
Geometry of fundamental shadow link complements and
applications to the 1-loop conjecture

Tushar Pandey and Ka Ho Wong

Abstract

We construct a geometric ideal triangulation for every fundamental shadow link complement and
solve the gluing equation explicitly in terms of the logarithmic holonomies of the meridians of the
link for any generic character in the distinguished component of the PSL(2;C)-character variety
of the link complement. As immediate applications, we obtain a new formula for the volume of a
hyperideal tetrahedron in terms of its dihedral angles, and a formula for the volume of hyperbolic
3-manifolds obtained by doing Dehn-fillings to some of the boundary components of fundamental
shadow link complements. Moreover, by using these ideal triangulations, we verify the 1-loop con-
jecture proposed by Dimofte and Garoufalidis for every fundamental shadow link complement. By
using the result of Kalelkar-Schleimer-Segerman [17], we also prove the topological invariance of the
1-loop invariant and show that the 1-loop invariant satisfies a surgery formula. As a result, we prove
the 1-loop conjecture for manifolds obtained by doing sufficiently long Dehn-fillings on boundary
components of any fundamental shadow link complement. This verifies the 1-loop conjecture for a
large class of hyperbolic 3-manifolds.
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1 Introduction

The family of fundamental shadow links was introduced and studied by Costantino and Thurston in [7].
Each fundamental shadow link is a hyperbolic link in a connected sum of copies of S2 × S1. This family
of links is universal in the sense that every compact oriented 3-manifold with toroidal or empty boundary
can be obtained from a suitable fundamental shadow link complement by doing an integral Dehn-filling
to some of the boundary components [7]. According to Thurston’s hyperbolic Dehn surgery theorem
[29], most Dehn surgeries on a hyperbolic 3-manifold are actually hyperbolic. Thus, studying the hy-
perbolic geometry of fundamental shadow link complements may help us to understand the geometry
of a large class of hyperbolic 3-manifolds. Especially, this provides a possible approach to compute
geometric invariants of hyperbolic 3-manifolds, such as complex volume and the adjoint twisted Rei-
demeister torsion, by first computing the invariants for fundamental shadow link complements and then
investigating how the invariants behave under doing hyperbolic Dehn-fillings on fundamental shadow
link complements. By using this approach, in [33], T. Yang and the second author discovered a new and
explicit formula for the adjoint twisted Reidemeister torsion of a large class of hyperbolic 3-manifolds in
terms of the determinant of the associated Gram matrices (see Section 2.2 for more details). This formula
also has an immediate application in the study of the asymptotics of quantum invariants [34].

1.1 Geometry of fundamental shadow link complements

In the first part of this paper, we study the geometry of fundamental shadow link complements by con-
structing a geometric ideal triangulation of each fundamental shadow link complement and solving the
gluing equations explicitly for any representation of the fundamental group of the link complement into
PSL(2;C) near the holonomy representation of the complete hyperbolic structure. This is achieved by
solving the gluing equation on each D-block explicitly in terms of the holonomies around the six ideal
vertices. The problem of solving the gluing equations is then reduced to the problem of solving a sin-
gle quadratic equation. This allows us to write down the solution explicitly (See Sections 3.1 and 3.2
for more details). By analyticity, the solution of the gluing equations can be extended to any generic
character in the distinguished component of the PSL(2;C) character variety of the link complements.

We briefly recall the construction of fundamental shadow link complements, each of which admits as
a 3-dimensional analogue of the pants decomposition of surfaces. Recall that to construct a closed surface
with genus greater or equal to 2, as shown in Figure 1, we can first take the double of a hexagon along the
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three (green) sides to obtain a pair of pants with three (red) circle boundaries, and then glue the pair of
pants together along the (red) boundary suitably to obtain the surface. By repeating a similar construction
in one higher dimensional, we can construct a fundamental shadow link complement as shown in Figure
2. The building block of a fundamental shadow link complement is a truncated tetrahedron with six
edges removed. To construct a fundamental shadow link complement, we first take the double of the
truncated tetrahedron along the hexagonal faces to obtain a D-block with boundary consisting of four
(red) 3-puncture spheres and six (blue) cylinders around the six removed edges. Then we glue copies of
D-blocks together along the 3-puncture spheres to obtain a fundamental shadow link complement. Note
that the (blue) cylinders around the removed edges will be glued together to form the toroidal boundary
of the manifold. Each fundamental shadow link complement is hyperbolic and hyperbolic cone structures
along the meridians can be constructed concretely by gluing hyperideal tetrahedra (see Section 2.1.2 for
more details). Well-known examples of fundamental shadow link complements include the Borromean
rings complement and octahedral fully augmented link complements ([26], [32, Proposition 6.2]). See
also [18] for more concrete examples of fundamental shadow links in S3.

Figure 1: Construction of a closed surface.

Figure 2: Construction of a fundamental shadow link complement.

Each fundamental shadow link complement admits a natural ideal polyhedral decomposition ob-
tained by shrinking the edges of the D-blocks into ideal vertices. In this decomposition, each D-block
D consists of two ideal octahedra, which can be further decomposed into 8 ideal tetrahedra to give an
ideal triangulation TD of D as shown in Figure 3. This induces an ideal triangulation T = {TD} of
the fundamental shadow link complement. Note that the fundamental group of a D-block is a rank 3
free group. The SL(2;C)-character variety of the free group with three generators is well-studied by
Goldman in [11]. A key step to study the triangulation T is to understand the “gluing variety” Z(D) of
TD for each D-block D (see Remark 3.4). This leads to our first result about the ideal triangulation T .
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Figure 3: Triangulation of each D-block into 8 ideal tetrahedra.

Theorem 1.1. The ideal triangulation T of the fundamental shadow link complement satisfies the fol-
lowing properties.

1. The triangulation is geometric at the complete structure (i.e. the shape parameters have positive
imaginary parts) and each D-block is a union of 2 regular ideal octahedra which are triangulated
into 8 ideal tetrahedra with dihedral angles (π/4, π/4, π/2).

2. Near the complete structure, the 8 shape parameters on each D-block are uniquely determined by
two edge equations and six holonomy equations and the solution can be explicitly written down in
terms of the holonomies around the six ideal vertices.

3. The solution of the gluing equation of the triangulation of the fundamental shadow link comple-
ment is given by a combination of the solution on each D-block.

Based on the construction of the layered solid torus studied by Jaco and Rubinstein in [16], there
are several interesting results about how an ideal triangulation of a manifold behaves under doing Dehn-
fillings to some of the boundary components. In some cases, this construction allows us to show that
some nice property of ideal triangulations is preserved under doing Dehn-fillings. For example, in [12],
Guéritaud and Schleimer study how the canonical decompositions of 3-manifolds behave under Dehn-
fillings. In [9], Futer, Hamilton and Hoffman show that every hyperbolic 3-manifold has a finite cover
that admits infinitely many geometric triangulations, with the additional property that every long Dehn-
filling of one cusp in that finite cover also admits infinitely many geometric triangulations. Besides,
Howie, Mathews and Purcell provide a new method to compute the A-polynomials of knots by studying
how the Neumann-Zagier datum changes under Dehn-fillings [13]. We hope that our result will provide
insight to study the above problems from both theoretical and computational points of view.

As an application of Theorem 1.1, we obtain a new formula for the volume of a hyperideal tetrahedron
which is different from the well-known Murakami-Yano formula [21]. To present the formula, we define
the volume of a D-block as follows. First, given (u1, . . . , u6) ∈ C6, we let

z∗ =
−B −

√
B2 − 4AC

2A
,
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where

A = −u1
u4

− u1u3
u2

− u1
u2u3

− u1
u22u4

− u5
u2

− u6
u2u4

− 1

u2u4u6
− 1

u2u5
,

B = −u1u4 +
u1
u4

+
u4
u1

− 1

u1u4
+ u2u5 +

u2
u5

+
u5
u2

+
1

u2u5
− u3u6 −

u3
u6

− u6
u3

− 1

u3u6
,

C = −u4
u1

− u2
u1u3

− u2u3
u1

− u22u4
u1

− u2
u5

− u2u4
u6

− u2u4u6 − u2u5.

Besides, recall that the volume of an ideal tetrahedron with shape parameter z ∈ C∖{0, 1} is given by

D(z) = ImLi2(z) + Arg(z) log |z|,

where Arg(z) ∈ (−π, π), Li2 : C∖(1,∞) → C is the dilogarithm function defined by

Li2(z) = −
∫ z

0

log(1− u)

u
du

and the integral is along any path in C∖(1,∞) going from 0 to z.
We define the volume of a D-block D with logarithmic holonomy (H(m1), . . . ,H(m6)) by

VolD(H(m1), . . . ,H(m6)) =
4∑

k=1

(
D(z∗k) +D(z̃∗k)

)
,

where D(z) is the Bloch-Wigner dilogarithm function, ul = e
H(ml)

2 for l = 1, 2, . . . , 6,

z∗1 =
z∗ − u22

z∗ + u2u3u4
, z∗2 =

z∗u1u3u5 − u2u3u4
z∗u1u3u5 + u1u2u4u5

,

z∗3 =
z∗u1u6 − u2u4u5u6

z∗u1u6 + u2
, z∗4 =

z∗u1 − u1
z∗u1 + u2u6

z̃∗1 = − z∗u2 + u22u3u4
z∗u3u4 − u22u3u4

, z̃∗2 = − z∗u3 + u2u4
z∗u1u5 − u2u4

,

z̃∗3 = −z
∗u1u4u5u6 + u2u4u5
z∗u1 − u2u4u5

, z̃∗4 = − z∗u1 + u2u6
z∗u2u6 − u2u6

.

θ1

θ2 θ6

θ4

θ5θ3

Figure 4: A hyperideal tetrahedron.

The volume of a D-block is the sum of the volume of the 8 ideal tetrahedra in Figure 3 with loga-
rithmic holonomy H(ml) at the l-th vertex for l = 1, 2, . . . , 6 (See Section 3.3 for more details). Given
a hyperideal tetrahedron with dihedral angles (θ1, . . . , θ6) as shown in Figure 4. We have the following
formula for the volume of the hyperideal tetrahedron.
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Theorem 1.2. The volume of the hyperideal tetrahedron ∆(θ1,...,θ6) with dihedral angles (θ1, . . . , θ6) is
given by

Vol(∆(θ1,...,θ6)

)
=
1

4

(
VolD

(
2θ1

√
−1, . . . , 2θ6

√
−1
)
+VolD

(
− 2θ1

√
−1, . . . ,−2θ6

√
−1
))
.

By using a similar idea, we obtain a formula for the volume of hyperbolic 3-manifolds obtained by
doing Dehn-fillings to some of the boundary components of fundamental shadow link complements. Let
M = #c+1(S2 × S1)∖LFSL be the complement of a fundamental shadow link LFSL with n components
L1, . . . , Ln obtained by gluing c D-blocks. Formwith 0 ⩽ m ⩽ n, let µ = (µ1, . . . , µm) be a system of
simple closed curves on ∂M such that µi ⊂ Ti for i = 1, 2, . . . ,m. Let Mµ be the 3-manifold obtained
from M by doing the Dehn-filling along µ. Suppose Mµ is hyperbolic with a holonomy representation
ρµ of a possibly incomplete hyperbolic structure. Let ρ be the restriction of ρµ on M. Assume that ρ lies
on the distinguished component of the PSL(2;C)-character variety of M . Let (H(m1), . . . ,H(mn)) be
the logarithmic holonomies of the system of meridians in [ρ]. For each k ∈ {1, . . . , c}, let Lk1 , . . . , Lk6

be the components of LFSL intersecting ∆k and let H(mk1), . . . ,H(mk6) be the logarithmic holonomies
of Lk1 , . . . , Lk6 .

Theorem 1.3. The volume of the hyperbolic 3-manifold Mµ with the holonomy representation ρµ is
given by

Vol(Mµ) =

c∑
k=1

VolD

(
H(mk1), . . . ,H(mk6)

)
.

Remark 1.4. For the case where m = n, by the result in [14], if we remove at most 114 simple closed
curves on each boundary torus, then the Dehn-fillings along any remaining system of simple closed
curves of ∂M are sufficiently long and ρ lies on the distinguished component of the PSL(2;C)-character
variety of M . In particular, Theorem 1.3 gives a formula for the volume of those closed, oriented hyper-
bolic 3-manifolds.

1.2 1-loop conjecture of fundamental shadow link complements and their Dehn-fillings

Given a hyperbolic 3-manifold M with toroidal boundary ∂M = T1
∐

· · ·
∐
Tk, let ρ0 : π1(M) →

PSL(2;C) be the discrete faithful representation coming from the complete hyperbolic structure of M .
Let X0(M) be the distinguished component of the PSL(2;C)-character variety ofM , i.e. the irreducible
component of the PSL(2;C)-character variety containing [ρ0]. Let Xirr

0 (M) ⊂ X0(M) be the subset
consisting of all irreducible characters. Let α = (α1, . . . , αk) be a system of simple closed curves such
that αi ∈ π1(Ti) for i = 1, 2, . . . , k. The adjoint twisted Reidemesiter torsion T(M,α), introduced by
Porti in [24], is a non-zero rational function defined on a non-empty Zariski open subset Zα ⊂ Xirr

0 (M)
consisting of all α-regular representations (see Definition 2.4). Given any [ρ] ∈ Zα, T(M,α)([ρ]) is
defined as the Reidemeister torsion of the cellular complex of the universal cover of M twisted by the
composition of the adjoint action with the representation ρ (see Section 2.2 for a review). This invariant is
well-behaved under doing Dehn-fillings and is expected to appear as the “1-loop” term in the asymptotic
expansion formula of different quantum invariants, such as the colored Jones polynomials of knots at
roots of unity. However, computing the torsion in general is a hard problem.

In [8], Dimofte and Garoufalidis proposed a conjectural formula to compute the adjoint twisted
Reidemeister torsion of any hyperbolic 3-manifold with toroidal boundary in terms of the shape pa-
rameters of any ideal triangulation of that manifold. To be precise, given an ideal triangulation T of
M , we let PT : V(T ) → X(M) be the map form the gluing variety V(T ) of T to the PSL(2;C)-
character variety X(M) of M , defined by sending a solution of the gluing equation to the character
of the associated pseudo-developing map. For any [ρ] ∈ Zα, an ideal triangulation T of M is called
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ρ-regular if [ρ] is in the image of the pseudo-developing map PT . For the discrete faithful represen-
tation ρ0 : π1(M) → PSL(2;C), since each element in π1(∂M) is mapped to a parabolic element
which has only one fixed point on ∂H3, if T is ρ0-regular, then there exists a unique z0 ∈ V(T ) such
that PT (z0) = ([ρ0]). Thus, for any ρ0-regular ideal triangulation, we can use [ρ0] and [z0] inter-
changeably. For any ρ0-regular ideal triangulation T of M , Dimofte and Garoufalidis define the 1-loop
invariant τ(M,α, ρ0, T ) of the ideally triangulated 3-manifold M by using the shape parameter z0 and
the Neumann-Zagier datum [23]. The 1-loop conjecture proposed by Dimofte and Garoufalidis suggests
that the 1-loop invariant coincides with the adjoint twisted Reidemeister torsion of the manifold.

Conjecture 1.5 (Conjecture 1.8, [8]). Let M be a hyperbolic 3-manifold M with toroidal boundary
∂M = T1

∐
· · ·
∐
Tk and let α be a system of simple closed curves of ∂M . Let [ρ0] be the character of

the discrete faithful representation and let T be a ρ0-regular ideal triangulation. Then we have

τ(M,α, ρ0, T ) = ±T(M,α)([ρ0]).

With respect to certain ideal triangulations of the manifolds, Conjecture 1.5 has been verified for
the figure eight knot complement [8], the sister manifold of the figure eight knot complement [28], all
hyperbolic once-punctured torus bundle over S1 [35] and all fibered 3-manifolds with toroidal boundary
[10].

As discussed in [8, Section 4], it is natural to generalize Conjecture 1.5 to other characters in X0(M).
We apply geometric techniques to study the 1-loop conjecture for characters in the distinguished com-
ponent of the PSL(2;C)-character variety of M . Generically, each element in π1(∂M) is mapped to a
loxodromic or elliptic elements with 2 fixed points on ∂H3, and therefore PT is a 2k to 1 map, where k
is the number of boundary component of M . This leads us to regard the 1-loop invariant as a complex-
valued function defined on the gluing variety VT and formulate the 1-loop conjecture for general cases
as follows. For every ρ0-regular triangulation with PT (z0) = [ρ0], in Proposition 2.23 we show that z0
is a always a smooth point of VT . We let V0(T ) ⊂ V(T ) be the irreducible component containing z0.

Conjecture 1.6. Let M be a hyperbolic 3-manifold M with toroidal boundary ∂M = T1
∐

· · ·
∐
Tk

and let α be a system of simple closed curves of ∂M . Let T be a ρ0-regular ideal triangulation of M .
For any z ∈ V0(T ) with PT (z) = [ρz], if [ρz] ∈ Zα, then

τ(M,α, z, T ) = ±T(M,α)([ρz]).

Remark 1.7. Since [ρ0] ∈ Zα for any α, Conjecture 1.6 implies Conjecture 1.5.

Remark 1.8. It is known that T(M,α) can be extended to be a rational function defined on Xirr
0 (M) by

defining T(M,α)([ρ]) = 0 for all [ρ] ∈ X irr
0 (M)∖Zα [24, Theorem 4.1]. In this paper, we only focus

on the support Zα of T(M,α). In particular, all characters considered in this paper are smooth points of
Xirr

0 (M).

In the second part of this paper, we first verify the 1-loop conjecture of fundamental shadow link
complements with respect to the ideal triangulation T in Theorem 1.1.

