Ξ)

(�ascr)

Γ;Ω ⊢ 4 : �

� <̃: � ′
Ω ⊢ � ′

Γ;Ω ⊢ 4 ::� ′ : � ′

6 [Ξ] L+M Ξ′
= 6 [Ξ + Ξ

′] dom((�1 → �2)[Ξ]) = �1 cod((�1 → �2)[Ξ]) = �2 L+M Ξ

inst(ΛA .�2 [Ξ],Ξ1) = [Ξ1/A ]�2 L+M Ξ X+ (R[Ξ1],R[Ξ2]) = R[Ξ1 + Ξ2]

X∗ (R[Ξ1],R[Ξ2]) = R[∞(Ξ1 + Ξ2)] X≤ (R[Ξ1],R[Ξ2]) = B[∞(Ξ1 + Ξ2)]

Fig. 2. Type system of GSmini (excerpt)

is naturally defined from gradual sensitivities precision and can be found in the supplementary
material.
Evidence is initially computed using the interior operator, which essentially produces a refined

pair of gradual types from a consistent judgment, based solely on the knowledge that the judgment
holds. Definition 2 shows the interior operator for consistent sensitivity subtyping. The interior
operator for other constructs is inductively defined from the definition for gradual sensitivities
and can be found in the supplementary material.

Definition 2 (Interior). If B1 ≤ B2 f B4 and B1 g B3 ≤ B4:

I<: ( [B1, B2], [B3, B4]) = 〈[B1, B2 f B4], [B1 g B3, B4]〉

Otherwise, the interior operation is undefined.

As an example, consider the types�1 = R[?A ] and�2 = R[10A], noting that�1 <̃: �2. Then, we
can compute the initial evidence for that judgment as Y = I<: (�1,�2) = 〈R[[0, 10]A ],R[[10, 10]A ]〉.
This evidence is said to justify the consistent subtyping judgment, written Y ⊲ �1 <̃: �2, which is
formally defined as Y ⊑2 I<: (�1,�2).
Notice that consistent subtyping is not transitive. For instance, although R[10A] <̃: R[?A ] and
R[?A ] <̃: R[5A], the transitive judgement of both, R[10A] <̃: R[5A], does not hold. Therefore,
during runtime, evidences need to be combined in order to try to justify transitivity of two judg-
ments. In the case where the combination of two evidences is not defined a runtime error is raised.
Formally, this notion is captured by the consistent transitivity operator, denoted ◦<: . For instance,
suppose Y1 ⊲ R[10A ] <̃: R[?A ] and Y2 ⊲ R[?A ] <̃: R[5A ]. Since [10, 10] is not plausibly smaller than
[5, 5] (10 � 5), then Y1 ◦

<: Y2 should be undefined and an error should be raised.
Definition 3 shows the consistent transitivity operator for sensitivity subtyping. The consistent

transitivity operator for other constructs is inductively defined from the definition for gradual
sensitivities and can be found in the supplementary material.

Definition 3 (Consistent Sensitivity Subtyping Transitivity). If B11 ≤ (B12 f B14 f B22) and (B13 g

B21 g B23) ≤ B24:

〈[B11, B12], [B13, B14]〉 ◦
<: 〈[B21, B22], [B23, B24]〉 = 〈[B11, B12 f B14 f B22], [B13 g B21 g B23, B24]〉
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D ::= 2 | _(G : 6).C | ΛA .C (simple values)

E ::= YD ::� (values)

C ::= E | op C | G | YC ::� | C C

| C [Ξ] | Ysctx[A,Ξ] (C) ::� (terms)

Well-typed terms C ∈ T [�]

(I�var)

G� ∈ T [�]

(I�ascr)

C ∈ T [�] Y ⊲� <̃: � ′

YC ::� ′ ∈ T [� ′]

Fig. 3. Syntax and Type System of GSminiY (excerpt)

Otherwise, the consistent transitivity operation is undefined.

Consider again two evidences such that Y1 ⊲ �1 <̃: �2 and Y2 ⊲ �2 <̃: �3. Then, the evidence
Y1 ◦

<: Y2, if defined, justifies the consistent subtyping judgment �1 <̃: �3, which gives us the
ability to perform runtime checks for consistent subtyping. Next, we come back to the choice
using intervals as a mechanism for controlling imprecision.

Sensitivity Intervals in the Runtime Semantics. Intervals not only provide programmers with
a fine-grained mechanism for controlling imprecision; they are also necessary in the design of
the runtime semantics and for proving metric preservation. Fully-precise sensitivities and the un-
known sensitivity ? fail to retain enough precision to guarantee expected runtime failures, as noted
by Toro et al. [2018] and their use of security labels intervals in evidence. Bañados Schwerter et al.
[2020] identify this issue as the runtime semantics not enforcing the modular type-based invari-

ants expected from the static type discipline. Let us compare how evidence evolves when we do
not use intervals. We omit the types for the sake of brevity. Suppose Y1 ⊲ 3A <̃: 5A , Y2 ⊲ 5A <̃: ?A

and Y3 ⊲ ?A <̃: 4A . First of all, the interior operator without intervals would yield Y1 = 〈3A, 5A〉,
Y2 = 〈5A, ?A〉 and Y3 = 〈?A, 4A〉. In contrast, with intervals, evidences are computed as Y1 = 〈3A, 5A〉,
Y2 = 〈5A, [5,∞]A〉 and Y3 = 〈[0,∞]A, 4A〉. Then if we compute (Y1 ◦<: Y2) ◦<: Y3:

Without intervals

(〈3A, 5A〉 ◦<: 〈5A, ?A 〉) ◦<: Y3

= 〈3A, ?A 〉 ◦<: 〈?A, 4A 〉

= 〈3A, 4A 〉

With intervals

(〈3A, 5A 〉 ◦<: 〈5A, [5,∞]A〉) ◦<: Y3

= 〈3A, [5,∞]A 〉 ◦<: 〈[0, 4]A, 4A 〉

= undefined

In the setting without intervals, the operations do not fail because in the combination of Y1 and
Y2 information is lost. From the beginning, we can notice that the right-hand side sensitivity of
Y2 will never be less than 5. Nevertheless, the result of the combination, 〈3A, ?A〉, has no way to
encode such information, so later when combined with Y3 the operation can not be refuted. In
contrast, the combination using intervals successfully yields an undefined result (since there is no
intersection between [5,∞] and 4). This exemplifies how using only fully-precise sensitivities and
the unknown sensitivity ? would yield unintended forgetful semantics [Greenberg 2015].
A final key reason as to why use intervals is that they are an expressive enough representation

for having associativity of the consistent transitivity operator. Indeed, with intervals we have that
(Y1 ◦

<: Y2) ◦
<: Y3 is equivalent to Y1 ◦<: (Y2 ◦<: Y3), which is crucial for the soundness proof of GSoul.

