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Abstract: We show that the Bekenstein-Hawking entropy of large supersymmetric black
holes in AdS5×S5 emerges from remarkable cancellations in the giant graviton expansions
recently proposed by Imamura, and Gaiotto and Lee, independently. A similar cancellation
mechanism is shown to happen in the exact expansion in terms of free fermions recently
put-forward by Murthy. These two representations can be understood as sums over in-
dependent systems of giant D3-branes and free fermions, respectively. At large charges,
the free energy of each independent system localizes to its asymptotic expansion near the
leading singularity. The sum over the independent systems maps their localized free en-
ergy to the localized free energy of the superconformal index of U(N) N = 4 SYM. This
result constitutes a non-perturbative test of the giant graviton expansion valid at any value
of N . Moreover, in the holographic scaling limit N →∞ at fixed ratio Entropy

N2 , it recovers
the 1/16 BPS black hole entropy by a saddle-point approximation of the giant graviton
expansion.
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1 Introduction

Recently, the counting of small 1
16 -BPS states in 4d U(N) N = 4 SYM on R×S3 [1, 2] has

been nicely related to the problem of counting gravitons and giant brane BPS excitations
in AdS5 × S5 [3, 4] [5, 6].

It is known that upon truncation at powers of q of order N or smaller, the 1
16 -BPS index

I(q) matches the N -independent index IKK(q) counting BPS multigravitons in AdS5 ×
S5 [1]. The coefficients in the q-series of I(q) that depend on N appear only at powers
of q of order N or larger [7, 8]. This is because the traces of products of more than N BPS
gauge covariant letters can be always written as a linear combination of multiple single trace
gauge invariant states. The dependence on N implied by these constraints is essential to
obtain a growth of states as N grows. Should there be no such dependence, there would be
no chance to match the order N2 growth predicted by the dual black hole entropy (which
we know is not the case).
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The q-monomials with N -dependent coefficients can be reorganized in linear combi-
nations of subsums with an overall pre-factor qnN , 1 where n is a positive integer. Such
reorganization is obviously non-unique. 2 As recognized in [3, 4] [5, 6], there is at least
one such reorganization for which the qnN -weighted subsums count n D3 brane excitations
wrapping supersymmetric and contractible S3-cycles in S5 .

Whether this organizational pattern continues to hold for the complete q-series I(q)
remains an open question. 3 For example, it is possible that new stringy excitations
in AdS5 × S5 are required at large enough N and charges of order N2 in order to keep
the correspondence going. This puzzle is important to elucidate because for such charges
the number (counted with signs) of 1

16 -BPS gauge-invariant states in the gauge theory, the
coefficients of the q-monomials, grows with N as the exponential of the dual black hole
entropy [9–11]. Thus, in a sense, it is a priori unclear whether such an entropy growth can
be understood by working solely within the D3 brane systems prescribed by the proposal
of [3].

Another giant graviton-like reorganization of the index, an exact one by construction,
has been recently put forward in [12]. 4 This reorganization is not quite the same as the
proposal of [3] – as explained in [13] – but it seems to be closely related to it as argued
in [12] and [14] . Being an exact expansion, it would be useful to understand the physics
behind it and how close it is to the physics of the proposals of [3] and [5]. 5

The main goal of this paper is to study the giant graviton representations of [3, 5, 6]
and [12] at large charges and to compare the results with the ones obtained with the canon-
ical matrix integral representation [10, 18–22]. Moreover, we will also aim at understanding
whether at large-N the entropy of dual 1/16 BPS black holes can be recovered from the
perspective of giant-brane expansions. We advance that the answer to both these previous
quests turns out to be positive.

Using the representation of [3] and working in the macrocanonical ensemble, at large
charges and for all N we will show that an exponentially large number of cancellations
occurs when summing over the giant brane number n. Such cancellations can be explained
in terms of an extremization mechanism for the giant graviton number n . At N ≫ 1

this mechanism explains how the dual black-hole entropy is recovered within the giant
graviton expansion, and its derivation provides, in particular, a first-principle explanation

1Sometimes it will be more convenient to work with chemical potentials e.g., t, dual to the rapidities
e.g., q = e2πit .

2For instance, assume N = 8 then a monomial q16 in the total index can be divided in many ways into
contributions coming from the subsums labelled by n = 1 and n = 2 .

3For the Schur limit of the 1
16

-BPS index the correspondence applies to the complete q-series [5, 6].
4This study covers a family a matrix integrals that include the superconformal index as a particular

case.
5It would very interesting to understand whether there is a systematic way to identify holographic

dualities of this kind starting from the partition function of free gauge theories. The approach put forward
in [5, 6] seems natural to start thinking about this problem. The approach of [12] gives a first step in such a
direction as well. The next step though, which would be to understand how to translate the averages over
free-fermion systems to partition functions of brane systems in AdS5 × S5 , seems more involved. Perhaps
some of the ideas in [15, 16] may be useful, at least to study 1

4
[17] and 1

8
-BPS indices, and to understand

what stringy/brane excitations the individual free-fermion contributions are counting.
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of the large-N extremization mechanism proposed in [23]. More generally, the mechanism
here identified implies that the latter cancellations continue to happen at large charges for
any value of N , not just in the large-N expansion. It will be also shown that a similar
extremization mechanism holds for the exact giant graviton-like representation of [12] and
checked – against numerics – how such mechanism exactly accounts for the exponentially
large cancellations happening after summing over individual giant graviton-like subseries
(in appendix D, see plot 1).

In the representation of [3, 5, 6], this extremization mechanism will tell us that the
black hole entropy [24–26] comes from the superposition of a pair of complex conjugated
saddle points whose semiclassical contributions evaluate the sum over giant graviton brane
number n. The canonical matrix integral representation of the index [1] is known to be
dominated by a pair of complex conjugated eigenvalue configurations too [11, 27–30][8].
The latter and the former pairs are related: they provide two different interpretations of
the very same contributions to the index at large charges of order N2. 6 It remains for the
future to understand the physics of the excitations accounting for subleading corrections in
both, the canonical matrix model and giant graviton(-like) expansions, and for both small
and large black holes. 7 8

The paper is organized as follows. After a summary of results, in section 2 we explain
how the large-charge approximation simplifies the counting of states, and introduce tools
that will be useful later on. In section 3 we introduce conventions, and the two represen-
tations of the superconformal index that we will study. In section 3.3, and as warm-up for
the analysis of the giant graviton indices, we compute the large charge asymptotics of the
superconformal index using a novel approach that turns out to be convenient for our scope.
In section 4 we apply the previously mentioned asymptotic tools to understand how the
large-charge growth of the index is matched by the large-charge counting of giant gravitons
for all N not just at N ≫ 1 . In appendix C we explain the role played by the choice of
contour of integration [6][17] in the large charge expansion. In appendix D we move on to
study the exact representation of the superconformal index put-forward in [12] and con-
clude explaining how exponentially large cancellations among individual giant graviton-like
contributions are understood in the macrocanonical ensemble.

1.1 Summary of main results

Let us briefly introduce and summarize our main results. Detailed expositions will be
presented in the main body of the paper.

As mentioned in the introduction, the authors of [3, 5, 6] proposed that the supercon-
formal index I of four-dimensional U(N) N = 4 SYM on S3 can be expanded in a sum over

6It would be interesting to understand what is the physical meaning in the microcanonical ensemble of
the Z2 operation that exchanges the two leading saddles. What are the two groups of 1/16 BPS states that
carry charge ±1 under this operation?

7In the context of the canonical matrix integral representation of the index, this problem has been
partially analyzed in [30, 31].

8It would be also interesting to study how the defects recently studied in [32] deform the giant-graviton
expansions.
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indices In := IKK In1,n2,n3 of stacks of n1, n2, n3 giant graviton D3-branes wrapping three
contractible S3-cycles in S5 . 9 The details of this proposal will be given in subsection 3.1.
Schematically, it looks as follows

I(t) =
?
Igg(t) :=

∑
n1,n2,n3

In(t) . (1.1)

In this relation t denotes the set of chemical potentials {φ1, φ2, φ3, τ} 10 dual to the charge
operators

Q = {Q1,Q2,Q3, J} . (1.2)

11 The three spin-twisted R-charges Q1,2,3 and the right spin that we denote here as J ,
respectively. 12 From now on we call them R-charges and spin, respectively.

Let the lattice of eigenvalues of the operators (1.2) over a basis of eigenstates spanning
the space-of-(BPS)-states in N = 4 SYM be

SN=4 = {Q} (1.3)

13 Let the lattice of eigenvalues of (1.2) over a basis of eigenstates in the space-of-
(BPS)states of the n-brane theory be

S(n)gg = {Q(n)
gg } (1.4)

Let us denote the union of all possible BPS lattices of charges of n-brane theories as

Sgg = {Qgg} = ∪
n
S(n)
gg . (1.5)

14 With these definitions in mind, we put forward the following proposal to test giant
graviton identities like (1.1). The indices of N = 4 SYM and of the proposed n-giant brane
theories can be encoded in formal Fourier expansions 15 at the domain t = t̃ ∈ R4 (to
avoid issues with convergence in the discussion below one can freely replace the index by its
truncation to the finite sum of terms necessary to count states at certain level of charges )

I(t)=
∑
Q

a(Q)e2πitQ , In(̃t) =
∑
Q

(n)
gg

an(Q
(n)
gg )e2πĩtQ

(n)
gg . (1.6)

9The fact the cycles are contractible implies the existence of tachyons: the low energy spectrum of this
D3-branes is rather different from that of N = 4 SYM.

10Later on we will use the convention ∆I = − 2πiφI , I = 1, 2, 3 , and ω1 = − 2πiτ , after fixing ω2 →
±2πi + ∆1 +∆2 +∆3 − ω1 .

11This is the same set of charges defined in (3.24) and that will be denoted as Q̃′ in section 4.
12By R-charges and spin we refer to the charges that have such an interpretation from the perspective of

the 4d N = 4 SYM leaving in the boundary of AdS5. From the perspective of the giant branes the meaning
of R-charge and spin is exchanged.

13Purposely denoted with the same letter as the operators. We hope this does not create much confusion
in the reader.

14All these three charge lattices can be projected in R4 (with degeneracies). They are, closely related to
weight lattices of SO(6)× SO(4) .

15Their truncations are finite Fourier series.
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The Fourier expansion coefficients of I(t) can be computed by computing the Laurent ex-
pansion of its matrix integral (plethystic) representation around q = e2πit = 0 and they
are bound to be integer numbers which can be either positive or negative. The Fourier
expansion coefficients of In(t) can be computed from Laurent expansions of their plethystic
representation (and truncations of it) by carefully expanding its plethystic representation
around q̃ = e2πit̃ = 0 . By carefully expanding, we mean that we only take Laurent expan-
sions in q̃’s around the origin when they appear as second or third arguments in the elliptic
functions Γe and θ0 that define the integrand of In(̃t) (and that will be reported in (3.36)
and(3.38)). 16 Then, after integrating over gauge rapidities one obtains the an’s, which are
also bound to be integer numbers that can be either positive or negative. 17

The total sum of giant brane indices (1.1) can be also written as a Fourier series

Igg(t) =
∑
Qgg

agg(Qgg)e
2πitQgg , (1.7)

where
agg(Qgg) :=

∑
n

an(Qgg) . (1.8)

For later convenience it should be said that the sum over n in (1.9) is not a series
because an(Qgg) vanishes for large enough values n , at a fixed Qgg . 18

It is clear that Sgg is much larger than SN=4 , and also that a necessary condition for the
equality (1.1) to hold is SN=4 ⊂ Sgg . Our discussion above implies that a microcanonical
version of the proposal (1.1) is

agg(Qgg) :=
∑
n

an(Qgg) =
?

{
a(Q) , if Qgg = Q ∈ SN=4

0 , otherwise
. (1.9)

Our proposal (1.9) to test (1.1) says that the sum over giant graviton numbers n must
project the BPS giant graviton spectrum Sgg to the much smaller gauge-theory spec-
trum SN=4 of BPS states. In forthcoming work we will study (1.9) at finite values of
charges Q .

As said before, the proposal (1.1) has been checked for small enough values of Q ∼
N [3][6]. Our goal in this paper is to show that at large charges Q→∞ (and for all N) a
precise and more general version of the following asymptotic relation holds 19

|
∑
n

an(Q)| ∼ |a(Q)| ∼ e(
√
3)31/3π c J2/3N2/3

. (1.10)

16These are the elliptic (modular-like) parameters appearing after the semicolons.
17In particular the Fourier series computed in this way will not start with 1 as for the usual index. That

is because of the presence of tachyons. These contributions cancel out after suming over n, provided one
has correctly integrated out gauge rapidities.

18 This is because by definition the generating function of the integer number an(Q) is a q-series that
starts at a power larger than qnN . Thus, schematically speaking, at any Q the integrals (1.11) that define
the microcanonical indices an(Q) are forced to vanish for every n larger enough than Q/N .

19The precise definition of the symbol ∼ will be explained below.
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This is, that at large charges and for all N the sum over the giant graviton microcanonical
indices an evaluated at charges Q ∈ SN=4 matches the exponential growth of 1

16 -BPS states
at charges Q .

In this relation the quantity c is an order 1 real contribution that depends on how fast
the spin J grows in relation to the R-charges, we will come back to comment on it below
(e.g. a particularly simple case where c is simply a c-number will be reported in (3.77) but
our results cover more general cases).

To illustrate, let us briefly explain how the particular result (1.10) is obtained. In
subsection 2.3 we will introduce a large-charge localization Lemma that will help us to
compute localized contributions aloc±,n to the giant graviton index. The microcanonical index
of giant gravitons is defined as follows

an(Q) :=

∫
Γ
dt In(t) e−2πitQ . (1.11)

In this equation Γ is a period (of the integrand) in the four-dimensional moduli space of
chemical potentials, denoted as t . By saying that Γ is a period we mean that it is a cycle of
periodicity of the integrand (following from quantization and periodicity of the dual flavour
charge lattice S(n)gg ). It is important to say that Γ is independent of the giant graviton
number n . 20 In this equation the gauge-rapidities have been already integrated out using
saddle-point approximation. 21

The aloc±,n are two equally-dominating contributions to (1.11) in its asymptotic expansion
at large R-charges, assuming generic growth for the spin J , and any n

an(Q) ∼ aloc+,n(Q) + aloc−,n(Q) . (1.12)

These two contributions ± are complex conjugated to each other

aloc±,n(Q) =

∫
Γ±

dt I(±)
n (t) e−2πitQ . (1.13)

The large-charge localization Lemma of 2.3 will tell us that the contours Γ± can be under-
stood as small subpieces of the contour Γ , centered at the leading essential singularities of
the integrand In(t) in the moduli space of chemical potentials t . These singularities are
located at specific values of the chemical potentials φ = {φ1, φ2, φ3} dual to R-charges. In
the cases of interest to us, there are two types of such divergences that we label by the two
choices of signs ± . The localized form of the integrands, I(±)

n (t), are the leading asymptotic
expansions of In(t) around the essential singularities ± .

After commuting the sum over n with the integrals over τ in (1.11) one obtains∑
n

aloc±,n(Q) =

∫
Γ±

dt
(∑

n

I±n (t)
)
e−2πitQ . (1.14)

20That there is a common cycle for all the charge lattices S(n)
g can be seen from the definitions of In(t)

(given in (3.33)). Namely, such integral is invariant under changes of rapidities t → t+ 1 for all n .
21The contour of integration over gauge rapidities could depend on n , but in the large-charge approxi-

mation it is enough to localize its integral to its leading saddle point u⋆
ab = 0 which is independent on n .

Thus, effectively, if there is such dependence it disappears at large charges. The details on our conclusions
regarding the integration over gauge rapidities are presented in appendix C.
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As it will be explained in the main body of the paper, the sum over n can be replaced by
an integral over a compact domain whose asymptotic behaviour around the singularities ±
(and at large R-charges) can be obtained by the saddle point method∑

n

I(±)
n (t) ∼ I(±)

n⋆ (t) . (1.15)

The saddle point condition ends up taking a simple linear form that fixes n = n⋆ := n⋆(t)

as a function of t. The function n⋆(t) is defined by a linear relation of the schematic form

φ · n⋆
± =

N

τ2
f±(t) , (1.16)

where f±(t) are cubic polynomials in t such that |f±(t)| is finite and non zero as τ → 0 .
The explicit form of this equation will be specified in the main body of the paper. 22

To compute the asymptotic behaviour of
∫
Γ±

dt I(±)
n⋆
±
(t)e−2πitQ at large Q, not just at

large R-charges as before, but also at large spin J , we use again a saddle point evaluation∫
Γ±

dt I(±)
n⋆
±
(t)e−2πitQ ∼ I(±)

n⋆
±
(t)e−2πitQ =: aloc±,n⋆

±
. (1.17)

This time the saddle-point condition fixes the chemical potentials t, and in particular the
one dual to spin J, τ , to a function of charges Q (led by the spin J)

τ = τ⋆±(Q) = cτ±
N2/3

J1/3
, (1.18)

with cτ± being order 1 contributions that depend on how fast the spin J grows in relation
to the R-charges. At this point we simply collect results and obtain∑

n

an(Q) ∼ aloc+,n⋆
+
+ aloc−,n⋆

−
(1.19)

which after trivial algebraic manipulations leads to the announced asymptotic relations (1.10).
By composing (1.16) with (1.18) we obtain the scaling properties of the complex saddle

point configuration that dominates the sum over giant gravitons

c1,± · n⋆
± ∼ c2,±

J2/3

N1/3
. (1.20)

In this equation c1,± and c2,± , again, represent order 1 23 contributions that depend on how
fast the spin J grows in comparison with the R-charges. In particular, we note that c2,±
are complex quantities. 24

22e.g. the simplest possible example comes from equation (4.29)+(4.42) after constraining ∆3 = −∆1 −
∆2 − 2ω1 ∓ 2πi , and ∆2 = ∆1 , and then identifying ω1 → −2πiτ and ∆1 → −2πiφ .