Theorem 1.9. Let M be a fundamental shadow link complement and let α be a system of simple closed
curves of ∂M . Let T be the ideal triangulation of M described in Theorem 1.1. Let z ∈ V0(T ) and let
PT (z) = [ρz]. If [ρz] ∈ Zα, then

τ(M,α, z, T ) = ±T(M,α)([ρz]).

Next, we study the dependence of τ(M,α, z, T ) on the (z, T ). Associated to an ideal triangulation
T and a point z ∈ VT , there is a pseudo-developing map at infinity P∞

T (z) that sends the connected

7



components of the universal covering of M to ∂H3, defined up to conjugation. This labeling tells us
how to straigthen out the tetrahedra in the triangulation. Generically, for each [ρ], there are 2k many
labelings subordinated to [ρ], corresponding to the 2k distinct choices of shape parameters. Given two
ideal triangulation T1, T2 with z1 ∈ V0(T1) and z2 ∈ V0(T2), we say that two pairs (T1, z1) and (T2, z2)
boundary equivalent if PT1(z1) = PT2(z2) and P∞

T1 (z1) = P∞
T2 (z2) up to conjugation.

In [17, Corollary 1.2, 1.5 and Proposition A.1], Kalelkar, Schleimer and Segerman prove that there
exists a Zariski open subset UM of X0(M) containing the character [ρ0] such that for any [ρ] ∈ UM ,

1. the set of ρ-regular ideal triangulations is non-empty, and

2. any two boundary equivalent pairs are connected by a finite sequence of boundary equivalent pairs
through 0-2, 2-0, 2-3 and 3-2 Pachner moves.

It is known that the 1-loop invariant remains unchanged under any 2-3 and 3-2 move connecting two
boundary equivalent ρ-regular ideal triangulations [8, Theorem 1.4, 4.1]. In Proposition 5.1, we prove
that the 1-loop invariant also remains unchanged under any 0-2 and 2-0 move connecting two boundary
equivalent ρ-regular ideal triangulations. Altogether, we have the following invariance of the 1-loop
invariant.

Theorem 1.10. Let M be a hyperbolic 3-manifold with toroidal boundary and let α be a system of
simple closed curves of ∂M . Let T1 and T2 be two ρ0-regular ideal triangulations of M . Then for any
[ρ] ∈ Zα, z1 ∈ V0(T1) and z2 ∈ V0(T2), if (z1, T1) and (z2, T2) are boundary equivalent, we have

τ(M,α, z1, T1) = τ(M,α, z2, T2).

In particular, τ(M,α, ρ0, T ) is a topological invariant.

Remark 1.11. Without the assumption that P∞
T1 (z1) = P∞

T2 (z2) up to conjugation, in general it is still
unknown whether the 1-loop invariant defined by using (T1, z1) is the same as that defined by using
(T2, z2).

Corollary 1.12. If Conjecture 1.6 is true for some ρ0-regular ideal triangulation, then it is true for all
ρ0-regular ideal triangulation.

Combining Theorem 1.9 and Corollary 1.12, we have the following result about the 1-loop conjec-
tures for all fundamental shadow link complements.

Corollary 1.13. Conjecture 1.5 and 1.6 hold for all fundamental shadow link complements.

Next, we study how the 1-loop invariants behave under Dehn-fillings. Theorem 1.10 allows us to
investigate the 1-loop invariants by choosing suitable triangulations that simplify the computation. The
following result from [17] provides ideal triangulations for hyperbolic 3-manifolds that are well-behaved
under Dehn-fillings (see Proposition B.1 and Remark B.2 in [17] for a more general result).

Proposition 1.14 (Proposition B.1, [17]). Let M be a hyperbolic 3-manifold with k ≥ 2 toroidal bound-
ary T1, . . . , Tk. Given l ∈ {1, 2, . . . , k − 1}, let (α1, α2, . . . , αl) be a system of simple closed curves on
T1, . . . , Tl. Let M ′ be the manifold obtained by doing Dehn-fillings on the boundaries T1, . . . , Tl of M
that homotopically “kill” the curves (α1, α2, . . . , αl). Let ρ′ : π1(M ′) → PSL(2;C) be a representation
and let ρ = ρ′|π1(M). Assume that ρ is sufficiently close to the discrete faithful representation ofM . Then
there exists an ideal triangulation T̂ of M such that the following hold.

1. For j = 1, ..., k− 1, the cusp corresponding to Tj meets exactly two ideal tetrahedra, ∆j
1 and ∆j

2.
Each of these tetrahedra meets Tj in exactly one ideal vertex.

8



2. On each {Ti}li=1, if we remove the two ideal tetrahedra ∆i
1,∆

i
2 and fold the once-punctured torus

along certain diagonal as shown in Figure 5, we obtain an ideal triangulation T̂ ′ of the manifold
M ′.

3. There exists a choice of generators for H1(Tk;Z), represented by curves mk and lk, such that mk

and lk meet the cusp triangulation inherited from T̂ in a sequence of arcs cutting off single vertices
of triangles, without backtracking, and such that mk and lk are disjoint from the tetrahedra ∆i

1

and ∆i
2, for all i = 1, ..., k − 1.

4. There exists ẑ ∈ VT̂ and ẑ′ ∈ VT̂ ′ such that PT̂ (ẑ) = [ρ] and PT̂ ′(ẑ
′) = [ρ′]. Moreover, ẑ′ is

obtained from ẑ by removing the shape parameters associated to the tetrahedra {∆i
1,∆

i
2}li=1.

f

fg

g

h
f

fg

g

h

f+g
h

f+g

Figure 5: In Proposition 1.14, the cusp Tj for j = 1, . . . , k − 1 meet exactly two ideal tetrahedra with
the edges of the base triangles labelled by f, g and h (left). To obtain a triangulation of the Dehn-filled
manifold, we first remove the two tetrahedra and then fold the two ideal triangles along the edge labelled
by h (middle). After the gluing, the four edges of the parallelogram are identified and labelled by f + g
(right).

By using the triangulations described in Proposition 1.14, we obtain the following result.

Theorem 1.15. Let α = (α1, . . . , αl, αl+1, . . . , αk) and α′ = (αl+1, . . . , αk) be systems of simple
closed curves on ∂M and ∂M ′ respectively. Under the assumption of Proposition 1.14, we have

τ(M ′,α′, ẑ′, T̂ ′) = ±τ(M,α, ẑ, T̂ )
1∏l

i=1 4 sinh
2 H(γi)

2

,

where H(γi) is the holonomy of the core curve γi of the i-th Dehn-filled solid torus.

Note that the behavior of the 1-loop invariants under Dehn-fillings described in Theorem 1.15 matches
with the surgery formula satisfied by the adjoint twisted Reidemeister torsion [24, Theorem 4.1]. As a
consequence of Theorem 1.9 and 1.15, we prove the 1-loop conjecture for a large class of hyperbolic
3-manifolds with toroidal boundary.

Corollary 1.16. Conjecture 1.5 and 1.6 hold for any hyperbolic 3-manifold M with toroidal bound-
ary obtained by doing sufficiently long Dehn-fillings on the boundary components of some fundamental
shadow link complement.

Remark 1.17. For any fundamental shadow link complement, by [17, Remark B.2] and the result in [14],
if we remove at most 114 simple closed curves on each boundary torus of M , then the Dehn-fillings
along any remaining system of simple closed curves are sufficiently long. In this case, Corollary 1.16
applies.
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Remark 1.18. In contrast to Remark 1.11, Corollary 1.13 and 1.16 imply that for all fundamental shadow
link complments and most of their Dehn-fillings, the 1-loop invariant depends on the ideal triangulation
but not on the pseudo-developing map at infinity.

As an intermediate step in the proof of Theorem 1.9, we prove that the 1-loop invariant satisfies
the same change of curve formula as the one satisfied by the adjoint twisted Reidemeister torsion. In
particular, once the 1-loop conjecture is true for a system of simple closed curves, the conjecture is true
for any system of simple closed curve (See [27] for another proof of the change of curve formula for
manifolds with one torus boundary).

Theorem 1.19. Let T be an ideal triangulation and z ∈ VT . Let α,α′ are two systems of simple closed
curves on ∂M . Assume that τ(M,α, z, T ) is non-zero. Then

τ(M,α′, z, T ) = ±det

(
∂H(α′

i)

∂H(αj)

)
ij

τ(M,α, z, T ).

Remark 1.20. Since conjecturally the 1-loop invariant is equal to the adjoint twisted Reidemeister torsion,
which is non-zero by definition, the requirement in Theorem 1.19 that τ(M,α, z, T ) being non-zero is
not an additional assumption in the context of 1-loop conjecture.

Outline of this paper

In Section 2, we recall the construction of fundamental shadow links, the definition of the adjoint twisted
Reidemeister torsion and the definition of the 1-loop invariant. Then in Section 3, we study the geometry
of fundamental shadow link complements. More precisely, we construct an ideal triangulation of a
D-block in Section 3.1 and solve the gluing equation explicitly in terms of the holonomy around the
ideal vertices. In Section 3.2, by using the ideal triangulation on each D-block, we construct an ideal
triangulation on every fundamental shadow link complement and solve the gluing equations explicitly.
We prove Theorem 1.2 and 1.3 in Section 3.3. The key idea is to glue hyperideal tetrahedra together to
get a fundamental shadow link complement with hyperbolic cone structure and then compute the volume
of the link complement by summing up the volume of the ideal tetrahedra in the triangulation. We prove
Theorems 1.9 and 1.19 in Section 4. The idea is to do the computation on each D-block (Proposition
4.6) and then show that the torsion of the manifold is a product of the contribution from the D-blocks
(Section 4.3 and Lemma 4.7). In Section 5, we prove Theorem 1.10 and Corollary 1.13. Finally, in
Section 6, we prove Theorem 1.15 and Theorem 1.16.
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2 Preliminary

2.1 Fundamental shadow links

In this section we recall the construction and basic properties of the fundamental shadow links.
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2.1.1 Topological construction

Figure 6: A truncated tetrahedron (left), a D-block (middle) and a tetrahedron graph (right).

The building blocks for the fundamental shadow links are truncated tetrahedra as shown in Figure 6.
An edge of a truncated tetrahedron is the intersection of two hexagonal faces. If we glue two truncated
tetrahedra together along the hexagonal faces via the identity map, we obtain the double of the truncated
tetrahedra whose boundary consists of four spheres, each of them has three marked points corresponding
to the edges incident to the triangular faces of the truncated tetrahedra. To construct a fundamental
shadow link, we pick c copies of the double of the truncated tetrahedra constructed above and glue them
together via orientation reversing homeomorphisms along the boundaries that send marked points to
marked points. The edges of the truncated tetrahedra will be glued together to form a link LFSL inside
the ambient manifold Mc = #c+1(S2 × S1). We call a link obtained this way a fundamental shadow
link, and its complement in Mc a fundamental shadow link complement. The family of the fundamental
shadow link complements satisfies the following universal property.

Theorem 2.1 ([7]). Any compact oriented 3-manifold with toroidal or empty boundary can be obtained
from a suitable fundamental shadow link complement by doing an integral Dehn-filling to some of the
boundary components.

2.1.2 D-blocks and hyperbolic D-blocks

In the language of [7], aD-block (Figure 6, middle) is the manifold obtained by first gluing two truncated
tetrahedra together along the hexagonal faces via the identity map and then removing the six edges of the
tetrahedra. Topologically, a D-block is homeomorphic to the complement of the tetrahedron graph in S3
(Figure 6, right). Alternatively, a fundamental shadow link complement can be constructed by gluing c
copies of D-blocks together via orientation reversing homeomorphisms along the 3-puncture spheres.

To see that all fundamental shadow link complements are hyperbolic, note that topologically, by
shrinking all the edges of the tetrahedra into ideal vertices, we can decompose the link complements
into ideal octahedra. Geometrically, we can put a complete hyperbolic structure on the link comple-
ment by putting a hyperbolic structure on the ideal octahedra such that each of them becomes a regular
ideal hyperbolic octahedron. More generally, for a fundamental shadow link LFSL with n components,
a hyperbolic cone structure on Mc with singular locus LFSL and with sufficiently small cone angles can
be constructed as follows. Recall that each component of LFSL is obtained by gluing the edges of the
D-blocks together along the end points. For each edge eik of a D-block Di, where k = 1, . . . , 6 and
i = 1, . . . , c, we let θik be half of the cone angle of the link component that the edge belongs to. Then
we can construct a hyperbolic D-blocks with cone angles (2θi1, . . . , 2θ

i
6) by gluing two hyperideal tetra-

hedra with dihedral angles (θi1, . . . , θ
i
6) along the hyperbolic hexagonal faces via the identity map. The

existence of such hyperideal tetrahedron is guaranteed when the cone angles are sufficiently small. We
call the D-block with such a hyperbolic structure a hyperbolic D-block. Then the desired hyperbolic
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cone structure on Mc with singularity along LFSL can be constructed by gluing the hyperbolic D-blocks
together via orientation reversing isometries between the hyperbolic 3-puncture spheres.

2.2 Adjoint twisted Reidemeister torsion

2.2.1 Definition

Let C∗ be a finite chain complex

0 → Cd
∂−→ Cd−1

∂−→ · · · ∂−→ C1
∂−→ C0 → 0

of C-vector spaces, and for each Ck choose a basis ck. Let H∗ be the homology of C∗, and for each Hk

choose a basis hk and a lift h̃k ⊂ Ck of hk. We also choose a basis bk for each image ∂(Ck+1) and
a lift b̃k ⊂ Ck+1 of bk. Then bk ⊔ b̃k−1 ⊔ h̃k form a basis of Ck. Let [bk ⊔ b̃k−1 ⊔ h̃k; ck] be the
determinant of the transition matrix from the standard basis ck to the new basis bk ⊔ b̃k−1 ⊔ h̃k. Then
the Reidemeister torsion of the chain complex C∗ with the chosen bases c∗ and h∗ is defined by

Tor(C∗, {ck}, {hk}) = ±
d∏

k=0

[bk ⊔ b̃k−1 ⊔ h̃k; ck]
(−1)k+1

.

It is easy to check that Tor(C∗, {ck}, {hk}) depends only on the choice of {ck} and {hk}, and does not
depend on the choices of {bk} and the lifts {b̃k} and {h̃k}.

We recall the twisted Reidemeister torsion of a CW-complex following the conventions in [25]. Let
K be a finite CW-complex and let ρ : π1(M) → SL(N ;C) be a representation of its fundamental group.
Consider the twisted chain complex

C∗(K; ρ) = CN ⊗ρ C∗(K̃;Z)

where C∗(K̃;Z) is the simplicial complex of the universal covering of K and ⊗ρ means the tensor
product over Z modulo the relation

v ⊗ (γ · c) =
(
ρ(γ)T · v

)
⊗ c,

where T is the transpose, v ∈ CN , γ ∈ π1(K) and c ∈ C∗(K̃;Z). The boundary operator on C∗(K; ρ)
is defined by

∂(v ⊗ c) = v ⊗ ∂(c)

for v ∈ CN and c ∈ C∗(K̃;Z). Let {e1, . . . , eN} be the standard basis of CN , and let {ck1, . . . , ckdk}
denote the set of k-cells of K. Then we call

ck =
{
ei ⊗ ckj

∣∣ i ∈ {1, . . . , N}, j ∈ {1, . . . , dk}
}

the standard basis of Ck(K; ρ). Let H∗(K; ρ) be the homology of the chain complex C∗(K; ρ) and let
hk be a basis of Hk(K; ρ). Then the Reidemeister torsion of K twisted by ρ with basis {hk} is

Tor(K, {hk}; ρ) = Tor(C∗(K; ρ), {ck}, {hk}).

By [24], Tor(K, {hk}; ρ) depends only on the conjugacy class of ρ. By for e.g. [30], the Reidemeister
torsion is invariant under elementary expansions and elementary collapses of CW-complexes, and by
[20] it is invariant under subdivisions, hence defines an invariant of PL-manifolds and of topological
manifolds of dimension less than or equal to 3.
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2.2.2 Torsion as a function on the character variety

We list some results by Porti [24] for the Reidemeister torsions of hyperbolic 3-manifolds twisted by the
adjoint representation Adρ = Ad ◦ ρ of the holonomy ρ of the hyperbolic structure. Here Ad is the
adjoint action of PSL(2;C) on its Lie algebra sl(2;C) ∼= C3.

For a closed oriented hyperbolic 3-manifold M with the holonomy representation ρ, by the Weil
local rigidity theorem and the Mostow rigidity theorem, Hk(M ; Adρ) = 0 for all k. Then the twisted
Reidemeister torsion

Tor(M ; Adρ) ∈ C∗/{±1}

is defined without making any additional choice.
For a compact, orientable 3-manifoldM with boundary consisting of n disjoint tori T1 . . . , Tn whose

interior admits a complete hyperbolic structure with finite volume, let X(M) be the PSL(2;C)-character
variety of M, let X0(M) ⊂ X(M) be the distinguished component containing the character of a chosen
lifting of the holonomy representation of the complete hyperbolic structure of M, and let Xirr

0 (M) ⊂
X0(M) be the subset consisting of the irreducible characters.

Theorem 2.2 (Section 3.3.3, [24]). For a system of simple closed curves α = (α1, . . . , αn) on ∂M with
αi ⊂ Ti, i ∈ {1, . . . , n}, and a character [ρ] in a non-empty Zariski open subset of Xirr

0 (M), we have:

(i) For k ̸= 1, 2, Hk(M ; Adρ) = 0.