Furthermore, in the example without intervals, we can observe that associativity is not guaranteed
as Y2 ◦<: Y3 is undefined, making the order of the combination of evidences relevant.
Equipped with a formal definition of evidences and operations for initially inferring (interior

operator) and combining them (consistent transitivity operator), we can now augment the syntax
of our gradual language with evidences that can be refined, at runtime, by combining them.
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12 Damián Arquez, Matías Toro, and Éric Tanter

Notions of reduction C −−→ C

(I�r-op) op (Y828 ::�8 ) −→ Y2 ::�

⌊ where Y = X2op (Y8), 2 = JopK 28 , � = Xop (�8)

(I�r-app) (Y (_(G : � ′
1).C) ::�) (Y1D ::�1) −→

{
Y2([Y

′
1D ::�

′
1/G]C) :: cod(�)

error if not defined

⌊ where �1 = dom(�), Y2 = icod(Y), Y′1 = Y1 ◦
<: idom(Y)

(I�r-inst) (YΛA .C ::�) [Ξ] −→ iinst(Y,Ξ)sctx[A,Ξ] (C) :: inst(�,Ξ)

(I�r-sctx) Ysctx[A ,Ξ] (E) ::� −−→ Y [Ξ/A ]E ::�

(I�r-ascr) Y (Y′D ::� ′) ::� −→

{
(Y′ ◦<: Y)D ::�

error if not defined

idom(〈�1,�2〉) = 〈dom(�1), dom(�2)〉

icod(〈�1,�2〉) = 〈cod(�1), cod(�2)〉

X2op (〈�81,�82〉) = 〈Xop (�81), Xop (�82)〉

iinst(〈�1,�2〉,Ξ) = 〈inst(�1,Ξ), inst(�2,Ξ)〉

Fig. 4. Dynamic semantics of GSminiY

3.4 Evidence-based Dynamic Semantics

In order to avoid writing reduction rules on actual (bi-dimensional) derivation trees, Garcia et al.
[2016] leverage the use of intrinsic terms, a flat representation of terms that are isomorphic to type
derivations [Church 1940]. More specifically, the typing judgment Γ;Ω ⊢ 4 : � is now represented
by an intrinsic term C� ∈ T [�], where all the information contained in ΓandΩ is implicitly present
in the syntax of C� . We then introduce GSminiY , a language with evidence-augmented intrinsic
terms, which provides the runtime semantics for GSmini.
In addition to the use of intrinsic terms, and similar to [Toro et al. 2019], we heavily rely on a

type-directed translation that inserts explicit ascriptions to: (1) allow reduction rules to preserve
the original type of an expression, and (2) ensure that all top-level constructor types match in the
notions of reduction. The syntax of intrinsic terms is presented in Figure 3. Notice that values are
ascribed simple values and introduction forms are always ascribed. We avoid writing the explicit
type exponent whenever is not needed or can be inferred from the context, i.e., C ∈ T [�].

Dynamic Semantics of GSminiY . Figure 4 presents the reduction rules for GSminiY . Rule (I�r-op)

relies on the meta-definition of JopK and the evidence is computed using the evidence operator X2op .
The application rule, (I�r-app), uses the inversion functions idom and icod in order to compute the
new evidences for the body of the closure and to justify optimistic judgments and fail otherwise.
Finally, rule (I�r-ascr) eliminates ascriptions by keeping only the outer one; consistent transitiv-
ity is performed in order to justify the new ascribed (simple) value. Rule (I�r-inst) reduces the
application of resource abstraction to an sctx context, where the substitution is delayed until the
body of the abstraction is reduced, as observable in rule (I�r-sctx).

Refuting optimistic judgments. In the rule (I� inst), if we simply substituted A by Ξ, we may lose
information necessary to refute optimistic static assumptions. Consider the following example,
where 2 is some constant and the resource A1 is in scope: (ΛA2.2 :: A1 :: ?A1 :: A2) [A1]. Notice that when

comparing effects by consistent subtyping, A1 <̃: ?A1 and ?A1 <̃: A2, but A1 ≮̃: A2. Although, this
program typechecks statically, it should fail at runtime, since clearly 1A1 is not a sub-effect of 1A2.
However, if we immediately substitute A2 by its instantiation, A1, we would get G :: ?A1 :: A1, which is
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Gradual Sensitivity Typing 13

Term Precision C ⊑ C

(I�⊑_ )

�11 ⊑ �21 C12 ⊑ C22

_(G : �11).C12 ⊑ _(G : �21).C22

(I�⊑inst)

C1 ⊑ C2 Ξ1 ⊑ Ξ2

C1 [Ξ1] ⊑ C2 [Ξ2]

(I�⊑ :: )

Y1 ⊑
2 Y2 C11 ⊑ C21 �12 ⊑ �22

Y1C11 ::�12 ⊑ Y2C21 ::�22

Fig. 5. Precision of terms (excerpt)

going to silently reduce without errors, exposing an inconsistency between the type invariants in
the static and dynamic semantics. In order to avoid this problem, we delay the substitution using
a sctx context to first reduce the body of the abstraction and then perform the substitution.3 This
way, evidences preserve the information necessary to refute optimistic judgments when trying to
justify transitivity in rule (I�r-ascr). The example is then instead reduced as follows:

(ΛA2.2 :: A1 :: ?A1 :: A2) [A1] ↦→︸︷︷︸
(I�r-inst)

sctx[A2, A1] (2 :: A1 :: ?A1 :: A2) ↦→︸︷︷︸
..., (I�r-ascr)

sctx[A2, A1] (error) ↦→ error

Elaboration. So far, we have defined the runtime semantics of GSminiY that, by translation, also
defines the runtime semantics for GSmini. Judgment Γ;Ω ⊢ 4 : � { C� denotes the elaboration
of the intrinsic term C� from the expression 4 , where 4 has type � under the type environment
Γ and a resource set Ω . The rules of elaboration simply perform the transformations mentioned
at the beginning of this section and are presented in the supplementary material. However, as an
example, we present the rule for elaborating ascribed expressions, which showcases the use of the
interior operator to produce the initial evidence to justify the ascription:

(ELascr)

Γ;Ω ⊢ 4 : � { C Ω ⊢ � ′ Y = I<: (�,�
′)

Γ;Ω ⊢ 4 ::� ′ : � ′
{ YC ::� ′

Finally, we note that, after typing, elaboration rules only insert trivial ascriptions and enrich
derivations with evidence and ascriptions. As this derivations are represented as intrinsic terms,
by construction, elaboration of terms trivially preserves typing.

Proposition 1 (Elaboration preserves typing). If Γ;Ω ⊢ 4 : � , then Γ;Ω ⊢ 4 : � { C and

C ∈ T [�].

4 TYPE SAFETY AND THE GRADUAL GUARANTEE FOR GSMINI

We now study the metatheoretical properties of GSmini and GSminiY . Recall that we differenti-
ate expressions 4 of GSmini from evidence-augmented terms C of GSminiY . We first prove that
GSminiY is type safe: closed terms do not get stuck, but they still can halt with a runtime error.

Proposition 2 (Type safety for GSminiY ). Let C be a closed GSminiY term. If C ∈ T [�], then either

C is a value E , or C
·

↦−−−→ C ′ for some C ′ ∈ T [�], or C
·

↦−−−→ error.

3A similar issue also arises in the context of gradual parametricity [Ahmed et al. 2017; Toro et al. 2019]. A stereotypical
example is the expression (Λ- .1 :: ? :: - ) [Int], which ought to fail, despite the coincidental match between the type
of the literal 1 and the instantiated type for - . Notice how: (1) the expression optimistically typechecks, as both Int ∼ ?
and ? ∼ - hold; and (2) a runtime error should be expected, as Int ≁ - . Gradually-parametric languages usually tackle
this issue by adopting runtime sealing, i.e. a type application reduces using a sealing substitution with a fresh global type
name [Matthews and Ahmed 2008].
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14 Damián Arquez, Matías Toro, and Éric Tanter

The static semantics of GSmini also satisfy the static gradual guarantee: typeability is monotone
with respect to imprecision. Figure 5 presents the precision relation for terms, which correspond
to the natural lifting of type precision. Precision on GSmini expressions is defined analogously to
term precision (modulo the evidence parts), and is omitted for brevity.

Proposition3 (Static gradual guarantee forGSmini). Let 41 and 42 be two closedGSmini expressions
such that 41 ⊑ 42 and ·; · ⊢ 41 : �1. Then, ·; · ⊢ 42 : �2 and�1 ⊑ �2.

Finally,GSminiY satisfies the dynamic gradual guarantee (DGG): any program that reduces with-
out error will continue to do so if imprecision is increased.

Proposition 4 (Dynamic gradual guarantee forGSminiY ). Let C1 and C2 be two closedGSminiY terms

such that C11 ⊑ C12. If C11 ↦−−→ C21 then C12 ↦−−→ C22 where C21 ⊑ C22.

