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Abstract
In the Activation Edge-Multicover problem we are given a multigraph G = (V, E) with activation
costs {cu

e , cv
e} for every edge e = uv ∈ E, and degree requirements r = {rv : v ∈ V }. The goal

is to find an edge subset J ⊆ E of minimum activation cost
∑

v∈V
max{cv

uv : uv ∈ J}, such that
every v ∈ V has at least rv neighbors in the graph (V, J). Let k = maxv∈V rv be the maximum

requirement and let θ = max
e=uv∈E

max{cu
e , cv

e}
min{cu

e , cv
e} be the maximum quotient between the two costs of

an edge. For θ = 1 the problem admits approximation ratio O(log k). For k = 1 it generalizes the
Set Cover problem (when θ = ∞), and admits a tight approximation ratio O(log n). This implies
approximation ratio O(k log n) for general k and θ, and no better approximation ratio was known.
We obtain the first logarithmic approximation ratio O(log k + log min{θ, n}), that bridges between
the two known ratios – O(log k) for θ = 1 and O(log n) for k = 1. This implies approximation ratio
O (log k + log min{θ, n}) + β · (θ + 1) for the Activation k-Connected Subgraph problem, where
β is the best known approximation ratio for the ordinary min-cost version of the problem.
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1 Introduction

In network design problems one seeks a cheap subgraph that satisfies a prescribed property.
A traditional setting, motivated by wired networks, is when each edge or node has a cost,
and we want to minimize the cost of the subgraph. In wireless networks a communication
between two nodes depends on our ”investment” in both nodes – like transmission energy
and different types of equipment. The node weighted setting captures just some of these
scenarios. In 2011 Panigrahi [22] suggested a generalization, that captures many possible
wireless networks scenarios. In Panigrahi’s model, every edge uv has an activating function
f(xu, xv) to {0, 1}, such that an edge uv is activated if and only we invest xu at node u

and xv at node v such that f(xu, xv) = 1. Here we use a simpler but less general setting
suggested in [15], which is equivalent to that of Panigrahi for problems in which inclusion
minimal feasible solutions have no parallel edges (but the input graph may have parallel
edges).

More formally, in activation network design problems we are given an undirected
(multi-)graph G = (V, E) where every edge e = uv ∈ E has two (non-negative) activation
costs {cu

e , cv
e}; here e = uv ∈ E means that the edge e has ends u, v and belongs to E. An

edge e = uv ∈ E is activated by a level assignment {lv : v ∈ V } to the nodes if lu ≥ cu
e

and lv ≥ cv
e . The goal is to find a level assignment of minimum value l(V ) =

∑
v∈V lv, such

that the activated edge set J = {e = uv ∈ E : cu
e ≤ lu, cv

e ≤ lv} satisfies a prescribed property.
Equivalently, the minimum value level assignment that activates an edge set J ⊆ E is given
by ℓJ (v) = max{cv

e : e ∈ δJ (v)}; here δJ (v) denotes the set of edges in J incident to v, and a
maximum taken over an empty set is assumed to be zero. We seek an edge set J ⊆ E that
satisfies the given property and minimizes ℓJ(V ) =

∑
v∈V ℓJ(v). Note that while we use lv
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to denote a level assignment to a node v, we use a slightly different notation ℓJ(v) for the
function that evaluates the optimal assignment that activates a given edge set J .

Let G = (V, E) be a multigraph. Given degree requirements r = {rv : v ∈ V } we say
that an edge set J is an r-edge-cover if every v ∈ V has at least rv neighbors in the graph
(V, J). We consider the following problem.

Activation Edge-Multicover
Input: A multigraph G = (V, E) with activation costs {cu

e , cv
e} for every edge e = uv ∈ E,

and degree requirements r = {rv : v ∈ V }.
Output: An r-edge-cover J ⊆ E of minimal activation cost ℓJ(V ) =

∑
v∈V

max
uv∈E

cv
uv.

Equivalently, Activation Edge-Multicover can be cast as a problem of assigning
levels {lv : v ∈ V } to the nodes of minimum total value l(V ) =

∑
v∈V lv, such that the

edge set J = {uv ∈ E : cu
uv ≤ lu, cv

uv ≤ lv} activated by the assignment is an r-edge-cover.
The slope θ of an instance of an activation network design problem is the maximum ratio
between the two costs of an edge, namely

θ = max
e=uv∈E

max{cu
e , cv

e}
min{cu

e , cv
e}

.