(ii) For i ∈ {1, . . . , n}, up to scalar Adρ(π1(Ti))T has a unique invariant vector Ii ∈ C3; and

H1(M ; Adρ) ∼= Cn

with a basis
h1
(M,α) = {I1 ⊗ [α1], . . . , In ⊗ [αn]}

where ([α1], . . . , [αn]) ∈ H1(∂M ;Z) ∼=
⊕n

i=1H1(Ti;Z).

(iii) Let ([T1], . . . , [Tn]) ∈
⊕n

i=1H2(Ti;Z) be the fundamental classes of T1, . . . , Tn. Then

H2(M ; Adρ) ∼=
n⊕

i=1

H2(Ti; Adρ) ∼= Cn

with a basis
h2
M = {I1 ⊗ [T1], . . . , In ⊗ [Tn]}.

Remark 2.3 ([24]). Important examples of the generic characters in Theorem 2.2 include the holonomy
representation of the complete hyperbolic structure on the interior of M, the restriction of the holonomy
of the closed 3-manifold Mµ obtained from M by doing the hyperbolic Dehn surgery along the system
of simple closed curves µ on ∂M, and by [14] the holonomy of a hyperbolic structure on the interior of
M whose completion is a conical manifold with cone angles less than 2π.

Definition 2.4. Let α = (α1, . . . , αn) be a system of simple closed curves on ∂M with αi ⊂ Ti,
i ∈ {1, . . . , n}. A character [ρ] ∈ Xirr

0 (M) is α-regular if condition (ii) in Theorem 2.2 is satisfied.

It is known that for any α = (α1, . . . , αn), every character near the character of the discrete faithful
representation is α-regular [24, 23]. In particular, the set Zα ⊂ X irr

0 (M) of all α-regular character is
non-empty and Zariski open.
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Definition 2.5. The adjoint twisted Reidemeister torsion of M with respect to α is the function

T(M,α) : X
irr
0 (M) → C/{±1}

defined by
T(M,α)([ρ]) = Tor(M, {h1

(M,α),h
2
M}; Adρ)

if [ρ] ∈ Zα, and by 0 if otherwise.

Theorem 2.6 (Theorem 4.1, [24]). LetM be a compact, orientable 3-manifold with boundary consisting
of n disjoint tori T1 . . . , Tn whose interior admits a complete hyperbolic structure with finite volume. Let
C(Xirr

0 (M)) be the ring of rational functions over Xirr
0 (M). Then

H1(∂M ;Z) → C(X irr
0 (M))

α 7→ T(M,α)

up to sign defines a function which is a Z-multilinear homomorphism with respect to the direct sum
H1(∂M ;Z) ∼=

⊕n
i=1H1(Ti;Z) satisfying the following properties:

(i) For any system of simple closed curves α on ∂M, the support of T(M,α) contains a Zariski-open
subset of Xirr

0 (M) consisting of all the α-regular characters in Xirr
0 (M).

(ii) (Change of Curves Formula). Let β = {β1, . . . , βn} and γ = {γ1, . . . , γn} be two systems of
simple closed curves on ∂M. Let (H(β1), . . . ,H(βn)) and (H(γ1), . . . ,H(γn)) respectively be the
logarithmic holonomies of the curves in β and γ. Then we have the equality of rational functions

T(M,β) = ±det

(
∂(H(β1), . . . ,H(βn))

∂(H(γ1), . . . ,H(γn))

)
T(M,γ), (2.1)

where ∂(H(β1),...,H(βn))
∂(H(γ1),...,H(γn))

is the Jocobian matrix of the holomorphic function (H(β1), . . . ,H(βn)) with
respect to (H(γ1), . . . ,H(γn)).

(iii) (Surgery Formula). For m with 0 ⩽ m ⩽ n, let µ = (µ1, . . . , µm) be a system of simple closed
curves on ∂M such that µi ⊂ Ti, and let ν = (νm+1, . . . , νn) be a system of simple closed curves
on ∂M such that νj ⊂ Tj . Let Mµ be a hyperbolic 3-manifold obtained from M be doing the
Dehn-filling along µ. Then ν can be considered as a system of simple closed curves on ∂Mµ. Let
[ρµ] ∈ Xirr

0 (Mµ) and let [ρ] ∈ Xirr
0 (M) be the restriction of [ρµ] on M. Let (H(γ1), . . . ,H(γm))

be the logarithmic holonomies in ρ of the core curves γ1, . . . , γm of the solid tori filled in. If ρµ is
ν-regular and sinh(H(γi)/2) ̸= 0 for i = 1, . . . ,m, then ρ is µ ∪ ν-regular, and

T(Mµ,ν)([ρµ]) = ±T(M,µ∪ν)([ρ])

m∏
i=1

1

4 sinh2 H(γi)
2

. (2.2)

Remark 2.7. For the surgery formula, if the core curve γi is free homotopic to a geodesic in Mµ, then
ReH(γi) ̸= 0 and hence the condition that sinh(H(γi)/2) ̸= 0 is satisfied. In particular, by the result in
[14], if we remove at most 114 simple closed curves on each boundary torus, then for the Dehn-fillings
along any remaining system of simple closed curves, we have sinh(H(γi)/2) ̸= 0.

Remark 2.8. In this paper, we only focus on the adjoint twisted Reidemeister torsion defined on the
distinguished component of the PSL(2;C)-character variety of M . Nevertheless, the invariant can be
defined on any component of the character variety with dimension equal to the number of boundary
component of M (see for example [33, Section 2.2]).
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2.2.3 Adjoint twisted Reidemeister torsion of fundamental shadow link complements

In [33], T. Yang and the second author compute the adjoint twisted Reidemeister torsion of fundamental
shadow link complement in terms of the determinants of the Gram matrix functions of the D-blocks.
Recall that an edge of a truncated tetrahedron is the intersection of two hexagonal faces. Let (e1, . . . , e6)
be the six edges of a truncated tetrahedron in such a way that (ek, ek+3) is a pair of opposite edges for k =
1, 2, 3 as shown in Figure 7. By construction, aD-block D is obtained by gluing two truncated tetrahedra
together along the hexagonal faces and then removing the edges of the tetrahedra. Especially, as shown
in Figure 7, since D is homeomorphic to the complement of the tetrahedron graph, the fundamental
group π1(D) of a D-block is a rank 3 free group generated by [m1], [m2] and [m3], where m1,m2,m3 ∈
π1(D) are the meridians around the edges e1, e2, e3. In the Wirtinger presentation, the meridians around
the edges e4, e5 and e6 are given by [m−1

3 m2], [m
−1
1 m3] and [m−1

2 m1] respectively, where m−1
k mj

represents the curve that goes along m−1
k first and then goes along mj .

m1 m3

m2

m3m1
m1m2

m2m3

-1

-1

-1

e1

e2 e6

e4

e5e3

Figure 7: The Wirtinger presentation of π1(D). In this figure, m−1
i mj represents the element in π1(D)

that follows m−1
i and then mj .

The SL(2;C)-character variety of the rank 3 free group π1(D) is studied by Goldman in [11]. It is
shown in [11, Section 5.1.1] that the SL(2;C)-character variety χ(D) of π1(D) is homeomorphic to a
hypersurface in C7 parametrized by the seven traces Trρ̃([m1]), Trρ̃([m2]), Trρ̃([m3]), Trρ̃([m1m2]),
Trρ̃([m1m3]), Trρ̃([m2m3]) and Trρ̃([m1m2m3]), where [ρ̃] ∈ χ(D). Moreover, it is shown in [11,
Proposition 5.1.1] that χ(D) is a double branched cover of C6 parametrized by the first six traces. Fur-
thermore, a representation ρ̃ : π1(D) → SL(2;C) is not in the branch locus if and only if

fD
(
Trρ̃([m1]),Trρ̃([m2]),Trρ̃([m3]),Trρ̃([m1m2]),Trρ̃([m1m3]),Trρ̃([m2m3])

)
̸= 0,

where fD is the polynomial

fD(t1, t2, t3, t12, t13, t23) =
(
t12t3 + t13t2 + t23t1 − t1t2t3

)2
− 4
(
t21 + t22 + t23 + t212 + t213 + t223 − t1t2t12 − t1t3t13 − t2t3t23 + t12t13t23 − 4

)
.

In our setting, we letm4 = m−1
3 m2,m5 = m−1

1 m3 andm6 = m−1
2 m1 such thatm1,m2, . . . ,m6 are

the meridians around the six edges e1, e2, . . . , e6 in D respectively. Given a representation ρ̃ : π1(D) →
SL(2;C), the logarithmic holonomies of (m1,m2, . . . ,m6) in ρ̃ are up to sign the complex numbers

(H(m1),H(m2), . . . ,H(m6)) ∈ C6

such that

Trρ̃([ml]) = −2 cosh
H(ml)

2

15



for l = 1, . . . , 6. In this way, if D is with the hyperbolic structure obtained by doubling the regular ideal
octahedron, ρ0 : π1(D) → PSL(2;C) is the holonomy representation of this hyperbolic structure on D
and ρ̃0 : π1(D) → SL(2;C) is the lifting of ρ0 with

Trρ̃([ml]) = −2

for l = 1, . . . , 6, then the logarithmic holonomies of (m1, . . . ,m6) in ρ̃0 are (0, . . . , 0). We notice that
the complete hyperbolic structure on a fundamental shadow link complement is obtained by gluing such
D-blocks together by isometries along the faces. Therefore, this hyperbolic structure can be considered
as the “complete hyperbolic structure” on D.

Given a representation ρ̃ : π1(D) → SL(2;C), the determinant of the associated Gram matrix is the
determinant of the matrix

G = G

(
H(m1)

2
, . . . ,

H(m6)

2

)
=


1 − cosh H(m1)

2 − cosh H(m6)
2 − cosh H(m5)

2

− cosh H(m1)
2 1 − cosh H(m2)

2 − cosh H(m3)
2

− cosh H(m6)
2 − cosh H(m2)

2 1 − cosh H(m4)
2

− cosh H(m5)
2 − cosh H(m3)

2 − cosh H(m4)
2 1

 .
By the trace identity of the matrices in SL(2;C) that

Tr(A)Tr(B) = Tr(AB) + Tr(AB−1)

for A,B ∈ SL(2;C), we have

Trρ̃([m2m3]) = Trρ̃([m2])Trρ̃([m3])− Trρ̃([m4]),

Trρ̃([m1m3]) = Trρ̃([m1])Trρ̃([m3])− Trρ̃([m5]),

Trρ̃([m1m2]) = Trρ̃([m1])Trρ̃([m2])− Trρ̃([m6]).

Then by a direct computation, as functions in Trρ̃([m1]), . . . ,Trρ̃([m6]), we have

fD
(
Trρ̃([m1]),Trρ̃([m2]),Trρ̃([m3]),Trρ̃([m1m2]),Trρ̃([m1m3]),Trρ̃([m2m3])

)
= 16detG,

and ρ̃ is not in the branch locus of the double branched cover of the SL(2;C)-character variety of D over
C6 if and only if detG ̸= 0.

Since π1(D) is a free group, every PSL(2;C)-representation of it lifts to SL(2;C)-representation
Hence the SL(2;C)-character variety of D is a branched cover of the PSL(2;C)-character variety of D,
and the latter is an irreducible algebraic variety. For a representation ρ : π1(D) → PSL(2;C),we defined
the logarithmic holonomies (H(m1), . . . ,H(m6)) and the determinant of the associated Gram matrix G
of ρ as those of a lifting ρ̃ : π1(D) → SL(2;C) of ρ. Notice that the logarithmic holonomies depend on
the choice of the liftings of ρ, and a different lifting will change G by multiplying some rows and the
corresponding columns by −1 at the same time, which does not change its determinant. Therefore, the
determinant of the associated Gram matrix detG is independent of the choice of the liftings, and is a
well defined quantity of ρ.

By using the determinant of the associated Gram matrix of the building blocks, the adjoint twisted
Reidemeister torsion of fundamental shadow link complements is given as follows.

Theorem 2.9 (Theorem 1.1, [33]). Let M = #c+1(S2×S1)∖LFSL be the complement of a fundamental
shadow linkLFSL with n componentsL1, . . . , Ln,which is the orientable double of the union of truncated
tetrahedra ∆1, . . . ,∆c along pairs of the triangles of truncation (see Section 2.1).
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(1) Let m = (m1, . . . ,mn) be the system of the meridians of a tubular neighborhood of the components
ofLFSL. For an m-regular PSL(2;C)-character [ρ] ofM (see Definition 2.4), let (H(m1), . . . ,H(mn))
be the logarithmic holonomies of m in ρ. For each k ∈ {1, . . . , c}, let Lk1 , . . . , Lk6 be the compo-

nents of LFSL intersecting ∆k, and let Gk = G
(
H(mk1

)

2 , . . . ,
H(mk6

)

2

)
be the value of the Gram

matrix function at
(
H(mk1

)

2 , . . . ,
H(mk6

)

2

)
. Then the adjoint twisted Reidemeister torsion of M with

respect to m (see Definition 2.5) at [ρ] is

T(M,m)([ρ]) = ±23c
c∏

k=1

√
detGk.

(2) In addition to the conditions of (1), let µ = (µ1, . . . , µn) be a system of simple closed curves on
∂M, and let (H(µ1), . . . ,H(µn)) be their logarithmic holonomies which are holomorphic functions
of (H(m1), . . . ,H(mn)) near [ρ]. If [ρ] is µ-regular, then the adjoint twisted Reidemeister torsion of
M with respect to µ at [ρ] is

T(M,µ)([ρ]) = ±23c det

(
∂(H(µ1), . . . ,H(µn))

∂(H(m1), . . . ,H(mn))

) c∏
k=1

√
detGk,

where ∂(H(µ1),...,H(µn))
∂(H(m1),...,H(mn))

is the Jacobian matrix of the holomorphic function (H(µ1), . . . ,H(µn))

with respect to (H(m1), . . . ,H(mn)) evaluated at [ρ].

Let M be a fundamental shadow link complement as in Theorem 2.9. For m with 0 ⩽ m ⩽ n,
let µ = (µ1, . . . , µm) be a system of simple closed curves on ∂M such that µi ⊂ Ti, and let ν =
(νm+1, . . . , νn) be a system of simple closed curves on ∂M such that νj ⊂ Tj . Let Mµ be the 3-
manifold obtained from M by doing the Dehn-filling along µ. Then ν can be considered as a system of
simple closed curves on ∂Mµ. If m = n, then ν = ∅ and Mµ is a closed 3-manifold.

Theorem 2.10 (Theorem 1.4, [33]). Suppose Mµ is hyperbolic. Let [ρµ] be a ν-regular character of
Mµ and let ρ be the restriction of ρµ on M. Let (H(m1), . . . ,H(mn)) be the logarithmic holonomies
of the system of meridians m in [ρ] and for each k ∈ {1, . . . , c}, let Lk1 , . . . , Lk6 be the compo-

nents of LFSL intersecting ∆k and let Gk = G
(
H(mk1

)

2 , . . . ,
H(mk6

)

2

)
be the value of the Gram matrix

function at
(
H(mk1

)

2 , . . . ,
H(mk6

)

2

)
. Let (H(µ1), . . . ,H(µm)) and (H(νm+1), . . . ,H(νn)) respectively be

the logarithmic holonomies of µ and ν considered as functions of (H(m1), . . . ,H(mn)) near [ρ]. Let
(γ1, . . . , γm) be a system of simple closed curves on ∂M that are isotopic to the core curves of the
solid tori filled in and let (H(γ1), . . . ,H(γm)) be their logarithmic holonomies in [ρ]. If [ρ] is in the
distinguished component of the PSL(2;C)-character variety ofM, then the adjoint twisted Reidemeister
torsion of Mµ with respect to ν at [ρµ] is

T(Mµ,ν)([ρµ])

=± 23c−2m det

(
∂(H(µ1), . . . ,H(µm),H(νm+1), . . . ,H(νn))

∂(H(m1), . . . ,H(mn))

) c∏
k=1

√
detGk

m∏
i=1

1

sinh2 H(γi)
2

,

where ∂(H(µ1),...,H(µm),H(νm+1),...,H(νn))
∂(H(m1),...,H(mn))

is the Jacobian matrix of the holomorphic function
(H(µ1), . . . ,H(µm),H(νm+1), . . . ,H(νn)) with respect to (H(m1), . . . ,H(mn)) evaluated at [ρ].
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In particular, if Mµ is closed, ρµ is the holonomy representation of the hyperbolic structure and
[ρ] is in the distinguished component of the PSL(2;C)-character variety of M, then the adjoint twisted
Reidemeister torsion of Mµ is

Tor(Mµ; Adρµ) = ±23c−2n det

(
∂(H(µ1), . . . ,H(µn))

∂(H(m1), . . . ,H(mn))

) c∏
k=1

√
detGk

n∏
i=1

1

sinh2 H(γi)
2

.