The proofs for the results of this section are subsumed by the proofs for the full languages,
GSoul and GSoulY (described in Section 6.2), which are provided in the supplementary material.

5 SOUNDNESS OF SENSITIVITY TYPING FOR GSMINIY

We now study the main metatheoretical property of GSminiY , namely the soundness of sensitivity
typing known as metric preservation [Reed and Pierce 2010]. Metric preservation is a hyperprop-
erty that captures the bound on how much the result of two similar computations may change
given an input variation.
In §5.1, we present a notion of gradual metric preservation and illustrate the key ideas of its

design. We show that, due to possibly infinite imprecision in sensitivities, it is not possible to
establish a uniform behavior for related terms with respect to termination (either divergence or
failure): gradual metric preservation is termination insensitive. In words, if both terms terminate to

values, then the difference between these values is bounded; otherwise the relation is vacuously
true.4 Then, in §5.2, we observe that when imprecision is restricted to bounded imprecision, i.e.
not plausibly infinite, GSminiY programs satisfy a stronger, termination-sensitive gradual metric
preservation: if one term terminates to a value, then the other also terminates to a value at a
bounded distance.

5.1 Gradual Metric Preservation

Figure 6 presents the logical relation and auxiliary definitions for metric preservation. The relation
is defined using two mutually-defined interpretations: one for values VΔJ�K, and one for terms
T ΔJ�K. The interpretations for a type � are indexed by a distance environment Δ. A distance
environment Δ is just a mapping between sensitivity variables and gradual sensitivities (same as
Ξ), and it represents the distance of different inputs across two different executions. We use the
meta-variable 3 to represent gradual sensitivities in the distance environment. This environment
is used to compute the predicted output distance of a program, i.e. the maximum variation of the
result of the program if closed by any two substitutions that satisfy the Δ distances. The predicted
output distance of a program of effect Ξ is computed as Δ ·Ξ, where · is the sum of the point-wise
multiplication of the gradual sensitivities in Δ and Ξ: Δ ·Ξ =

∑
A ∈dom(Δ )∪dom(Ξ ) Δ (A ) ∗Ξ(A ). Notice

that the predicted output distance is a gradual sensitivity, i.e. a range of possible distances, and it
is not a single value.
In order to get an intuitive understanding of metric preservation, let us consider a simple static

example. Metric preservation allows us to reason about open programs such as C = G + G , which
may correspond to the body of the lambda in the program ΛA .(_G : R[A ] .G + G). In this spirit, let

4We use the term “termination (in)sensitivity” to concisely deal with both divergence and runtime errors—as discussed by
Fennell and Thiemann [2013] in the case of gradual information flow security, a runtime error can be treated as divergence.
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(E1, E2) ∈ AtomJ�K ⇐⇒ E1 ∈ T [�] ∧ E2 ∈ T [�]

(E1, E2) ∈ VΔJR[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJR[Ξ]K ∧ ¬
(
Δ · (Ξ′

1 g Ξ
′
2) <̃ |D1 − D2 |

)

where E8 = 〈R[∅],R[Ξ′
8 ]〉 D8 ::R[Ξ]

(E1, E2) ∈ VΔJB[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJB[Ξ]K ∧ (Δ · (Ξ′
1 g Ξ

′
2) <̃∞ =⇒ D1 = D2)

where E8 = 〈B[∅],B[Ξ′
8 ]〉 D8 ::B[Ξ]

(E1, E2) ∈ VΔJ(�1 → �2)[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJ(�1 → �2)[Ξ]K∧
(
∀E′1, E

′
2, (E

′
1, E

′
2) ∈ VΔJ�1K.(E1 E

′
1, E2 E

′
2) ∈ T ΔJ�2 L+M ΞK

)

(E1, E2) ∈ VΔJ(∀A .�)[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJ(∀A .�)[Ξ]K∧
(
∀Ξ′′ .(E1 [Ξ

′′], E2 [Ξ
′′]) ∈ T ΔJ[Ξ′′/A ]� L+M ΞK

)

(C1, C2) ∈ T ΔJ�K ⇐⇒ (C1 ↦−−→
∗ E1 ∧ C2 ↦−−→

∗ E2) =⇒ (E1, E2) ∈ VΔJ�K

(W1,W2) ∈ GΔJΓK ⇐⇒ dom(W1) = dom(W2) = dom(Γ) ∧

∀G ∈ dom(Γ).(W1 [G],W2 [G]) ∈ VΔJΓ(G)K

Fig. 6. Logical relations for gradual sensitivity soundness

us choose Γ = G : A and Ω = A (noticing that they effectively close the term C ), then C has effect 2A .
Consequently, if the distance environment is Δ = 3A , i.e., two values of two different executions of
effect A are at most at distance 3, then the predicted output distance is (3A ) · (2A ) = 3 ∗ 2 = 6. For
instance, consider the following terms:

41 = (ΛA .(_G : R[A ] .G + G) ( 1 ::R[A ])) [∅] 42 = (ΛA .(_G : R[A ] .G + G) ( 4 ::R[A ])) [∅]

The expressions 41 and 42 will correspond to the use of two different value environments W1 and
W2, such that W1 = { G ↦→ 1 :: R[A ] } and W2 = { G ↦→ 4 :: R[A ] }. Notice that both values for G have
effect A , and are at distance 3, respecting both Γ and Δ. If we reduce both terms, we get (2 :: R[2A ]),
and (8 :: R[2A ]), which are exactly at the predicted output distance (6).
Metric preservation also supports directly reasoning about variables that depend on multiple

resources. For instance, let us consider that in the expression G +G , G now has effect 1A1 + 2A2 + 3A3.
We can choose Δ as 4A1+5A2 +6A3, stating that we can only close the expression with two different
environments that differ in at most 4, 5 and 6 for the resources A1, A2 and A3, respectively. Then, for
this setting, the result can vary in at most 64, since Δ ·Ξ = (4A1 + 5A2 + 6A3) · (2∗ (1A1+ 2A2 + 3A3)) =

4 · 2 + 5 · 4 + 6 · 6 = 64

Metric Preservation in an Imprecise World. We write (E1, E2) ∈ VΔJ�K to denote that values E1
and E2 are related at type� and distance environment Δ. The general structure of an interpretation
of some type� , is of the form (E1, E2) ∈ VΔJ�K ⇐⇒ (E1, E2) ∈ AtomJ�K∧ %̃ (E1, E2,Δ,�), where
(E1, E2) ∈ AtomJ�K denotes that both values are of type � ,5 and %̃ is a gradual counterpart of the
corresponding proposition % in the static interpretation about E1 and E2 for Δ and� . For instance,
in a static language (such as Sax or Fuzz), two numbers are related if the distance is bounded
by the predicted output distance as shown in gray: (=1, =2) ∈ staticVΔJR[Ξ]K ⇐⇒ (=1, =2) ∈

AtomJR[Ξ]K ∧ |=1 − =2 | ≤ Δ · Ξ , assuming that Ξ and Δ are fully precise.6

A key challenge that this work identifies in gradualizing metric preservation is that the gradual
counterpart of this interpretation cannot just lift inequality. One may be tempted to define the

5Note that we could have used the typing judgment instead of the interpretation of atoms, but we choose to use the
interpretation to later augment the relation with more restrictions in §5.2.
6Note that when Ξ and Δ are fully precise, the predicted output distance is a single value, thus the ≤ operation can be
used directly.
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interpretation of numbers using consistent sensitivity subtyping, interpreting |=1 − =2 | as a one-
point gradual sensitivity, as so:

(=1, =2) ∈ naiveVΔJR[Ξ]K ⇐⇒ (=1, =2) ∈ AtomJR[Ξ]K ∧ |=1 − =2 | ≤̃ Δ · Ξ

Indeed, there are several problems with such a definition. First, since GSminiY values are ascribed
simple values, we cannot relate numbers directly, therefore we have to relate ascribed numbers
(E1, E2) and get the actual numeric constants by pattern matching on the ascribed values. Sec-
ond, metric preservation is a compositional property, and it requires to reason compositionally
about value interpretations. In particular, given two related values, their ascriptions should yield
(more precise) related values. One novel and important consideration when designing the log-
ical relation for values in the gradual setting is that, when lifting a predicate % to its gradual
counterpart, we have to reason about worst-case scenarios for %̃ . Otherwise, if we would take opti-
mistic assumptions, one could always ascribe/refine two related values to a less sensitive type-and-
effect (justified by gradual plausibility) breaking compositionality. To illustrate, let�1 = R[[1, 2]A ],
E1 = 〈�1,�1〉1 :: �1, E2 = 〈�1,�1〉3 :: �1. Then (E1, E2) ∈ naiveV [1,1]A J�1K because |1 − 3| ≤̃ [1, 2].
Now if we ascribe those values to � ′

1 = R[1A ], we have that 〈� ′
1,�

′
1〉E8 :: �

′
1 ↦−→ 〈� ′

1,�
′
1〉=8 :: �

′
1,

where =1 = 1, =2 = 3. But the resulting values do not belong to the interpretation of � ′
1, because

|1 − 3| ≤̃ [1, 1] does not hold.
More technically, satisfiability of the predicate %̃ is not preserved after gaining precision. Con-

sider consistent sensitivity subtyping: 2 ≤̃ [1, 2] is true, but 2 ≤̃ [1, 1] is not (and [1, 1] ⊑ [1, 2]). For
this reason, gradual metric preservation must follow a pessimistic approach, and instead negate

the lifting of the negated static proposition, i.e. ¬(¬̃%). In particular, as ¬(B1 ≤ B2) means B2 < B1,
we use the negation of consistently less than defined as: [B1, B2] <̃ [B3, B4] ⇐⇒ B1 < B4. Notice
that proposition %̃ (G) = ¬(8 <̃ G) preserves satisfiability when 8 gains precision. And thus, in the
previous example, we do not relate E1 and E2 at type�1, because ¬([1, 2] <̃ 2) is false. This design
requirement highlights the usefulness of using intervals, and more specifically, the lower bound
of gradual sensitivities, as the distance between two values is actually compared against the lower
bound of the predicted (gradual) output distance. If the unknown sensitivity were the only form
of runtime imprecision, then any time that the runtime information could not be refined to a fully-
precise sensitivity, two related values would be forced to be equal (considering that the worst-case
sensitivity of ? is 0), making the logical relation much stricter than necessary.
Finally, the lifted predicates use the most precise information about types found in evidences—

the computationally-relevant bits for runtime tracking. Otherwise, losing precision in the type
(e.g. by ascribing two related values to a very imprecise type) could break soundness. This can be
observed in the definition of related numbers or related booleans, where we use the sensitivity
effect of the evidence to compute the predicted output distance. To illustrate this point, consider
�2 = R[[2, 2]A ], and E ′1 = 〈�2,�2〉1 :: �2, E

′
2 = 〈�2,�2〉3 :: �2. The values are related because

¬([2, 2] <̃ 2) is true. But, if we ascribe those values to � ′
2 = R[[0, 2]A ], then the resulting val-

ues would not be related as ¬([0, 2] <̃ 2) is false. On the contrary, if we consider only evidence
information, we do not have this problem as the underlying evidence of the resulting values main-
tain their original precision as �2 ⊑ � ′

2. Armed with these considerations, we now discuss each
interpretation in detail.
(A) Related numbers and booleans. As explained before, two numbers are related if the difference

between them is bounded by the predicted output distance. The predicted output sensitivity 3 , is
computed using Ξ′

1gΞ
′
2 as the (worst-case) predicted sensitivity of the values, i.e. 3 = Δ · (Ξ′

1gΞ
′
2).

Effects Ξ′
1 and Ξ

′
2 are obtained from the evidences, and correspond to the most precise sensitivity

information about E1 and E2 respectively. We use the join because the precision of the evidences

, Vol. 1, No. 1, Article . Publication date: March 2024.



Gradual Sensitivity Typing 17

could be different. As explained before, we want the difference to be less or equal to all values
within 3 . In other words, we do not want a value within 3 that is less than the difference to exist,
so ¬(3 <̃ |D1 − D2 |). For the case of booleans, true and false should only be related at ∞, i.e. 3 <

∞ =⇒ D1 = D2 (statically). Since the inequality is in contravariant position, we can directly use
the consistent less than operator to account for the pessimistic analysis.7 As a final remark, notice
that the left-side sensitivity effect of value evidences is always ∅, because the actual effect of the
inner simple value is also ∅.
(B) Related functions and resource abstractions. Two functions or resource abstractions are related

if their applications to two related arguments or a sensitivity effect, respectively, yield related
computations.
(C) Related terms. A pair of terms are related if they both reduce to values, and those two

values are related. Observe that this definition is weaker than the one originally proposed by
Reed and Pierce [2010]: if either term does not reduce to a value, then the relation vacuously
holds; we say that gradual metric preservation is termination insensitive. One simple example
of a term that behaves differently (in terms of termination) when closed by different substitu-
tions is the term C = YG ::R[[2, 3]A ], where Y = 〈R[[2, 3]A ],R[[2, 3]A ]〉. If we close it with W1 =

{ G ↦→ Y11 :: R[[1, 2]A ] } and W2 = { G ↦→ Y21 :: R[[1, 2]A ] }, where Y1 = 〈R[∅],R[1A ]〉 and Y2 =

〈R[∅],R[[1, 2]A ]〉, then W1(C) will halt with an error, while W2(C) will not. Notice that the only dif-
ference between W1 and W2 is the precision of evidences, having Y1◦<: Y being undefined, in contrast
to Y2 ◦<: Y which evaluates to Y (as no precision is gained). We come back to this aspect in §5.2.
(D) Related substitutions. Two substitutions are related at type environment Γ, if each variable

in common, G , is bound to related values at type Γ(G).
Lastly, to state out main theorem, we need notions of well-formedness of environments so they

can be used to close and compute the predicted output distance of a term. These are based on the
meta-functions FV(·) and FR(·) (defined in the supplementary material), which return the free
variables and free resources of a term, respectively.

Definition 4 (Type environment well-formedness). A type environment Γ is well-formed with re-

spect to an intrinsic term C , denoted C ⊢ Γ if and only if FV(C) ⊆ dom(C) and ∀G� ∈ FV(C). Γ(G) = � .

Definition 5 (Distance environment well-formedness). Well-formedness of a distance environment

Δ with respect to a type environment Γ, denoted Γ ⊢ Δ, is defined as follows:

• ⊢ Δ

Γ ⊢ Δ FR(�) ⊆ dom(Δ)

Γ, G : � ⊢ Δ

Soundness of GSminiY . If an open intrinsic term typechecks and we have a type environment Γ
and a distance environmentΔ that closes it (at the type level), then for any two related substitutions
W1, W2, the computations of the terms closed by W1 and W2 are related.

Theorem 5 (Fundamental Property for GSminiY ). Let C be a GSminiY term. If C ∈ T [�] and

C ⊢ Γ, then ∀Δ, W1, W2 such that Γ ⊢ Δ and (W1, W2) ∈ GΔJΓK, we have (W1(C), W2(C)) ∈ T ΔJ�K.

In particular we have the following metric preservation result for base types (where we write
C ⇓ E for ·; · ⊢ C : � { C ′ ∧ C ′ ↦−−→

∗
E and uval(YD :: �) = D):

Corollary 6 (Gradual metric preservation for GSmini base types). Let 5 be a GSmini

function. If 5 has type (R[A ] → R[8A ]) [∅], for some gradual sensitivity 8 , then for any real numbers

21, 22, 2 such that |21 − 22 | ≤ 2 , if 5 21 ⇓ E1, and 5 22 ⇓ E2, then |uval (E1) − uval(E2) | ≤ 2 · c2 (8).