23If one fixes the angular momentum J to be small and instead considers large R-charges then the
conclusions are different (See the discussion in the last paragraph of subsection 3.3). In this paper we will
not study in detail this other domain of the spectrum of charges.

24They are related to the constant c in (1.10).
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In summary, the asymptotic relations (1.10) show that the giant graviton proposals
of [3][5, 6] capture the large charge (for all N) asymptotic growth of the microcanonical
superconformal index. Moreover, using the large-charge localization lemma we show that
in the holographic scaling limit

Q → ∞ ,
Q

N2
= fixed , (1.21)

the giant-graviton representations exactly recover the entropy of 1
16 -BPS black holes in AdS5 ,

at generic values of the ratio Entropy
N2 , where in our conventions G5 =

2N2

π . 25 Namely,

|agg(Q)| → dBH(Q) := eSBH(Q) (1.22)

upon imposition of the non-linear constraint among charges that in the bulk corresponds
to avoiding CTC’s. More on this, will be said below.

2 State-counting at large charges

The large charge approximation has been a useful tool in varied contexts as, for example,
the computation of anomalous dimensions, correlation functions, partition functions, the
conformal bootstrap, cf. [34–38] [39]. Let us explain briefly how this tool applies to the
counting of operators in quantum statistical system. 26

Consider a 2π-periodic complex function f = f(x) = f(x+2π) with a set of singularities
at x = xa,sing ∈ R , a = 1, 2, . . ., such that

f

(
xa,sing +

δx

Λ

)
∼

Λ→∞
Λnf̃a (δx) , n > 0 , (2.1)

where the definition of the symbol ∼
Λ→0

, which denotes an asymptotic relation, is given in
appendix A.

Let us consider the average

d(Q) :=

∫
Γ
dx ef(x)− ixQ, Q ∈ Z , (2.2)

over a cycle Γ that can be decomposed in an integral combination of Lefschetz thimbles Γx⋆

ending at saddle points x = x⋆ of the exponent f(x) + ixQ .
25Note that for the black hole scaling (1.21) the absolute value of the complex saddle points (1.20) becomes

of order N as expected.
26In the context of superconformal and topologically twisted indices a particular case of one such large-

charge approximation known as the Cardy-like approximation has been thoroughly studied in the last few
years [10, 18–21] [22, 40–50][51–54][55]. Perturbative corrections to the leading asymptotic behaviour of
four-dimensional N = 1 superconformal indices in the large charge expansion have been exactly matched
against higher-derivative corrections to the leading semiclassical onshell action of AdS5 black holes in the
relevant dual supergravities [56–58]. It would be very interesting to study the large charge expansion of
the partition function at non-vanishing coupling , of say N = 4 SYM , at least in near-BPS sectors [59–
61][62][63]. The goal being to try to extract universal lessons that could be compared against recent
holographic expectations e.g. [64, 65].
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Under these assumptions, the leading asymptotic behaviour of d(Q) in the large charge
approximation

Q = qΛn+1 , Λ ≫ 1 , q = finite, (2.3)

is determined by the asymptotic form of the saddle points x∗ , which in the large charge
regime become infinitelly close to the singularities xa,sing,

x∗ = xa,sing +
δx⋆

Λ
, (2.4)

with
δx∗ : f̃ ′

a(δx
∗) − iq = 0 . (2.5)

Then, under the previous assumptions and in the large charge approximation, we have

d(Q) ∼exp
Λ→∞

eΛ
n
(
f̃a⋆ (δx

⋆
a⋆

)− i(xa⋆,singΛ+δx⋆
a⋆

)q
)

(2.6)

where a⋆, δx⋆a⋆ label the singularity a = a∗ and the solution δx⋆ = δx⋆a⋆ of (2.5), respectively,
that maximize the real part of the exponent Λn

(
f̃a(δx

⋆)−i(xa,singΛ+δx⋆)q
)
. The definition

of the symbol ∼exp
Λ→∞

, which denotes an asymptotic relation, is given in appendix A.

2.1 An illustrative example

As an example, we briefly discuss a simple toy model. Let us assume Q = qΛ3 to be a
positive integer,

f(x) := −πi csc2
(
x

2

)
. (2.7)

In this case, we have n = 2 , and

f̃a(x) := −4πi

x2
. (2.8)

Let us fix the integration cycle as follows

Γ :=
{
y ∈ C | y = x +

(
−1 + i

√
3
)

3
√
π

3
√
Q

, x ∈ [0, 2π)
}
. (2.9)

Obviously d(Q) is convergent, because Γ is compact and it does not intersect the set of
singularities

xa,sing = 0 + 2πi(a− 1) , a = 1 , 2 , . . . . (2.10)

There are three saddle points around each singularity xa,sing. At large charge, they take
the form

δx⋆ :=

{(
−1− i

√
3
)

3
√
π

3
√
Q

,
2 3
√
π

3
√
Q

,

(
−1 + i

√
3
)

3
√
π

3
√
Q

}
. (2.11)

Notice that we have engineered the integration cycle Γ to intersect the last saddle. This
guarranties |d(Q)| ↗ ∞ for Q ↗ ∞ . Indeed, one can check numerically for Q ∼ 100

and larger, that the integral d(Q) localizes to the integrals over the infinitesimal vicinity
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of the contour Γ that becomes infinitely close to the singularities. More precisely, at large
charges, d(Q) localizes to its saddle-point approximation which is, at leading order, 27

d(Q) ∼exp
Λ→∞

exp

(
6i 3
√
πQ2/3(

−i +
√
3
)2
)

, for Q a positive integer . (2.13)

The prediction coming from the saddle point intersected by Γ for Q ≪ 0 is d(Q) = 0 ,
which happens to be the correct answer as well, i.e., the answer we computed from the
direct numerical evaluation of the integral d(Q) at Q ≪ 0 . This happens because the
cycle Γ has zero intersection number with the Lefschetz thimble ending at the saddle point
that produces exponential growth of the quantity ef(x

⋆)−ix⋆Q at Q ≪ 0 , which is the first
one in (2.11).

2.2 Application to the superconformal index

In the case of the superconformal index, we are interested in computing integrals over
multidimensional cycles of the form

d(Q′) =

∫
Γ
dx

∫
Γgauge

du e−Seff(x;u)−ix·Q′
, (2.14)

at large and positive integer charges Q′ . Here, x denotes the set of four chemical potentials
dual to four global charges Q′. 28 Γ and Γgauge are integration cycles that we assume can
be decomposed in integral combinations of Lefschetz thimbles of Seff(x;u) . The effective
action −Seff(x;u) is the logarithm of the integrand of the superconformal index I(x) :=∫
Γgauge

du e−Seff(x;u) . As it will be shown below, Seff(x;u) has leading singularities located
at

x4,sing , x5,sing = 2πi(a4,5 − 1) . (2.15)

The free energy takes the form

Seff

(
x1, x2, x4,sing +

δx4
Λ

, x5,sing +
δx5
Λ

;u
)
∼

Λ→∞
s̃(x1, x2,

δx4
Λ

,
δx5
Λ

;u) , (2.16)

where
s̃(x1, x2,

δx4
Λ

,
δx5
Λ

;u) = Λ2 s̃Λ(x1, x2, δx4, δx5;u) , (2.17)

and most importantly, these two functions are asymptotically-equal

s̃Λ(x1, x2, δx4, δx5;u)

s̃(x1, x2, δx4, δx5;u)
∼

Λ→∞
1 . (2.18)

27Having into consideration the contributions from the two saddles whose thimbles are intersected by the
contour of integration [0, 2π], labelled by a = 1, 2, and one-loop logarithmic corrections about each one of
them, one obtains an improvement of (2.13). Comparing absolute values for simplicity, as we will eventually
do, one obtains

|d(Q)| →
Λ→∞

2 × π2/3

√
3Q2/3

× e
π2/3e

3
2

√
3 3√π

3
√

Q2

√
3Q2/3 . (2.12)

Now the quotient between the left and right-hand sides is 1 at Λ → ∞.
28In terms of the usual notation for the chemical potentials of N = 4 SYM {∆1,∆2,∆3, ω1, ω2} ,

with ∆3 = −∆1 −∆2 + ω1 + ω2 , we define −ix1,2,3 = ∆1,2,3, and −ix4,5 = ω1,2 .
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Notice that the singularities (2.15) are not points but a 2-cycle Γ1,2 spanned by the vari-
ables x1,2 (times the integration cycle Γgauge over the gauge potentials). Then, following
analogous reasoning as before and using (2.18), it follows that at large charges

Q′
1,2 = q′1,2Λ

2 , Q′
4,5 = q′4,5Λ

3 , (2.19)

one has

d(Q) ∼exp
Λ→∞

exp
(
Λ2
(
−s̃(x⋆1, x⋆2, δx⋆3, δx⋆4;u⋆)− ix⋆1q

′
1 − ix⋆2q

′
2 − iδx⋆4q

′
4 − iδx⋆5q

′
5

))
, (2.20)

where the ⋆ denotes one of the saddle points that maximize the real part of the exponent
in (2.20) among those intersected by the Lefschetz thimbles that compose the original
cycle Γ⊗Γc. As in the simplest toy example before, such saddle points will be asymptotically
close to the singular locus Γ1,2 × Γgauge of Seff(x;u) in the scaling limit (2.19). Note that
the first perturbative corrections in the 1

Λ -expansion are also captured by (2.20). They are
encoded in the Laurent expansion of s̃(x) around x4 = x5 = 0.

2.3 Large-charge limit as a localization mechanism

Let us come back to a generic function f = f(x) with a regular singularity xsing

ixsingQ = 2πin , n ∈ Z , (2.21)

such that
f

(
xsing +

δx

Λ

)
∼

Λ→∞
Λnf̃Λ (δx) , n > 0 , (2.22)

with a single dominating saddle x⋆ = xsing +
δx⋆

Λ . Let us further assume that given the
equality

Λnf̃Λ(x) = f̃
(x
Λ

)
, (2.23)

the functions f̃Λ(x) and f̃(x) are asymptotically-equal (2.18)

f̃Λ(x)

f̃(x)
∼

Λ→∞
1 . (2.24)

Then, as we explained before, in the large-charge scaling limit

Q = qΛn+1 , (2.25)

it follows that ∫
Γ
dxef(x)−ixQ ∼exp

Λ→∞

∫
Γδx⋆

d(δx)eΛ
n(f̃Λ(δx)−iδxq) , (2.26)

where Γδx⋆ is the Lefschetz thimble of f̃Λ(δx) − iδxq intersecting the dominating saddle
point δx⋆.

After scaling the variable δx→ yΛ , equations (2.26) and (2.23) imply∫
Γ
dxef(x)−ixQ ∼exp

Λ→∞

∫
Γy⋆

dyef̃(y)−iyQ , y⋆ :=
δx⋆

Λ
, (2.27)
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where Γy⋆ is a Lefschetz thimble of f̃(y) − iyQ that ends up at the dominating saddle
point y⋆ . 29

Thus, to compute the asymptotic behaviour of d(Q) at large values of charges

Q ∼ Λn+1 , (2.28)

we only need to plug the asymptotic expansion of f̃(x) around x = 0

f̃(x) =
f̃ (−n)

xn
+

f̃ (−n+1)

xn−1
+ O(x2−n) , (2.29)

into the integral ∫
Γy⋆

dyef̃(y)−iyQ . (2.30)

This integral will be called the large-charge-localization or large-charge coarse grain of the
original integral

∫
Γ e

f(x)−ixQ , and it is much simpler to study. Roughly speaking, this
localization mechanism tells us that at large charges the function f(x), which could be rather
complicated, can be substituted by its asymptotic expansion f̃(y) around the singularity y =

0 , i.e., the singularity that attracts the leading saddle point y = y⋆ at large charges. It
should be also noted that the integration cycle needs also to be modified as indicated
before. The subleading and perturbative terms in the asymptotic expansion of f̃(y) give
exact perturbative corrections to the leading prediction for the asymptotic growth of d(Q).

The generalization of this localization mechanism to the case where f(x) depends on
more than one variable (when the singularities can be not only points, but also cycles), is
straightforward. For example, the microcanonical index (2.14), is such that the localized
action s̃ (essentially the series expansion of the complete effective action about the leading
singularity)

s̃
(
x1, x2,

x4
Λ
,
x5
Λ
;u
)
∼

Λ→∞
Λ2s̃Λ(x;u) , (2.31)

is (weakly) equal to s̃Λ
s̃Λ(x;u)

s̃(x;u)
∼

Λ→∞
1 . (2.32)

Then as a consequence of (2.20) it follows the large-charge localization formula or lemma:

d(Q) ∼exp
Λ→∞

∫
Γy⋆,u⋆

dydu e−s̃(y;u)−iy·Q . (2.33)

In this equation Γy⋆,u⋆ is a 4+N -dimensional integration contour. It is also a combination
of Lefschetz thimbles of −s̃(y;u)− iy ·Q and it intersects the leading saddle point(s) y⋆ , u⋆

∂us̃(y;u)
∣∣∣
y=y⋆,u=u⋆

= 0 , ∂y s̃(y;u)
∣∣∣
y=y⋆,u=u⋆

− iQ = 0 , (2.34)

with intersection numbers defined by the decomposition of the original integration con-
tour Γ×Γgauge in terms of the Lefschetz thimbles associated to the original exponent S(y;u)−
iy ·Q.

29Note that we have dropped out a factor of Λ which is subleading with respect to the eΛ
2

-growth that
comes from the exponential in the integrand.
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In conclusion, to compute the asymptotic behaviour of d(Q) at large values of charges
we need, first, to compute the asymptotic expansion of s̃(y1, y2, y4, y5) around y4 = y5 = 0

s̃(y;u) =
s̃(1,1)(y1, y2;u)

y4y5
+

s̃(1,0)(y1, y2, y4, y5;u)

y4
+

s̃(0,1)(y1, y2, y4, y5;u)

y5
+ subleading

(2.35)

which, by construction, is the same as the asymptotic expansion of the complete effective
action S(y, u) around y4 = y5 = 0. Second, we must compute the leading saddle point
values y⋆ and u⋆ of the desired truncation of (2.35). Then, at last, we obtain the following
asymptotic formula

d(Q) ∼exp
Λ→∞

e−s̃(y⋆;u⋆)−iy⋆·Q . (2.36)

In the following sections we will use this recipe, and particularly its integral version,
the large-charge localization formula (2.33), to compute asymptotic behaviours.

3 The 1
16

-BPS index at large charges

The superconformal index of 4d N = 4 SYM on R× S3 is defined as [1]

I = TrH
[
(−1)F pJ1pJ2w

Q1
1 wQ2

2 wQ3
3

]
(3.1)

with the constraint
w1w2w3

p1p2
= 1 . (3.2)

Substituting it in (3.1) fixes the four-dimensional lattice of charges within the five-dimensional
lattice spanned by

{
J, J,Q1, Q2, Q3

}
that commutes with the two super (conformal) charges

that define the index I .
The commuting charges in (3.1) are defined as follows

J = E − JL + JR , J̄ = E − JL − JR ,

Q1 = −q2 − q3 , Q2 = −q1 − q3 , Q3 = −q1 − q2 ,
(3.3)

in terms of the dilation operator E, the left and right angular momenta JL,R in the Cartan
of the SO(4) = SU(2)×SU(2) isometries of S3, and q1, q2 and q3 are the Cartan elements
of the SO(6) R-symmetry. 30 The following definitions of rapidities and chemical potentials
will be useful later on

w1 = e−∆1 , w2 = e−∆2 , w3 = e−∆3

p1 = e−ω1 , p2 = e−ω2 .
(3.4)

For gauge group U(N) the index can be written in the form [1]

I :=

∮
dµ

N∏
a=1

N∏
b=1

Pexp (i(w; p1, p2)Uab) , (3.5)

30We use the conventions and values of charges of fundamental letters of e.g. [66].
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where Ua is the a-th diagonal component of a diagonal unitary matrix, and Uab = Ua/Ub.
The measure in (3.5) is defined as

dµ :=
1

N !