2.3 Neumann-Zagier datum and gluing equations

Let M be an oriented hyperbolic 3-manifold with ∂M = T1
∐

· · ·
∐
Tk. On each Ti, we choose a

simple closed curve αi ∈ π1(Ti) and let α = (α1, . . . , αk) ∈ π1(∂M) be the system of simple closed
curves. Let T = {∆1, . . . ,∆n} be an ideal triangulation of M and let E = {e1, . . . , en} be the set of
edges. For each ∆i, we choose a quad type (i.e. a pair of opposite edges) and assign a shape parameter
zi ∈ C∖{0, 1} to the edges. For zi ∈ C∖{0, 1}, we define z′i =

1
1−zi

, z′′i = 1 − 1
zi

. Recall that for
each ideal tetrahedron, opposite edges share the same shape parameters (See Figure 8, left). By [23],
there exists n−k linearly independent edge equations, in the sense that if these n−k edge equations are
satisfied, the remaining k edge equations will automatically be satisfied. Without loss of generality we
assume that {e1, . . . , en−k} is a set of linearly independent edges. For each edge ei, we let Ei,j be the
numbers of edges with shape parameter zj that is incident to ei. We define E′

i,j and E′′
i,j be respectively

the corresponding counting with respect to z′j and z′′j (see Figure 8, middle). The gluing variety VT is
the affine variety in (z1, z

′
1, z

′′
1 , . . . , zn, z

′
n, z

′′
n) ∈ C3n defined by the zero sets of the polynomials

pi = zi(1− z′′i )− 1, p′i = z′i(1− zi)− 1, p′′i = z′′i (1− z′i)− 1

for i = 1, . . . , n and the polynomials

n∏
i=1

z
Eij

i (z′i)
E′

ij (z′′i )
E′′

ij − 1

for j = 1, . . . , n− k. By using the equations pi = p′i = p′′i = 0 for i = 1, . . . , n, for simplicity we will
use (z1, . . . , zn) ∈ (C∖{0, 1})n to represent a point in VT . Besides, for each αi ∈ π1(Ti), we let Ci,j

be the numbers of edges with shape zi on the left hand side of αi minus the numbers of edges with shape
zi on the right hand side of αi. We define C ′

i,j and C ′′
i,j be respectively the corresponding counting with

respect to z′j and z′′j (see Figure 8, right). Given (z1, . . . , zn) ∈ VT , the holonomy of αi is given by

λi =
n∏

i=1

z
Cij

i (z′i)
C′

ij (z′′i )
C′′

ij

for i = 1, . . . , k. There is a well-defined map

PT : VT → X(M)

that sends z = (z1, . . . , zn) ∈ VT to the character [ρz] of the pseudo-developing map ρz with

ρz(αi) = ±
(√

λi ∗
0

√
λi

−1

)
for i = 1, . . . , k up to conjugation.
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z

z

z''

z''

z'

z'

...

zj zj

z''j

ei

zj

zj

z''j

αi

Figure 8: On the left hand side, we have an ideal tetrahedron with shape parameters zi, z′i and z′′i assigned
to the edges. In the middle, the black dot with a label ei corresponds to the i-th edge, which is surrounded
by truncated triangles around the ideal vertices of the tetrahedra in the triangulation. In this example,
Eij = 2. On the right hand side, the rectangle is a fundamental domain of the boundary torus Ti and αi

is a lifting of the simple closed curve αi ∈ π1(Ti) to the fundamental domain. In this example, we have
Cij = 1− 1 = 0.

We define three n× n matrices G,G′, G′′ ∈Mn×n(Z) by

G =



E1,1 E1,2 . . . E1,n
...

...
En−k,1 En−k,2 . . . En−k,n

C1,1 C1,2 . . . C1,n
...

...
Ck,1 Ck,2 . . . Ck,n


, G′ =



E′
1,1 E′

1,2 . . . E′
1,n

...
...

E′
n−k,1 E′

n−k,2 . . . E′
n−k,n

C ′
1,1 C ′

1,2 . . . C ′
1,n

...
...

C ′
k,1 C ′

k,2 . . . C ′
k,n


and

G′′ =



E′′
1,1 E′′

1,2 . . . E′′
1,n

...
...

E′′
n−k,1 E′′

n−k,2 . . . E′′
n−k,n

C ′′
1,1 C ′′

1,2 . . . C ′′
1,n

...
...

C ′′
k,1 C ′′

k,2 . . . C ′′
k,n


.

Let log z, log z′, log z′′ ∈Mn×1(C) be the column vectors

log z =

log z1
...

log zn

 , log z′ =

log z′1
...

log z′n

 and log z′′ =

log z′′1
...

log z′′n

 .

With respect to the ideal triangulation T , we define the gluing map F : (C∖{0, 1})n → Cn by

F (z1, . . . , zn) = G · log z +G′ · log z′ +G′′ · log z′′. (2.3)

Given H(α) = (H(α1), . . . ,H(αk)) ∈ Ck and (l1, . . . , ln) ∈ Zn, consider the gluing equations

G(l1,...,ln)(H(α), z) = 0, (2.4)
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where z = (z1, . . . , zn), 0 ∈ Cn is the zero vector and G(l1,...,ln) : Ck × (C∖{0, 1})n → Cn is defined
by

G(l1,...,ln)(H(α), z) = F (z1, . . . , zn)−



2π
√
−1

...
2π

√
−1

H(α1)
...

H(αk)


− 2π

√
−1



l1
...

ln−k

ln−k+1
...
ln


. (2.5)

Note that each point (z1, z′1, z
′′
1 , . . . , zn, z

′
n, z

′′
n) ∈ VT gives a solution of the gluing equation (2.6) with

λi = eH(αi) for i = 1, . . . , k and for some (l1, . . . , ln) ∈ Zn. To simplify the notation, we let G =
G(0,...,0). In Section 3, we will focus on the gluing equation

G(H(α), z) = 0. (2.6)

Notice that for any (l1, . . . , ln) ∈ Zn, we have

DzG(l1,...,ln)(H(α), z) = DFz, (2.7)

where DzG(l1,...,ln) and DFz are the Jacobian matrixs of G(l1,...,ln) and F with respect to the variable z.

2.4 Combinatorial flattening

Recall that a system of simple closed curves α = (α1, . . . , αk) ∈ π1(∂M) consists of k non-trivial
simple closed curves αi ∈ π1(Ti). Given a vector v ∈ Cn, we denote the transpose of v by vT .

Definition 2.11. For a system of simple closed curves α = (α1, . . . , αk) ∈ π1(∂M), a combinatorial
flattening with respect to α consists of three vectors

f = (f1, . . . , fn), f ′ = (f ′1, . . . , f
′
n), f ′′ = (f ′′1 , . . . , f

′′
n) ∈ Zn

such that

• for i = 1, . . . , n, fi + f ′i + f ′′i = 1 and

• the i-th entry of the vector
G · fT +G′ · f ′T +G′′ · f ′′T

is equal to 2 for i = 1, . . . , n− k and is equal to 0 for i = n− k + 1, . . . , n.

We have the following stronger version of combinatorial flattening, which require the last condition
in Definition 2.11 to be satisfied for all simple closed curves.

Definition 2.12. A strong combinatorial flattening consists of three vectors

f = (f1, . . . , fn), f ′ = (f ′1, . . . , f
′
n), f ′′ = (f ′′1 , . . . , f

′′
n) ∈ Zn

such that

• for i = 1, . . . , n, fi + f ′i + f ′′i = 1 and
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• for any system of simple closed curves α = (α1, . . . , αk), the i-th entry of the vector

G · fT +G′ · f ′T +G′′ · f ′′T

is equal to 2 for i = 1, . . . , n− k and is equal to 0 for i = n− k + 1, . . . , n.

Remark 2.13. By [22, Lemma 6.1], strong combinatorial flattening exists for any ideal triangulation.

For computation purposes, we introduce the following definition of generalized strong combinatorial
flattening, which allows fi, f ′i and f ′′i in Definition 2.12 to be half-integers.

Definition 2.14. A generalized strong combinatorial flattening consists of three vectors

f = (f1, . . . , fn), f ′ = (f ′1, . . . , f
′
n), f ′′ = (f ′′1 , . . . , f

′′
n) ∈

(
Z ∪

(
Z+

1

2

))n
such that

• for i = 1, . . . , n, fi + f ′i + f ′′i = 1 and

• for any system of simple closed curves α = (α1, . . . , αk), the i-th entry of the vector

G · fT +G′ · f ′T +G′′ · f ′′T

is equal to 2 for i = 1, . . . , n− k and is equal to 0 for i = n− k + 1, . . . , n.

Remark 2.15. To verify the second condition in Definitions 2.12 and 2.14, since the condition is linear
in αk, it suffices to verify the condition on a basis of π1(∂M).

2.5 1-loop invariant and torsion as rational functions on the gluing variety

Definition 2.16. Let M be a hyperbolic 3-manifold with toroidal boundary and let ρ : π1(M) →
PSL(2;C) be a representation. An ideal triangulation T of M is ρ-regular if there exists z ∈ V(T ) such
that PT (z) = [ρ].

Definition 2.17 ([8]). Let ρ : π1(M) → PSL(2;C) be an irreducible representation. Suppose T is a
ρ-regular ideal triangulation with PT (z) = [ρ]. Then the 1-loop invariant of (M,α, z, T ) is defined by

τ(M,α, z, T ) = ±1

2
det
(
(G−G′)∆z′′ + (G′′ −G′)∆−1

z

) n∏
i=1

(
z
f ′′
i

i z′′−fi
i

)
,

where (f , f ′, f ′′) is a strong combinatorial flattening,

∆z =


z1 0 0 . . . 0
0 z2 0 . . . 0
...

...
...

...
...

0 0 0 0 zn

 and ∆z′′ =


z′′1 0 0 . . . 0
0 z′′2 0 . . . 0
...

...
...

...
...

0 0 0 0 z′′n

 .

Remark 2.18. For any hyperbolic 3-manifold, at the discrete faithful representation, the 1-loop invariant
can be defined by using the usual combinatorial flattening defined in Definition 2.11 and it is independent
of the choice of the flattening [8, Theorem 1.4].
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For i = 1, . . . , n, let ξi = d log zi
dzi

= 1
zi

, ξ′i =
d log z′i
dzi

= 1
1−zi

and ξ′′i =
d log z′′i
dzi

= 1
zi(zi−1) . Let

ξ =

ξ1...
ξn

 , ξ′ =

ξ
′
1
...
ξ′n

 and ξ′′ =

ξ
′′
1
...
ξ′′n

 .

The following symmetric formula of the 1-loop invariant was first studied by Siejakowski in [27, 28]. In
particular, the formula provides a geometric interpretation of the adjoint twisted Reidemeister torsion in
terms of the determinant of the Jacobian of the gluing equations of an ρ-regular ideal triangulation. For
reader’s convenience, we include a proof of the result.

Proposition 2.19. [Section 5.1.3, [27]] Suppose T is ρ-regular with PT (z) = [ρ]. Then

τ(M,α, z, T ) = ±1

2

det
(
G∆ξ +G′∆ξ′ +G′′∆ξ′′

)
∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

= ±1

2

det(DzF (z))∏n
i=1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

,

where F is defined in (2.3) and DzF is the Jacobian matrix of F .

Proof. Recall that z′′ = 1− 1
z . Note that

(G−G′)∆z′′ + (G′′ −G′)∆−1
z = G∆ z−1

z
−G′ +G′′∆1

z

=
(
G∆1

z
+G′∆ 1

1−z
+G′′∆ 1

z(z−1)

)
∆z−1

=
(
G∆ξ +G′∆ξ′ +G′′∆ξ′′

)
∆z−1.

Thus, we have

det
(
(G−G′)∆z′′ + (G′′ −G′)∆−1

z

)
= det

(
G∆ξ +G′∆ξ′ +G′′∆ξ′′

) n∏
i=1

(zi − 1). (2.8)

Besides,

1∏n
i=1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=

n∏
i=1

zfii (1− zi)
f ′
i (zi(zi − 1))f

′′
i

= ±
n∏

i=1

z
fi+f ′′

i
i (1− zi)

f ′
i+f ′′

i

= ±
n∏

i=1

z
fi+f ′′

i
i (1− zi)

1−fi

= ±
n∏

i=1

(1− zi)
n∏

i=1

z
f ′′
i

i z′′−fi
i , (2.9)

where in the second last equality we use the property of the combinatorial flattening that fi+f ′i+f
′′
i = 1.
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Altogether,

± 1

2

det
(
G∆ξ +G′∆ξ′ +G′′∆ξ′′

)
∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=± 1

2

det
(
(G−G′)∆z′′ + (G′′ −G′)∆−1

z

)
∏n

i=1(zi − 1)

( n∏
i=1

(1− zi)
n∏

i=1

z
f ′′
i

i z′′−fi
i

)
=± 1

2
det
(
(G−G′)∆z′′ + (G′′ −G′)∆−1

z

) n∏
i=1

(
z
f ′′
i

i z′′−fi
i

)
.

This proves the first equality. The second equality follows from (2.3) and the fact that ξi = d log zi
dzi

,

ξ′i =
d log z′i
dzi

and ξ′′i =
d log z′′i
dzi

.

Remark 2.20. Recall that for any shape parameter z ∈ C∖{0, 1}, we have log z + log z′ + log z′′ =
π
√
−1. In particular, we have ξ + ξ′ + ξ′′ = d

dz (log z + log z′ + log z′′) = 0. Thus, when we compute
the 1-loop invariant by taking the derivative of the gluing equations, we can apply the equation log z +
log z′ + log z′′ = π

√
−1 and ignore the term π

√
−1 without affecting the final result.

To compare the 1-loop invariant with the adjoint twisted Reidemeister torsion discussed in Section
2.2, it is more convenient to consider the torsion as a function on the gluing variety. More precisely, given
a point z in the gluing variety VT , we let ρz : π1(M) → PSL(2;C) be the associated pseudo-developing
map.

Proposition 2.21. The function sending z ∈ VT to T(M,α)(ρz) is locally a holomorphic function on the
smooth points of V .

Proof. For any γ ∈ π1(M), the entries of ρz(γ) can be written as a rational function in terms of the
shape parameters z [3, Section 4.0.8]. Furthermore, the adjoint twisted Reidemeister torsion of is a holo-
morphic function in terms of the entries of the image of ρz. Since the shape parameters are coordinate
functions of the gluing variety, we have the desired result.

Proposition 2.22. Let T1 and T2 be two ρ0-regular ideal triangulations with PT1(z
1
0) = PT2(z

2
0) = [ρ0]

for some z10 ∈ VT1 and z20 ∈ VT2 . Then there exist birational maps between V0(T1) and V0(T2) that
send z10 to z20 and vice versa. In particular, these induce local biholomorphisms between a Euclidean
neighborhood of z10 ∈ V0(T1) and a Euclidean neighborhood of z20 ∈ V0(T2).

Proof. By [17, Corollary 1.2], T1 and T2 are connected by a finite sequence of ρ0-regular ideal trian-
gulations through 0-2, 2-0, 2-3 and 3-2 moves. There is a rational map relating the shape parameters
before and after each of those moves. In particular, there exists a rational map f that sends z10 to z20 and
send every z1 ∈ V0(T1) sufficiently close to z10 to some z2 ∈ V0(T2). The domain of this map can be
extended to a Zariski open subset of V0(T1) where the denominators of all the rational functions involved
are non-zero and all the shape parameters are non-degenerate. By switching the role of T1 and T2 and
using the above sequence of moves in reverse, one obtains the inverse of f on a Zariski open subset of
V0(T2) containing z20. This completes the proof.

The following result is known under the assumption that all shape parameters have non-negative
imaginary parts [19, Corollary 15.2.17]. We prove that the result is also true in general.

Proposition 2.23. Let T be a ρ0-regular ideal triangulation with PT (z0) = [ρ0]. Then z0 is a smooth
point of V(T ).
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Proof. It is known that there exists some ideal triangulation TEP coming from the Epstein-Penner de-
composition of the manifold such that the proposition is true for TEP [19, Corollary 15.2.17]. By Propo-
sition 2.22, near z0 ∈ T , there exists a local biholomorphism from V(T ) and V(TEP ). This gives the
desired result.

By Proposition 2.21 and 2.23, we can consider the torsion as a holomorphic function defined on the
smooth point of the irreducible component V0(T ) ⊂ V(T ) containing z0.

3 Triangulation of fundamental shadow link complements

Given a fundamental shadow link LFSL ⊂ Mc, where c ∈ N, to obtain an ideal triangulation of
Mc∖LFSL, we shrink the six edges of each D-block into six ideal vertices to obtain the union of two
ideal octahedra O and Õ, where O and Õ are glued together along four pair of faces as shown in Figure
9. Then we glue the faces of the D-blocks together according to the construction of the fundamen-
tal shadow link. This gives a decomposition of Mc∖LFSL into 2c ideal octahedra. Note that around
each ideal vertex of the D-block, the truncated rectangles are glued together to form a cylinder (Figure
9, right). The boundary of the tubular neighborhood of each component of LFSL is obtained by glu-
ing the cylinders together. To obtain an ideal triangulation, for i = 1, . . . , c, we cut the i-th D-block,
which consists of two ideal octahedra Oi and O′

i, into eight ideal tetrahedra and assign shape parame-
ters {zi,1, . . . , zi,4, z̃i,1, . . . , z̃i,4} as shown in Figure 10. This ideal triangulation of Mc∖LFSL induces
triangulations of the boundary cylinders as shown in Figures 11, 12 and 13. Note that at the complete
hyperbolic structure, all shape parameters are equal to

√
−1 and all the ideal octahedra are regular (i.e.

every dihedral angles are π/2). In particular, this triangulation is geometric.

O

B
D

E
G

A
C

H
F

O

B
D

G
E

C
A

H
F m

Figure 9: The ideal octahedron O is obtained by shrinking the 6 edges of a truncated tetrahedron into 6
ideal vertices. Õ is another copy of O and it is glued to O along the blue faces by identifying B with B̃,
D with D̃, E with Ẽ and G with G̃. Especially, around each ideal vertex, such as the top one, a pair of
opposite edges of the truncated rectangle (in purple) in O is glued to another pair of opposite edges of
the truncated rectangle in Õ to form a cylinder (right).

3.1 Gluing equations on a D-block

We first study the gluing equations on each individual D-block. The main goal of this subsection is
to prove Proposition 3.2, which provides an explicit solution of the gluing equations in terms of the
holonomies of the six ideal vertices of the D-block.