7Technically, when applying the negating the lifting of the negated static proposition to the static proposition for booleans,
we get ¬(3 <̃ ∞∧ D1 ≠ D2 ) , which is equivalent to 3 <̃∞ =⇒ D1 = D2 .
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(E1, E2) ∈ AtomJ�K ⇐⇒ E1 ∈ T [�] ∧ E2 ∈ T [�] ∧ ev (E1) = ev (E2)

(C1, C2) ∈ T
Δ
J�K ⇐⇒ C1 ↦−−→

∗ E1 =⇒ ( ∃E2.C2 ↦−−→
∗ E2 ∧ (E1, E2) ∈ V

Δ
J�K)

Fig. 7. Termination-sensitive gradual metric preservation

Notice that this result is not as strong as the fundamental property, but it captures the expected
static source level guarantee: the observed difference between values is bounded using the upper
bound of the specified sensitivity interval. In contrast, the logical relations use themonitored lower
bound of the sensitivity effect.

5.2 Termination-Sensitive Gradual Metric Preservation

We have so far established a general gradual metric preservation for GSoul terms that is termina-
tion insensitive. In this section, we study a stronger notion of gradual metric preservation that is
termination sensitive. Although GSmini lacks of recursion, and so divergence is not possible, pro-
grams can still halt with an error. Later in §6.2, when working with GSoul, which actually features
general recursion, we will revisit termination-sensitive gradual metric preservation, considering
both divergence and runtime failures. We now explore sufficient conditions for GSoul terms to
satisfy a stronger termination-sensitive gradual metric preservation.
A key observation is to realize that different termination behavior across runs can be avoided

if sensitivity imprecision is finite. We draw from D’Antoni et al. [2013] and Toro et al. [2019] to
enforce the same behavior of divergence and failures between runs, respectively. Specifically,
D’Antoni et al. [2013] restrict the definition of metric preservation to only reason about finite
distances, effectively disallowing the different behaviors of reduction due to conditionals and case
analysis; and in their work on gradual parametricity, Toro et al. [2019] require related values to
have identical evidences (modulo sealing) to avoid different error behavior of reduction due to
consistent transitivity errors.
We combine these two ideas to state a termination-sensitive gradual metric preservation. Fig-

ure 7 presents the new definition for related atoms, AtomJ·K, along with a termination-sensitive
characterization of related terms. First, we require related values to have equal evidences, pre-
venting one execution from failing while the other does not due to higher precision in one of the
executions. All other cases of the value relation are unchanged from Figure 6, save for the use of
the new definition of AtomJ·K. Additionally, we add a new restriction to the fundamental property:
the output distance cannot plausibly be ∞, as this would allow both executions to take different
branches (recall that inl and inr values are at infinite distance).

Theorem7 ((Termination-sensitive) Fundamental Property forGSminiY ). Let C be aGSminiY

term. If C ∈ T [6 [Ξ]], C ⊢ Γ and ¬(∞ ≤̃ Δ · Ξ) , then ∀Δ, W1, W2 such that Γ ⊢ Δ and (W1, W2) ∈ G
Δ
JΓK,

we have (W1(C), W2(C)) ∈ T
Δ
J6 [Ξ]K.

Notice that for imprecise terms, this result is only useful due to the availability of sensitivity
intervals, as the presence of ? in the top-level type trivially makes the condition ¬(∞≤̃Δ ·Ξ) false.
Finally, the two extra conditions are sufficient to establish termination-sensitive gradual metric
preservation, as captured in the following corollary.

Corollary 8 ((Termination-sensitive) gradual metric preservation forGSmini base types).

Let 5 be a GSmini function. If 5 has type (R[A ] → R[8A ]) [∅], for some gradual sensitivity 8 , then

for any real numbers 21, 22, 2 such that |21 − 22 | ≤ 2 and 2 · c2 (8) < ∞, if 5 21 ⇓ E1 then 5 22 ⇓ E2 and

|uval (E1) − uval(E2) | ≤ 2 · c2 (8).
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The difference between Corollary 6 and Corollary 8 is that in the latter, the overall distance of
the outputs 2 · c2 (8) cannot plausibly be infinite. Consequently, the result is termination sensitive.
The fact that this stronger guarantee holds for GSmini terms whose imprecision is restricted to
be finite illustrates how the progressive hardening of imprecision can lead to stronger guarantees.
We observe that this should encourage programmers to use bounded imprecision whenever pos-
sible, which we see as a strong motivation for supporting sensitivity intervals in gradual source
sensitivity languages.

6 FROM GSMINI TO GSOUL

So farwe have only presented the core calculusGSmini (alongwith its runtime semantics,GSminiY ),
which does not account for the full GSoul language we have implemented and used in the intro-
duction (§2). We now describe GSoul, the superset of GSmini with products, sums and recursive
types. In §6.1 we introduce the syntax, type system and runtime semantics of GSoul. Finally, in
§6.2, we discuss the metatheory of GSoul along with the challenges and necessary changes for
proving sensitivity soundness with these new features, especially in the presence of recursive
types.
The addition of recursive types requires some care in the design of certain aspects of the lan-

guage and its metatheory, such as iso-recursive subtyping and the need for a stronger proof tech-
nique for metric preservation. In particular, we need to introduce a new auxiliary subtyping judg-
ment and step indexing for proving sensitivity soundness for GSoulY . However, it is worth noting
that other recursive types definitions such as syntax, typing rules, and reduction rules, can be in-
corporated without the need to modify existing definitions. Furthermore, product and sum types
can be added in a completely modular manner, albeit not without care, specially when considering
the gradual interpretation of metric preservation.

6.1 GSoul: GSminiwith Products, Sums, and Recursive Types

Figure 8 presents the syntax and typing rules for GSoul, as well as the notions of reduction. The
syntax and rules already presented for GSmini are unchanged and hence omitted. Rules (�pair),
(� inl) are standard and analogous to (�lam); constructing a pair or an injection has no sensitivity
effect. Similarly to (�app), in rule (�proj1) we use a partial meta-function, first, to compute the
type-and-effect of the projection. In (�case), the type-and-effects of the branches are computed
using extended type environments where each newly-bound variable is given a type-and-effect
computed using the meta-functions le� and right, which extract the left and right component of
the sum type-and-effect, respectively. Then, the resulting type-and-effect is computed by joining
the type-and-effect of each branch, and also joining the effect of reducing the sum expression,
accounting for the case where branches do not use the bound variables.
To illustrate whywe have to join the effect of 41 in the rule (�case), consider the open expression

caseI of { G1 ⇒ 0 } { G2 ⇒ G2 + G2 }, a resource set Ω = A1, A2, and a type environment Γ = I :

(R[∞A1] ⊕ R[A1]) [A2], then the type derivation follows as:

(�case)

Γ;Ω ⊢B I : (R[∞A1] ⊕ R[A1]) [A2]

Γ, G1 : R[∞A1 + A2];Ω ⊢B 0 : R[∅] Γ, G2 : R[A1 + A2];Ω ⊢B G2 + G2 : R[2A1 + 2A2]

Γ;Ω ⊢B caseI of { G1 ⇒ 0 } { G2 ⇒ G2 + G2 } : R[∅ g (2A1 + 2A2) g A2]