N∏
a=1

dUa

2πiUa
·

N∏
a̸=b=1

(1− Uab) , (3.6)

and
i(w; p1, p2) = i (w1, w2, w2; p1, p2) := 1− (1− w1) (1− w2) (1− w3)

(1− p1)(1− p2)
. (3.7)

The plethystic exponential is defined as usual

Pexp (R (x1, . . ., xd)) := e
∑∞

l=1

R(xl1,...,xld)
l , (3.8)

for any rational function R of d rapidities x1, . . . , xd. In particular,

Pexp (Uab) =
1

1− Uab
, a ̸= b . (3.9)

Summarizing different representation for the index that can be found in various refer-
ences [1][2][67] (see also, for instance [68]) we recall that

I = N
∮ N∏

a=1

dUa

2πiUa
·

N∏
a ̸= b=1

exp

(
−

∞∑
l=1

(
1− wl

1

) (
1− wl

2

) (
1− wl

3

)
l
(
1− pl1

) (
1− pl2

) U l
ab

)

= N
∮ N∏

a=1

dUa

2πiUa
·

n∏
a ̸= b=1

∏3
I=1 Γe (wIUab; p1, p2)

Γe (Uab; p1, p2)
,

(3.10)

where the normalization (or zero modes) factor is defined as

N := N (N,w1, w2, w3; p1, p2) =
(Pexp (i(w; p1, p2)))

N

N !
, (3.11)

and

Pexp (i(w; p1, p2)) := (p1; p1) (p2; p2)
3∏

I=1

Γe (wI ; p1, p2) . (3.12)

Two ways of implementing the constraint among rapidities

The constraint
w1w2w3

p1p2
= 1 , (3.13)

can be implemented in various ways.

Expansion A) The implementation (A)

w3 :=
p1p2
w1w2

, (3.14)
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(and analogously for the case obtained by the permutation of the indices 1, 2, 3 of w’s)
defines the following series expansion

I =
∑

J ′, J
′
,Q′

1,Q
′
2

d
(
J ′, J

′
, Q′

1, Q
′
2

)
pJ

′
1 pJ̄

′
2 w

Q′
1

1 w
Q′

2
2 , (3.15)

in terms of the four charges

J ′ := J +Q3 , J̄
′ := J̄ +Q3 , Q

′
1,2 := Q1,2 − Q3 . (3.16)

For (3.15) to be a well-defined expansion, i.e. for it to follow from the original repre-
sentation (3.5), requires imposing the following condition (A)

|p1p2| < |w1w2| , (3.17)

which together with
|pa| , |w1,2,3| < 1 , (3.18)

guarantees absolute convergence of the series in the exponent of the plethystic exponential
defining the index (3.10).

Scaling limit A) For later purposes, we note that the condition (3.17) implies that in a
scaling limit to the boundary of the convergence region of representation A)

p1,2 → 1− ϵ → 1− , (3.19)

necessarily
Re(∆I)→ 0+ . (3.20)

where I = 1, 2, 3 . Thus, we are free to assume that in such a scaling limit

∆I → Im(∆I) i , (3.21)

where Im(∆I) is a generic real number (which eventually we will require to be different
from 2πn, with n integer).

Expansion B) The implementation (B)

p2 :=
w1w2w3

p1
, p2 ̸= p1 , (3.22)

(and analogously for the case obtained by the permutation of the indices 1, 2 of p’s) defines
the following series expansion

I =
∑

J̃ ′,Q̃′
1,Q̃

′
2,Q̃

′
3

d̃
(
J̃ ′, Q̃′

1, Q̃
′
2, Q̃

′
3

)
pJ̃

′
1 w

Q̃′
1

1 w
Q̃′

2
2 w

Q̃′
3

3 , (3.23)

that counts degeneracies as a function of the four charges

J̃ ′ := J − J , Q̃′
1,2,3 := Q1,2,3 + J . (3.24)
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These charges relate to (3.16) as follows

J̃ ′ = J ′ − J
′
, Q̃′

1,2 = Q′
1,2 + J

′
, Q̃′

3 = J
′
. (3.25)

Obviously, the two degeneracies d and d̃ are related by the composition conditions (3.25).
For (3.23) to be a well-defined expansion of the index I, i.e. for it to follow from the

original representation (3.5), requires imposing the following condition (B)

|w1w2w3| < |p1| . (3.26)

Scaling limit B) For later purposes, we note that the condition (3.26) implies that in a
scaling limit to the boundary of the convergence region of representation B)

w1,2,3 → 1− ϵw → 1− , (3.27)

necessarily
Re(ω1) → 0− . (3.28)

Hence, we are free to assume
ω1 → Im(ω1) i , (3.29)

where Im(ω1) is generic real number (which eventually we will require to be different
from 2πn, where n is an arbitrary integer number).

We will use the expansion B) for the study of the giant graviton representation. As
mentioned before, the domain of convergence of the giant graviton Hamiltonian traces is
different from the one of the 1

16 -BPS index of N = 4 SYM. In such an analysis, extensive
use of analytic continuation will be required.

3.1 The giant graviton proposal

The giant graviton expansion proposed in [3] is

I =
?
IKK IGG , (3.30)

where IKK is the generating function of 1
16 -BPS multi-graviton excitations at N = ∞

(closed strings contributions)

IKK = exp

( ∞∑
l=1

1

l

( wl
1

1− wl
1

+
wl
2

1− wl
2

+
wl
3

1− wl
3

− pl1
1− pl1

− pl2
1− pl2

))

=
∞∏
l=1

(
1− wl

1

) (
1− wl

2

) (
1− wl

3

)(
1− pl1

) (
1− pl2

) ,

(3.31)

and IGG is the giant graviton index

IGG =

∞∑
n3=0

wNn1
1 wNn2

2 wNn3
3 In1,n2,n3 . (3.32)
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Here, In1,n2,n3 is the index of n1, n2 and n3 stacks of D3 branes wrapping three different S3

cycles within the internal space S5 (i = 1, 2, 3), times the index of open strings ending on
pairs of stacks [3].

Concretely,

In(t) ≡ In1,n2,n3 =

∮
Γgauge

dµ1dµ2dµ3 I4dn1,n2,n3
I2dn1,n2,n3

, (3.33)

with measure

dµI :=
1

nI !

nI∏
a=1

dU (I)
a

2πiU (I)
a

·
nI∏

a̸=b=1

(1− U
(I)
a

U
(I)
b

) . (3.34)

The closed contour Γgauge, which is not the trivial unit-circle, has been proposed and tested
at small values of N and charges in [6] [3]. Another seemingly valid definition has been
given in [6]. 31 For reasons that will be explained in Appendix C the explicit form of the
closed contour Γgauge plays (almost) no role in the large-charge expansion. To understand
this one must rely on results that will be derived in subsection 4.2. So, from now on we
postpone any discussion on Γgauge until appendix C.

The objects:

I4dn1,n2,n3
:=

3∏
I=1

I4dI , I2dn1,n2,n3
:=

3∏
I=1

I2dI,I+1 , I + 3 ∼ I, (3.35)

are the contributions of 4d N = 4 vector multiplets corresponding to worldvolume massless
excitations of a stack of nI D3-branes wrapping the 3-sphere I, and 2d U(nI) × U(nI+1)

bi-adjoint hypermultiplets corresponding to massless open strings excitations stretching
between the stacks of D3 branes I and I + 1, respectively. By definition I{0,0,0} = 1.

The 4d adjoint contributions are

dµII4dI := dµI

nI∏
a=1

nI∏
b=1

Pexp
(
i(w−1

I , p1, p2;wJ , wK)U
(I)
ab

)

= N 4d
I

nI∏
a=1

dU (I)
a

2πiU (I)
a

·
nI∏

a ̸=b=1

exp

− ∞∑
l=1

(
1− w−l

I

) (
1− pl1

) (
1− pl2

)
l
(
1− wl

J

) (
1− wl

K

) U
(I)l
ab


= N 4d

I

nI∏
a=1

dU (I)
a

2πiU (I)
a

·
nI∏

a ̸=b=1

Γe

(
1
wI

U
(I)
ab ;wJ , wK

)
Γe

(
p1U

(I)
ab ;wJ , wK

)
Γe

(
p2U

(I)
ab ;wJ , wK

)
Γe

(
U

(I)
ab ;wJ , wK

) ,

(3.36)

for I ̸= J ̸= K = 1, 2, 3 , and the zero-mode contributions are defined as

N 4d
I := N (nI , w

−1
I , p1, p2;wJ , wK) . (3.37)

We define the a-th component of the diagonal unitary matrices as U
(I)
a and their quo-

tient U
(I)
ab := U

(I)
a

U
(I)
b

.

31We have recently reported on this for the Schur index [17].
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The contributions to the index coming from a 2d U(n1) × U(n2) bi-fundamental field
are

I2dI,I+1 :=

nI∏
a=1

nI+1∏
b=1

Pexp

(
ih(p1, p2;wJ)

(
U

(I,I+1)
ab +

1

U
(I,I+1)
ab

))

=

nI∏
a=1

nI+1∏
b=1

θ0

(
1

U
(I,I+1)
ab

√
p1wJ
p2

;wJ

)
θ0

(
U

(I,I+1)
ab

√
p1wJ
p2

;wJ

)
θ0

( √
wJ
p1p2

U
(I,I+1)
ab

;wJ

)
θ0

(
U

(I,I+1)
ab

√
wJ
p1p2

;wJ

) ,

(3.38)

where
ih(p1, p2;w) :=

√
w

p1p2

(1− p1)(1− p2)

1− w
. (3.39)

In this expression J ̸= I, I + 1mod 3 . We define the quotient of diagonal components of
different unitary matrices as U

(I,I+1)
ab := U

(I)
a

U
(I+1)
b

. 32

3.2 The free fermion representation of the index

An exact expansion of the index as an average over an ensemble of free fermion systems
was put-forward in [12]. As we explained in the introduction, it takes again the form of a
giant-graviton expansion, different from the physically motivated D-brane expansion. Still,
it is a mathematical exact rearrangement of the index and it will be interesting to consider
its properties. In particular, we will discuss in Appendix D the detailed way it reproduces
the large black hole entropy. In this representation, the index reads

I = IKK

( ∞∑
n=0

Jn(N)

)
, (3.40)

where

Jn(N) =
(−1)n

n!

∮ n∏
i=1

dyidzi
(2πiyi) (2πizi)

(yi/zi)
N+1

(1− yi/zi)
· det

( 1

1− yj
zi

)
i,j=1

exp

 ∞∑
l=1

jn
(
pl1, p

l
2;w

l
)∑n

i,j=1

(
zli − yli

) (
z−l
j − y−l

j

)
l

 ,

(3.41)

and
jn(p1, p2;w) := 1− (1− p1) (1− p2)

(1− w1) (1− w2) (1− w3)
, (3.42)

with
w1w2w3

p1p2
= 1 . (3.43)

32Following the conventions of the original proposal of [3] here we have assumed aloop = a12a23a31 = 1 .
In that case, without loss of generality we can assume a(I,I+1) = 1 (See equation (11) in [3]). More
generally, the analysis in section (4.2) can be straightforwardly reproduced for any other choice of a(I,I+1) ,
however, the only for aloop = 1 we obtain consitent results.

– 18 –



The object Jn(N) is a Hubbard-Stratonovich transformation of a determinant of two-point
functions in an auxiliary theory of free fermions [12].

Using the identity

det

(
1

1− yj
zi

)
=

n∏
i=1

zi ·
∏

1≤j<i≤n (zi − zj) (yj − yi)∏n
i,j=1 (zi − yj)

=
n∏

i=1

1

1− yi
zi

·
∏

1≤j<i≤n (zi − zj) (yj − yi)∏n
i ̸=j=1 (zi − yj)

(3.44)
together with the change of variables

(zi , yi) →
(
z′i = zi , ζi =

yi
zi

)
, (3.45)

(and ignoring the ′ in the z′i’s from now on) one reaches the form that we will work with

Jn(N) =
(−1)n

n!

∮ n∏
i=1

dζidzi
(2πiζi) (2πizi)

(ζi)
N+1

(1− ζi)
2 ·Det(z, ζ)·

exp

 ∞∑
l=1

jn
(
pl1, p

l
2;w

l
)∑n

i,j=1
zli
zlj

(
1− ζ li

) (
1− ζ−l

j

)
l

 ,

(3.46)

where

Det = Det(z, ζ) :=

∏
1≤j<i≤n (zi − zj) (yj − yi)∏n

i ̸=j=1 (zi − yj)
. (3.47)

3.3 The index at large charges

Let us fix the constraint (3.14) and study the large charge asymptotic behaviour of the
microcanonical index

d
(
Q′) = ∫ 2πi

0

d∆1d∆2

(2πi)2

∫ 4πi+ω⋆
1

ω⋆
1

dω1

(4πi)

∫ 4πi+ω⋆
2

ω⋆
2

dω2

(4πi)

∫ 1

0

du

N !
e−Seff(x;u)−ix·Q′

, (3.48)

where

−ix1,2 = ∆1,2, −ix4,5 = ω1,2 , Q′
1,2 = Q′

1,2 , Q′
4,5 = J ′ , J

′
. (3.49)

The 4πi is because the charges Q′
4,5 are quantized in units of 1/2. The two saddle point

positions ω⋆
1,2 (which are not pure imaginary) will be determined below.

The effective action

−Seff(x;u) := −
N∑

a ̸=b=1

∞∑
l=1

(
1− wl

1

) (
1− wl

2

) (
1−

(
p1p2
w1w2

)
l
)

l
(
1− pl1

) (
1− pl2

) cos (2πluab)

− N

∞∑
l=1

1

l

((1− wl
1

) (
1− wl

2

)(
1−

(
p1p2
w1w2

)l)
(
1− pl1

) (
1− pl2

) − 1

)
,

(3.50)

has singularities located at

x4 = x4,sing = 0 , x5 = x5,sing = 0 , and periodic images . (3.51)
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Around these singularities:

Seff

(
x1, x2, x4,sing +

δx4
Λ

, x5,sing +
δx5
Λ

;u
)
∼

Λ→∞
Λ2 s̃(x1, x2, δx4, δx5;u) . (3.52)

Using the formal Taylor expansion [69]

1(
e

δx4
Λ

lϵ − 1
)(

e
δx5
Λ

l − 1
) =

∞∑
k=0

B2,k(δx4, δx5)

k!

( l

Λ

)k−2
, (3.53)

on the denominator in the right-hand side of (3.50) one computes the small-1/Λ expansion
of the effective action Seff

s̃(y;u) =
s̃(1,1)(y1, y2;u)

y4y5
+

s̃(1,0)(y1, y2, y4, y5;u)

y4
+

s̃(0,1)(y1, y2, y4, y5;u)

y5

+ c4N log y4 + c5N log y5 + c6N log(y4 + y5) + . . . ,

(3.54)

where
s̃(1,0)(y1, y2, y4, y5;u) , s̃(1,0)(y1, y2, y4, y5;u) , (3.55)

are linear functions of y4 and y5 , 33 and dots denote contributions that vanish in the
infinitely large scale transformation y4,5 → y4,5

Λ at Λ→∞ .
For the moment let us focus on the leading contribution

−s̃(1,1)(y1, y2;u) := −
N∑

a,b=1

∞∑
l=1

(
1− wl

1

) (
1− wl

2

)(
1−

(
1

w1w2

)l)
l3

e2πiluab . (3.56)

Below we will show how to compute the subleading contributions. Recalling the expansion

Lin(z) :=
∞∑
l=1

zl

ln
, (3.57)

(3.56) can be rewritten as:

−s̃(1,1)(y1, y2;u) := +
4π3i

3

N∑
a,b=1

3∑
I=1

B3

[
uab +

∆I

2πi

]
, (3.58)

with
∆3 → −∆1 −∆2 . (3.59)

In this equation

Bn[∆] := − n!