Two main types of activation costs were extensively studied in the literature.
Node weights. For all v ∈ V , cv

e are identical for all edges e incident to v. This is
equivalent to having node weights wv for all v ∈ V with the goal of finding a node subset
V ′ ⊆ V of minimum total weight w(V ′) =

∑
v∈V ′ wv such that the subgraph induced by

V ′ satisfies the given property. Note that we may have θ =∞ in this case.
Power costs: For all e = uv ∈ E, cu

e = cv
e . This is equivalent to having “power costs”

ce = cu
e = cv

e for all e = uv ∈ E. The goal is to find an edge subset J ⊆ E of minimum
total power

∑
v∈V max{ce : e ∈ δJ(v)} that satisfies the given property. Note that this

the case θ = 1.

Node weighted problems include many fundamental problems such as Set Cover, Node-
Weighted Steiner Tree, and Connected Dominating Set c.f. [24, 12, 8]. Min-power
problems were studied already in the 90’s, c.f. [25, 26, 23, 11], followed by many more. They
were also widely studied in directed graphs, usually under the assumption that to activate
an edge one needs to assign power only to its tail, while heads are assigned power zero, c.f.
[11, 17, 9, 20]. The undirected case has an additional requirement - we want the network to
be bidirected, to allow a bidirectional communication.

Let k = maxv∈V rv denote the maximum requirement. Kortsarz, Mirrokni, Nutov, and
Tsanko [13] gave an O(log n)-approximation algorithm for the min-power version, and Cohen
& Nutov [5] improved the approximation ratio to O(log k). However, the node-weighted
version is Set Cover hard even for k = 1, and thus has approximation threshold Ω(log n).
Activation Edge-Multicover admits an easy approximation ratio O(log n) for k = 1
and this implies ratio O(k log n) for any k. Note that this approximation ratio is not even
poly-logarithmic, if k is large. We obtain the first (poly-)logarithmic approximation ratio
that generalizes the known O(log k)-approximation of [5, 13] for the case θ = 1.

▶ Theorem 1. The Activation Edge-Multicover problem admits approximation ratio
O (log k + log min{θ, n}).

The proof of Theorem 1 has two main ingredients.
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We will show that it is sufficient to prove approximation ratio O(log k + log θ), since
it implies approximation ratio O(log n). In fact, we will give a generic reduction that
applies on any activation network design problem: achieving approximation ratio ρ on
instances with θ ≤ n(ρ + 1)/ϵ implies approximation ratio ρ + 2ϵ for general instances.
We will show that the problem admits approximation ratio O(log k+log θ). The algorithm
extends the O(log k)-approximation algorithm of [13, 5] for the case θ = 1 to the case of
arbitrary θ.
Our results and techniques show the advantages of studying the approximability of

activation network design problem being parameterized by the slope, and suggest that some
network design activation problems may be easier than they seem. We will illustrate this by
two examples, as follows.

A graph is k-outconnected from s if it contains k internally disjoin sv paths for every
node v. A graph is k-connected if it has at least k + 1 nodes and contains k internally-
disjoint paths between every two nodes. In the k-Connected Subgraph problem we are
given a graph G with edge costs and an integer k, and seek a minimum cost k-connected
spanning subgraph H of G. In the activation version Activation k-Connected Subgraph
problem, instead of ordinary edge costs we have activation costs and H should have minimum
activation cost. The k-Out-Connected Subgraph and Activation k-Out-Connected
Subgraph problems are defined similarly, where H should be k-out-connected. It is known
that if degJ(v) ≥ k − 1 for every node v, and if F is an inclusion minimal edge set such
that J ∪ F is k-connected, or is k-out-connected from some node, then F is a forest; for
k-connected graph this follows from Mader’s Critical Cycle Theorem [16], while an analogous
result was proved for k-out-connected graphs in [3]. It is known that if F is a forest then∑

e∈E ℓe(V )/ℓF (V ) ≤ θ + 1 [20, Lemma 15.1(ii) and Corollary 15.1(ii)]. This implies the
following.
▶ Lemma 2. Suppose that Activation Edge-Multicover admits approximation ratio α.
If k-Connected Subgraph admits approximation ratio β, then Activation k-Connected
Subgraph admits approximation ratio O (log k + log min{θ, n}) + β · (θ + 1), and a similar
statement holds for Activation k-Out-Connected Subgraph.