Given a D-block D consisting of ideal octahedra O and Õ, we let m1, . . . ,m6 be the meridian of
the cylinder at the i-th ideal vertex as shown in Figures 11, 12 and 13. For z = (z1, . . . , z4, z̃1 . . . , z̃4) ∈
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Figure 10: Triangulation of each D-block into 8 ideal tetrahedra. The shape parameters of the green
edges are shown in the Figure.
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C∖{0, 1}8, let Fe1 , Fe2 , Fm1 , . . . , Fm6 : C∖{0, 1}8 → C be the functions defined by

Fe1(z) = log z1 + log z2 + log z3 + log z4,

Fe2(z) = log z̃1 + log z̃2 + log z̃3 + log z̃4,

Fm1(z) = log z4 + log z̃4 − log z′′3 − log z′1 − log z̃′′1 − log z̃′3,

Fm2(z) = log z′4 + log z̃′′4 − log z′1 − log z̃′′1 ,

Fm3(z) = log z′′1 + log z̃′1 − log z′′2 − log z̃′2,

Fm4(z) = log z3 + log z̃3 − log z′′4 − log z′2 − log z̃′′2 − log z̃′4,

Fm5(z) = log z′2 + log z̃′′2 − log z′3 − log z̃′′3 ,

Fm6(z) = log z′′4 + log z̃′4 − log z′′3 − log z̃′3.

For each H(m) =
(
H(m1), . . . ,H(m6)

)
∈ C6, let GD : C6 × (C∖{0, 1})8 → C8 be the function

defined by

GD(H(m), z)

=
(
Fe1(z)− 2π

√
−1, Fe2(z)− 2π

√
−1, Fm1(z)−H(m1), . . . , Fm6(z)−H(m6)

)
. (3.1)

Note that by direct computation, we have GD((0, . . . , 0), (
√
−1, . . . ,

√
−1)) = (0, . . . , 0). Geometri-

cally, it means that when H(m) = (0, . . . , 0), the octahedron becomes a regular ideal tetrahedron which
is decomposed into four ideal tetrahedra with dihedral angles π/2, π/4, π/4. The following proposition
shows that a solution to the equation GD = 0 exists locally around H(m) = (0, . . . , 0).
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Proposition 3.1. There exists a neighborhood U ⊂ C6 containing the origin such that for any
H(m) ∈ U , there exists a unique z∗(H(m)) with z∗(0, . . . , 0) =

(√
−1, . . . ,

√
−1
)

such that
GD(H(m), z∗(H(m))) = (0, . . . , 0).

Proof. Note that the Jacobian matrix of GD with respect to z is given by

DzGD =



1
z1

1
z2

1
z3

1
z4

0 0 0 0

0 0 0 0 1
z̃1

1
z̃2

1
z̃3

1
z̃4−1

1−z1
0 −1

z3(z3−1)
1
z4

−1
z̃1(z̃1−1) 0 −1

1−z̃3
1
z̃4

−1
1−z1

0 0 1
1−z4

−1
z̃1(z̃1−1) 0 0 1

z̃4(z̃4−1)
1

z1(z1−1)
−1

z2(z2−1) 0 0 1
1−z̃1

−1
1−z̃2

0 0

0 −1
1−z2

1
z3

−1
z4(z4−1) 0 −1

z̃2(z̃2−1)
1
z̃3

−1
1−z̃4

0 1
1−z2

−1
1−z3

0 0 1
z̃2(z̃2−1)

−1
z̃3(z̃3−1) 0

0 0 −1
z3(z3−1)

1
z4(z4−1) 0 0 −1

1−z̃3
1

1−z̃4


with

det
(
DzGD

(
(0, . . . , 0),

(√
−1, . . . ,

√
−1
)))

= −32
√
−1 ̸= 0. (3.2)

The result follows from the implicit function theorem.

Next, we are going to solve the equation GD(H(m), z) = (0, . . . , 0) explicitly. The key idea is to
apply a change of variables that convert the 8 non-linear gluing equations into 7 linear equations together
with 1 non-linear equation. This simplifies the computation and allows us to reduce the problem of
solving the gluing equations into the problem of solving a single quadratic equation that has a close
relationship with the Gram matrix of the D-block. We will further discuss the change of variables later
in Section 4.2.
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More precisely, let ul = e
H(ml)

2 for l = 1, . . . , 6 and

z∗ =
−B −

√
B2 − 4AC

2A
,

where

A = −u1
u4

− u1u3
u2

− u1
u2u3

− u1
u22u4

− u5
u2

− u6
u2u4

− 1

u2u4u6
− 1

u2u5
,

B = −u1u4 +
u1
u4

+
u4
u1

− 1

u1u4
+ u2u5 +

u2
u5

+
u5
u2

+
1

u2u5
− u3u6 −

u3
u6

− u6
u3

− 1

u3u6
,

C = −u4
u1

− u2
u1u3

− u2u3
u1

− u22u4
u1

− u2
u5

− u2u4
u6

− u2u4u6 − u2u5.

(3.3)

By a direct computation, one can verify that

B2 − 4AC = 16detG, (3.4)

where detG is the determinant of the associated Gram matrix defined in Section 2.2.3.

Proposition 3.2. The solution z∗(H(m)) to the equation GD(H(m), z) = (0, . . . , 0) in Proposition 3.1
is given by z∗(H(m)) = (z∗1 , . . . , z

∗
4 , z̃

∗
1 , . . . , z̃

∗
4), where

z∗1 =
z∗ − u22

z∗ + u2u3u4
, z∗2 =

z∗u1u3u5 − u2u3u4
z∗u1u3u5 + u1u2u4u5

,

z∗3 =
z∗u1u6 − u2u4u5u6

z∗u1u6 + u2
, z∗4 =

z∗u1 − u1
z∗u1 + u2u6

z̃∗1 = − z∗u2 + u22u3u4
z∗u3u4 − u22u3u4

, z̃∗2 = − z∗u3 + u2u4
z∗u1u5 − u2u4

,

z̃∗3 = −z
∗u1u4u5u6 + u2u4u5
z∗u1 − u2u4u5

, z̃∗4 = − z∗u1 + u2u6
z∗u2u6 − u2u6

.

(3.5)

Proof. Case 1: First, we consider the case where H(ml) = 2θl
√
−1 for θl ∈ R. Put

z1 = r1e
√
−1ϕ1 , z2 = r2e

√
−1ϕ2 , z3 = r3e

√
−1ϕ3 , z4 = r4e

√
−1ϕ4

z̃1 =
1

r1
e
√
−1ϕ1 , z̃2 =

1

r2
e
√
−1ϕ2 , z̃3 =

1

r3
e
√
−1ϕ3 , z̃4 =

1

r4
e
√
−1ϕ4 ,

(3.6)

where r1, . . . , r4 ∈ R>0 and ϕ1, . . . , ϕ4 ∈ R. In particular, for i = 1, . . . , 4, we have

z̃′′i =
z̃i − 1

z̃i
=

1
ri
e
√
−1ϕi − 1

1
ri
e
√
−1ϕi

= 1− rie
−
√
−1ϕi =

1

z′i
(3.7)

and

z′′i =
zi − 1

zi
=
rie

√
−1ϕi − 1

rie
√
−1ϕi

= 1− 1

ri
e−

√
−1ϕi =

1

z̃′i
, (3.8)

where z is the complex conjugate of z. Especially, from (3.7) and (3.8) we have

|z̃′′i | = |z′i|−1, |z′′i | = |z̃′i|−1, Arg(z̃′′i ) = Arg(z′i), Arg(z̃′i) = Arg(z′′i ).
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Note that under the substitution (3.6), the equations Fe1 = 2π
√
−1 and Fe2 = 2π

√
−1 become

r1r2r3r4 = 1 and ϕ1 + ϕ2 + ϕ3 + ϕ4 = 2π. (3.9)

By (3.7), the equation Fm1 = 2θ1
√
−1 becomes a linear equation

ϕ4 −Arg z′1 −Arg z̃′3 = θ1. (3.10)

Since Arg(z̃′3) = Arg(z′′3 ) = π − ϕ3 −Arg(z′3), we have

ϕ4 −Arg z′1 + ϕ3 +Arg z′3 = π + θ1. (3.11)

By using a similar argument, one can verify that under the substitution (3.6), the equation

GD

((
2θ1

√
−1, . . . , 2θ6

√
−1
)
, z
)
= (0, . . . , 0)

becomes 7 linear equations 

ϕ1 + ϕ2 + ϕ3 + ϕ4 = 2π

ϕ4 −Arg z′1 + ϕ3 +Arg z′3 = π + θ1

Arg z′4 −Arg z′1 = θ2

ϕ2 − ϕ1 +Arg z′2 −Arg z′1 = θ3

ϕ3 −Arg z′2 + ϕ4 +Arg z′4 = π + θ4

Arg z′2 −Arg z′3 = θ5

ϕ3 − ϕ4 +Arg z′3 −Arg z′4 = θ6.

(3.12)

and 1 non-linear equation

r1r2r3r4 = 1. (3.13)

One can verify that by using Arg z′4 as the independent variable,

ϕ1 =
π

2
+
θ2 − θ3 − θ4

2
,

ϕ2 =
π

2
+

−θ1 + θ3 − θ5
2

,

ϕ3 =
π

2
+
θ4 + θ5 + θ6

2
,

ϕ4 =
π

2
+
θ1 − θ2 − θ6

2
,

Arg z′1 = Arg z′4 − θ2,

Arg z′2 = Arg z′4 +
θ1 − θ2 − θ4 + θ5

2
,

Arg z′3 = Arg z′4 +
θ1 − θ2 − θ4 − θ5

2

(3.14)

solve the system of linear equations (3.12). Under these conditions, by applying the Euclidean sine law
on the triangle with angles (Arg zi,Arg z

′
i,Arg z

′′
i ) = (ϕi,Arg z

′
i, π − ϕi − Arg z′i) for i = 1, 2, 3, 4,
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r1, r2, r3 and r4 can be written as

r1 =
sin(Arg z′4 − θ2)

cos(Arg z′4 −
θ2+θ3+θ4

2 )
,

r2 =
sin(Arg z′4 +

θ1−θ2−θ4+θ5
2 )

cos(Arg z′4 −
θ2−θ3+θ4

2 )
,

r3 =
sin(Arg z′4 +

θ1−θ2−θ4−θ5
2 )

cos(Arg z′4 +
θ1−θ2+θ6

2 )
,

r4 =
sin(Arg z′4)

cos(Arg z′4 +
θ1−θ2−θ6

2 )
.

(3.15)

Let z = e2
√
−1Arg z′4 and ul = e

√
−1θl for l = 1, . . . , 6. By using (3.15), the non-linear equation (3.13)

can be reduced into the following quadratic equation

Az2 +Bz + C = 0,

where

A = −u1
u4

− u1u3
u2

− u1
u2u3

− u1
u22u4

− u5
u2

− u6
u2u4

− 1

u2u4u6
− 1

u2u5
,

B = −u1u4 +
u1
u4

+
u4
u1

− 1

u1u4
+ u2u5 +

u2
u5

+
u5
u2

+
1

u2u5
− u3u6 −

u3
u6

− u6
u3

− 1

u3u6
,

C = −u4
u1

− u2
u1u3

− u2u3
u1

− u22u4
u1

− u2
u5

− u2u4
u6

− u2u4u6 − u2u5.

In particular, we let

z∗ =
−B −

√
B2 − 4AC

2A
. (3.16)

Then (3.6), (3.14), (3.15) and (3.16) together imply that (3.5) solves the equation. Moreover, by direct
computation, when H(m1) = · · · = H(m6) = 0, from (3.5) we have

(z1, . . . , z4, z̃1, . . . , z̃4) =
(√

−1, . . . ,
√
−1
)
.

By Proposition 3.1, since z∗(H(m)) is the unique solution to the equation GD(H(m), z(H(m))) = 0
with z∗(0, . . . , 0) =

(√
−1, . . . ,

√
−1
)
, we have z∗(H(m)) = (z∗1 , . . . , z

∗
4 , z̃

∗
1 , . . . , z̃

∗
4).

Case 2: For the general case, note that both z∗(H(m)) and the solution (z∗1 , . . . , z
∗
4 , z̃

∗
1 , . . . , z̃

∗
4) in (3.5)

are holomorphic functions in H(m1), . . . ,H(m6). Moreover, by case 1, these holomorphic functions
agree on the imaginary axis in an open neighborhood of the origin. The result follows from Lemma 3.3
below.

The following result is from [32] and we include the proof here for reader’s convenience.

Lemma 3.3. [32, Lemma 4.2] Suppose D is a domain of Cn and F1 and F2 are two holomorphic
functions on D. If F1 and F2 coincide on D ∩ (

√
−1R)n, then F1 and F2 coincide on D.

Proof. We use induction on n. If n = 1, then the result follows from the Identity Theorem of a single
variable analytic function. Now suppose the result is true for n ⩽ k. For each fixed (z2, . . . , zk) ∈

29



(
√
−1R)k−1, by the assumption of the lemma, we have F1(z1, z2, . . . , zk) = F2(z1, z2, . . . , zk) for any

purely imaginary z1. Then by the single variable case F1(z1, z2, . . . , zk) = F2(z1, z2, . . . , zk) for any
complex z1. This equality can also be understood as for any fixed complex z1, F1(z1, z2, . . . , zk) =
F2(z1, z2, . . . , zk) for all purely imaginary (z2, . . . , zk). Then by the induction hypothesis, we have
F1(z1, z2, . . . , zk) = F2(z1, z2, . . . , zk) for all (z2, . . . , zk).

Remark 3.4. If we interpret the variety

Z(D) = {z = (z1, . . . , z4, z̃1, . . . , z̃4) ∈ C8 | z1z2z3z4 = z̃1z̃2z̃3z̃4 = 1}

as the “gluing variety” of the D-block D, then Proposition 3.2 shows that the map from Z(D) to the
PSL(2;C)-character variety of D-block is surjective onto a neighborhood of the “complete hyperbolic
structure” of D.

3.2 Gluing equations of fundamental shadow link complements

Given a fundamental shadow link LFSL ⊂ Mc with k components constructed by gluing c copies of
D-blocks {D1, . . . ,Dc}, we let Di = Oi ∪ Õi be the decomposition of the i-th D-block into two ideal
octahedra. We further triangulate the D-blocks into totally 8c ideal tetrahedra and assign shape param-
eters zi = (zi1 , . . . , zi,4, ˜zi,1, . . . , ˜zi,4) to the i-th D-block according to the decomposition discussed in
Section 3.1. Let H(m) = (H(m1), . . . ,H(mk)) ∈ Ck be an assignment of k complex numbers on
the components of LFSL. For each D-block Di, let GDi : (C∖{0, 1})8 → C8 be the map F defined
in (3.1) with respect to the holonomy inherited from the holonomy of the components of LFSL. Define
G0 : Ck × (C∖{0, 1})8c → C8c by

G0(H(m), z1, . . . , zc) =
(
GD1(HD1(m), z1), . . . ,GDc(HDc(m), zc)

)
, (3.17)

where for i = 1, . . . , c, GDi is the function G defined in (3.1) with respect to the i-th D-block and
HDi

(m) = (HDi(m1), . . . ,HDi(m6)) are the holonomies of the ideal vertices of Di inherited from the
holonomies of the components of the fundamental shadow link. Besides, with respect to the triangulation,
we have the gluing equation G(H(m), z) = 0 defined in (2.6).

Proposition 3.5. There exists a neighborhood U ⊂ Ck containing the origin such that for any
H(m) ∈ U , there exists a unique z∗(H(m)) with z∗(0, . . . , 0) =

(√
−1, . . . ,

√
−1
)

such that z∗(H(m))
solve the gluing equation G(H(m), z) = 0 and the equation G0(H(m), z1, . . . , zc) = 0. Furthermore,
on each D-block Di, the solution zi

∗ coincides with the solution in Proposition 3.1 with respect to the
holonomy inherited from the holonomy of the components of LFSL.

Proof. We first consider the gluing equation G(H(m), z) = 0. Note that when H(m) = (0, . . . , 0),
the point z∗(H(m)) =

(√
−1, . . . ,

√
−1
)

solve the gluing equations. Especially, the triangulation is
geometric in the sense that the imaginary parts of all shape parameters are positive. The existence and
uniqueness of the solution z∗(H(m)) around H(m) = (0, . . . , 0) then follows from [19, Corollary
15.2.17]. Thus, we have G(H(m), z∗(H(m))) = 0. Moreover, the restriction of the solution z∗(H(m))
on each D-block satisfies the condition in Proposition 3.1 with respect to the holonomy inherited from
the holonomy of the components of LFSL. By the uniqueness part of Proposition 3.1, we have the third
claim of the proposition. In particular, by Proposition 3.1, we have G0(H(m), z1, . . . , zc) = 0.
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3.3 Proof of the volume formulas

Motivated by Proposition 3.2, given
(
H(m1), . . . ,H(m6)

)
∈ C6, we define the volume of a D-block D

with logarithmic holonomy (H(m1), . . . ,H(m6)) by

VolD(H(m1), . . . ,H(m6)) =
4∑

k=1

(
D(z∗k) +D(z̃∗k)

)
, (3.18)

where z∗k and z̃∗k are the solution given in Proposition 3.2. Let (θ1, . . . , θ6) ∈ (0, π)6 be the dihedral
angles of a hyperideal tetrahedron as shown in Figure 4.

θ1

θ2 θ6

θ4

θ5θ3

Figure 14: A hyperideal tetrahedron.