The resulting effect is (2A1 + 2A2)gA2 = 2A1 + 2A2. Also notice that if we now change the expression
to be caseI of { G1 ⇒ 0 } { G2 ⇒ 1 }, where the branches are not using their bound variables, then
the resulting effect is A2, the effect of reducing I to a value.
Rule (�fold) allows for subtyping in its body, and rule (�unfold) relies on the meta-function

unf which performs a substitution for the recursive variable and integrates the latent effect of
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4 ::= · · · | 〈4, 4〉 | fst 4 | snd 4 | fold6 4 | unfold 4 (expressions)

| unit | inl64 | inr64 | case 4 of { G ⇒ 4 } { G ⇒ 4 }

6 ::= · · · | Unit | � ⊕� | � ×� | `U .� (types)

� ::= 6 [Ξ] | U (type-and-effects)

D ::= · · · | unit | 〈E1, E2〉 | inl
6E | inr6E | fold6 E (simple values)

Well-typed expressions Γ;Ω ⊢B 4 : �

(�pair)

Γ;Ω ⊢ 41 : �1 Γ;Ω ⊢ 42 : �2

Γ;Ω ⊢ 〈41, 42〉 : (�1 ×�2)[∅]

(�proj1)

Γ;Ω ⊢ 4 : �

Γ;Ω ⊢ fst 4 : first(�)

(� inl)

Γ;Ω ⊢ 4 : �1

�2 = 62 [∅] Ω ⊢ �2

Γ;Ω ⊢ inl624 : (�1 ⊕ �2)[∅]

(�case)

Γ;Ω ⊢ 41 : �1 Γ, G : le�(�1);Ω ⊢ 42 : �2 Γ, ~ : right(�1);Ω ⊢ 43 : �3

Γ;Ω ⊢ case 41 of { G ⇒ 42 } {~ ⇒ 43 } : �2 g�3 LgM eff(�1)

(�fold)

Γ;Ω ⊢ 4 : � ′ � ′
<: unf ((`U .�)[∅])

Γ;Ω ⊢ fold`U .� 4 : (`U .�)[∅]

(�unfold)

Γ;Ω ⊢ 4 : �

Γ;Ω ⊢ unfold 4 : unf (�)

first((�1 ×�2)[Ξ]) = �1 L+M Ξ le�((�1 ⊕ �2)[Ξ]) = �1 L+M Ξ right((�1 ⊕ �2)[Ξ]) = �2 L+M Ξ

unf ((`U .�)[Ξ]) = [(`U .�)[∅]/U]� L+M Ξ eff(6 [Ξ]) = Ξ

Fig. 8. Syntax and type system of GSoul (excerpt)

the inner expression. Recursive type substitution [·/·]· replaces a type-and-effect for a recursive
variable. Notice that in the definition of unf, the substitution has an empty effect. This ensures
that the effect of reducing the expression to a fold value is only accounted for once, and not at
each unfolding.

Subtyping and Recursive Types. A last aspect of GSoul that we have to take care of is subtyping
in the presence of recursive types. For this, we adopt the weakly positive subtyping approach of
[Zhou et al. 2022]:8

(�sub-rec)

�1 <: �2 U ∈+ �1 <: �2

`U .�1 <: `U .�2

(�sub-rec-refl)

�1 ∼ �2

`U .�1 <: `U .�2

This approach relies on the polarized judgment U ∈< �1 <̃: �2, which checks whether U is used
positively or negatively—indicated by the< polarity—in type-and-effects �1 and �2; we write<
for flipping the polarity <. Rule (�sub-rec) allows for subtyping in the bodies of the recursive
types under the condition that U only appears in positive positions. Recursive variables can still
appear in negative positions but only for plausibly equal types, described using ∼, by rule (�sub-

rec-refl).9 To ensure that subtyping remains deterministic, rule (�sub-rec-refl) is only used

8We could also have used the standard Amber rules [Cardelli 1986], although as argued by Zhou et al. [2022], the metathe-
ory of iso-recursive Amber rules is challenging; their approach is equivalent while enjoying a simpler metatheory.
9Plausible equality, written�1 ∼ �2, also known as consistency, is equivalent to�1 <̃: �2 ∧�2 <̃: �1.
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Notions of reduction C −→ C

(I�r-fst) fst (Y 〈E1, E2〉 ::�) −→ ifirst(Y)E1 :: first(�)

(I�r-unfold) unfold (Y (fold�
′

E) ::�) −→ iunf(Y)E :: unf (�)

(I�r-case-1)
case(Y1inl6

′
12 (Y11D ::�

′
11) ::�1)

of { G ⇒ C
�2

2
} {~ ⇒ C

�3

3
}

−→

{
Y2([Y

′
11D :: le�(�1)/G]C2) ::�2 g�3 LgM eff(�1)

error if not defined

⌊ where Y′11 = Y11 ◦
<: ile�(Y1), Y2 = I<: (�2,�2 g�3) LgM2 eff2 (Y1)

Fig. 9. Reduction rules for GSoulY (excerpt)

when U ∈+ �1 <: �2 is false, otherwise (�sub-rec) is used. The definition of the weakly positive
restriction can be found in the supplementary material.

Dynamic semantics. The reduction rules for products, sums, and recursive types are presented in
Figure 9. Evaluation contexts and values are extendedwith the corresponding constructs, following
call-by-value semantics as before. For rules (I�r-fst) and (I�r-snd), we use inversion functions
ifirst and isecond analogous to icod. Then, if evidence Y justifies Y ⊲ �1 <̃: �2, then ifirst(Y) ⊲
first(�1) <̃: second(�2), assuming the types involved are products. For rule (I�r-case-1), evidence
Y′11, for the substituted value, is computed using the inversion function ile� (instead of idom in
(I�r-app)). Since the body terms have no explicit evidences, in order to produce an evidence Y2
for the context term we use the interior operator. For Y2, to fully reflect the type operations made
in the ascription, we must join the information in the sensitivity environment parts of Y1. This
is done by using the functions eff2 and LgM2, the lifted versions of eff and LgM for operating on
evidences, respectively. Rule (I�r-case-2), corresponding to the inr case, is left out as its definition
is analogous to (I�r-case-1). Finally, the reduction rule (I�r-unfold) is standard, with the subtlety
of the use of inversion operator iunf for justifying the resulting ascription.

Handling recursive functions. Let us return to the recursive function example of §2. First, we
introduce rules for typechecking and reducing fixpoints; as in Fuzz, we can encode fixpoints via
the Y-combinator, but in order to simplify the presentation, we here introduce a fixpoint primitive:

(I�fix)
C ∈ T [�]

fix ( 5 : �).C ∈ T [�]

(I�r-fix)

Y (fix ( 5 : �).C) ::� ′ −→ Y ([I<: (�,�)(fix ( 5 : �).C) ::�/5 ]C) ::� ′

Rules (I�fix) and (I�r-fix) are standard, modulo the treatment of evidence. In (I�r-fix), we
use the interior operator to justify the ascription of the substituted term, which in this case is
trivial: the ascription type-and-effect is the same as the original, thus the interior operator never
fails. Finally, since the body of the fixpoint has the same type-and-effect as the fixpoint itself, the
original evidence Y can be used to justify the ascription of the result.
We can now define the recursive function scale of type-and-effect ∀A .Nat → R[A ] → R[?A ]: 10

ΛA .fix scale.(_(= : Nat, E : R[A ]).case (unfold=) of { _ ⇒ 0 } {m ⇒ E + scale m E })

Let = = Y=2 ::Nat[∅] and E = YE3 ::R[A1], where Y= = 〈∅,∅〉 and YE = 〈∅, A1〉 (omitting types
in evidences to improve readability). Then if we reduce the expression scale [A1] = E , after several
reduction steps we can observe that the recursive function unfolds as many times as necessary, and
so each occurrence of E will simply contribute its sensitivity effect to the final result depending on
the remaining operations (in this case, sums):

10Nat is encoded as `U .( (Unit[∅] ⊕ U ) [∅] ) [∅]; hereafter, we use specific natural numbers instead of their encoding.
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(E1, E2) ∈ V:
Δ
JUnit[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJUnit[Ξ]K

where E8 = Y8unit ::Unit[Ξ]

(E1, E2) ∈ V:
Δ
J(�1 → �2)[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJ(�1 → �2)[Ξ]K∧

(
∀9 ≤ :, E′1, E

′
2, (E

′
1, E

′
2) ∈ V

9−1
Δ

J�1K.