Let us briefly review the approximability status of k-Out-Connected Subgraph and
k-Connected Subgraph. The directed version of k-Out-Connected Subgraph admits
a polynomial time algorithm [7], and this implies approximation ratio 2 for the undirected
version. One the other hand, the current approximability status of k-Connected Subgraph
is somewhat more complicated; the following bounds on β are known (see a survey in [18]).

β = ⌈k+1
2 ⌉ for 2 ≤ k ≤ 7 [10, 1, 6, 14].

β = 2(2 + 1/q), where q ≈ 1
2 (logk n− 1) is the largest integer such that 2q−1k2q+1 ≤ n

[21, 4]. In particular β = 4 + ϵ for any constant k and ϵ > 0.
β = O

(
log k log n

n−k

)
for any k [19].

Thus from Lemma 2 we get the following.
▶ Corollary 3. For θ = O(log n), Activation k-Out-Connected Subgraph admits
approximation ratio O(log n), and Activation k-Connected Subgraph admits approxim-
ation ratio O(log n) unless k = n− o(n).

2 Proof of Theorem 1

In this section we prove Theorem 1. The following lemma shows that it is sufficient to prove
just approximation ratio O(log k + log θ), since it implies approximation ratio O(log n).
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▶ Lemma 4. If Activation Edge-Cover admits approximation ratio O(log(kθ)) then it
also admits approximation ratio O(log n).

Proof. Let (G = (V, E), c, r) be an Activation Edge-Multicover instance. Fix some
optimal solution J∗. Let M∗ = max{max{cu

e , cv
e} : e = uv ∈ J∗} be the maximum c-

cost of an end of an edge in J∗. While M∗ is not known, it is sufficient to have some
estimate M for M∗, say M∗ ≤M ≤ 2M∗; for that, we apply the procedure below for every
M ∈ {2i : i = 0, . . . , ⌈log C⌉}, where C = maxuv∈E cu

e is the maximum c-cost of an end of an
edge in E, and return the best outcome. So in what follows we will assume that we know an
estimate M for M∗ such that M∗ ≤M ≤ 2M∗.

Let ρ be a parameter (eventually set to ρ = O(log n)), let ϵ > 0 be another parameter,
and let

α = ϵM

n(ρ + 1) .

Remove from G all edges that have an end of cost greater than M . Note that J∗ is a feasible
solution of the obtained instance, since M∗ ≤M . Define costs ĉ by

ĉu
uv = max{⌊cu

uv/α⌋, 1} .

Let us denote by ℓ̂J(v) = max{ĉv
e : e ∈ δJ(v)} the optimal assignment w.r.t. costs ĉ that

activates a given edge set J .
Let J ⊆ E and let

V0 = {v ∈ V : ℓJ(v)/α < 1} V1 = {v ∈ V : ℓJ(v)/α ≥ 1} .

Note that ℓ̂J(V0) = |V0| ≤ n and that ℓ̂J(V1) ≤ ℓJ(V1)/α ≤ ℓJ(V )/α. This implies

ℓ̂J(V ) = ℓ̂J(V0) + ℓ̂J(V1) ≤ n + ℓJ(V )/α .

Also note that ℓJ(V0)/α ≤ |V0| and that ℓJ(V1)/α ≤ ℓ̂J(V1) + |V1|. This implies

ℓJ(V )/α = ℓJ(V0)/α + ℓJ(V1)/α ≤ |V0|+ ℓ̂J(V1) + |V1| ≤ n + ℓ̂J(V ) .

Summarizing, we have

ℓJ(V )/α− n ≤ ℓ̂J(V ) ≤ ℓJ(V )/α + n .

From this we get that if J is a ρ-approximate solution w.r.t. costs ĉ then

ℓJ(V ) ≤ α(ℓ̂J(V )+n) ≤ α(ρℓ̂J∗(V )+n) ≤ α(ρ(ℓJ∗(V )/α +n)+n) = ρℓJ∗(V )+αn(ρ+1)

Note that M ≤ 2ℓJ∗(V ) and thus by the definition of α we have αn(ρ+1) = ϵM ≤ 2ϵ ·ℓJ∗(V ).
Consequently,

ℓJ(V ) ≤ ℓJ∗(V )(ρ + 2ϵ) .

Finally, note that the maximum ĉ-cost is bounded by M/α = n(ρ + 1)/ϵ while the
minimum ĉ-cost is at least 1. Thus the slope θ̂ of the obtained instance is bounded by

θ̂ ≤ n(ρ + 1) .