(2iπ)n

(
Lin
(
e2iπ∆

)
+ (−1)nLin

(
e−2iπ∆

))
, (3.60)

33... which can be straightforwardly extracted from (3.50). We do not write in here these expressions
because their explicit form will not be relevant for our goals. For our present goals it will be enough to start
from (3.50) to recover the contribution that these terms give to the effective action, as it will be explained
below.
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is the periodic Bernoulli polynomial of order n . For example, for n = 3 one gets

B3(x) = B3(x− ⌊x⌋) , B3(x) := x3 − 3x2

2
+

x

2
. (3.61)

The contributions s̃(1,0) and s̃(0,1), can be computed analogously.
Remarkably the large-charge degeneracy of states up-next-to-leading order in the large-

Λ expansion (up to order O(Λ)) is computed as follows

d(Q) ∼exp
Λ→∞

∑
x⋆,u⋆

e−s̃(x⋆;u⋆)−ix⋆·Q

∼exp
Λ→∞

∑
x⋆,u⋆

e
+ 4π3i

3

∑N
a,b=1

∑3
I=1 B3

[
u⋆ab+

∆⋆
I

2πi

]
ω⋆
1ω⋆

2
+ω⋆

1J
′+ω⋆

2 J̄
′+∆⋆

1Q
′
1+∆⋆

2Q
′
2 ,

(3.62)

where the variables (x⋆;u⋆) = (iω⋆
1,2, i∆

⋆
1,2;u

⋆) denote the leading saddle points of:

+
4π3i

3

N∑
a,b=1

∑3
I=1B3

[
uab +

∆I
2πi

]
ω1ω2

+ ω1J
′ + ω2J̄

′ +∆1Q
′
1 +∆2Q

′
2 , (3.63)

i.e. the saddle points of (3.63) with respect to (ω1,2,∆1,2, uab) . Those that maximize the
real part of (3.63) but this time with the constraint

∆3 → −∆1 −∆2 + ω1 + ω2 . (3.64)

instead of (3.59).
It is easy to prove that the complete answer at next-to-leading order O(Λ) is recovered

by simply substituting the rule (3.59) by (3.64), and only considering the asymptotic expan-
sion of the gauge saddle-point solution at leading order at large-Λ . From now on we denote
the latter asymptotic value as u⋆ (the saddle point of s(1,1)). This is because any next-to-
leading correction to the effective action coming from 1

Λ deformations to u∗ = O(Λ0) would
vanish when evaluated at u⋆ . This is because by definition such correction to the effective
action is proportional to the saddle-point condition that u⋆ satisfies by definition. Thus,
to evaluate the contribution at next-to-leading order to the effective action we just need to
evaluate the original form of the latter (3.50) at u⋆ = O(Λ0) and expand the result up to
order O(Λ1) . Following this procedure we obtain

s̃(x;u⋆) = − 4π3i

3

N∑
a,b=1

∑3
I=1B3

[
u⋆ab +

∆I
2πi

]
ω1ω2

+ O(Λ0) (3.65)

with the relation ∆3 → −∆1−∆2+ω1+ω2 . The terms linear in ω1 and ω2 in (3.64) come
from the powers of p1 and p2 in the numerator of the sumands in the first line of (3.50).
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The contribution of zero modes: computing c4 , c5 , and c6

The contribution of zero modes in the second line of (3.50) determines the coefficients of
the logarithmic divergencies log y4,5 and log(y4 + y5). The easiest way to compute these
contributions is to write

−N

∞∑
l=1

1

l

((1− wl
1

) (
1− wl

2

)(
1−

(
p1p2
w1w2

)l)
(
1− pl1

) (
1− pl2

) − 1

)

= N
∞∑
l=1

1

l

(
1− pl1

) (
1− pl2

)
−
(
1− wl

1

) (
1− wl

2

)(
1−

(
p1p2
w1w2

)l)
(
1− pl1

) (
1− pl2

) ,

(3.66)

and Taylor-expand the denominator, keeping as many terms as necessary. Then, we sum
(over l) the coefficients of each monomial in the Taylor expansion. The result is a linear
combination of polylogarithms. Many of such polylogarithms contribute to the terms (3.55).
The remaining ones take the form

+ c4N log y4 + c5N log y5 + c6N log(y4 + y5) + . . . , (3.67)

where for 0 < ω1,2 = −iy4,5 < 1

c4 = c5 =
1

12

(
y4
y5

+
y5
y4
− 3

)
, c6 =

1

6

(
−y4
y5
− y5

y4
− 3

)
, (3.68)

the dots in (3.67) denote terms that vanish after rescaling y4,5 → y4,5/Λ and taking Λ→∞ .
Logarithmic contributions with similar origins as (3.67) will appear in the study of the giant
graviton expansions. They are subleading contributions (of type-F ) that will not affect the
leading asymptotics we are looking for, but for future developments it may be useful to
explain how to compute them.

Evaluating the saddle points

The saddle-point condition
∂us̃(x;u) = 0 , (3.69)

has a leading solution (independent of other chemical potentials) [21, 28],

u⋆ab = 0 . (3.70)

The remaining saddle point conditions

∂xs̃(x;u
⋆) = −iQ , (3.71)

are piecewise polynomial conditions and can be solved straightforwardly. In this subsection
we focus on counting operators with charges

J ′ = J
′ ∼ Λ3 ̸= 0 , Q′

1 = Q′
2 = 0 . (3.72)
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The solvability of conditions (3.71) requires

ω1 = ω2 , ∆1 = ∆2 . (3.73)

Then solutions of (3.71) at leading order in the large Λ expansion are

∆⋆
1±

2πi
= ±1

3
mod 1 , (3.74)

the extrema of B3

[
∆1
2πi

]
, and

ω⋆
1± = ∓i1/3

2πN2/3

32/3
1

|J ′|
1
3

∼ N
2
3

Λ
. (3.75)

These two saddle points x⋆± = {iω⋆
±, i∆

⋆
±} contribute as follows

e−s̃(x⋆
±;u⋆)−ix⋆

±·Q = exp
((√

3∓ i
)
31/3π J ′2/3N2/3

)
, (3.76)

to the asymptotic growth of the microcanonical index along the region of charges (3.72)
and at very leading order in the large-Λ expansion

|d(Q)| ∼exp
Λ→∞

|e−s̃(x⋆
+;u⋆)−ix⋆

+·Q + e−s̃(x⋆
−;u⋆)−ix⋆

−·Q|

∼exp
Λ→∞

exp
((√

3
)
31/3π j′2/3(Λ3N)2/3

)
|2 cos

(
31/3π j′2/3(Λ3N)2/3

)
|

∼exp
Λ→∞

exp
((√

3
)
31/3π J ′2/3N2/3

)
.

(3.77)

We note that this result is valid at any finite N . It is, however, only valid at leading
order in the large-Λ expansion (i.e. in the large charge expansion). Namely, this partic-
ular form is only the leading asymptotic expansion of |d(Q)| . Note also that in order to
have order N2 growth for N ≫ 1 we have to demand J ′ = N2Λ3O(1) which means that
at very leading order in the large charge expansion, the asymptotic expression (3.77) only
captures the growth of states with spin J ′

N2 = O(Λ3)→∞ and Entropy
N2 = O(Λ2)→∞ .

The complete black hole entropy at any finite ratio Entropy
N2 is recovered by using the

localized form s̃ up to next-to-leading order, concretely

s̃(x;u⋆ = 0) = − 4π3iN2

3

∑3
I=1B3

[
∆I
2πi

]
ω1ω2

+ O(Λ0) (3.78)

with the substitution rule
∆3 → −∆1 −∆2 + ω1 + ω2 .

The numerator of this localized form of the effective action
∑3

I=1B3

[
∆I
2πi

]
is a piece-

wise cubic polynomial. Its profile along the real locus ∆I
2πi ∈ R is reproduced by translation

of two cubic polynomial profiles leaving in two independent fundamental domains ∆I
2πi that
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we will denote from now on by appending the symbol ± on flavour chemical potentials. In
such domains we find

s̃(x±;u
⋆) + O(Λ0) = FBH =

N2

2

∆1∆2∆3

ω1ω2
,

∆1 + ∆2 + ∆3 − ω1 − ω2 = ±2πi ,
(3.79)

where FBH is the effecitve action that reproduces the 1
16 -BPS black hole entropy at any

ratio Entropy
N2 , as first observed in [33].

From now on when we refer to the d(Q) of the superconformal index we will mean not
just its leading asymptotic form (3.77) in the region of charges (3.72) but more generally the
finite-N degeneracy d(Q) computed by plugging (3.79) into the localization formula (2.36);
and which particularized to the large-N expansion (1.21) is known to match the exponential
of the 1/16 BPS black hole entropy at any region of charges and for entropies such as the
ratio Entropy

N2 remains finite and arbitrary [33]. 34

Some comments on the more general region of charges Let us assume

J ′ = J
′ ∼ Λ3 ̸= 0 , Q′

1 = Q′
2 ∼ Λ2 ̸= 0 . (3.80)

Working with the analytic continuation to complex χ := ∆1,2/(2πi) of the function (D.32),
which was originally defined for χ ∈ R, the extremization conditions take the form

J ′ = J
′
=

24iπ3N2(χ− 1)2(2χ− 1)

ω3
1

Q′
1,2 = −

12π2N2(χ− 1)(3χ− 2)

ω2
1

.

(3.81)

Plugging χ = 2
3 + 1

3α in (3.81) we solve for

ω1 = ω⋆
1 := ±

2πN
√

α⋆(1− α⋆)√
Q′

1,2

∼ Λ−1 , (3.82)

where the complex saddle value α = α⋆ is defined by the cubic equation

1 + α⋆ − 2α⋆2 + rα⋆3 = 0 , r := 81N2 J ′2

Q′3
1,2

∼ Λ0 . (3.83)

The asymptotic growth of degeneracies comes from the root α⋆ with positive and maximal
imaginary part of

2iπ(5α+ 1)Q′
1,2

3α
−→ 2π

3

Im(α⋆)

|α⋆|2
Q′

1,2 . (3.84)

34The explicit form for this |d(Q)| upon the imposition of a non-linear constraint among the four
charges Q , can be found in the original reference. An alternative way of deriving it can be found in
Appendix B of [9]. Using this way one obtain the complete answer without imposing the non-linear con-
straint among charges. Here we avoid the reproduction of those results, and instead refer the reader looking
for such level details to those references.
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We note that only if ∣∣∣∣r + 20

27

∣∣∣∣ > 14
√
7

27
, (3.85)

equation (3.83) has non-real roots. Consequently, only in the chamber of charges consistent
with (3.85) the present saddle point approximation predicts an exponential growth of states.
For example if |r| is large enough

α⋆ ≈ (- r)−
1
3 , (3.86)

and one recovers the asymptotic growth computed in the previous case (3.77). On the
contrary if r ≈ 0 (i.e. for small enough J ′ at fixed Q′

1,2) none of the saddle points
of −s̃(x;u⋆)− ix ·Q carries exponential growth: the leading saddle value becomes a highly
oscillating phase times a bounded function. This feature is not surprising because we expect
many more operators at large spin and fixed R-charge, than the other way around.

4 Large charge entropy from giant gravitons

Let us define the following particularization of chemical potentials x and charges Q̃′

−ix = −i{x1, x2, x3, x4} = {∆1,∆2,∆3, ω1} ,

Q̃′ = {Q̃′
1, Q̃

′
2, Q̃

′
3, J̃

′} .
(4.1)

Then we move on to compute the asymptotic growth of the giant graviton index (3.30)
at large positive integer charges Q̃

′

d̃GG(Q̃
′
) =

∫
Γ
dx

⌊Q̃′
1/N⌋∑

n1=0

⌊Q̃′
2/N⌋∑

n2=0

⌊Q̃′
3/N⌋∑

n3=0

∫
Γgauge

du

n1!n2!n3!
e−S

(n1,n2,n3)
eff (x;u)−ix·Q̃′

, (4.2)

or more precisely, in a large-charge expansion (around Λ → ∞) defined by the scaling
properties

Q̃′
1,2,3 = Λ2q̃′1,2,3 , q̃′1,2,3 = finite . (4.3)

Before re-summation over the giant-graviton numbers n has been taken, nothing will be
assumed about the scaling properties of J̃ ′ which can be an arbitrary function of Λ . Even-
tually, we will assume J̃ ′ to grow as O(Λ3). However, initially, the scaling properties of J̃ ′

play no role in localizing the single giant-graviton contributions nor the sum over wrapping
numbers n . This is because there are no essential singularities at ω1 → 0 in the effective
action of single-giant brane contributions. The scaling of J̃ ′ will be essential to recover the
growth of the giant graviton representation only after re-summation over the index n has
been performed. Namely, in the last step when (as it will be shown below) the localization
becomes equivalent to the one previously studied for the superconformal index.

As we summarized before

e−S
(n1,n2,n3)
eff (x;u) := wn1N

1 wn2N
2 wn3N

3 I4dn1,n2,n3
I2dn1,n2,n3

, (4.4)

where the functions I2d,4dn1,n2,n3 , defined in (3.35), depend on the n1+n2+n3 gauge potentials

u = {u(1)a , u(2)a , u(3)a } . (4.5)
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These potentials exponentiate to the rapidities U
(I)
a := e2πiu

(I)
a . Note that we have trun-

cated the sums over n1,2,3 . That is because the truncated terms do not contribute to the
counting of degeneracies at charges smaller or equal than Q̃′

1, Q̃′
2, and Q̃′

3 (the explanation
was given in footnote 18).

The procedure to follow is summarized in the following steps:

1. Commute the integral over x with the sums over n 35∫
Γ
dx

∫
Γgauge

du e−S
(n1,n2,n3)
eff (x;u)−ix·Q̃′

. (4.6)

2. At large R-charge the integral over u is evaluated at its saddle point u⋆, while the
integral over x is localized as follows∫

Γ
dx

∫
Γgauge

du e−S
(n1,n2,n3)
eff (x;u)−ix·Q̃′

∼exp
Λ→∞

∫
Γx⋆

dx e−s̃(n1,n2,n3)(x;u⋆)−ix·Q̃′
. (4.7)

3. Use (4.7) in (4.6) and substitute the result in (4.2). Then commute the integral over x
with the sums over n to obtain 36

d̃GG(Q̃
′
) ∼exp

Λ→∞

∫
Γx⋆

dx

⌊Q̃′
1/N⌋∑

n1=0

⌊Q̃′
2/N⌋∑

n2=0

⌊Q̃′
3/N⌋∑

n3=0

e−s̃(n1,n2,n3)(x;u⋆)−ix·Q̃′
. (4.8)

4. Evaluate the asymptotic behaviour of the sum over n (in the large charge regime (4.3)
we can safely drop the floor’s)

e−s̃GG(x) :=

Q̃′
1/N∑

n1=0

Q̃′
2/N∑

n2=0

Q̃′
3/N∑

n3=0

e−s̃(n1,n2,n3)(x;u⋆) . (4.9)

5. Substitute the entropy function of the gas of giant gravitons s̃GG(x) into (4.8), and
localize the remaining integral over x to the leading saddle point x⋆ which is the one
attracted by the leading singularity of s̃GG(x)

d̃GG(Q̃
′
) ∼exp

Λ→∞
e−s̃GG(x) . (4.10)

6. At last, compare

d̃GG(Q̃
′) and d̃(Q̃′) = d(Q) , (at large Q̃′ ≡ Q and any N) . (4.11)

35The integral over x can be commuted with the truncated sum over n , which is finite.
36These integrals can be commuted because the localized integrand does not have poles: the logarith-

mic divergencies in the exponential are either suppressed or can be absorbed in a redefinition of gauge
variables u .
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4.1 A first approximation capturing the entropy of small black holes

Let us start with step 2. Following our large charge localization lemma, we look for the
leading singularities of S(n1,n2,n3)

eff which happen to be located at

x1,2,3 = x1,2,3,sing := 0mod 1, (4.12)

and in their vicinity (the details behind the derivation of this formula are postponed to the
following subsection)

S
(n1,n2,n3)
eff (x1,sing +

δx1
Λ

, x2,sing +
δx2
Λ

, x3,sing +
δx3
Λ

, x4;u)

∼
Λ→∞

Λ s̃
(n1,n2,n3)
Λ (δx1, δx2, δx3, x4;u)

∼
Λ→∞

s̃(n1,n2,n3)(
δx1
Λ

,
δx2
Λ

,
δx3
Λ

, x4;u) .

(4.13)

This expansion holds at any value of n1, n2 , and n3 . Moreover, s̃(n1,n2,n3)
Λ and s̃(n1,n2,n3)

are asymptotically-equal

s̃
(n1,n2,n3)
Λ (δx1, δx2, δx3, x4;u)

s̃(n1,n2,n3)(δx1, δx2, δx3, x4;u)
∼

Λ→∞
1 . (4.14)

Assuming (for the moment)

u⋆ = O(Λ−1) as Λ→∞ , (4.15)

we obtain for all n and for all N

s̃(n1,n2,n3)(x;u⋆) = T (x)
(
n · x

)2
− iN

(
n · x

)
, (4.16)

with

T (x) := −
π2

3 − Li2
(

1
p1

)
− Li2 (p1)

∆1∆2∆3
+ r̃(x) = −

π2
(
1− 6B2

(
ω1
2πi

))
3∆1∆2∆3

+ r̃(x), (4.17)

where, again, these equations will be derived from scratch in the following section. The B2(x)

in equation (4.17) is the periodic Bernoulli polynomial of order 2

B2(x) = B2(x− ⌊x⌋) , B2(x) := x2 − x +
1

6
. (4.18)

In this equation, r̃ comes from a subleading contribution to s̃(n1,n2,n3)(x;u⋆) which is
a scale-invariant combination of ∆1 , ∆2 , and ∆3 . Naively, one would say that discarding
this contribution would not change the leading asymptotic behaviour of the giant graviton
index (in microcanonical ensemble) at large charges and spin. However, as we will show
below such an assumption turns out to be incorrect. In particular, at large N , discarding r̃

does not give a chance to recover the counting of microstates of large BPS black holes.
Instead, it allows, at most, to recover the entropy of small black holes i.e. those with large
values of charges Q, such that N2 ≫ |Q| ≫ 1 [23].
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The contribution r̃(x) turns out to be such that

r̃( δx1
Λ , δx2

Λ , δx3
Λ , x4)

T ( δx1
Λ , δx2

Λ , δx3
Λ , x4)

∼
Λ→∞

0 , x4 /∈ Z ,

r̃( δx1
Λ , δx2

Λ , δx3
Λ , x4)

T ( δx1
Λ , δx2

Λ , δx3
Λ , x4)

∼
Λ→∞

1 , x4 ∈ Z .

(4.19)

Thus, r̃ is subleading if x4 is far enough from Z . On the other hand if x4 is at distance O( 1Λ)

to the integers Z , r̃ becomes leading in the expansion (4.3). Thus, r̃ cannot be ignored
without the risk of missing leading contributions at large-charge saddle points infinitely
attracted to integer values of the chemical potential x4.