Proof of Theorem 1.2. Given a hyperideal tetrahedron ∆(θ1,...,θ6) with dihedral angles (θ1, . . . , θ6), we
first take double of ∆(θ1,...,θ6) along the triangles of truncation and then take double of the resulting
manifold along the remaining boundary. Topologically, this construction gives a fundamental shadow
link complement consisting of twoD-blocks and 6 boundary components. Geometrically, the hyperbolic
structure on the hyperideal tetrahedron induces a hyperbolic cone structure on M2 = #3(S2 × S1) with
singular locus the fundamental shadow link and cone angles (2θ1, . . . , 2θ6). Let LFSL be the fundamental
shadow link and letM2 be the hyperbolic 3-manifold equipped with this cone structure along the singular
locus LFSL. On one side, the hyperbolic volume of M2 is equal to 4 times the volume of ∆(θ1,...,θ6). On
the other side, we can compute the volume of M2 by using the ideal triangulation discussed in Section
3.2 and summing up the volume of the ideal tetrahedra in the triangulation. More precisely, if we have
H(mk) = 2θk

√
−1 for k = 1, . . . , 6 on one D-block, then H(mk) = −2θk

√
−1 for k = 1, . . . , 6 on

another D-block. Thus,

Vol(M2) = 4Vol(∆(θ1,...,θ6))

= VolD

(
2θ1

√
−1, . . . , 2θ6

√
−1
)
+VolD

(
− 2θ1

√
−1, . . . ,−2θ6

√
−1
)
,

and the result follows.

Proof of Theorem 1.3. The volume of Mµ is given by the sum of the ideal tetrahedra of the triangulation
T of the fundamental shadow link complement, which is exactly the sum of the volume of the D-blocks
defined in (3.18).

4 1-loop conjecture for fundamental shadow link complements

4.1 Generalized strong combinatorial flattening

Given a fundamental shadow link obtained by gluing c copies of D-blocks, for each D-block Di with
shape parameters (zi,1, zi,2, zi,3, zi,4, z̃i,1, z̃i,2, z̃i,3, z̃i,4), we let fi = (12 , . . . ,

1
2), f

′
i = (0, . . . , 0) and
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f ′′i = (12 , . . . ,
1
2). Let F = (f , f ′, f ′′) be defined by

f = (f1, . . . , fc), f ′ = (f ′1, . . . , f
′
c) and f ′′ = (f ′′1 , . . . , f

′′
c ). (4.1)

Lemma 4.1. The triple F = (f , f ′, f ′′) is a generalized strong combinatorial flattening of the ideal
triangulation T .

Proof. It is clear that the first condition in Definition 2.14 is satisfied. For the second condition, note
that for each quadrilateral at an ideal vertex of a D-block, the combinatorial flattening contributes 2 and
1 at any interior vertex and at any boundary vertex respectively (Figure 15). Besides, the combinatorial
flattening contributes 0 along each meridian (Figure 15). Moreover, along each vertical line segment, the
combinatorial flattening also contributes 0. This implies that the combinatorial flattening contributes 0
along each vertical peripheral curve (Figure 15).

B

A

C

A

C

Bz3
z4

z2
z1 z3

z4

z2
z1

m1

B

A

C

A

C

B

m1

v1

1/2
1/2

1/2
1/2

1/2

1/2
1/2

1/2
1/2

1/2
1/2
1/2

1/2

1/2
1/2

1/2
0

0
0

0

0
0

0
0

Figure 15: The figures on the left and on the right show the triangulation of the truncated rectangle
around vertex (1) and the contribution of the combinatorial flattening respectively. Note that at each
interior vertex, such as the brown dot, the contribution is given by 1/2 × 4 = 2. At each boundary
vertex, such as the green dot, the contribution is given by 1/2 × 2 = 1. Since every boundary vertex
will be glued to another boundary vertex of some rectangle, around each vertex the contribution of the
combinatorial flattening is 2. Besides, along the curve m1, the contribution from left to right is given
by −1/2 + 1/2 − 0 − 1/2 + 1/2 − 0 = 0. Similarly, along a vertical line segment, such as v1, the
contribution is given by 0− 1/2 + 1/2 = 0.

Lemma 4.2. Let F̃ = (f̃ , f̃ ′, f̃ ′′) ∈ (Z8c)3 be a strong combinatorial flattening. Let τ(M,α, z, T ) and
τ(M,α, z, T ,F) be the 1-loop invariants defined with respect to the flattenings F̃ and F respectively.
Then

τ(M,α, z, T ) = ±(
√
−1)gτ(M,α, z, T ,F)

for some constant g ∈ {0, 1}.

Proof. From [8, Equation (3-9)], when we change the quad type, the 1-loop invariant defined with respect
to the generalized strong combinatorial flattening F = (f , f ′, f ′′) changes by ±(

√
−1)g1 for some g1 ∈

{0, 1}. By changing the quad type if necessary, from [8, Lemmas A.2 and A.3], without loss of generality
we can assume that (G′′ −G′) is invertible. By the argument in [8, Section 3.5], we have∏n

i=1

(
zf̃i

′′

i z′′−f̃i
i

)
∏n

i=1

(
z
f ′′
i

i z′′−fi
i

) = e(f
′′·f̃−f ·f̃ ′′)π

√
−1 = ±(

√
−1)g2

for some g2 ∈ {0, 1}, where v · w denotes the dot product of the two vectors v,w ∈ Z8c. The result
follows by taking g = g1 + g2 (mod 2).
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For computation purposes, we introduce the following usual combinatorial flattening in the sense of
Definition 2.11, which will be used in the proof of Theorem 1.9 in Section 4.3. For each D-block with
shape parameters (zi,1, zi,2, zi,3, zi,4, z̃i,1, z̃i,2, z̃i,3, z̃i,4), let

f̂i = (1, 1, 1,−1, 0, 0, 0, 2), f̂ ′i = (0, 0, 0,−1, 1, 1, 1,−2) and f̂ ′′i = (0, 0, 0, 3, 0, 0, 0, 1).

Let F̂ = (f̂ , f̂ ′, f̂ ′′) be defined by

f̂ = (f̂1, . . . , f̂c), f̂ ′ = (f̂ ′1, . . . , f̂
′
c) and f̂ ′′ = (f̂ ′′1 , . . . , f̂

′′
c ). (4.2)

Lemma 4.3. The triple F̂ = (f̂ , f̂ ′, f̂ ′′) is a combinatorial flattening of T for the system of meridians.

Proof. The proof is the same as the proof of Lemma 4.1. It is clear that the first condition in Definition
2.14 is satisfied. For the second condition, note that for each quadrilateral at an ideal vertex of a D-
block, the combinatorial flattening contributes 2 and 1 at the interior vertex and at the boundary vertex
respectively (Figure 16). Besides, the combinatorial flattening contributes 0 along each meridian (Figure
16). This completes the proof.
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B
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0

0
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0
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0
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-1
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Figure 16: The figures on the left and on the right show the triangulation of the truncated rectangle around
vertex (1) and the contribution of the combinatorial flattening respectively. Note that at each interior
vertex, such as the brown dot, the contribution is given by 2. At each boundary vertex, such as the green
dot, the contribution is given by 1. Since the boundary vertex will be glued to another boundary vertex of
some rectangle, around each vertex the contribution of the combinatorial flattening is 2. Besides, along
the curve m1, the contribution from left to right is given by −0 + (−1)− 0− 0 + 2− 1 = 0.

4.2 Computation on each building block

Recall that in the proof of Proposition 3.2, when H(ml) = 2
√
−1θl for l = 1, . . . , 6, we define a change

of variable (3.6) to simplifies the problem of solving the gluing equations on a D-block. In this section,
we define a change of variable (4.3) that simplifies the computation of the determinant of the Jacobian
matrix of the gluing map on each D-block. The main goal of this section is to prove Proposition 4.6,
which relates the determinant of the Jacobian matrix with the determinant of the associated Gram matrix
of the D-block defined in Section 2.2.3.

Let ψ : C8 → (C ∪ {∞})8 be the meomorphic function defined by

ψ(ϕ1, . . . , ϕ4, ϕ
′
1, . . . , ϕ

′
4) = (z1, . . . , z4, z̃1, . . . , z̃4), (4.3)

where zk =
sinϕ′

k
sin(ϕk+ϕ′

k)
e
√
−1ϕk and z̃k =

sin(ϕk+ϕ′
k)

sinϕ′
k

e
√
−1ϕk for k = 1, . . . , 4. For simplicity we write

ϕ = (ϕ1, . . . , ϕ4, ϕ
′
1, . . . , ϕ

′
4) and z = (z1, . . . , z4, z̃1, . . . , z̃4) such that ψ(ϕ) = z. Then for the
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function GD defined in (3.1), we have

Dϕ(GD ◦ ψ) = DzGD ◦Dϕψ (4.4)

and

det(Dϕ(GD ◦ ψ)) = det(DzGD) · det(Dϕψ). (4.5)

Note that for ϕk, ϕ′k ∈ (0, π) satisfing ϕk + ϕ′k < π, zk and z̃k can be regarded as the shape parameters
of ideal tetrahedra as shown in Figure 17.

zk

10
Φk Φk

'

zk

10
Φk

Φk
'

Figure 17: When ϕk, ϕ′k ∈ (0, π) satisfy ϕk+ϕ′k < π, one can construct a Euclidean triangle with angles
ϕk, ϕ

′
k and π−ϕk−ϕ′k. In particular, the norms |zk|, |1−zk|, |z̃k| and |1− z̃k| can be computed in terms

of ϕk and ϕ′k by using the Euclidean sine law on the triangles.

Lemma 4.4. When ϕ1 + ϕ2 + ϕ3 + ϕ4 = 2π,

det(DzGD) = −26
√
−1

4∑
i=1

sinϕi
sinϕ′i sin(ϕi + ϕ′i)

(
4∏

i=1

sinϕi
sinϕ′i sin(ϕi + ϕ′i)

)−1

.

Proof. Note that

Dϕψ =



∂z1
∂ϕ1

0 0 0 ∂z1
∂ϕ′

1
0 0 0

0 ∂z2
∂ϕ2

0 0 0 ∂z2
∂ϕ′

2
0 0

0 0 ∂z3
∂ϕ3

0 0 0 ∂z3
∂ϕ′

3
0

0 0 0 ∂z4
∂ϕ4

0 0 0 ∂z4
∂ϕ′

4
∂z̃1
∂ϕ1

0 0 0 ∂z̃1
∂ϕ′

1
0 0 0

0 ∂z̃2
∂ϕ2

0 0 0 ∂z̃2
∂ϕ′

2
0 0

0 0 ∂z̃3
∂ϕ3

0 0 0 ∂z̃3
∂ϕ′

3
0

0 0 0 ∂z̃4
∂ϕ4

0 0 0 ∂z̃4
∂ϕ′

4


(4.6)

with determinant

det(Dϕψ) =

4∏
i=1

( ∂zi
∂ϕi

∂z̃i
∂ϕ′i

− ∂zi
∂ϕ′i

∂z̃i
∂ϕi

)
. (4.7)
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By a direct computation, for i = 1, . . . , 4,

∂zi
∂ϕi

= −e
√
−1ϕi−

√
−1(ϕi+ϕ′

i) sinϕ′i
sin2(ϕi + ϕ′i)

,

∂zi
∂ϕ′i

=
e
√
−1ϕi sinϕi

sin2(ϕi + ϕ′i)
,

∂z̃i
∂ϕi

=
e
√
−1ϕi+

√
−1(ϕi+ϕ′

i)

sin(ϕ′i)
,

∂zi
∂ϕ′i

= −e
√
−1ϕi sinϕi

sin2(ϕ′i)
.

Thus,

det(Dϕψ) = 16

4∏
i=1

e2
√
−1ϕi sinϕi

sinϕ′i sin(ϕi + ϕ′i)
. (4.8)

Especially, when ϕ1 + · · ·+ ϕ4 = 2π, we have

det(Dϕψ) = 16

4∏
i=1

sinϕi
sinϕ′i sin(ϕi + ϕ′i)

. (4.9)

Note that when (ϕ1, . . . , ϕ4, ϕ
′
1, . . . , ϕ

′
4) ∈ R8,

Fe1 ◦ ψ = log r1 + log r2 + log r3 + log r4 +
√
−1(ϕ1 + ϕ2 + ϕ3 + ϕ4)

Fe2 ◦ ψ = − log r1 − log r2 − log r3 − log r4 +
√
−1(ϕ1 + ϕ2 + ϕ3 + ϕ4)

Fm1 ◦ ψ = 2
√
−1(ϕ4 − ϕ′1 + ϕ3 + ϕ′3)

Fm2 ◦ ψ = 2
√
−1(ϕ′4 − ϕ′1)

Fm3 ◦ ψ = 2
√
−1(ϕ2 − ϕ1 + ϕ′2 − ϕ′1)

Fm4 ◦ ψ = 2
√
−1(ϕ3 − ϕ′2 + ϕ4 + ϕ′4)

Fm5 ◦ ψ = 2
√
−1(ϕ′2 − ϕ′3)

Fm6 ◦ ψ = 2
√
−1(ϕ3 − ϕ4 + ϕ′3 − ϕ′4),

where ri =
sinϕ′

k
sin(ϕk+ϕ′

k)
. This implies that

detDϕ(GD ◦ ψ) = (2
√
−1)7 detK, (4.10)

where

K =



∂ log r1
∂ϕ1

∂ log r2
∂ϕ2

∂ log r3
∂ϕ3

∂ log r4
∂ϕ4

∂ log r1
∂ϕ′

1

∂ log r2
∂ϕ′

2

∂ log r3
∂ϕ′

3

∂ log r4
∂ϕ′

4

1 1 1 1 0 0 0 0
0 0 1 1 −1 0 1 0
0 0 0 0 −1 0 0 1
−1 1 0 0 −1 1 0 0
0 0 1 1 0 −1 0 1
0 0 0 0 0 1 −1 0
0 0 1 −1 0 0 1 −1


(4.11)
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with

detK = 8

4∑
i=1

∂ log ri
∂ϕ′i

= 8

4∑
i=1

sinϕi
sinϕ′i sin(ϕi + ϕ′i)

. (4.12)

The result then follows from (4.5), (4.9), (4.10) and (4.12).

Let F = (f , f ′, f ′′) be the generalized combinatorial flattening defined in (4.1).

Lemma 4.5. When H(ml) = 2θl
√
−1 for l = 1, . . . , 6, at the solution z∗(H(m)) in Proposition 3.2, we

have
1∏8

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

= ±
∏4

i=1 sinϕi∏4
i=1 sinϕ

′
i

= ±
∏4

i=1 sinϕi∏4
i=1 sin(ϕi + ϕ′i)

.

Proof. Note that

1∏8
i=1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=
1(

1
z∗1 ...z

∗
4 z̃

∗
1 ...z̃

∗
4

)
(z∗

′
1 . . . z

∗′
4 z̃

∗′
1 . . . z̃

∗′
4 )

1
2

=
1

(z∗
′

1 . . . z
∗′
4 z̃

∗′
1 . . . z̃

∗′
4 )

1
2

,

where the last equality follows from Fe1(z
∗(H(m))) = Fe2(z

∗(H(m))) = 0.
For i = 1, . . . , 4, by the Euclidean sine law (Figure 17), we have |1−z∗i | =

sinϕi

sin(ϕi+ϕ′
i)

, which implies

z∗
′

i =
1

1− z∗i
=

sin(ϕi + ϕ′i)

sinϕi
e
√
−1ϕ′

i .

Recall from (3.8) that Arg z̃∗
′

i = Arg z∗
′′

i = π − ϕi − ϕ′i. Moreover, by (3.8),

|z̃∗′i | = 1

|z∗′′i |
=

|z∗i |
|1− z∗i |

=
sinϕ′i
sinϕi

and

z̃∗
′

i =
sinϕ′i
sinϕi

e
√
−1(π−ϕi−ϕ′

i).

Altogether,

(z∗
′

1 . . . z
∗′
4 z̃

∗′
1 . . . z̃

∗′
4 )

1
2 =

(∏4
i=1 sinϕ

′
i sin(ϕi + ϕ′i)∏4

i=1 sin
2 ϕi

e
√
−1(4π−(ϕ1+···+ϕ4))

) 1
2

.

Recall that at the solution z∗(H(m)), we have

ϕ1 + · · ·+ ϕ4 = 2π

and

r1r2r3r4 =

∏4
i=1 sinϕ

′
i∏4

i=1 sin(ϕi + ϕ′i)
= 1.

Thus,

1∏8
i=1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=
1

(z∗
′

1 . . . z
∗′
4 z̃

∗′
1 . . . z̃

∗′
4 )

1
2

= ±
∏4

i=1 sinϕi∏4
i=1 sinϕ

′
i

= ±
∏4

i=1 sinϕi∏4
i=1 sin(ϕi + ϕ′i)

.
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Proposition 4.6. When H(ml) = 2θl
√
−1 for l = 1, . . . , 6, at the solution z∗(H(m)) in Proposition

3.2, we have
det(DzGD(z

∗))∏8
i=1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

= ±25
√
detG

where H(ml) is the holonomy of the curve ml around the l-th ideal vertex and G is the associated Gram
matrix defined in Section 2.2.3.

Proof. From Lemmas 4.4 and 4.5,

det(DzGD(z
∗))∏8

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

= ±26
√
−1

4∏
i=1

sin(ϕi + ϕ′i)

(
4∑

i=1

sinϕi
sin(ϕ′i) sin(ϕi + ϕ′i)

)
. (4.13)

Let f(ϕ′4) =
∏4

i=1 sinϕ
′
i and g(ϕ′4) =

∏4
i=1 sin(ϕi + ϕ′i). Let ul = e

√
−1θl for l = 1, . . . , 6 and

z = e2
√
−1ϕ′

4 . Then

f(ϕ′4)− g(ϕ′4) =
1

16

(
Az +B +

C

z

)
, (4.14)

where A,B and C are defined in (3.3). Besides, by (3.4),

B2 − 4AC = 16detG (4.15)

where detG is the determinant of the associated Gram matrix defined in Section 2.2.3. Let z± =
−B±

√
B2−4AC
2A and let ϕ± such that z± = e2

√
−1ϕ± . From (4.14), we have

f(ϕ−)− g(ϕ−) = f(ϕ+)− g(ϕ+) = 0.