Summarizing, the obtained instance has slope at most n(ρ + 1) and approximation ratio ρ

for the obtained instance implies approximation ratio ρ + 2ϵ for the original instance.
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Now let ρ = O(log n) and suppose that the obtained instance admits approximation ratio
O(log(kθ)). Then the obtained instance admits also approximation ratio

O(log(kθ̂)) = O(log(kn(ρ + 1)) = O(log(kn log n)) = O(log n) .

This implies approximation ratio O(log n)+2ϵ = O(log n) for the original instance, concluding
the proof of the lemma. ◀

Remark. The reduction in Lemma 4 applies to any activation network design problem. The
proof shows that for anyϵ > 0, if problem instances with θ ≤ n(ρ + 1)/ϵ admit approximation
ratio ρ, then general instances admit approximation ratio ρ + 2ϵ.

By Lemma 4 it sufficient to show approximation ratio O(log(kθ)). Following [13, 5], we
first reduce the problem with a loss of a factor of 2 in the approximation ratio to the following
particular case.

Bipartite Activation Edge-Multicover
Input: A bipartite graph G = (A ∪ B, E) with activation costs {ca

e , cb
e} for each edge

e = ab ∈ E, and degree requirements r = {rb : b ∈ B} on B only.
Output: An r-edge-cover J ⊆ E of minimum activation cost.

The reduction is as follows. Add a copy V ′ of V and denote by v′ the copy of v ∈ V .
Then replace every edge uv by two edges u′v and v′u with activation costs as follows:

u′v has activation costs {cu′

u′v = cu
uv, cv

u′v = cv
uv};

v′u has activation costs {cv′

v′u = cv
uv, cu

v′u = cu
uv}.

The degree requirements are {rv : v ∈ V }, while nodes in V ′ have no requirements. It is
not hard to see that ratio ρ for the obtained Bipartite Activation Edge-Multicover
instance implies ratio 2ρ for the original instance, see [13, 5].

So from now and on we will consider the Bipartite Activation Edge-Multicover
problem. Whenever we consider an edge e = ab, it is assumed that a ∈ A and b ∈ B. For
b ∈ B, let wb be the rb-th least cost at b of an edge in E incident to b, where wb = 0 if rb = 0.
The residual requirement of b w.r.t. an edge subset J ⊆ E is defined by

rJ
b = max{rb − degJ(b), 0} .

Define the following potential function on edge subsets J ⊆ E

Φ(J) =
∑
b∈B

wbrJ
b

Let opt denote the optimal solution value and let τ be an estimation for opt. The main
step of the algorithm is given in the following lemma, which we will prove later.

▶ Lemma 5. For any ϵ > 0 there exists a polynomial time algorithm that given an edge set
J ⊆ E, a parameter γ > 1, and an integer τ , returns an edge set I ⊆ E \ J such that the
following holds:

(i) ℓI(B) ≤ γτ .
(ii) ℓI(A) ≤ τ if τ ≥ opt.
(iii) Φ(J ∪ I) ≤ α · Φ(J) if τ ≥ opt, where α = 1−

(
1− 1

γ

) (
1− 1

e − ϵ
)
.

The next lemma bounds the activation cost of a feasible solution obtained by picking
edges with least cost at B-nodes.
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▶ Lemma 6. Let J ⊆ E and let F be an edge set obtained by picking for every b ∈ B a set
of rJ

b edges incident to b in E \ J of minimal cost at b. Then J ∪ F is an r-edge-cover and:
(i) ℓF (B) ≤ opt.
(ii) ℓF (A) ≤ θ · Φ(J).

Proof. Since F is an rJ -edge cover, J ∪ F is an r-edge-cover. By the definition of F ,
ℓF (b) ≤ wb for all b ∈ B. Any r-edge-cover has activation cost at least

∑
b∈B wb. Thus we

have

ℓF (B) =
∑
b∈B

ℓF (b) ≤
∑
b∈B

wb ≤ opt .

We prove part (ii). Note that:
ca

ab ≤ θcb
ab for every ab ∈ F .∑

ab∈F

cb
ab ≤ wbrJ

b for every b ∈ B.

From this we get

ℓF (A) =
∑
a∈A

ℓF (a) ≤
∑

ab∈F

ca
ab ≤

∑
ab∈F

θcb
ab = θ

∑
b∈B

∑
ab∈F

cb
ab ≤ θ

∑
b∈B

wbrJ
b = θ · Φ(J) ,

as required. ◀

Theorem 1 is deduced from Lemmas 5 and 6 as follows. We let γ to be a constant strictly
greater than 1, say γ = 2, and we let ϵ = 1/2− 2/e. Then α = 3/4. Using binary search, we
find the least integer τ such that the following procedure computes an edge set J satisfying
Φ(J) ≤ τ/θ.