Step 4. further clarifies the relevance of r̃ . The entropy functional −s̃GG(x) of the gas
of giant gravitons is defined from

e−s̃GG(x) :=

Q̃′
1/N∑

n1=0

Q̃′
2/N∑

n2=0

Q̃′
3/N∑

n3=0

e−s̃(n1,n2,n3)(x;u⋆) . (4.20)

To compute (4.20) at large Q̃′
1,2,3 (as detailed in (4.3)) it is convenient to change variables:

n1,2,3 =
Λ2

N
δn1,2,3 . (4.21)

In the new variables the sums over n1,2,3 become integrals

Q̃′
1,2,3/N∑

n1,2,3=1

→
Λ→∞

Λ2

N

∫ q1,2,3

0
d[δn1,2,3] . (4.22)

Precisely,

e−s̃GG(x) ∼exp
Λ→∞

( 3∏
a=1

Λ2

N

) ∫ q̃′1

0
d[δn1]

∫ q̃′2

0
d[δn2]

∫ q̃′3

0
d[δn3] e

−s̃(n1,n2,n3)(x;u⋆) . (4.23)

From (4.16) it follows that this integral is Gaussian. Assuming for the time being that
the xa are real and positive (the general result can be obtained by analytic continuation)
then in the variables

X = δn1x1 + δn2x2 + δn3x3 , Y = δn2x2 , Z = δn3x3 , (4.24)

the integral measure (which acts upon an integrand that depends only on X) becomes∫ q̃′1

0
d[δn1]

∫ q̃′2

0
d[δn2]

∫ q̃′3

0
d[δn3] →

∫ q̃′·x

0

dX

x1x2x3
· A2d

Σ(X) , (4.25)

where
AΣ(X) :=

∫
Σ(X)

dY dZ , (4.26)
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is the area of a two-dimensional region Σ(X) spanned by pairs (Y,Z) ∈ R2 such that

0 < X − Y − Z < q̃′1x1 , 0 < Y < q̃′2x2 , 0 < Z < q̃′3x3 . (4.27)

As AΣ(X) is the area of a polygonal surface whose perimeter has length growing linearly
with X and/or q̃′axa, then AΣ(X) is always bounded from above by a polynomial function
of X and q̃′axa . This is all we need to know about AΣ(X).

Implementing the change of variables (4.24) and evaluating the one-loop saddle point
approximation at large Λ one obtains∫ q̃′1

0
d[δn1]

∫ q̃′2

0
d[δn2]

∫ q̃′3

0
d[δn3] e

−s̃(n1,n2,n3)(x;u⋆) ∼exp
Λ→∞

N

Λ2

√
πO(x, q̃′)
2
√
T (x)

e
− N2

4T (x) , (4.28)

where O(x, q̃′) is the value of AΣ(X)

x1x2x3
at the saddle point locus

(n⋆ · x) =
iN

2T (x)
=⇒ (X⋆) =

i

2T (x)

N2

Λ2
, ∀x . (4.29)

Collecting results one obtains

e−s̃GG(x) ∼exp
Λ→∞

Λ4

N2

√
πO(x, q̃′)
2
√

T (x)
e
− N2

4T (x) . (4.30)

where
Λ4

N2

√
πO(x, q̃′)
2
√
T (x)

∼exp
Λ→∞

1 , ∀x . (4.31)

At x far enough from the zeroes of T the left-hand side of (4.31) diverges as the area spanned
by two flat directions that open up in the moduli space of giant gravitons (n1, n2, n3) in
the expansion (4.3) of the integrand (4.23). This is because at leading order in such an
expansion the integrand of (4.23) depends on a single direction in the three-dimensional
space of (n1, n2, n3) ’s: the other two directions become flat, and thus, summing over giant
gravitons configurations along such directions produces an overall factor proportional to Λ4

N2 .
If and only if x is close enough to the zeroes of T (x), i.e. at distances of order 1

Λ of
them, then

s̃GG(x) ∼
Λ→∞

N2

4T (x)
(4.32)

grows exponentially fast with Λ . Indeed, our large-charge localization lemma implies that
the zeroes of T (x) which are the leading singularities of s̃GG , determine the leading large-
charge asymptotic behaviour of the integral∫

Γ′
x⋆

dxdu e−s̃GG(x;u)−ix·Q̃′
∼exp
Λ→∞

e
− N2

4T (x⋆)
−ix⋆·Q̃′

∼exp
Λ→∞

d̃GG(Q̃
′) = agg(Q) .

(4.33)

where x⋆ is the leading saddle of − N2

4T (x⋆) − ix⋆ · Q̃
′
attracted by the zeroes of T (x).
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Control over subleading corrections in Step 2 is essential to recover large spin
growth Step 6: Is the asymptotic growth in the index of giant gravitons d̃GG(Q̃

′) equal
to the asymptotic growth of the superconformal index? i.e.

d̃GG(Q̃
′) ∼exp

Λ→∞
d̃(Q̃′) = d(Q) , (at any N) ? (4.34)

In the chambers
−1 < ±Re[

ω1

2πi
] < 0 , (4.35)

the function T (x) is

T (x) =
ω1 (∓2πi − ω1)

2∆1∆2∆3
+ r̃(x) . (4.36)

If one naively substitutes (4.36) into the saddle point formula (4.33) assuming r̃(x) →
0, then one does not obtain the exponential growth at large spin of the superconformal
index (3.77) (i.e. the degree of the singularity ω1 → 0 or ∓ 2πi would be 1 < 2).

Indeed, at large N and assuming r̃(x) → 0, the localized action (4.32) can lead, at
best, to the asymptotic growth of microstates of small black holes [23][1]. For example, if
we assume r̃ = 0 and focus on the particular locus of charges [23] 37

J̃ ′ =: j = 0 , Q̃′
1 = Q̃′

1 = Q̃′
1 =: −q (4.37)

then extremizing the entropy function

− N2

4T (x)
− ix · Q̃

′
(4.38)

with respect to the chemical potentials x

−ix = −i{x1, x2, x3, x4} = {∆1,∆2,∆3, ω1} ,

Q̃′ = {Q̃′
1, Q̃

′
2, Q̃

′
3, J̃

′} ,
(4.39)

one obtains at the saddle point values

ω1 = ∓πi , ∆2
1 = ∆2

2 = ∆2
3 = ∆2 =

2π2q

N2
, (4.40)

and for q > 0 the following prediction for the entropy

2
√
2πq3/2

N
. (4.41)

38 In the asymptotic regime N2 ≫ q ≫ 1 this is the leading term of the Bekenstein-
Hawking entropy of small and supersymmetric black holes in AdS5 with equal left and
right angular momenta j = 0 [23]. 39

37This is only for the moment, to recover the small-black hole entropy contributions, in the following
sections we will comeback to the large-charge regime we are interested at (4.3) with J̃ ′ = O(Λ3) .

38Note that for finite N and q → 1 the singularity of the localized action N2

4T (x)
that attracts the sad-

dle (4.40) is not ω1 = 0 but ∆ = ∞ .
39Compare with the leading contribution in the first line of equation (2.26) of [23].
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In order for (4.34) to hold, namely in order to obtain the asymptotic growth of the
most generic index at large charges which are not too small in comparison with N2 , it is
necessary that

T (x) = T0(x) := −
(ω1)

(
−∆1 −∆2 −∆3 + ω1 ± 2πi

)
2∆1∆2∆3

. (4.42)

In particular, this also means that if the underlined contribution does not match the mi-
croscopic prediction of r̃(x) then the growth of the series of giant graviton indices can not
account for the large charge growth of the complete superconformal index. In the following
subsection we proceed to check whether r̃(x) equals

+
ω1

(
∆1 +∆2 +∆3

)
2∆1∆2∆3

. (4.43)

4.2 Refined calculation and large black hole entropy

In this subsection the localized form s̃(n1,n2,n3) of the giant graviton effective action S
(n1,n2,n3)
eff

is computed. We follow the steps summarized below the equation (4.6).
The first step is to compute the asymptotic expansion S

(n1,n2,n3)
eff near its leading sin-

gularity(ies).
Let us divide the effective action in three pieces (and omit the supra indices n1,2,3 for

a moment)

S
(n1,n2,n3)
eff (x;u) =

3∑
I=1

S
(I)
ZM(x) +

3∑
I=1

S
(I)
Vect(x;u) +

3∑
I=1

S
(I)
Hypers(x;u) , (4.44)

S
(I)
ZM(x) =

∞∑
l=1

nI

l

(1− w−l
I )(1− pl1)(1− pl2)− (1− wl

J)(1− wl
K)

(1− wl
J)(1− wl

K)
+ log(nI !) , (4.45)

S
(I)
Vect(x;u) =

∞∑
l=1

(
1− pl1

) (
1− pl2

) (
1− w−l

I

)
l
(
1− wl

J

) (
1− wl

K

) nJ∑
a̸=b=1

U
(I)l
ab , (4.46)

S
(I)
Hypers(x;u) = −

∞∑
l=1

(
1− pl1

) (
1− pl2

)
w

−l/2
J w

−l/2
K

l
(
1− wl

I

) nJ∑
a=1

nK∑
b=1

(
U

(J,K)
ab + U

(K,J)
ba

)
, (4.47)

U (I)
a := exp(2πiu(I)a ) , a = 1 , . . . , nI . (4.48)

We proceed to compute the expansion Λ→∞ of

S
(n1,n2,n3)
eff

(x1
Λ
,
x2
Λ
,
x3
Λ
, x4;u

)
(4.49)

or equivalently the expansion of each of the four contributions in (4.44) and extract its
localized form s̃(n1,n2,n3).

To compute this expansion we proceed as follows
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1. Substitute
wa → e−ϵ∆a , (4.50)

in the denominators of the summands of the zero-modes action S
(I)
ZM and in the numerators

and denominators of the summands of the non-zero modes actions S
(I)
Vect and S

(I)
Hypers

and expand about ϵ = 1
Λ ∼ 0 .

2. Perform the sums
∑∞

l=1 in the result obtained after step 1.

3. Substitute
p2 →

w1w2w3

p1
, wa → e−ϵ∆a , (4.51)

in the result obtained after steps 1. and 2. and expand the answer around ϵ = 0 up
to order O(ϵ0) being careful about logarithmic singularities.

4. Lastly, truncate the series at order O(ϵ0), and re-scale back the variables

∆a →
∆a

ϵ
, (4.52)

to obtain an ϵ-independent effective action. Such an answer is the contribution
of SZM,Vect,Hypers, respectively, to the localized action s̃n1,n2,n3(x;u) .

Using these steps allows us to keep control over logarithmic corrections that appear
in the expansion Λ → ∞ (coming from the action of vector zero-modes). Proceeding
otherwise these non-analyticities would evidence themselves as infinite coefficients in the
would-be-Laurent expansion around Λ =∞ .

The large charge effective action of zero modes: Let us start computing the large
charge effective action of zero modes following steps 1-4. To illustrate the procedure let us
focus on a single zero mode contribution of the vector multiplet 1:

S
(1)
ZM(x) =

∞∑
l=1

n1

l

(1− w−l
1 )(1− pl1)(1− pl2)− (1− wl

2)(1− wl
3)

(1− wl
2)(1− wl

3)
. (4.53)

After steps 1. and 2. we obtain for all n1, at order O(ϵ−2)

− Li3(p1)n1

ϵ2∆2∆3
− Li3(p2)n1

ϵ2∆2∆3
+

Li3(p1p2)n1

ϵ2∆2∆3

− Li3(1/w1)n1

ϵ2∆2∆3
+

Li3(p1/w1)n1

ϵ2∆2∆3
+

Li3(p2/w1)n1

ϵ2∆2∆3

− Li3(p1p2/w1)n1

ϵ2∆2∆3
+

Li3(w2)n1

ϵ2∆2∆3
+

Li3(w3)n1

ϵ2∆2∆3
− Li3(w2w3)n1

ϵ2∆2∆3
,

(4.54)
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and at order O(ϵ−1)

− n1Li2 (p1)
2ϵ∆2

− n1Li2 (p2)
2ϵ∆2

+
n1Li2 (p1p2)

2ϵ∆2
− n1Li2 (p1)

2ϵ∆3
− n1Li2 (p2)

2ϵ∆3

+
n1Li2 (p1p2)

2ϵ∆3
+

n1Li2
(

p1
w1

)
2ϵ∆2

+
n1Li2

(
p2
w1

)
2ϵ∆2

−
n1Li2

(
p1p2
w1

)
2ϵ∆2

+
n1Li2

(
p1
w1

)
2ϵ∆3

+
n1Li2

(
p2
w1

)
2ϵ∆3

−
n1Li2

(
p1p2
w1

)
2ϵ∆3

−
n1Li2

(
1
w1

)
2ϵ∆2

+
n1Li2 (w2)

2ϵ∆2
+

n1Li2 (w3)

2ϵ∆2

− n1Li2 (w2w3)

2ϵ∆2
−

n1Li2
(

1
w1

)
2ϵ∆3

+
n1Li2 (w2)

2ϵ∆3
+

n1Li2 (w3)

2ϵ∆3
− n1Li2 (w2w3)

2ϵ∆3
,

(4.55)

and at order O(ϵ0)(
∆2

2 + 3∆2∆3 +∆2
3

)
n1

12∆2∆3

×

(
log (1− p1) + log (1− p2)− log (1− p1p2) + log

(
1− 1

w1

)
− log

(
1− p1

w1

)
− log

(
1− p2

w1

)
+ log

(
1− p1p2

w1

)
− log (1− w2)− log (1− w3) + log (1− w2w3)

)
.

(4.56)

Then, after adding (4.54), (4.55) and (4.56) and implementing step 3., we obtain at order ϵ−1

−1

ϵ

π2∆1n1

(
1− 6B2

(
− iω1

2π

))
3∆2∆3

, (4.57)

and at order ϵ0

+
∆1n1 (∆1 +∆2 +∆3)ω1

2∆2∆3
+ log Ξ1(ϵx)n1 , (4.58)

where (assuming for the moment ϵ > 0, ∆I > 0)

log Ξ1(x) =
(∆1∆2 +∆1∆3 −∆2∆3)

2∆2∆3

−
(
∆2

2 − 3∆3∆2 +∆2
3

)
log (−∆2∆3)

12∆2∆3

+

(
∆2

2 + 3∆3∆2 +∆2
3

)
log (∆2 +∆3)

6∆2∆3

+

(
6∆2

1 + 6 (∆2 +∆3)∆1 +∆2
2 +∆2

3 + 3∆2∆3

)
log
(

∆1
∆1+∆2+∆3

)
12∆2∆3

.

(4.59)
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40 At last, implementing step 4 we obtain the contribution of the zero mode 1 to the large
charge action s̃(n1,n2,n3)(x;u)

−
π2∆1n1

(
1− 6B2

(
− iω1

2π

))
3∆2∆3

+
∆1n1 (∆1 +∆2 +∆3)ω1

2∆2∆3

+ log Ξ1(x)n1 .

(4.60)

The contribution coming from the zero modes 2 and 3 are computed analogously. The
general result is

−
π2∆InI

(
1− 6B2

(
− iω1

2π

))
3∆J∆K

+
∆In1 (∆1 +∆2 +∆3)ω1

2∆J∆K

+ log ΞI(x)nI ,

(4.61)

where the definition of log ΞI can be recovered from (4.59) by the obvious permutation of
subscripts. Assuming (4.35), equation (4.61) can be rewritten as

∆2
InI ω1 (∓ 2iπ +∆1 +∆2 +∆3 − ω1 )

2∆1∆2∆3
+ log ΞI(x)nI . (4.62)

Note that the contributions log ΞI(x)nI coming from zero-modes are of the type F defined
around (A.3) and thus we can ignore them in the following. However, to gain insight into
their meaning, we will keep track of them from now on.

The large charge effective action of vector non-zero modes To start let us focus on the
contribution of the vector multiplet 1:

S
(1)
Vect(x) =

n1∑
a̸=b=1

∞∑
l=1

1

l

(1− w−l
1 )(1− pl1)(1− pl2)

(1− wl
2)(1− wl

3)
U

(1)l
ab . (4.63)

After steps 1.- 3. we obtain for all n1, at order ϵ−1

1

ϵ

n1∑
a̸=b=1

π2∆1

(
6B2

(
−u(1)ab −

iω1
2π

)
− 6

π2 Li2
(
U

(1)
ab

))
3∆2∆3

, (4.64)

and at order ϵ0

n1∑
a̸=b=1

∆1 (∆1 +∆2 +∆3)
(
log
(
1− 1

p1
U

(1)
ab

)
− log

(
1− p1U

(1)
ab

))
2∆2∆3

. (4.65)

40We note that the term in the first line can be absorbed in a redefinition of the argument of the second
out of the three logarithms in the second line and the second and third out of the six logarithms in the
fourth line. This implies that the log Ξ1(x)n1 contribution is of type-F and thus it will not contribute at
the degree of accuracy we are looking for. We will keep track of these contributions though, as we may
learn something for the future.
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Using the relations

log

(
1− p1U

(1)
a

U
(1)
b

)
= log

(
−p1U

(1)
a

U
(1)
b

)
+ log

(
1−

U
(1)
b

p1U
(1)
a

)

log

(
−p1U

(1)
a

U
(1)
b

)
= log

(
−U

(1)
a

U
(1)
b

)
− ω1 ,

n1∑
a̸=b=1

log

(
−U

(1)
a

U
(1)
b

)
= log

 n1∏
a̸=b=1

(
−U

(1)
a

U
(1)
b

) = log (1) = 0 ,

(4.66)

(4.65) simplifies into
n1∑

a̸=b=1

∆1 (∆1 +∆2 +∆3)ω1

2∆2∆3
. (4.67)

At last, adding (4.64) and (4.67) and implementing step 4 we obtain the contribution of
the vector modes 1 to the coarse grained action s̃(n1,n2,n3)(x;u)

n1∑
a̸=b=1

π2∆1

(
6B2

(
−u(1)ab −

iω1
2π

)
− 6

π2 Li2
(
U

(1)
ab

))
3∆2∆3

+ n1(n1 − 1)
∆1 (∆1 +∆2 +∆3)ω1

2∆2∆3
.