From (4.12) and (3.14),
4∑

i=1

sinϕi
sin(ϕ′i) sin(ϕi + ϕ′i)

=
4∑

i=1

∂ log ri
∂ϕ′i

=
4∑

i=1

∂ log ri
∂ϕ′4

, (4.16)

which implies that
4∑

i=1

sinϕi
sin(ϕ′i) sin(ϕi + ϕ′i)

=
∂

∂ϕ′4
(log(r1r2r3r4)) =

∂

∂ϕ′4
log

(
f(ϕ′4)

g(ϕ′4)

)
=
f ′(ϕ′4)− g′(ϕ′4)

g(ϕ′4)
(4.17)

for ϕ′4 satisfying f(ϕ′4) = g(ϕ′4). Thus, from (4.13) and (4.17),

det(DzGD(z
∗))∏8

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

= ±26
√
−1(f ′(ϕ′4)− g′(ϕ′4)) = ±26

√
−1

∂(f(z)− g(z))

∂z

∣∣∣
z=z−

∂z

∂ϕ′4

∣∣∣
ϕ′
4=ϕ−

.

(4.18)

From (4.14), we have

det(DzGD(z
∗))∏8

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=± 23
(
Az− − C

z−

)
=± 23A

(
z− − C

Az−

)
=± 23A(z− − z+)

=± 23
√
B2 − 4AC

=± 25
√
detG,

where the third equality follows from the product of root formula z+z− = C/A and the last equality
follows from (4.15).
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4.3 Proof of Theorem 1.9

We claim that when α is the system of meridians, the 1-loop invariant τ(M,α, z∗, T ,F) with respect
to the generalized strong combinatorial flattening F = (f , f ′, f ′′) defined in (4.1) is given by

τ(M,α, z∗, T ,F) = ±23c
c∏

i=1

√
detGi, (4.19)

where Gi is the associated Gram matrix of the i-th D-block defined in Section 2.2.3.
We first consider the case where H(ml) = 2θl

√
−1 for some θl ∈ R and l = 1, . . . , k. By Proposition

4.6 and Lemma 4.7,

τ(M,α, z∗, T ,F) =
1

2

det(DzG(H(m), z∗))∏8c
i=1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=2−2cdet(DzG0(H(m), z∗))∏8c
i=1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=2−2c

(∏c
i=1 det(DzGDi(H(m), z∗))∏8c

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)

=± 23c
c∏

s=1

√
detGs.

By Lemma 4.2, we have

τ(M,α, z∗, T ) = ±23c(
√
−1)g

c∏
s=1

√
detGs

for some g ∈ {0, 1}. Finally, to compute g, we compute τ(M,α, z∗, T ) with respect to the combinatorial
flattening F̂ defined in (4.2) at the holonomy representation of the complete hyperbolic structure, where
the shape parameters are given by z∗(0, . . . , 0) = (

√
−1, . . . ,

√
−1). Note that in this case,

8c∏
i=1

ξfii ξ
′f ′

i
i ξ

′′f ′′
i

i =

((
1√
−1

)4(
1√

−1
(√

−1− 1
))4)c

= 2−2c. (4.20)

Besides,

det(DzG(H(m), z∗)) = ±21−2c
c∏

i=1

det(DzGDi(H(m), z∗)) = ±21−2c
(
32
√
−1
)c
, (4.21)

where the last equality follows from the (3.2). From (4.20) and (4.21),

τ(M,α, z∗, T ) = ±23c
c∏

s=1

√
detGs. (4.22)

Thus, we have g = 0 and

τ(M,α, z∗, T ) = ±23c
c∏

s=1

√
detGs = ±T(M,α)([ρ0]), (4.23)
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where ρ0 is the discrete faithful representation of M and the last equality follows from Theorem 2.9(1).
This completes the proof in the case that H(ml) = 2θl

√
−1 for some θl ∈ R and l = 1, . . . , k. Since both

the 1-loop invariant and the torsion are locally analytic functions on (H(m1), . . . ,H(mk)), by Lemma
3.3, there exists an open subset U ⊂ Ck containing (0, . . . , 0) such that for any character [ρ] sufficiently
close to the discreta faithful character with (H(m1), . . . ,H(mk)) ∈ U , we have

τ(M,α, z, T ) = ±T(M,α)(ρz). (4.24)

More generally, by Proposition 2.21, both the 1-loop invariant and the torsion are analytic functions on
the gluing variety VT . As a result, by analyticity, they agree on VT .

4.4 Combinatorics of the gluing equations

In this section, we prove the technical lemmas about the combinatorics of the gluing equations. Let
G : Ck × (C∖{0, 1})8c → C8c be the function defined in (2.6) with respect to the triangulation T . Note
that the definition of the map G depends on a choice of a set of linearly independent edges. Recall that
the function G0 : Ck × (C∖{0, 1})8c → C8c in (3.17) is defined by

G0(H(m), z1, . . . , zc) =
(
GD1((HD1(m), z1), . . . ,GDc((HDc(m), zc)

)
, (4.25)

where z1, . . . , zc ∈ C8∖{0, 1}, GDi : (C∖{0, 1})8 → C8 is the function GD defined in (3.1) with
respect to the i-th D-block Di.

The main goal of the section is to prove Lemma 4.7, which relates the determinants of the Jacobian
matrices of G0 and G. The proof follows from elementary computation and careful checking of all
possible cases.

Lemma 4.7. There exists a set of linearly independent edges such that for the map G defined with respect
to this set of edges, we can find an invertible matrix L with detL = ±22c−1 such that

det(DzG0(H(m), z∗)) = det(L)det(DzG(H(m), z∗)) = ±22c−1det(DzG(H(m), z∗)).

Proof. Suppose the fundamental shadow link complement has k boundary T1
∐

· · ·
∐
Tk. Recall that a

fundamental shadow link complement is obtained by gluing the D-blocks together along the red faces in
Figure 9. We call the three edges of a red face a cycle. Note that in the construction of a fundamental
shadow link complement, cycles from different D-blocks are identified with each other. Besides, since
each D-block has 4 cycles and each cycle is shared by two D-blocks, there are altogether 2c cycles.

In the definition of G0, there are 2c edge equations {f l1, f l2}cl=1 corresponding to the central edges
and 6c holonomy equations. In the definition of the gluing map F , there are 8c− k edge equations and k
holonomy equations. In the following discussion, we will always choose the 2c central edges {f l1, f l2}cl=1

and study the transformation from 6c holonomy equations to k holonomy equations and 6c − k edges
equations. The main goal is to show that the the transformation is given by a invertible matrix L with
detL = ±22c−1. We will show that by choosing the dependent edges appropriately and applying row
operations that do not change the determinant of L, we can transform L into an upper triangular block
matrix which contains 2c− 1 blocks with determinant ±2 and 1 block with determinant ±1.

First, given a fundamental shadow link complement, we construct a graph as follows. The vertices
of the graph are the boundaries of the link complement. An edge between two vertices Tp and Tq, where
p, q = 1, . . . , k, is a cycle c = (e1, e2, e3) such that at least one pair of edges from that cycle c belong
to the boundary Tp and at least one pair of edges from that cycle c belong to the boundary Tq. For a
pair of edges (ea, eb) and for a boundary torus Tp, where a, b ∈ {1, 2, 3} and p = 1, . . . , k, we write
(ea, eb) ∈ Tp if the pair of edges (ea, eb) lies on the boundary Tp.
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Since the fundamental shadow link complement is connected, we can always find a maximal tree that
contains all the vertices of the graph. In particular, the graph contains k vertices and k − 1 edges. Each
edge of the maximal tree corresponds to a cycle. Observe that since each cycle c = (e1, e2, e3) contains
three pairs of edges (e1, e2), (e1, e3) and (e2, e3), each cycle corresponds as most two edges of the tree.
We choose a dendrogram representation of the graph with a top degree one vertex and directed edges
pointing from the top to the bottom. We call that vertex the distinguished vertex. Since the distinguished
vertex is degree one, there exists a unique edge that has the top vertex as one of its endpoints. We call the
corresponding cycle the distinguished cycle and denote it by c1 = (e11, e

1
2, e

1
3). For each pair of vertices

Tp, Tq in the graph, where p, q = 1, . . . , k, there exist a unique path of edges connecting that Tp and Tq
without backtracking. We denote the number of edges in that path by d(p, q). For adjacent vertices Tp, Tq
of the graph, we denote the edge connecting Tp and Tq by c(p,q). From each edge of the dendrogram
labelled by some cycle ci, we pick a dependent edge from the bottom vertex of the edge as follows.

1. Suppose the cycle ci = (ei1, e
i
2, e

i
3) corresponds to exactly one edge of the tree. We have the

following possible positions of the three pairs of edges.

I) There is a branch

· · · → Ta
ci−→ Tb → . . . ,

where a, b = 1, . . . , k, (ei1, e
i
2) ∈ Tb is on the top layer of Tb, (ei1, e

i
3) ∈ Ta is not on the top

layer of Ta and (ei2, e
i
3) ∈ Ta is not on the top layer of Ta.

II) There is a branch

· · · → Ta
ci−→ Tb → . . . ,

where a, b = 1, . . . , k, (ei1, e
i
2) ∈ Tb is on the top layer of Tb, (ei1, e

i
3) ∈ Ta is not on the top

layer of Ta and (ei2, e
i
3) ∈ Tb is not on the top layer of Tb.

III) There is a branch

· · · → Ta → · · · → Tb
ci−→ Tc → . . . ,

where a, b, c = 1, . . . , k, (ei1, e
i
2) ∈ Tc is on the top layer of Tc, (ei1, e

i
3) ∈ Tb is not on the

top layer of Tb and (ei2, e
i
3) ∈ Ta is not on the top layer of Ta.

IV) There is a branch

· · · → Ta
ci−→ Tb → · · · → Tc → . . . ,

where a, b, c = 1, . . . , k, (ei1, e
i
2) ∈ Tb is on the top layer of Tb, (ei1, e

i
3) ∈ Ta is not on the

top layer of Ta and (ei2, e
i
3) ∈ Tc is not on the top layer of Tc.

V) Ta, Tb and Tc are not in the same branch, (ei1, e
i
2) ∈ Tb is on the top layer of Tb, (ei1, e

i
3) ∈ Ta

is not on the top layer of Ta and (ei2, e
i
3) ∈ Tc is not on the top layer of Tc.

We choose ei1 to be a dependent edge in all these cases.

2. Suppose the cycle ci = (ei1, e
i
2, e

i
3) corresponds to two edges of the tree. Then there is a branch

· · · → Ta → Tb → Tc → . . . ,

where (ei1, e
i
2) ∈ Tc is on the top layer of Tc, (ei1, e

i
3) ∈ Tb is on the top layer of Tb and (ei2, e

i
3) ∈

Ta is not on the top layer of Ta. We choose ei2 and ei3 to be dependent edges.

This gives us altogether k − 1 dependent edges. Next, we choose one more edge from the distin-
guished cycle c1 = (e11, e

1
2, e

1
3) to be a dependent edge as follows.

40



1. Suppose two edges of c1 have been chosen to be dependent edges in the previous step. Then we
choose the remaining edge to be a dependent edge.

2. Up to renaming {Ti}ki=1 if necessary, suppose we have a branch of the form

T1
c1−→ T2

c(2,3)−−−−→ T3
c(3,4)−−−−→ . . . ,

where c1 = (e11, e
1
2, e

1
3), (e

1
1, e

1
3) ∈ T1 is on the top layer of T1, (e11, e

1
2) ∈ T2 is on the top layer of

T2 and (e12, e
1
3) ∈ T2 is not on the top layer. Then we choose e11 and e12 to be dependent edges.

3. Up to renaming {Ti}ki=1 if necessary, suppose we have a branch of the form

T1
c1−→ T2

c(2,3)−−−−→ T3
c(3,4)−−−−→ . . . ,

where c1 = (e11, e
1
2, e

1
3), (e

1
1, e

1
3) ∈ T1 is on the top layer of T1, (e12, e

1
3) ∈ T1 is not on the top

layer and (e11, e
1
2) ∈ T2 is on the top layer of T2. Then we choose e11 and e13 to be dependent edges.

4. Up to renaming {Ti}ki=1 if necessary, suppose for some l ≥ 2, we have a branch of the form

T1
c(1,2)−−−−→ T2

c(2,3)−−−−→ . . .
c(l,l+1)−−−−−→ Tl+1 → . . . ,

where (e11, e
1
3) ∈ T1 is on the top layer of T1, (e11, e

1
2) ∈ T2 is on the top layer of T2 and (e12, e

1
3) ∈

Tl+1 is not on the top layer of Tl+1. We choose e11 and e12 to be dependent edges if l is odd and
choose e11 and e13 to be dependent edges if l is even.

We give an order {c1, c2, . . . , c2c} to the set of cycles, where c1 is the distinguished cycle. As
shown in Figure (18), for each boundary torus of the fundamental shadow link component, we find a
fundamental domain of the torus such that the dependent edge we picked from that boundary component
is at the top layer of the fundamental domain. We will keep the holonomy equation in the top rectangle.
By applying row operations that does not affect the determinant of a matrix, we can transform the 6c
holonomy equations into and n holonomy equations and 6c − k equations of the form eia + eib, where
{a, b} ∈ {{1, 2}, {1, 3}, {2, 3}}, i ∈ {1, . . . , 2c} and ci = (ei1, e

i
2, e

i
3) is a cycle. Note that the top

layer will not appear in the matrix L. By Remark 2.20, it suffices to consider the edge equations modulo
π
√
−1. For simplicity, for two linear combinations of edge equations s1 and s2, we write s1 ∼ s2 if

s1 − s2 is a linear combination of the central edges {f l1, f l2}cl=1 modulo π
√
−1.

Contribution from the cycle c1:

1. Suppose all three edges from the cycle c1 are dependent edges. Then c1 does not contribute to the
determinant of L.

2. Up to renaming {Ti}ki=1 if necessary, suppose we have a branch of the form

T1
c1−→ T2

c(2,3)−−−−→ T3
c(3,4)−−−−→ . . . ,

where c1 = (e11, e
1
2, e

1
3), (e

1
1, e

1
3) ∈ T1 is on the top layer of T1, (e11, e

1
2) ∈ T2 is on the top layer of

T2 and (e12, e
1
3) ∈ T2 is not on the top layer of T2. By summing up all the edges in T1, we have the

equation

e11 + e13 +R1 ∼ 0, (4.26)
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m1

m2

m3

e1 e2

e1 e2

e1

f1 f2

e3

a a

p
b b

p
c c

l l

p

Top layer 

Top rectangle 

Figure 18: The figure shows a possible configuration of the fundamental domain of a boundary torus Tp.
The brown dots represent the central edges and the green dots represent the non-central edges. mp

1,m
p
2

and mp
3 represent three different meridian paths. In this figure, we keep the holonomy equation of mp

1

in the top rectangle. Note that mp
1 −mp

2 ≡ eb1 + eb2 (mod π
√
−1) and mp

2 −mp
3 ≡ ec1 + ec2 + f l1 + f l2

(mod π
√
−1). Besides, the top layer ea1 + ea2 will not appear in the matrix L.

where R1 is the sum of all the edges in T1 except e11 and e13. Similarly, by summing up all the
edges in T2, we have the equation

e11 + 2e12 + e13 +R2 ∼ 0, (4.27)

where R2 is the sum of all the edges in T2 except e11, e
1
2 and e13. Note that R1 and R2 are indepen-

dent of e11, e
1
2 and e13. From (4.26) and (4.27), we can see that

e12 ∼
1

2
(R1 −R2)

is independent of e11 and e13. As a result, the row corresponding to e12 + e13 is of the form

(e13 ∗ . . . ∗
e12 + e13 1 ∗ . . . ∗

)
.

3. Up to renaming {Ti}ki=1 if necessary, suppose we have the configuration

T1
c1−→ T2

c(2,3)−−−−→ T3
c(3,4)−−−−→ . . . ,

where c1 = (e11, e
1
2, e

1
3), (e

1
1, e

1
3) ∈ T1 is on the top layer of T1, (e12, e

1
3) ∈ T1 is not on the top

layer of T1 and (e11, e
1
2) ∈ T2 is on the top layer of T2. By summing up all the edges in T1, we have

the equation

e11 + e12 + 2e13 +R1 ∼ 0, (4.28)
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where R1 is the sum of all the edges in T1 except e11, e
1
2 and e13. Similarly, by summing up all the

edges in T2, we have the equation

e11 + e12 +R2 ∼ 0, (4.29)

where R2 is the sum of all the edges in T2 except e11 and e12. Note that R1 and R2 are independent
of e11, e

1
2 and e13. From (4.28) and (4.29), we can see that

e13 ∼
1

2
(−R0 +R1)

is independent of e11 and e12. As a result, the row corresponding to e12 + e13 is of the form

(e12 ∗ . . . ∗
e12 + e13 1 ∗ . . . ∗

)
.