(E1 E
′
1, E2 E

′
2) ∈ T

9
Δ
J�2 L+M ΞK

)

(E1, E2) ∈ V:
Δ
J(ΛA .�)[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJ(ΛA .�)[Ξ ]K ∧

(
∀9 ≤ :,Ξ′′ .

(E1 [Ξ
′′], E2 [Ξ

′′]) ∈ T
9
Δ
J[Ξ′′/A ]� L+M ΞK

)

(E1, E2) ∈ V:
Δ
J(�1 ×�2)[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJ(�1 ×�2)[Ξ]K∧

(useFst (E1), useFst (E2)) ∈ T:
Δ
J�1 L+M ΞK∧

(useSnd(E1), useSnd(E2)) ∈ T:
Δ
J�2 L+M ΞK

(E1, E2) ∈ V:
Δ
J(�1 ⊕�2)[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJ(�1 ⊕�2)[Ξ]K∧

(
Δ · (Ξ′

1 g Ξ
′
2) <̃∞

=⇒ (useL(E1), useL(E2)) ∈ T:
Δ
J�1 L+M ΞK∨

(useR(E1), useR(E2)) ∈ T:
Δ
J�2 L+M ΞK

)

where E8 = 〈681[∅], 682[Ξ
′
8 ]〉 D8 :: (�1 ⊕�2)[Ξ]

(E1, E2) ∈ V:
Δ
J(`U.�)[Ξ]K ⇐⇒ (E1, E2) ∈ AtomJ(`U.�)[Ξ]K ∧

(
∀9 ≤ :,

(unfold E1, unfold E2) ∈ T
9
Δ
J[(`U.�)[∅]/U]� L+M ΞK

)

(C1, C2) ∈ T:
Δ
J�K ⇐⇒ ∀9 < :.(C1 ↦−−→

9 E1 ∧ C2 ↦−−→
∗ E2) =⇒ (E1, E2) ∈ V

:− 9
Δ

J�K

useL(Y (inl�12E) ::�) = ile�(Y)E :: le�(�) useR(Y (inr�12E) ::�) = iright(Y)E :: right(�)

useFst (Y 〈E1, E2〉 ::�) = ifirst(Y)E1 :: first(�) useSnd (Y 〈E1, E2〉 ::�) = isecond(Y)E2 :: second(�)

Fig. 10. Logical relations for gradual sensitivity soundness of GSoulY (excerpt)

scale [A1] = E ↦→
∗ Y2 (YE3 :: A1 + Y1(YE3 :: A1 + Y00 :: ?A1) :: ?A1) :: ?A1 ↦→

∗ 〈∅, [2,∞]A1〉6 :: ?A1

where evidences Y2 = 〈[1,∞]A1, [1,∞]A1〉, Y1 = 〈[1,∞]A1, [1,∞]A1〉 and Y0 = 〈∅, ?A1〉 are the results
of each unfolding of the fixpoint.
The important insights of this example come from analyzing the final evidence 〈∅, [2,∞]A1〉.

First, during reductionwe have learned that resource A1 was used at least twice. Second, notice how
the sensitivity of A1 matches exactly the value of =, namely 2. More importantly, this generalizes
to any value of =: the resulting evidence will always be of the form 〈∅, [ = ,∞]A1〉, i.e. a result that
is known to be at least =-sensitive in resource A1. And finally, this resulting evidence means that
we can use the result in other contexts, without having to consider the result as∞-sensitive in the
resources it uses. In particular, for this example, we can successfully pass the result to a function
that requires its argument to be at most 2-sensitive in E ; but passing it to a function that requires
a 1-sensitive argument would produce a runtime error.
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6.2 Metatheory of GSoul

GSoul satisfies all the properties of the core gradual language. More notably, it also satisfies
both termination-insensitive and -sensitive gradual metric preservation, as well as their respec-
tive corollaries. One important difference between GSmini and GSoul is that the latter supports
general recursion. This has a direct impact on the proof of sensitivity soundness for GSoul, be-
cause the logical relation presented in §5.1 is not well-founded in presence of recursion. To over-
come this, we modify the definition of the logical relations to use step indexing [Ahmed 2006;
Appel and McAllester 2001]. We now discuss the step-indexed logical relation, presented in Fig-
ure 10.

(A) Related numbers, booleans and unit. Numbers and booleans are related as defined in Figure 6,
independently of the step index. Two values of the unit type are necessarily equal, and hence
related for any step index.

(B) Related functions and resource abstractions. The definitions remain similar to the ones in
§5.1, but now they are indexed by a step index : . Two functions are related at type-and-effect
(�1 → �2) [Ξ] for : steps if, for any 9 ≤ : , their applications to two related arguments for 9 − 1

steps yield related computations for 9 steps. Similarly, two resource abstractions are related for :
steps if, for any 9 ≤ : , their applications to any sensitivity environment yield related computations
for 9 steps. Notice that for these cases, although the same step index can used in the recursive
definition (when 9 = :), the interpretations are well-founded because in each case a reduction step
is always performed, lowering the index by one.

(C) Related pairs and injections. Two pairs are related simply if each of their components are
related. Any two injections are related for any step index if the predicted (worst-case) output
distance Δ · (Ξ′

1 g Ξ
′
2) is infinity. If it is possible that the predicted output distance is less than

infinity, then the injections must be either both left injections or right injections. Furthermore, the
underlying values must be related. Also, and as in the case of booleans, in order to account for
the worst case scenario, we need to take the best case on the hypothesis side of the implication
as the predicate is in a contravariant position. Therefore, the consistently-less-than operator <̃ is
used directly, without the need for double negation. Finally, the partial meta-functions useL, useR,
useFst , and useSnd are defined to extract the underlying values of the injections and pairs.

(D) Related folds. Analogous to functions, two folds are related for : steps if, for any 9 ≤ : ,
their unfolding yield related computations at the expected type-and-effect—as computed by unf
in (�unfold)—for 9 steps.

(E) Related computations. A pair of closed terms are related for : steps whenever the first term
reduces to a value in 9 steps (where 9 < :) and the second reduces to a value in any number of
steps, and those two values are related at that type for :− 9 steps. Notice that this definition, similar
to the first logical relation presented in §5.1, is termination-insensitive. Later in this section, we
will revisit the topic of termination-sensitive soundness for GSoulY .

We can now state the fundamental property of the logical relation forGSoulY , as well as gradual
metric preservation for GSoul.

Theorem 9 (Fundamental Property for GSoulY ). Let C be a GSoulY term. If C ∈ T [�] and

C ⊢ Γ, then ∀Δ, : ≥ 0, W1, W2 such that Γ ⊢ Δ and (W1, W2) ∈ G:
Δ
JΓK, we have (W1(C), W2(C)) ∈ T :

Δ
J�K.

Corollary 10 (Gradual metric preservation for GSoul base types). Let 5 be aGSoul func-

tion. If 5 has type (R[A ] → R[8A ]) [∅], for some gradual sensitivity 8 , then for any real numbers

21, 22, 2 such that |21 − 22 | ≤ 2 , if 5 21 ⇓ E1, and 5 22 ⇓ E2, then |uval (E1) − uval(E2) | ≤ 2 · c2 (8).
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Revisiting termination-sensitive gradual metric preservation. Recursive types not only introduce
the need for step indexing in the logical relation, but also make program divergence a possibil-
ity. This requires us to revisit what termination-sensitive gradual metric preservation means. The
attentive reader may have noticed that in §5.2 we mostly discuss about different termination behav-

ior across runs and not specifically about error behavior. Indeed, the changes made in that section
are sufficient to also capture divergence as a possible source of different runs not having uniform
termination behavior. We thus refer to non-termination as both divergence and failure.
For stating termination-sensitive gradual metric preservation for GSoul we follow the same

approach as in §5.2: first, we use a second logical relation that requires evidences of related values
to be identical; and second, we disallow possibly-infinite distances in the fundamental property.
Again, the definitions for related values remain unchangedwith respect to Figure 10, but the logical
relations for terms have to be (trivially) updated to use step indexes.We can nowprove termination-
sensitive gradual metric preservation for GSoul.