(4.68)

The contribution coming from the vector modes 2 and 3 are computed analogously. The
general result is

nI∑
a̸=b=1

π2∆I

(
6B2

(
−u(I)ab −

iω1
2π

)
− 6

π2 Li2
(
U

(I)
ab

))
3∆J∆K

+ nI(nI − 1)
∆I (∆1 +∆2 +∆3)ω1

2∆J∆K
.

(4.69)

The large charge effective action of hypermultiplets To start let us focus on the contri-
bution of the hypermultiplet 3:

S
(3)
Hypers(x;u) = −

n1∑
a=1

n2∑
b=1

∞∑
l=1

(
1− pl1

) (
1− pl2

)
w

−l/2
1 w

−l/2
2

l
(
1− wl

3

) (
U

(1,2)
ab + U

(2,1)
ba

)
(4.70)

After steps 1.- 3. we obtain for all n1, at order ϵ−1

1

ϵ

n1∑
a=1

n2∑
b=1

2
(
π2B2

(
u
(1,2)
ab − iω1

2π

)
+ π2B2

(
u
(2,1)
ba − iω1

2π

)
− Li2

(
U

(1,2)
ab

)
− Li2

(
U

(2,1)
ba

))
∆3

(4.71)
and at order ϵ0

(∆1 +∆2 +∆3)

(
log

(
1− U

(1,2)
ab
p1

)
− log

(
1− p1U

(1,2)
ab

)
+ log

(
1− U

(2,1)
ba
p1

)
− log

(
1− p1U

(2,1)
ba

))
2∆3

.

(4.72)
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Using the relations

log

(
1− p1U

(1)
a

U
(2)
b

)
= log

(
−p1U

(1)
a

U
(2)
b

)
+ log

(
1− U

(1)
a

p1U
(2)
b

)
,

log

(
−p1U

(1)
a

U
(2)
b

)
= log

(
−U

(1)
a

U
(2)
b

)
− ω1 ,

(4.73)

together with the analogous one for U
(2,1)
ba and

log

(
−U

(1)
a

U
(2)
b

)
+ log

(
−
U

(2)
b

U
(1)
a

)
= log (1) = 0 , (4.74)

(4.72) reduces to
n1∑
a=1

n2∑
b=1

(∆1 +∆2 +∆3)ω1

∆3
. (4.75)

At last, adding (4.71) and (4.75) and implementing step 4 we obtain the contribution of
the hypermultiplet 3 to the coarse grained action s̃(n1,n2,n3)(x;u)

n1∑
a=1

n2∑
b=1

2
(
π2B2

(
u
(1,2)
ab − iω1

2π

)
− Li2

(
U

(1,2)
ab

)
+ symm

)
∆3

+ n1n2
(∆1 +∆2 +∆3)ω1

∆3
.

(4.76)

The contribution coming from the hypermultiplets 1 and 2 are computed analogously. The
general result is

nJ∑
a=1

nK∑
b=1

2
(
π2B2

(
u
(J,K)
ab − iω1

2π

)
− Li2

(
U

(J,K)
ab

)
+ symm

)
∆I

+ nJnK
(∆1 +∆2 +∆3)ω1

∆I
.

(4.77)

The coarse grained action: Collecting (4.62), (4.69), and (4.77) we obtain, at last,

s̃(n1,n2,n3)(x;u) :=
3∑

I=1

nI∑
a, b=1

2∆I

(
π2B2

(
−u(I)ab −

iω1
2π

)
− Li2

(
U

(I)
ab

))
∆J∆K

+
3∑

I=1

nJ∑
a=1

nK∑
b=1

2
(
π2B2

(
u
(J,K)
ab − iω1

2π

)
− Li2

(
U

(J,K)
ab

)
+ (J, a)↔ (K, b)

)
∆I

+(n1∆1 + n2∆2 + n3∆3)
2 (∆1 +∆2 +∆3)

2∆1∆2∆3
ω1

+n1 log Ξ1(x) + n2 log Ξ2(x) + n3 log Ξ3(x) .

(4.78)
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We note that contributions coming from zero modes have been obtained in a certain choice
of branch that has simplified computations for us. Other choices of branch would give us
a different answer. However, as we will show next, these contributions can be absorbed
in a redefinition of the gauge variables which does not affect the leading saddle point
evaluation. This is, at least at large charges the ambiguities coming from zero modes are
indistinguishable from gauge-choice ambiguities and thus they do not affect the indices of
giant graviton branes.

The gauge saddle point u⋆ The next step is to find the leading saddle points u⋆ of

1

n1!n2!n3!

∫
Γu⋆

du e−s̃(n1,n2,n3)(x;u) :=
1

n1!n2!n3!

∫
Γu⋆

n1∏
i=1

du
(1)
i ·

n2∏
i=1

du
(2)
i ·

n3∏
i=1

du
(3)
i ·e

−s̃(n1,n2,n3)(x;u)

(4.79)
in the small ϵ = 1

Λ expansion at fixed n1,2,3, this is, assuming

∆I = O(Λ−1) , Λ → ∞ . (4.80)

After changing integration variables

u(I)a → u(I)a Ξ(I)(x) , (4.81)

equation (4.79) transforms into an integral over a new contour ΓΞ
u⋆

1

n1!n2!n3!

∫
ΓΞ
u⋆

n1∏
i=1

du
(1)
i ·

n2∏
i=1

du
(2)
i ·

n3∏
i=1

du
(3)
i · e

−s̃Ξ(n1,n2,n3)(x;u) (4.82)

with the new action taking the form

s̃Ξ(n1,n2,n3)(x;u) := s̃(n1,n2,n3)(x;u(1)Ξ1, u
(2)Ξ2, u

(3)Ξ3)

− n1 log Ξ1 − n2 log Ξ2 − n3 log Ξ3 .
(4.83)

Following our large charge localization rules we scale the chemical potentials

∆a → ϵ∆a , (4.84)

and plug the ansatz

u(I)⋆a =
∞∑
k=0

u
(I)
a,k(x) ϵ

k + h
(I)
a,0(x) ϵ

2 log ϵ + . . . , (4.85)

41 into the saddle point equations following from the action

s̃Ξ(n1,n2,n3)(
x1
Λ
,
x2
Λ
,
x3
Λ
, x4;u) . (4.86)

41In this equation the u’s and h’s depend on combinations of ∆1,2,3 and the dots stand for possible higher
order logarithmic terms, vanishing at ϵ = 0. The factor of ϵ2 is the minimal integer power of ϵ that it does
not produce singularities of the form log ϵ

ϵ
in the saddle-point conditions, i.e., it produces a singularity of

the form log ϵ which can be used to cancel other such singular contributions to the saddle-point condition.
Because we have used the change of variables (4.81) it follows from the saddle point conditions that h(I)

a,0 = 0 .

– 37 –



Then, we expand about Λ =∞ and extract recurrence relations among the u’s and the h’s.
One obvious saddle point solution to this recurrence relations is 42

u(I)⋆a = u
(I)⋆
a,0 =

u0mod 1

ΞI
=⇒ U

(I)
a

U
(J)
b

= 1 , (4.87)

where u0 is a zero mode that is integrated out trivially and we can set it to u0 = 0 without
loss of generality (the integrand does not depend on this mode and thus, the corresponding
integral gives 1). (4.87) is a saddle point of the coarse grained action (4.86) 43, it is, on the
other hand, a logarithmic singularity of the original effective action S̃

(n1,n2,n3)
eff . The saddle-

point of the original effective action must have a non vanishing ϵ−subleading contribution
which must be non-coincident, i.e., such that

u(I)⋆a ̸= u
(I)⋆
b , if a ̸= b . (4.88)

For our purposes knowing the explicit form of the small-ϵ correction to (4.87) is not nec-
essary. All that we need to know is of its existence, which as it was just explained, it has
to be the case. The existence of one such non-coincident solution implies the existence
of other ∼ n1!n2!n3! − 1 identical copies obtained by permutations of the gauge indices.
Summing over these solutions cancels the 1

n1!n2!n3!
prefactor in (4.79).

Thus, in the large R-charge expansion (4.3)∫
Γu⋆

du e−s̃(n1,n2,n3)(x;u) ∼exp
Λ→∞

e−s̃Ξ(n1,n2,n3)(x;u⋆) , (4.89)

where

s̃Ξ(n1,n2,n3)(x;u⋆) = T (x)
(
n · x

)2
− iN

(
n · x

)
T (x) = −ω1 (−∆1 −∆2 −∆3 + ω1 ± 2πi)

2∆1∆2∆3
.

(4.90)

At last, in Step 6., i.e. after using (4.90) together with (4.33), we conclude that

agg(Q) := d̃GG(Q̃
′) ∼exp

Λ→∞
d̃(Q̃′) = d(Q) =: a(Q) , (at any N) . (4.91)

Namely, that the large charge asymptotic growth of the superconformal index of U(N)

N = 4 SYM on S3, at any N , equals the large charge asymptotic growth of the giant
graviton index. In virtue of the explanation given around equation (3.79), the asymptotic
relation (4.91) implies that, in the large-N limit (1.21), the giant graviton index reproduces
the asymptotic growth of states accounting for the Bekenstein-Hawking entropy of the
dual 1

16 BPS states.
The large-charge analysis for the representation of [12] is summarized in appendix D.

42There are other saddle points u⋆ of s̃(n1,n2,n3)(x;u) corresponding to n1,2,3 - th roots of unity. Here we
will focus on the leading ones (4.87) (See analogous discussions in [21, 28, 29]).

43First, because s̃Ξ(n1,n2,n3) is even in u; second, because s̃Ξ(n1,n2,n3) depends only on differences of u’s,
and third, because s̃Ξ(n1,n2,n3) has continuous first derivatives on u .
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A Conventions

Let us assume two functions XΛ = XΛ(µ) and Y = Y (µ) of a set of variables µ. Let us
assume the explicit dependence of XΛ on Λ to be such that its limit function in the Λ→∞
is well-defined. Let us select a subset of variables α ⊂ µ and denote its complement as γ.
Let us assume that α = α0 is a singularity of X and Y . Thus, if we define

α = α0 + δα , δα =
δαren

Λ
, (A.1)

it follows that XΛ, Y → ∞ in the limit Λ → ∞ defined by keeping δαren fixed. Based on
the previous definitions we will say that in such Λ→∞ limit

XΛ ∼
Λ→∞

Y , (A.2)

if and only if 44

XΛ

Y
→

Λ→∞
A log Λ + (logF + cbranch) . (A.3)

The A, and F are functions of the δα (they can also depend on the γ) such that

A(δα) = A(δαren) , (A.4)

i.e. is invariant under homogeneous scaling of the δα and C is a c-number (independent
of the µ). Obviously, if δα is a single variable then A is a c-number as well. Also, if the
explicit dependence of XΛ on Λ is trivial, we can safely assume A = 0. The function F does
not need to be scale invariant, but it needs to have only power-like zeroes and singularities
in such a way that logF has only logarithmic divergences. The function cbranch is fixed in
terms of logF it is defined as a generic choice of branch cut of logF and thus choosing the
appropriate branch we can always assume, and we will do so from now on, that cbranch = 0 .

Contributions to F can have perturbative 45 or non-perturbative 46 origin. Perturba-
tively, they could originate from subleading one-loop determinant contributions or sublead-
ing corrections to the effective action. Non-perturbatively, they could originate from the

44In this paper →
x→x0

means that the limit x → x0 of the quotient among the left and right-hand sides of

the symbol is 1 .
45Explicit examples of this kind of contributions are given in equations (3.67) and (4.59).
46An explicit example of this kind of contributions is given in equation (3.77).
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superposition of complex conjugated saddle-points (e.g., see subsection 3.3, second line of
equation (3.76)). 47 In this paper we will not try to fix all these contributions (which are
subleading with respect to the leading asymptotics we are looking after). Analogously, we
will say that in the expansion Λ→∞, as defined before,

XΛ ∼exp
Λ→∞

Y , (A.5)

if and only if
XΛ

Y
→

Λ→∞
ΛA F . (A.6)

B Elliptic functions

The q-Pochammer symbol (ζ; q) ≡ (ζ; q)∞ has the following product representation

(ζ; q) =
∞∏
j=0

(1 − qj ζ) . (B.1)

The quasi-elliptic function has the following product representation

θ0(ζ; q) = (1− ζ)
∞∏
j=1

(1− qjζ) (1− qjζ−1) . (B.2)

The elliptic Gamma functions has the following product representation

Γe(ζ; p, q) =
∞∏

j, k=0

1 − ζ−1pj+1qj+1

1 − ζ pj qk
. (B.3)

C On the contour of integration Γgauge

In this appendix we explain how the details of the contour of integration Γgauge, cf. (3.33),
are relevant to compute the asymptotic growth of In1,n2,n3 in the expansion ∆a → 0 at
fixed ratios among ∆’s.

Resolving the physical poles

Let us comeback to the definition of giant-graviton indices (3.33)

In1,n2,n3 =

∮
Γgauge

dµ1dµ2dµ3 I4dn1,n2,n3
I2dn1,n2,n3

. (C.1)

It will be convenient to change integration variables from

U I
a , a = 1 . . . , nI , (C.2)

47To properly fit the definitions before, one would need to invert the dependence on charge variable J in
terms of chemical potentials, as determined implicitly by equation (3.75).

– 40 –



to the affine variables [47]

Ũ
(I)
a,a+1 :=

U
(I)
a

U
(I)
a+1

, a = 1 , . . . , nI − 1 ,

Ũ
(I)
0 :=

(
nI∏
a=1

U (I)
a

)1/nI

.

(C.3)

In terms of the new variables the original fundamental, adjoint, and bi-fundamental vari-
ables can be recovered as follows 48

U (I)
a =

(
nI−1∏
j=1

Ũ
(I)
a,a+j

)1/nI

Ũ
(I)
0 ,

U
(I)
ab :=

U
(I)
a

U
(I)
b

= Ũ
(I)
a,b :=

b−1∏
k=a

Ũ
(I)
k,k+1 .

U
(IJ)
ab :=

U
(I)
a

U
(J)
b

=

(∏nI−1
j=1 Ũ

(I)
a,a+j

)1/nI

(∏nJ−1
j=1 Ũ

(J)
b,b+j

)1/nJ

Ũ
(I)
0

Ũ
(J)
0

,

(C.4)

Note that the adjoint variables U
(I)
ab are equivalent to the adjoint tilded variables Ũ

(I)
ab :=

Ũ
(I)
a,b .

The contour prescription of [6] indicates that all physical poles selected by Γgauge should
be located at

U (I)
a = 0 , a = 1 , . . . , nI , I = 1 , 2 , 3 . (C.5)

with generic adjoint and bi-fundamental ratios U (I)
ab and U

(I,J)
ab . In the tilded variables this

means that all physical poles should be located at

Ũ
(I)
0 = 0 , I = 1 , 2 , 3 , (C.6)

with generic ratios Ũ
(I,J)
ab and Ũ

(I,J)
ab . This means that in the new variables the contour of

integration can be divided in two components, a co-dimension 3 loop that we denote below
as Γ̃gauge and a 3-dimensional infinitesimal loop picking up the residue at Ũ

(I)
0 = 0∮

Γgauge

dµ1dµ2dµ3 →
∮
Γ̃gauge

3∏
I=1

(
nI−1∏
a=1

dŨ (I)
a,a+1

2πiŨ(I)a,a+1

)
·
∮
Ũ

(I)
0 =0

3∏
I=1

dŨ (I)
0

2πiŨ
(I)
0

(Vandermonde Det’s).

(C.7)
At this point we can proceed to evaluate the 3-dimensional integral over the diagonal
modes Ũ

(I)
0 . However, this is not the most convenient way to proceed, because the

pole (C.6) is degenerate. In the original variables this degeneracy is reflected in the vanish-
ing of all the positions U

(I)
a . In the new variables the complication is translated into 0/0’s

48Here we assume the rules (XY )z = XzY z and (X/Y )z = Xz/Y z .
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indefiniteness in the naive residue evaluation. The latter indefiniteness arises after eval-
uating the bi-fundamental positions U

(IJ)
ab defined in the third line of equation (C.4), at

the position of the pole Ũ
(I)
0 = 0 . This technical complication makes ill-defined the naive

residue evaluation, due to the contribution coming from the fundamental strings stretching
among different stacks of branes I2d .