Algorithm 1:
1 initialization: J ← ∅
2 loop: repeat ⌈log1/α(kθ)⌉ times

apply the algorithm from Lemma 5
- If Φ(J ∪ I) > α · Φ(J) then return “ERROR” and stop
- else do J ← J ∪ I.

After computing J , we compute an edge F set as in Lemma 6, so J ∪ F is a feasible
solution.

▶ Lemma 7. If τ ≥ opt then Algorithm 1 returns an edge set J such that Φ(J) ≤ τ/θ.

Proof. Note that

Φ(∅) =
∑
b∈B

wbrb ≤ k
∑
b∈B

wb ≤ k · opt .

From this we get that

Φ(J) ≤ Φ(∅) · α⌈log1/α(kθ)⌉ ≤ Φ(∅) · 1/kθ ≤ k · opt/kθ = opt/θ ≤ τ/θ ,

as required. ◀
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By Lemma 7, the least integer τ for which the procedure does not return “ERROR”
satisfies τ ≤ opt. By Lemma 5(i) and since the number of iterations in Algorithm 1 is
⌈log1/α(kθ)⌉, we have:

ℓJ(A ∪B) ≤ ⌈log1/α(kθ)⌉(1 + γ)τ = O(log(kθ)) · opt .

Also, by Lemmas 6 and 7 we have:

ℓF (A ∪B) = ℓF (A) + ℓF (B) ≤ θ · Φ(J) + opt ≤ θ · τ/θ + opt ≤ τ + opt ≤ 2 · opt .

Consequently

ℓJ∪F (A ∪B) ≤ ℓJ(A ∪B) + ℓF (A ∪B) = O(log(kθ)) · opt + 2opt = O(log(kθ)) · opt .

This concludes the proof of Theorem 1, except that we need to prove Lemma 5, which we
will do in the next section.

3 Proof of Lemma 5

It is sufficient to prove Lemma 5 for the residual instance with E ← E \ J and r ← rJ ;
namely, we may assume that J = ∅. Let us use the notation

Φ0 = Φ(∅) =
∑
b∈B

wbrb .

Then Lemma 5 can be restated as follows:
For any ϵ > 0 there exists a polynomial time algorithm that given a parameter γ > 1, and an
integer τ , returns an edge set I ⊆ E such that the following holds:

(i) ℓI(B) ≤ γτ .
(ii) ℓI(A) ≤ τ if τ ≥ opt.
(iii) Φ(I) ≤ α · Φ0 if τ ≥ opt, where α = 1−

(
1− 1

γ

) (
1− 1

e − ϵ
)
.

▶ Definition 8. We say that an edge e ∈ E incident to a node b ∈ B is τ-cheap if
cb

e ≤ γτ · ·wbrb/Φ0. Let C denote the set of τ -cheap edges in E, namely

C =
⋃

b∈B

{
e ∈ δE(b) : cb

e ≤ γτ · wbrb

Φ0

}
.

By the definition of τ -cheap edges and Φ0 we have

ℓC(B) =
∑
b∈B

ℓC(b) ≤ γτ · 1
Φ0

∑
b∈B

wbrb = γτ
1

Φ0
· Φ0 = γτ .

This implies that if we choose I to be a subset of τ -cheap edges, then the first condition
ℓI(B) ≤ γτ in (i) will hold. The next lemma shows that if τ is not too small, then the
τ -cheap edges in any feasible solution F reduce the potential by a factor of at least 1/γ.

▶ Lemma 9. Let F be an r-edge-cover and let τ ≥ ℓF (B). Then Φ(C ∩ F ) ≤ Φ0/γ.

Proof. Let D = {b ∈ B : δF \C(b) ̸= ∅}. Since for every b ∈ D there is an edge e ∈ F \ C

incident to b with cb
e > τγ

Φ0
· wbrb, we have ℓF \C(b) ≥ τγ

Φ0
· wbrb for every b ∈ D. Thus

τ ≥ ℓF (B) ≥ ℓF \C(B) =
∑
b∈D

ℓF \C(b) ≥ γτ · 1
Φ0

∑
b∈D

wbrb .
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This implies that
∑

b∈D wbrb ≤ Φ0/γ. Note that for every b ∈ B \ D, δF (b) ⊆ δC(b) and
hence rC∩F (b) = rF (b) = 0. Thus we get

Φ(C ∩ F ) =
∑
b∈B

wbrC∩F
b =

∑
b∈D

wbrC∩F
b ≤

∑
b∈D

wbrb ≤ Φ0/γ .