Theorem11 ((Termination-sensitive) Fundamental Property forGSoulY ). Let C be aGSoulY
term. If C ∈ T [6 [Ξ]], C ⊢ Γ and ¬(∞ ≤̃ Δ · Ξ), then ∀Δ, : ≥ 0, W1, W2 such that Γ ⊢ Δ and

(W1, W2) ∈ G:
Δ
JΓK, we have (W1(C), W2(C)) ∈ T :

Δ
J6 [Ξ]K.

Corollary 12 (Termination-sensitive gradual metric preservation for base types). Let

5 be a GSoul function. If 5 has type (R[A ] → R[8A ]) [∅], for some gradual sensitivity 8 , then for

any real numbers 21, 22, 2 such that |21 − 22 | ≤ 2 and 2 · c2 (8) < ∞, if 5 21 ⇓ E1 then 5 22 ⇓ E2 and

|uval (E1) − uval(E2) | ≤ 2 · c2 (8).

All the proofs for GSmini and GSminiY are subsumed by the proofs for GSoul and GSoulY ,
which can be found in the supplementary material.

7 RELATED WORK

Sensitivity and programming languages. The first type system for reasoning about sensitivity is
Fuzz [Reed and Pierce 2010], a language for differential privacy using linear types. Several varia-
tions have been studied, such as DFuzz [Gaboardi et al. 2013], Fuzzi [Zhang et al. 2019], Adaptive
Fuzz [Winograd-Cort et al. 2017]. All of these type systems measure sensitivity and also track
and enforce differential privacy. Near et al. [2019] tackle differential privacy in Duet with two
mutually-defined languages, one dedicated to sensitivity and one to privacy. Jazz [Toro et al. 2023]
follows the approach of Duet, and includes Sax, a sensitivity languagewith contextual linear types
and delayed sensitivity effects. The starting point of GSoul, the static language Soul, is very close
to Sax. Whereas Fuzz-like languages track the sensitivity of program variables using linear types,
Abuah et al. [2022] propose Solo, which tracks a fixed amount of sensitive resources and avoids
linear types. DDuo [Abuah et al. 2021] provides a library for sensitivity tracking in Python i.e. dy-
namically, being able to tackle expressiveness issues of static sensitivity type systems. However,
it does not provide the ability to strengthen the static guarantees of a program, as GSoul does.
`Fuzz [D’Antoni et al. 2013] extends the Fuzz compiler to generate nonlinear constraints, which
are then checked by an SMT solver, which results in an automatic type-based sensitivity analysis.
There is no prior work integrating static and dynamic sensitivity analysis within one language.

Regarding termination sensitivity, Fuzz [Reed and Pierce 2010] andmore recent languages [Abuah et al.
2022; Gaboardi et al. 2013] focus on the terminating fragment of their languages. Reed and Pierce
[2010] discuss the tension between metric preservation and non-termination in their seminal pa-
per, presenting three alternatives: weakening the definition of metric preservation; proving stati-
cally that recursive functions terminate, yielding more complex programs; or adding fuel to recur-
sive functions, falling back to a default value when running out of fuel. The latter is adopted in
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the implementation. `Fuzz [D’Antoni et al. 2013] also supports recursive types, and termination-
sensitive metric preservation is obtained by reasoning only about finite distances.Duet [Near et al.
2019] avoids divergence via terminating looping primitives. DDuo [Abuah et al. 2021] establishes
termination-insensitive metric preservation, although they do not explicitly discuss this aspect.
Before discussing related work in the gradual typing area, let us mention that another line of

approaches for sensitivity verification is based on program logics [Barthe et al. 2016, 2012, 2013;
Sato et al. 2019]. These approaches are generally very expressive but less automatic than type
systems. On the gradualization side, it seems possible to study gradualization of such program
logics, for instance by following the gradual verification approach of Bader et al. [2018], further
extended to a form of separation logic [Wise et al. 2020]. Extending gradual verification to account
for the aforementioned logics for sensitivity would be an interesting venue for future work.
Gradual typing To the best of our knowledge, gradual typing has not been applied to sensi-

tivity typing. It has, however, been applied in languages with one of two particularly interest-
ing properties: languages with type-and-effect disciplines; and languages whose soundness prop-
erty corresponds to a hyperproperty, such as noninterference [Goguen and Meseguer 1982] or
parametricity [Reynolds 1983]. Interestingly, gradual security typing has only been explored for
termination- (and error-)insensitive characterizations of noninterference [de Amorim et al. 2020;
Fennell and Thiemann 2013; Toro et al. 2018]. Bañados Schwerter et al. [2014, 2016] develop a gen-
eral approach to gradualize type-and-effects. Toro and Tanter [2015] extends this approach to be
able to work in the context of polymorphic effects for the Scala language. However, this line of
work is based on the generic type-and-effect system of Marino and Millstein [2009], which cannot
directly handle sensitivities as quantities within a range.
Toro et al. [2018] discovered that the addition ofmutable references in a security language yields

a gradual language that does not satisfy noninterference; ad-hoc changes to address implicit flows
recover noninterference, at the expense of the dynamic gradual guarantee. An interesting perspec-
tive is to study an extension of GSoulwithmutable references, investigating if metric preservation
and the dynamic gradual guarantee are both satisfied.
Another interesting remark is the need for sensitivity intervals in order to have a sound ev-

idence representation in GSoulY . Bañados Schwerter et al. [2020] study forward completeness of
evidence representation, which indeed enforces soundness in terms of expected modular type-
based semantic invariants. Proving forward completeness for GSoulY is an interesting exercise
for future work.
Quantitative reasoning. Finally, sensitivity analysis can be seen as one specific case of quantita-

tive reasoning. Several related approaches have been explored such as bounded linear logic [Dal Lago and Gaboar
2011; Girard et al. 1992], quantitative type theory [Atkey 2018], and gradedmodal types [Orchard et al.
2019]. These approaches abstract over the specific quantity being analyzed and the underlying ac-
counting mechanism. This work should serve as a useful guide to study if and how to gradualize
such general approaches to quantitative program reasoning.

8 CONCLUSION

We present GSoul, a gradual sensitivity calculus with support for recursive types and explicit sen-
sitivity polymorphism, featuring both unbounded and bounded sensitivity imprecision. Gradual
sensitivity typing not only allows programmers to seamlessly choose between static and dynamic
checking as they see fit, it can also accommodate features, such as recursive functions, that are too
conservatively handled by the static discipline.
We have presented the challenges of designing a gradual interpretation of metric preservation,

highlighting how a naive lifting of its static counterpart would yield an incorrect specification.
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Furthermore, we have explored the termination aspect of metric preservation in the presence of
possible runtime errors and divergence.
A challenging venue of future work is the addition of support for mutable references. However,

akin to gradual security typing [Toro et al. 2018], adding this feature would likely yield a language
that does not satisfy metric preservation by default, and fixing it could endanger the dynamic
gradual guarantee. Another possible line of future work involves the extension and application of
the principles used in this work to other typing disciplines that rely on function sensitivity, such
as differential privacy [Dwork and Roth 2014], as well as other quantitative type-based reasoning
techniques [Atkey 2018; Orchard et al. 2019; Petricek et al. 2014].
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