To simplify this residue computation it is convenient to deform the integration measure
by substituting

3∏
I=1

dŨ (I)
0

2πiŨ
(I)
0

→
3∏

I=1

dŨ (I)
0

2πi
(
Ũ

(I)
0 − µ

) , (C.8)

where µ should be thought of as a parameter that will be taken to zero after evaluating
the non-degenerate residues. After this modification the degenerate poles transform into
non-degenerate ones

Ũ
(I)
0 = 0 → Ũ

(I)
0 = µ . (C.9)

For µ ̸= 0 the physical poles do not condense to the very same position U
(I)
a = 0 and one

can proceed to evaluate 49

∮
Ũ

(I)
0 =0

3∏
I=1

dŨ (I)
0

2πi
(
Ũ

(I)
0 − µ

) · I4dn1,n2,n3
I2dn1,n2,n3

=

(
I4dn1,n2,n3

I2dn1,n2,n3

)∣∣∣∣∣
Ũ

(I)
0 =µ

= I4dn1,n2,n3

(
I2dn1,n2,n3

)∣∣∣∣∣
Ũ

(I)
0 =µ

=: I4dn1,n2,n3
Ĩ2dn1,n2,n3

.

(C.10)

For later convenience we note that

Ĩ2dn1,n2,n3
=

(
I2dn1,n2,n3

)∣∣∣∣∣
Ũ

(I)
0 =1

. (C.11)

At last, we can write

In1,n2,n3 =

∮
Γ̃gauge

3∏
I=1

(
nI−1∏
a=1

dŨ (I)
a,a+1

2πiŨ(I)a,a+1

)
I4dn1,n2,n3

Ĩ2dn1,n2,n3
, (C.12)

where we have not written down the limit µ → 0 in the right-hand side because the inte-
grand I4dn1,n2,n3

Ĩ2dn1,n2,n3
does not depend on µ .

In what follows we assume either that there is no other remaining degenerate residue
in the affine integration variables Ũ (I)

a,a+1 , or that, if there is any one such, then it has been
resolved [6, 17]. Anyways, the poles that dominate the expansion ∆a → 0 at fixed ratios
among ∆’s, which are the ones we will be concerned with, are non-degenerate in the affine
variables Ũ (I)

a,a+1 and thus they do not require any further resolution. This will be explained
below.

49This deformation is an example of the resolutions used in [6] to evaluate residues.
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The residues at ∆a → 0

The integral (C.12) can be written as

In1,n2,n3 =
∑
α

Res
[
. . . I4dn1,n2,n3

Ĩ2dn1,n2,n3
; U = Uα

]
. (C.13)

where α runs over whichever are the poles selected by the choice of contour Γ̃gauge .
In these expressions we have removed the indices I and a, a + 1, and the products

over I = 1, 2, 3 and a = 1, . . . , nI − 1, to ease presentation. For generic values of n1, n2

and n3 ∑
α

Res
[
. . . I4dn1,n2,n3

Ĩ2dn1,n2,n3
; Ũ = Ũα

]
̸= 0 . (C.14)

The results in subsection 4.2 imply the following asymptotic condition for residues 50 51

Res
[
. . . I4dn1,n2,n3

Ĩ2dn1,n2,n3
; Ũ = Ũα

]
→

∆a → 0
with ratios fixed

R̃esα[x, Ũα] e
−s̃(x,Ũα) . (C.15)

In this equation the function s̃(x, Ũ) equals the localized effective action reported in equa-
tion (4.78),

s̃(x, Ũ) := s̃(n1,n2,n3)(x,
logU

2πi
) , (C.16)

when the latter is expressed as a function of the new affine variables U → Ũ , and restricted
to the (n1 + n2 + n3 − 3)-dimensional section

Ũ
(I)
0 := 1 . (C.17)

This action s̃(x, Ũ) defines the exponential singularity of the integrand of In1,n2,n3 in the
expansion ∆a → 0 at fixed ratios. The asymptotic relation (C.15) and the explicit form
of the function R̃esα[x, Ũ ] to be presented below in (C.18), follow from the fact that the
polynomial

∏3
I=1

∏nI−1
a=1 (Ũ

(I)
a,a+1 − Ũ

(I)
α;a,a+1) that needs to be multiplied to the integrand in

order to extract its residue at Ũ = Ũα , does not affect the leading exponential growth of
the integrand in the limit ∆a → 0 at fixed ratios of ∆a’s.

The function R̃esα[x, Ũ ] is a subleading contribution defined as

R̃esα[x, Ũ ] := e−s(0)(x,Ũ+0+)+
∑

I,a log(Ũ
(I)
a,a+1−Ũ

(I)
α;a,a+1+0+) , (C.18)

where the 0+ is an auxiliary regulator whose only function is to keep finite the two terms in
the exponent of (C.18) at Ũ = Ũα (for the combination of the two quantities, this regulator
plays no role because the logarithmic term is cancelled by the first term).

50To derive this relation below it is important not to truncate the infinite products in the residues and
to work with their plethystic exponential representations.

51We recall that the symbol →
∆a → 0

with ratios fixed

means that the quotient between the left and right-hand side

expressions tends to 1 in the corresponding limit.
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The function

e−s(0)(x,Ũ) ←
∆a → 0

with ratios fixed

(
. . . I4dn1,n2,n3

Ĩ2dn1,n2,n3

)
× es̃(x,Ũ) , (C.19)

is the subleading contribution that we have discarded in the evaluation of e−s̃(n1,n2,n3)(x, logU
2πi

) .
Namely, the ambiguous contributions of type F that were defined around (A.3).

As it was explained in the main body of the paper in a certain region of chemical
potentials x the magnitude of the exponential growth of the factor |e−s̃(n1,n2,n3)(...)| is max-
imized by the configuration U

(I)
a = 1 . More generally, we explained how U

(I)
a = 1 is a

stationary point of e−s̃(n1,n2,n3)(...) . In virtue of this last statement and of (4.78) with the
restriction (C.17), it follows that the configuration Ũ

(I)
a,a+1 = 1 maximizes the exponential

growth of the leading factor |e−s̃(...) | in certain regions of chemical potentials x , and more
generally, that it is a stationary point of e−s̃(...) . This means that in the small-chemical
potential expansion above-quoted, the sum over residues∑

α

R̃esα[x, Ũα] e
−s̃(x,Ũα) , (C.20)

is dominated by poles {β} ⊂ {α} that obey the asymptotic condition

Ũ
(I)
β;a,a+1(x) →

∆a → 0
with ratios fixed

1 , (C.21)

if and only if:

• Γ̃gauge encloses some of them and the sum over their residues is non-vanishing.

For the contour prescription proposed in [3] there are infinitely many such poles. In the
integrand . . . I4dn1,n2,n3

Ĩ2dn1,n2,n3
these poles always come in pairs 52 (denoted as positive and

negative poles). For example, assuming nI > 1 there are simple poles defined by select-
ing nI − 1 pairs (a, b) for each I = 1, 2, 3 such that (for I ̸= J ̸= K and generic wI,J,K

53)

Ũ
(I)
ab =

b−1∏
j=a

Ũ
(I)
j,j+1 = U

(I)
ab =

wI

(wJ)c1(a,b)
or (wJwK)c2(a,b) , (C.22)

for any two choices of integers c1(a, b) ≥ 0 and c2(a, b) > 0 . These poles come from the
elliptic gamma functions [70] in the vector contributions (3.36). The first family comes
from the poles of the first factor in the numerator of (3.36). The second family comes from
the zeroes of the denominator of (3.36). They can be organized in two groups that map
into each other under a Z2 operation. One could denote such two subsets as positive and
negative. This separation in two, which is non unique, comes from the fact that for every
pole Ũ = Ũα there is a pole located at the inverse position Ũ = Ũ−1

α . This bijection implies
the existence of many Z2 operations, out of which one can pick up one, and declare that it
maps half of the number of poles coming from vector multiplets (positive) into the other

52At least at large charges, these pairs mutually cancel each other, as it will be shown below.
53It is sufficient, not necessary, to assume wI to be different from any product of rational powers of wJ .
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half (negative). For the indices studied here there are ∞ many such poles. 54 As it will be
shown below, in order to have a non-trivial answer at large charges, Γ̃gauge must necessarily
pick up an unbalanced number of positive and negative poles in order for the corresponding
integral not to vanish trivially at large charges.

In the concrete example of I0,0,2 it is easy to identify poles in the first family in (C.22)
for the choices c1 = 0 and 1 as:

Ũ
(3)
12 = w3 ,

w3

w1
,
w3

w2
. (C.23)

Using both, the identifications and the constraint below

Ũ
(3)
12 → z−1

there , wa → quathere , u1thereu2thereu3there = 1 , (C.24)

the three positive poles (C.23) map into the three positive poles corresponding to the
tachyonic and zero mode terms f1, f2 and f3 depicted in figure 2 of [3].

As recalled in the latter example, the pole-selection prescriptions of [3] and [6], pick
up an unbalanced number of positive and negative poles of type β which happen to come
solely from vector multiplets (the positions of the poles coming from the chiral multiplets
reduce to some power of p1 in the scaling ∆a → 0. Please refer to (3.38)) 55.

Let us proceed to explain why the sum over residues of type β selected by con-
tours Γ̃gauge breaking the Z2 symmetries among the latter, does not vanish for generic
values of chemical potentials. For the poles of type β, we can always use the Taylor expan-
sion around ∆ = 0

Ũβ(x) = 1 +
∑

i1,i2,i3 ∈ Z∗+
i̸=0

ci,β∆
i1
1 ∆

i2
2 ∆

i3
3 , (C.25)

where the coefficients ci,β := ci1,i2,i3,β are c-numbers. In particular for every β,

c1,β :=
{
c1,0,0,β , c0,1,0,β , c0,0,1,β

}
̸= 0 (C.26)

and generically for β ̸= β′ 56

c1,β ̸= c1,β′ . (C.27)

Moreover, within this family of poles {β} the remainder function

R̃esβ[x, Ũβ] →
∆a → 0

with ratios fixed

e−s̃0(x,1+c1,β ·∆)+log[c1,β ·∆] =: e−s̃
(log)
0,β (x) (C.28)

reduces to the exponential of a function of x , −s̃(log)0,β (x) , whose dependence on β can be
constrained in a simple way. We will do so in the following subsection. After substitut-
ing (C.25) in the leading contribution to (C.20) coming from the residues of type β, and

54If the giant graviton expansion is complete and not asymptotic, then one must expect, and we will
assume so, that the corresponding infinite sum over poles will be convergent in some continuous domain of
rapidities.

55The poles for this bi-fundamental contribution come from the zeroes of the Jacobi theta functions [70]
in the denominator.

56We identify poles β and β′ that are identical after a permutation of their gauge indices aI = 1, . . . nI−1 .
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keeping in the exponent the terms that do not vanish trivially as ∆a → 0 , one obtains

e−s̃(x,1)
∑
β

e− s̃
(log)
0,β (x)−s̃β(x) , (C.29)

where – after reinstating the indices I and a — it follows that

s̃β(x) ←
∆a → 0

with ratios fixed

3∑
I=1

nI−1∑
a=1

∂
U

(I)
a,a+1

(
s̃

(
x, Ũ

))∣∣∣∣∣
Ũ=1

× (c
(I);a,a+1
1,β ·∆)

↔
∆a → 0

with ratios fixed

0 ,

(C.30)

vanishes trivially because Ũ = 1 is a saddle point of the action s̃ . Thus, we conclude
that in the limit ∆a → 0 with ratios fixed, the total – and leading – residue contribution
to In1,n2,n3 takes the asymptotic form

e−s̃(x,0)
∑
β

e− s̃
(log)
0,β (x) ←

∆a→0
with ratios fixed

In1,n2,n3 . (C.31)

As we will show below, the sum over β can be a series only if Γ̃gauge selects an infinite
number of unpaired positive or negative poles. The equation (C.27) implies that for a
generic choice of a contour Γ̃gauge selecting an unbalanced number of positive or negative

poles of type β , the exponential factors {e−s̃
(log)
0,β(x)}, whose quotient will be reported in

equation (C.40) below, are linear independent functions of x and thus, for generic values
of x ∑

β

e−s̃
(log)
0,β (x) ̸= 0 . (C.32)

In such a case, in virtue of (C.31), one concludes that, provided the sum over β’s is either
finite or a convergent series,

In1,n2,n3 ∼exp
Λ→∞

e
−s̃(x,1)−s̃

(log)
0,β0

(x)
, s̃(x, 1) + s̃

(log)
0,β0

(x) ∼
Λ→∞

s̃Ξ,(n1,n2,n3)(x, 0) . (C.33)

where the ambiguity in the choice of β0 is shielded in the ambiguity in the relations ∼ .

Constraining the relative contribution of poles

Let us come back to the function (reduced residue)

R̃esβ[x, U ] = e−s(0)(x,Ũ)+log(Ũ−Ũβ) . (C.34)

The goal is to constrain the dependence on β of the quantity

R̃esβ[x, Ũβ + 0+] < ∞, (C.35)

in the asymptotic expansion near its singularity Ũβ → 1 . It is convenient to compute such
asymptotic expansion in two-steps, starting from the function (C.34)

Ũβ → Ũ , Ũ → 1 . (C.36)
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For example, in a two-step expansion defined by the quadratic differential variations

Ũ = 1 + δŨ , Ũβ = Ũ(1 + δŨβ) , (C.37)

where δŨβ ≪ δŨ the exponent of (C.34) takes the form

−s(0)(x, U) + log(Ũ − Ũβ)∼ − s(0)(x, 1 + δŨ) + log(δŨ) + log δŨβ . (C.38)

Using the expansion (C.38) for two different poles β = β1 and β = β2 we conclude, after
exponentiation, that in a limit δŨβ1,2 → 0 the quotient among the reduced residues of
roots of type β approaches a universal expression,

R̃esβ1 [x, Ũβ1 = 1 + δŨβ1 ]

R̃esβ2 [x, Ũβ2 = 1 + δŨβ2 ]
→

δŨβ1

δŨβ2

. (C.39)

This expression and (C.25) imply the following relation

R̃esβ1 [x, Ũβ1(x)]

R̃esβ2 [x, Ũβ2(x)]
→

∆a→0
at fixed ratio

∑3
I=1

∑nI−1
a=1 c

(I);a,a+1
1,β1

·∆∑3
I=1

∑nI−1
a=1 c

(I);a,a+1
1,β2

·∆
=:

e
−s̃

(log)
0,β1

(x)

e
−s̃

(log)
0,β2

(x)
. (C.40)

This relation is telling us that the relative contribution of poles of type β is defined, unam-
biguously, by their corresponding coefficients c1,β . This is very useful, because the latter
coefficients can be computed easily, and consequently using (C.40) one can straightfor-
wardly predict what poles in the integrand would cancel among each other should Γ̃gauge

pick them all.
For example, from (C.40) one concludes that if the positions β1 and β2 are inverse to

each other, then

e
−s̃

(log)
0,β1

(x)

e
−s̃

(log)
0,β2

(x)
= −1 . (C.41)

which means that both contributions would cancel each other in the sum

e−s̃(x,0)
∑
β

e− s̃
(log)
0,β (x) . (C.42)

This implies that, should Γ̃gauge not break the Z2 symmetries for poles of type β, then the
contributions of the latter would vanish at large charges. On the contrary for a Γ̃gauge that
breaks the Z2 symmetries for poles of type β the analytic analysis above presented predicts
that the answer will not vanish.

For choices of Γ̃gauge that pick up an infinite number of unpaired positive and negative
poles of type β it may be possible that the sum∑

β

e− s̃
(log)
0,β (x) , (C.43)

could not be resumed into a finite function. Equation (C.40) can be used to understand
this point better. Just to give an idea, assume ∆1 = ∆2 = ∆3 and take β = βmin to denote
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the pole(s) with the minimum value nmin of

|n| = |n(β)| := |
3∑

I=1

nI−1∑
a=1

c
(I);a,a+1
1,0,0,β + c

(I);a,a+1
1,0,0,β + c

(I);a,a+1
1,0,0,β | . (C.44)

Then we can write∑
β

e− s̃
(log)
0,β (x) = e

− s̃
(log)
0,βmin

(x) 1

nmin

∑
β

n(β)

= e
− s̃

(log)
0,βmin

(x) 1

nmin

∑
n∈Z

n≥nmin

deg(n)n ,
(C.45)

where the integer number deg(n) receives contributions from every β selected by Γ̃gauge

with n(β) = n : precisely, +1 contributions from positive poles and −1 contributions from
negative poles. Obviously, only if deg(n) = 0 for n > L where L is a positive integer, then
the sum in the right hand side of (C.45) becomes finite. Assuming Γ̃gauge does select an
infinite number of unpaired positive and negative poles of type- β , we interpret the infinity
above as signature that the infinite sum over residues can not be blindly commuted with
the expansion ∆a → 0 at fixed ratios. At the level of computing asymptotic expansions
though, it is enough to truncate the convergent sum over poles β to a large sum, say with
only L ≫ 1 elements, those with the minimum values of n(β) out of the infinitely many
selected by the contour. In the presence of this intermediate cut-off L the asymptotic
relation (C.33) follows from the fact that the dependence on L is shielded in the subleading
ambiguity of the relations ∼ . 57

D Large charge entropy from averages over free Fermi systems

Brief summary of results in this appendix In [12] the author proposed an exact
giant graviton-like expansion for a large family of matrix integrals that include the 1

16 -BPS
index as a particular example. Schematically, this expansion looks like

I(t) =
∑
n

∫
dt In,ζ(t) , (D.1)

where
In,ζ(t, ζ) =

∑
Q

an,t(Q)e2πitQ . (D.2)

ζ = e−t is an auxiliary integration variable, whose string theory interpretation is unclear
to us, and which we find evidence that –at least at large charges – it may be related to the

57In other words, in the regions of chemical potentials ∆a’s where an infinite sum over poles of type β

converges, Ũ (I)
ab = 0 happens to be an accumulation point for such type of poles, i.e., in those regions of ∆′

as

the larger |n(β)| the closer β is to Ũ
(I)
ab = 0 . This is the reason why a series over poles of type β can not

be commuted with the limit ∆a → 0 with ratios fixed: for a fast enough limit of poles towards Ũ
(I)
ab = 0 it

is not always true that the posterior limit ∆a → 0 implies the condition (C.21). That said, for any finite
sum over poles of type β the latter issue is not present.
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linear combination of giant graviton numbers c1,± · n in the representation of [3]. On the
other hand, n is a non-negative natural number that reminisces, as well, one of the three
numbers of giant gravitons in the expansions of [3] and [5]. From now on, when referring
to the representation of [12], n will be called the giant graviton-like number.