This concludes the proof of the lemma. ◀

Let now F ∗ be an optimal r-edge-cover and let I∗ = C ∩ F ∗. Since ℓC(B) ≤ γτ (this is
so for any τ) and by Lemma 9 we have:

(i’) ℓI∗(B) ≤ γτ .
(ii’) ℓI∗(A) ≤ τ if τ ≥ opt.
(iii’) Φ(I∗) ≤ Φ0/γ if τ ≥ opt.
This shows that there exists a “good” set of τ -cheap edges, that satisfies property (iii) with a
constant 1/γ that is smaller than α = 1−

(
1− 1

γ

) (
1− 1

e − ϵ
)

in (iii). Unfortunately, we are
not able to find such I∗ in polynomial time. However, we can find an approximate solution
I, that by “budget” τ at A still reduces the potential by a constant factor. The problem we
need to solve is as follows.

Bipartite Activation-Budgeted Maximum Edge-Multi-Coverage
Input: A bipartite graph G = (A∪B, E) with edge-costs {ce : e ∈ E} and node-weights

{wv : v ∈ B}, degree bounds {r(v) : v ∈ B}, and a budget τ .
Output: Find I ⊆ E with ℓI(A) ≤ τ that maximizes

∑
b∈B

wb ·min{degI(b), rb}.

▶ Lemma 10. Bipartite Activation-Budgeted Maximum Edge-Multi-Coverage
admits a (1− 1/e− ϵ)-approximation algorithm.

Proof. We will show that the problem can be cast as the one of maximizing a submodular
function subject to one matroid constraint and one knapsack constraint, that in the value
oracle admits a (1− 1/e− ϵ)-approximation algorithm [2].

Let A be the set of stars with center in A. For S ∈ A with center a let ℓ(S) = maxab∈S ca
ab

be the activation cost at a of S. For S ⊆ A and b ∈ B let degS(b) denote the degree of b in
the union of the stars in S. Let

f(S) =
∑
b∈B

wb ·min{degS(b), rb}

Consider some inclusion minimal solution I to the problem. Then I can be partitioned into
a collection S(I) of stars with centers in A, where no two stars have a node in A in common.
Thus the problem can be cast as maximizing f(S) subject to two constraints:

(i) No two stars have a common center.
(ii)

∑
S∈S ℓ(S) ≤ τ .

Note that the function f(S) is submodular; this is so since for every b ∈ B, degS(b) is
submodular and thus min{degS(b), rb} is submodular. Since non-negative linear combination
of submodualar functions is also submodular, we get that f(S) is submodular.

The constraints in (i) are matroid constraints, of the partition matroid, where for every
a ∈ A we have a part of the stars with center a. The constraints in (ii) are knapsack
constraints. This concludes the proof of the lemma. ◀

The following algorithm computes an edge set as in Lemma 5.
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1. Among the τ -cheap edges, compute a
(
1− 1

e − ϵ
)
-approximate solution I to Bipartite

Activation-Budgeted Maximum Edge-Multi-Coverage.
2. If Φ(I) ≤ αΦ0 then return I, where α = 1−

(
1− 1

γ

) (
1− 1

e − ϵ
)
;

Else declare “τ < opt”.

We have ℓI(A) ≤ τ and ℓI(B) ≤ γτ . Now we show that if τ ≥ opt then Φ(I) ≤ αΦ0. Let
F ∗ be some optimal solution. Then ℓC∩F ∗(A) ≤ opt ≤ τ . By Lemma 9 Φ(C ∩ F ∗) ≤ Φ0/γ,
namely, C∩F ∗ reduces Φ by at least Φ0

(
1− 1

γ

)
. Hence the

(
1− 1

e − ϵ
)
-approximate solution

I to Bipartite Activation-Budgeted Maximum Edge-Multi-Coverage reduces Φ0

by at least Φ0
(
1− 1

e − ϵ
) (

1− 1
γ

)
. Consequently,

Φ(I) ≤ Φ0 − Φ0

(
1− 1

e
− ϵ

) (
1− 1

γ

)
= αΦ0 ,

as claimed.

This concludes the proof of Lemma 5, and thus also the proof of Theorem 1 is complete.
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