At large enough charges, the microcanonical index grows slower than the giant graviton-
like contributions

∫
dt an,t(Q) [13]

|a(Q)|
|
∫
dζ an,ζ(Q)|

∼
Q→∞

0 . (D.3)

This means that at large Q’s a large number of cancellations happen after evaluating∑
n

∫
dtan,t(Q) . (D.4)

Indeed, we will check that these cancellations can be understood as a transition in between
two pairs of complex conjugated saddle-point configurations of

log In,ζ(t) + 2πitQ , (D.5)

at large Q .
The large-charge localization Lemma of subsection (2.3) implies that the integral over t

must localize – at large-R charges and fixed J and n – around essential singularities of the
integrand In,ζ(t) . Indeed, we find that the two relevant exponential singularities are located
around ζ = ±1, respectively. If we denote the asymptotic expansion of In,ζ(t) around them
as

In,ζ(t) → In,±1+ t(t) , (D.6)

then the saddle points obtained after extremizing the answer obtained after the substitution
of the choice “−” in (D.6) on (D.5), are the ones determining an(Q) at large Q and fixed n .
On the other hand the saddle points obtained after extremizing the substitution of the choice
of sign + in (D.6) on (D.5) dominate the counting after the sum over n is evaluated and
exponentially large cancellations happen. The details of this analysis will be summarized
in section D.

In summary, we will check that at large charges Q → ∞ (for all N) the following
asymptotic formulae hold∑

n

∫
dt an,t(Q)∼ alocn,t⋆+(Q)(Q) + alocn,t⋆−(Q)(Q) ∼ a(Q) ∼ e(

√
3)31/3π cJ2/3N2/3

, (D.7)

(and a more general version of it as well making contact with the complete moduli space of
dual black hole solutions) where the complex conjugated contributions

alocn,t⋆±
(Q) , (D.8)

come from the saddle points of the localized effective action− log In,ζ(τ) around the singular
region ζ → 1. In this case the two complex conjugated saddle point values are

t⋆± = c̃±
J2/3

N1/3
, (D.9)
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where again, the c̃± are order 1 complex contributions that happen to match the above-
quoted c2± in equation (1.20) –up to a normalization factor–.

The asymptotic relations (D.7) tell us how the exponential growth of 1
16 -BPS states in

the boundary gauge theory is recovered from the giant graviton-like representation of [12].
The relevant computations are summarized below. Curiously, the similarity among (1.20)
and (D.9) suggests that there may be a relation between the sum of the n auxiliary integra-
tion variables of type t = − log ζ (in representation (3.40)) and a single linear combination
of giant graviton numbers n in the proposal of [3] (in representation (3.30)).

The cancellation mechanism

Let us explain how the cancellation mechanism among giant-graviton-like contributions
happens in the exact expansion (3.40). In this expansion the microcanonical index of giant
graviton-like contribution,

∑
n Jn , can be written as:

d̃M (Q̃
′
) =

∫
Γ
dx

⌊maxQ̃′
1,2,3/N⌋∑

n=0

∫
du

n!

∫
dt

n!
e−S

(n)
M (x;z,ζ)−ix·Q̃′

, (D.10)

where ti = −log(ζi) ∈ [0, 2πi) and

−S(n)
M (x; z, ζ) :=

∞∑
l=1

(
1− wl

1

) (
1− wl

2

) (
1− wl

3

)
−
(
1− pl

) (
1− ql

)
l
(
1− wl

1

) (
1− wl

2

) (
1− wl

3

)
×

n∑
i ̸=j=1

(
zi
zj

)l (
1− ζ li

)(
1− ζ−l

j

)
− T (n)(x; z, ζ).

(D.11)

We collect the determinant and the zero-mode contributions in the quantity

−T (n)(x; z, ζ) =

∞∑
l=1

(
1− wl

1

) (
1− wl

2

) (
1− wl

3

)
−
(
1− pl

) (
1− ql

)
l
(
1− wl

1

) (
1− wl

2

) (
1− wl

3

) n∑
i=1

(
1− ζ li

)(
1− ζ−l

i

)
+ log(Det[z, ζ])−

n∑
i=1

log

(
(1− ζi)

2

ζi

)
+N

n∑
i=1

log (ζi)− πin .

(D.12)

The identity

−
n∑

i=1

∞∑
l=1

1

l

(
ζ li + ζ−l

i

)
−
∑
i

log

(
1− ζi
ζi

)
− πin = 0mod (2πi) , (D.13)

simplifies T (n) as follows

−T (n)(x; z, ζ) =
n∑

i=1

∞∑
l=1

−
(
1− pl

) (
1− ql

)
l
(
1− wl

1

) (
1− wl

2

) (
1− wl

3

) (1− ζ li

)(
1− ζ−l

i

)
+ NLog (ζi)

+
∞∑
l=1

(
1− wl

1

) (
1− wl

2

) (
1− wl

3

)
l
(
1− wl

1

) (
1− wl

2

) (
1− wl

3

) (2n) + log(Det[z, ζ]) .

(D.14)
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To apply our large-charge localization Lemma, we must compute the asymptotic expansion
of the effective action around the relevant power-like singularity(ies). There are many
singularities, but we will show that the two relevant ones (±) are located at ∆a → 0

and ζi → ±1 . 58 We find and check (in the following section), that the singularity locus
at ζi = −1 is the one relevant to compute asymptotic growth of states at fixed giant
graviton-like number n.

As in the cases before, these previous singularities serve as attractors to saddle-points.
The localization of the effective action around ζi = ±1 determines different saddle-point
contributions to the total integral (D.10). In this subsection, we will focus on the vicinity
of the singularity locus (or equivalently, on the saddle-points obtained after localization)
at ζi = 1, which is the one making explicit contact with the index at large charges.

If we substitute
∆a → ϵ∆a , (D.15)

and
ζi → e−ϵti , zi → e−2πiui , (D.16)

in the effective action (D.11) and expand it 59 around ϵ = 1
Λ = 0 then the first term in the

right-hand side of (D.11) reduces to

n∑
i ̸=j=1

π2
(
−B2

(
−uij − iω1

2π

)
+ 2B2 (−uij)−B2

(
−uji + iω1

2π

))
titj

∆1∆2∆3

−
n∑

i ̸=j=1

ω1 (∆1 +∆2 +∆3) titj
2∆1∆2∆3

+ O(ϵ2) .

(D.17)

Evaluating this at the asymptotic form of the n! inequivalent saddle-points for gauge-
rapidities uij → u⋆ij = 0, and expanding the T (n) we obtain

−S(n)
M + T (n)

M =
n∑

i ̸=j=1

1

ϵ
T (x) titj + O(ϵ2) ,

T (n)
M =

1

ϵ
T (x)

n∑
i=1

(
ti

)2
+ ϵ

n∑
i=1

tiN + O(log ϵ) + O(ϵ2) .

(D.18)

Adding both results we obtain

−S(n)
M =

1

ϵ
T (x)

(
t̃
)2

+ ϵ t̃ N + O(log ϵ) + O(ϵ2) , (D.19)

58In particular, from now on we will only pay attention to the leading asymptotic behaviour, thus
will not pay attention to the F -type contributions (See the definitions given around (A.3)) coming from
the logDet[z, ζ] term.

59Really, we first make the substitution in the denominator, then expand the result and keep leading
contributions. Then, finally, we re-sum over the variable l and obtain a sum over polylogarithms at diverse
level. Then we substitute (D.15) and (D.16) and expand the answer around ϵ = 0 up to the desired order.
In this way we are able to avoid finding undesired infinities due to mistreatment of logarithmic divergencies
(See the discussion in pargraph 4.2).
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where we have changed to variables (with unit Jacobian)

t̃ :=
n∑

i=1

ti , t̃1,2,...,n−1 = t1,2,...,n−1 . (D.20)

60Lastly, we apply the large-charge localization lemma to the integral∫
dũdt̃ e−S

(n)
M (x;z,ζ) ∼exp

Λ→∞

∫ 2πi
ϵ

0
dt̃ e−S

(n)
M (x;z⋆,ζ) ∼exp

Λ→∞
e−s̃

(n)
M (x;t̃⋆) , (D.21)

where
t̃⋆ = − N

2T (x)
, (D.22)

is the saddle point of

s̃
(n)
M (x; t̃) = −T (x)

(
t̃
)2
− N t̃ , (D.23)

with onshell value

e−s̃
(n)
M (x;t̃⋆) ∼exp

Λ→∞
e

N2∆1∆2∆3
2ω1 (∆1+∆2+∆3−ω1±2πi) . (D.24)

This result matches the exponential of the entropy function accounting for the asympotic
growth of states at large charges and spin, and thus one concludes that

d̃M (Q̃
′
) ∼exp
Λ→∞

d̃′(Q̃
′
) (∀N) . (D.25)

This had to be the case because the representation (3.40) is an exact representation of the
index.

The large charge growth at fixed n

We finalize by showing that the contribution coming from the (pair of complex conjugated)
saddle points of the localized action at ζi = −1 , dominate the counting of states relative to
a single giant graviton-like block n , for any finite n . And second, by understanding from
a macrocanonical perspective how the latter contributions cancel at large charges after
summing over n , letting the complex conjugated pairs of solutions of the localized action
at ζi = 1 to dominate the counting of 1

16 -BPS states at large charges.
This time we substitute

∆a → ϵ∆a , (D.26)

and
ζi → (−1) e−ϵti , zi → e−2πiui , (D.27)

in the effective action
−S(n)

M (x; z, ζ) . (D.28)

60We assume the change of variables is implemented before taking any expansion that breaks the peri-
odicity ti → ti +

2πi
ϵ

. In this way we are safe to consider that the n new variables are such that ϵ
2πi

t̃ and
ϵ

2πi
t̃1,2,3,...,n−1 range over the segment [0, 1) .
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Then we expand the answer around ϵ = 1
Λ = 0 . Being careful with contributions coming

from zero-modes (as detailed in previous analysis) and picking up the leading gauge saddle
point u∗ij = 0 we obtain the following leading contribution

4π4

3

B4

[
1
2 + iω1

2π

]
−B4

[
iω1
2π

]
− 1

16

∆1∆2∆3ϵ3
× n2 + O

(
1

ϵ2

)
× n2 , (D.29)

where
B4(x) := B4(x− ⌊x⌋) , B4(x) := x4 − 2x3 + x2 − 1/30 . (D.30)

In the large charge region

Q̃′
1 = Q̃′

2 = Q̃′
3 = Q̃′ = qΛ4, J̃ ′ = 0 . (D.31)

(D.29) predicts an entropy growth-rate of ∼ Q̃′3/4 . To show this we follow the approach
presented in subsection 3.3. To count states in the charge locus (D.31) we must extremize

4π4

3
n2 B4

[
1
2 + iω1

2π

]
−B4

[
iω1
2π

]
− 1

16

∆1∆2∆3
+ (∆1 +∆2 +∆3) Q̃

′ . (D.32)

The relevant saddle point values are

iω1

2π
=

1

4
, ∆1 = ∆2 = ∆3 =

(
1
2 ∓

i
2

)
4

√
113
5 π

23/4
√
3

√
n

4
√
Q

, (D.33)

and the prediction for entropy growth at fixed n is

|d̃(at fixed n)
M |[Q̃

′
] ∼exp
Λ→∞

|e
(1−i) 4
√

226
5 π

√
3

√
nQ̃′3/4

+ c.c.| ∼exp
Λ→∞

e

4
√

226
5 π

√
3

√
nQ̃′3/4

. (D.34)

Notice first that this does not depend on N and second, that at finite N it grows faster than
the 1

16 -BPS microcanonical index |d̃M | which grows exponentially fast in O(N2/3Q̃′2/3) .
Let us define

q = e−
∆1
2 = e−

∆2
2 = e−

∆3
2 = e−

ω1
3 , (D.35)

and proceed to compute the q-series Jn=1 = Jn=1(q) by computing residues of the inte-
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gral (3.46) (up to order Q = 80)

Jn=1(q) =
∑
Q

d
(n=1)
M [Q] qQ

=− 10q6 + 12q7 − 9q8 + 21q10 − 54q11 + 83q12 − 102q13 + 72q14 + 128q15

− 585q16 + 1122q17 − 1513q18 + 1380q19 + 138q20 − 3900q21 + 9996q22

− 17376q23 + 22568q24 − 18114q25 − 6030q26 + 58474q27 − 142020q28 + 244116q29

− 320713q30 + 287250q31 − 25656q32 − 592766q33 + 1645122q34 − 3038934q35

+ 4370499q36 − 4792836q37 + 2942865q38 + 2915380q39 − 14343372q40

+ 31698240q41 − 52605856q42 + 70039506q43 − 70602105q44 + 34228542q45 + 63154131q46

− 242185620q47 + 506010016q48 − 819250914q49 + 1082818902q50 − 1111506156q51

+ 627383301q52 + 710585424q53 − 3216045014q54 + 7001989140q55 − 11715308649q56

+ 16199071728q57 − 18156237900q58 + 13963219146q59

+ 1135248962q60 − 32145290706q61 + 82429426092q62 − 150565817086q63

+ 226011251286q64 − 284147263932q65 + 282109482979q66 − 157874585688q67

− 163795361382q68 + 754154356216q69 − 1647734709546q70 + 2791649406978q71

− 3979126322771q72 + 4777631630670q73 − 4473905312412q74 + 2073206793162q75

+ 3594625665549q76 − 13599471353058q77 + 28405997629926q78 − 47107802836014q79

+ 66434292154434q80 + · · · .
(D.36)

We note that Q ̸= Q̃′ (see the discussion in section 3), however they are related in the
asymptotic limit (D.31) as follows

Q ∼
Λ→∞

6Q̃′ . (D.37)

Using this relation we can compare

|d(n=1)
M [Q]| ∼exp

Λ→∞
|d̃(at fixed n=1)

M [Q̃′]|

∼exp
Λ→∞

e

4
√

226
5 π

√
3

Q̃′3/4
|2 cos

4

√
226
5 π
√
3

Q̃′3/4| .
(D.38)

The result is presented in figure 1.
Notice that the giant graviton index at fixed n grows faster than the total giant graviton

index in the limit (D.31). How are these cancellations explained in the present approach?
Let us define the variable δn

δn :=
N

Λ4
n , (D.39)

which ranges over a continuum domain in the limit as Λ → ∞. Then we can trade the
sum over n by an integral over a finite segment of length q̃′ = O(1) as Λ→∞ that can be
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Figure 1: The vertical axis represents log
(
log |d(n=1)

M [Q]|
)

and the horizontal axis rep-
resents logQ , with Q ranging from 6 to 80 . The vertical coordinates of the blue
points come from evaluating the asymptotic formula log(13X + log |2 cosX|) where X =

4

√
226
5 π
√
3(Q/6)3/4. The vertical positions of the red points come from taking log(log | · |)

of the coefficients in (D.36).

evaluated by saddle-point approximation (as it is Gaussian):

⌊Q̃′/N⌋∑
n=0

e

(
4π4

3

B4

[
1
2+

iω1
2π

]
−B4

[
iω1
2π

]
− 1

16

∆1∆2∆3ϵ
3

)
n2

∼exp
Λ→∞

∫ q̃′

0
d[δn]e

(
4π4

3

B4

[
1
2+

iω1
2π

]
−B4

[
iω1
2π

]
− 1

16

∆1∆2∆3ϵ
3

)
Λ8

N2 δn2

∼exp
Λ→∞

1 .

(D.40)

This mechanism explains how these contributions do not compete with the ones coming from
the singularity locus at ζi = 1 (encoded in (D.24)) in determinining the total microcanonical
giant graviton index (D.10) at large charges.
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