4. Up to renaming {Ti}ki=1 if necessary, suppose for some level l ≥ 2, we have the configuration

T1
c(1,2)−−−−→ T2

c(2,3)−−−−→ . . .
c(l,l+1)−−−−−→ Tl+1,

where (e11, e
1
3) ∈ T1 is on the top layer of T1, (e11, e

1
2) ∈ T2 is on the top layer of T2 and (e12, e

1
3) ∈

Tl+1 is not on the top layer of Tl+1. For j = 2, . . . , k, we let pj , qj , rj ∈ {1, 2, 3} such that for the
cycle c(j, j+ 1) = (ej1, e

j
2, e

j
3), the edges pair (ejpj , e

j
qj ) ∈ Tj+1 is on the top layer of Tj+1 and the

edges pair (ejpj , e
j
rj ) ∈ Tj is not on the top layer of Tj .

First, by summing up all the edges in T1, we have the equation

e11 + e13 +R1 ∼ 0, (4.30)

where R1 is the sum of all the edges in T1 except e11 and e13. Similarly, by summing up all the
edges in T2, we have the equation

e11 + e12 + e2p2 + e2r2 +R2 ∼ 0, (4.31)

where R2 is the sum of all the edges in T2 except e11, e
1
2, e

2
p2 and e2r2 . By the same reason, for

j = 3, . . . , l, we have the equation

ej−1
pj−1

+ ej−1
qj−1

+ ejpj + ejrj +Rj = 0, (4.32)

where Rj is the sum of all the other edges in Tj except ej−1
pj−1 , e

j−1
qj−1 , e

j
pj and ejrj . Lastly, we have

elpl + elql + e12 + e13 +Rl+1 = 0, (4.33)

where Rl is the sum of all the other edges in Tl+1 except elpl , e
l
ql
, e12 and e13. By successive substi-

tutions using (4.32) and (4.33), we have

e2p2 ∼ −
l−1∑
j=2

(−1)j(ejpj + ej+1
rj+1

+Rj) + (−1)l+1(elql + e12 + e13 +Rl+1).

When l is odd, from (4.31), we have

e11 + 2e12 + e13 ∼ −e2r2 −R1 − elql −Rl +
l−1∑
j=2

(−1)j(ejpj + ej+1
rj+1

+Rj). (4.34)
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When l is even, from (4.31), we have

e11 − e13 ∼ −e2r2 −R1 + elql +Rl +
l−1∑
j=2

(−1)j(ejpj + ej+1
rj+1

+Rj). (4.35)

As a result, when l is odd, from (4.30) and (4.34), we have

e12 ∼
1

2

(
R0 − e2r2 −R1 − elql −Rl +

l−1∑
j=2

(−1)j(ejpj + ej+1
rj+1

+Rj)
)
. (4.36)

When l is even, from (4.30) and (4.35), we have

e11 ∼
1

2

(
−R0 − e2r2 −R1 − elql −Rl +

l−1∑
j=2

(−1)j(ejpj + ej+1
rj+1

+Rj)
)
, (4.37)

which by (4.30) implies that

e13 ∼
1

2

(
−R0 − e2r2 −R1 − elql −Rl +

l−1∑
j=2

(−1)j(ejpj + ej+1
rj+1

+Rj)
)
, (4.38)

Note that the expressions on the right hand sides of (4.36) and (4.38) are independent of e11, e
1
2, e

1
3.

As a result, when l is odd, the row corresponding to e12 + e13 is of the form

(e13 ∗ . . . ∗
e12 + e13 1 ∗ . . . ∗

)
. (4.39)

Similarly, when l is even, the row corresponding to e12 + e13 is of the form

(e12 ∗ . . . ∗
e12 + e13 1 ∗ . . . ∗

)
. (4.40)

Contribution of the cycles c2, . . . , cn:

Next, we claim that for each cycle ci = (ei1, e
i
2, e

i
3), each of them contributes a factor of ±2 to the

determinant. Observe that each of them falls into one of the following possibilities:

1. Suppose the cycle ci = (ei1, e
i
2, e

i
3) corresponds to exactly one edge of the tree.

I) For configuration in 1)I), by summing up all the edges in Tb, we have

ei1 + ei2 +Rb ∼ 0 (4.41)

where Rb is the sum of edges in Tb except ei1, e
i
2. This implies that

ei1 +Rb ∼ −ei2 (4.42)

Note that Rb is independent of ei1, e
i
2, e

i
3. Locally we get a block

( ei2 ei3
ei1 + ei3 −1 1
ei2 + ei3 1 1

)
(4.43)

with determinant −2.
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II) For configuration 1)II), by summing up all the edges in Tb, we have

ei1 + 2ei2 + ei3 +Rb ∼ 0 (4.44)

where Rb is the sum of edges in Tb except ei1, e
i
2, e

i
3. This implies that

ei1 + ei3 +Rb ∼ −2ei2. (4.45)

Note that Rb is independent of ei1, e
i
2, e

i
3. Locally we get a block

( ei2 ei3
ei1 + ei3 −2 0
ei2 + ei3 1 1

)
(4.46)

with determinant −2.

III) For configuration 1)III), by summing up all the edges in Tc, we have

ei1 + ei2 +Rc ∼ 0,

where Rc is the sum of edges in Tc except ei1 and ei2. This implies

ei1 +Rc ∼ −ei2,

Note that Rc does not depend on ei1, e
i
2 and ei3. Locally we get a block

( ei2 ei3
ei1 + ei3 −1 1
ei2 + ei3 1 1

)
(4.47)

with determinant −2.

IV) For configuration 1)IV), by a similar computation as case 4, we have

ei1 + ei2 ∼ (−1)d(b,c)(ei2 + ei3).

When d(b, c) is even, we have
ei1 ∼ ei3.

Locally we get a block

(ei2 ei3
ei1 + ei3 0 2
ei2 + ei3 1 1

)
(4.48)

with determinant −2. When d(b, c) is odd, we have

ei1 + ei3 ∼ −2ei2.

Locally we get a block

( ei2 ei3
ei1 + ei3 −2 0
ei2 + ei3 1 1

)
(4.49)

with determinant −2.
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V) For configuration 1)V), by summing up all the edges in Tc, we have

ei1 + ei2 +Rc ∼ 0,

where Rc is the sum of edges in Tc except ei1 and ei2. This implies

ei1 +Rc ∼ −ei2,

Note that Rc does not depend on ei1, e
i
2 and ei3. Locally we get a block

( ei2 ei3
ei1 + ei3 −1 1
ei2 + ei3 1 1

)
(4.50)

with determinant −2.

2. By summing up all the edges in Tc, we have

ei1 + ei2 +Rc ∼ 0,

where Rc is the sum of edges in Tc except ei1 and ei2. By summing up all the edges in Tb,

ei1 + ei3 +Rb ∼ 0,

where Rb is the sum of edges in Tb except ei1 and ei3. As a result,

ei2 + ei3 ∼ −2ei1 −Rb −Rc.

Note that Rb and Rc do not depend on ei1, e
i
2 and ei3. Locally we get a block

( ei1
ei2 + ei3 −2

)
(4.51)

with determinant −2.

3. Suppose no edge from the cycle is a dependent edge. Locally, we get a block


ei1 ei2 ei3

ei1 + ei2 1 1 0
ei1 + ei3 1 0 1
ei2 + ei3 0 1 1


with determinant −2.

Altogether, by applying row operations that do not change the determinant of L, we transform L into
an upper triangular block matrix. Moreover, 2c− 1 cycles give blocks with determinant ±2 and 1 cycle
gives a block with determinant ±1. As a result, we have detL = ±22c−1.
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4.5 Proof of Theorem 1.19

Assume that τ(M,α, z, T ) ̸= 0. By the definition of the 1-loop invariant, we know that

τ(M,α′, z, T )

τ(M,α, z, T )
=

det(DzGα′(z))

det(DzGα(z))
,

where Gα and Gα′ are the function G defined in (2.5) with respect to the system of simple closed curves
α and α′ respectively. By the inverse function theorem, since det(DzGα(z)) ̸= 0 by assumption, locally
Gα defines a biholomorphism around z. Recall that the first n−k entries of Gα and Gα′ correspond to the
n − k edge equations of the ideal triangulation. Besides, the last k entries of Gα and Gα′ correspond to
the k (logarithmic) holonomy equations along the system of simple closed curves α and α′ respectively.
In particular, the Jacobian of the holomorphic function Gα′ ◦ G−1

α is of the form

D
(
Gα′ ◦ G−1

α

)
=

In−k 0

∗
(

∂H(α′
i)

∂H(αj)

)
ij


with

det
(
D
(
Gα′ ◦ G−1

α

))
= det

(
∂H(α′

i)

∂H(αj)

)
ij

,

where In−k is the (n− k)× (n− k) identity matrix. Moreover, by chain rule, we have

det
(
D
(
Gα′ ◦ G−1

α

)
(Gα(z))

)
=

det(DzGα′(z))

det(DzGα(z))
.

Altogether, we have
τ(M,α′, z, T )

τ(M,α, z, T )
= det

(
∂H(α′

i)

∂H(αj)

)
ij

.

5 Topological invariance of the 1-loop invariant

5.1 Invariance under 0-2 move

The main goal of this section is to prove the following proposition.

Proposition 5.1. Let T and T ′ be two ρ-regular triangulations that are related by a 0-2 Pachner move.
Suppose there exists z ∈ VT and z′ ∈ VT ′ such that PT (z) = PT ′(z′) and z is obtained from z′ by
removing the shape parameters corresponding to the two tetrahedra in T ′∖T . Then

τ(M,α, z, T ) = τ(M,α, z′, T ′).

Proof. Let M be a 3-manifold with ∂M = T 1
∐

· · ·
∐
T k and let ρ : π1(M) → PSL(2;C). Let

T = {∆i}ni=1 and T ′ = {∆i}ni=1 ∪ {∆n+1,∆n+2} be two ρ-regular triangulations that are related by
a 0-2 move as shown in Figure 19. Let zi be the shape parameter assigned to ∆i for i = 1, 2, . . . , n.
Denote the new edge in T ′ by en−k+2. Assign shape parameters zn+1 and zn+2 as shown in Figure 19.
Note that the edge equation around en−k+2 is given by

en−k+2 : log zn+1 + log zn+2 = 2π
√
−1,

47



=

zn+1

zn+2

Figure 19: The figure shows a 0-2 move that changes the triangulation T to T ′. We assign shape
parameters zn+1 and zn+2 to the new edge as shown on the right.

which corresponds to a row

(z1 . . . zn zn+1 zn+2

en−k+2 0 . . . 0 1
zn+1

1
zn+2

)
(5.1)

in the computation of the 1-loop invariant. In particular, we have

zn+1zn+2 = 1. (5.2)

Besides, consider the triangulations of the boundary torus corresponding to the left and right ideal ver-
tices in Figure 19. As shown in Figure 20, the edge equation around the purple edge, denoted by en−k,
is changed from

en−k : h1 + h2 = 2π
√
−1

into two edge equations e1n−k and e2n−k given by

e1n−k : h1 + log zn+1 = 2π
√
−1

and
e2n−k : h2 + log zn+2 = 2π

√
−1,

where h1 and h2 are the sums of the logarithms of the shape parameters on the left and right hand sides
of the diagonal respectively. Note that e1n−k and e2n−k corresponds to the row

(z1 . . . zn zn+1 zn+2

e1n−k ∗ . . . ∗ 1
zn+1

0
)

(5.3)

and

(z1 . . . zn zn+1 zn+2

e2n−k ∗ . . . ∗ 0 1
zn+2

)
(5.4)
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zn+1

zn+1

zn+1

zn+2

zn+2

zn+2

'

'

''

''

h1

h1

h2

h2

Figure 20: This figure illustrates how the triangulations of the boundary torus corresponding to the left
and right ideal vertices in Figure 19 change under a 0-2 move. The holonomies of the blue and orange
curves change by a multiples of log z′n+1 + log z′′n+2 and log z′′n+1 + log z′n+2 respectively, where the
multiples depend on the number of times the curves crosses the diagonal.

zn+1

zn+1

zn+1

zn+2

zn+2

zn+2
'

'

''

''

Figure 21: This figure illustrates how the triangulations of the boundary torus corresponding to the top
and bottom ideal vertices in Figure 19 change under a 0-2 move. The holonomies of the blue and orange
curves change by a multiples of log z′n+1 + log z′′n+2 and log z′′n+1 + log z′n+2 respectively, where the
multiples depend on the number of times the curves crosses the diagonal.

respectively. Moreover, as shown in Figures 20 and 21, each of the remaining edge equation ei is either
unchanged, or is changed by adding a multiple of ±(log z′1+log z′′2 ) or ±(log z′′1 +log z′2). In particular,
each of them correspond to a row of the form

(z1 . . . zn zn+1 zn+2

ei ∗ . . . ∗ 0 0
)
, (5.5)

(z1 . . . zn zn+1 zn+2

ei ∗ . . . ∗ k
1−z1

k
z2(z2+1)

)
, (5.6)

or

(z1 . . . zn zn+1 zn+2

ei ∗ . . . ∗ k
z1(z1+1)

k
1−z2

)
. (5.7)
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for some k ∈ Z. Similarly, each meridian equation αi correspond to a row of the form

(z1 . . . zn zn+1 zn+2

αi ∗ . . . ∗ 0 0
)
, (5.8)

(z1 . . . zn zn+1 zn+2

αi ∗ . . . ∗ l
1−z1

l
z2(z2+1)

)
, (5.9)

or

(z1 . . . zn zn+1 zn+2

αi ∗ . . . ∗ l
z1(z1+1)

l
1−z2

)
(5.10)

for some l ∈ Z. Note that by (5.2), we have

det

(
1

zn+1

1
zn+2

1
1−zn+1

1
zn+2(zn+2−1)

)
= det

(
1

zn+1

1
zn+2

1
zn+1(zn+1−1)

1
1−zn+2

)
= 0.

In particular, by using row operations, we can use (5.1) to eliminate the zn+1 and zn+2 coordinates of
(5.6), (5.7), (5.9) and (5.10).

As a result, for the triangulation T ′, if we let {e1, e2, . . . , en−k−1, e
1
n−k, e

2
n−k, en−k+2} be a set of

independent edges and {α1, . . . , αk} be a system of boundary curves, then τ(M,α, ρ, T ′) is given by

±

det





z1 . . . zn zn+1 zn+2

α1 ∗ . . . ∗ 0 0
...

... . . .
...

...
...

αk ∗ . . . ∗ 0 0
e1 ∗ . . . ∗ 0 0

...
... . . .

...
...

...
en−k−1 ∗ . . . ∗ 0 0
e1n−k ∗ . . . ∗ 1

zn+1
0

e2n−k ∗ . . . ∗ 0 1
zn+2

en−k+2 0 . . . 0 1
zn+1

1
zn+2




(∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)(∏n+2
i=n+1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

) = ±

det





z1 . . . zn zn+1 zn+2

α1 ∗ . . . ∗ 0 0
...

... . . .
...

...
...

αk ∗ . . . ∗ 0 0
e1 ∗ . . . ∗ 0 0

...
... . . .

...
...

...
en−k−1 ∗ . . . ∗ 0 0
en−k ∗ . . . ∗ 0 0
e2n−k ∗ . . . ∗ 0 1

zn+2

en−k+2 0 . . . 0 1
zn+1

1
zn+2




(∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)(∏n+2
i=n+1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

) ,

(5.11)

where the equality follows by adding e2n−k−1 to e1n−k−1 and removing the zn+1, zn+2 entries by using
en−k+2. Besides, let F = (f , f ′, f ′′) be a strong combinatorial flattening of T . As shown in Figure 22,
we can let S1, S2 be the sum of the combinatorial flattenings on each side of the diagonal, and extend
F to a strong combinatorial flattening F ′ of T ′ by defining (fn+1, f

′
n+1, f

′′
n+1) = (S2, 0, 1 − S2) and
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S2

1-S2

0

1-S1

0

S1

S1

S1

S2

S2

S1

1-S1

0

1-S2

0

S2

Figure 22: This figure shows how the combinatorial flattening F of T is extended to a combinatorial
flattening F ′ of T ′. Note that S1 + S2 = 2 and (1− S1) + (1− S2) = 2− S1 − S2 = 0.

(fn+2, f
′
n+2, f

′′
n+2) = (S1, 1− S1, 0). In particular, by using zn+1zn+2 = 1 and S1 + S2 = 2,

n+2∏
i=n+1

ξfii ξ
′f ′

i
i ξ

′′f ′′
i

i =

(
1

zn+1

)S2
(

1

zn+1(zn+1 − 1)

)1−S2
(

1

zn+2

)S1
(

1

1− zn+2

)1−S1

=

(
1

zn+1 − 1

)1−S2
(

zn+2

zn+2 − 1

)1−S1

=

(
1

zn+1 − 1

)1−S2
( 1

zn+1

1− 1
zn+1

)1−S1

=

(
1

zn+2 − 1

)2−S1−S2

= 1,

which implies that

n+2∏
i=1

ξfii ξ
′f ′

i
i ξ

′′f ′′
i

i =

n∏
i=1

ξfii ξ
′f ′

i
i ξ

′′f ′′
i

i . (5.12)
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Altogether, by using (5.2), (5.11) and (5.12), we have

τ(M,α, z, T ′) = ±

det





z1 . . . zn zn+1 zn+2

α1 ∗ . . . ∗ 0 0
...

... . . .
...

...
...

αk ∗ . . . ∗ 0 0
e1 ∗ . . . ∗ 0 0

...
... . . .

...
...

...
en−k−1 ∗ . . . ∗ 0 0
en−k ∗ . . . ∗ 0 0

e2n−k−1 ∗ . . . ∗ 0 1
zn+2

en−k+1 0 . . . 0 1
zn+1

1
zn+2




(∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)(∏n+2
i=n+1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)

= ±

det





z1 . . . zn
α1 ∗ . . . ∗

...
... . . .

...
αk ∗ . . . ∗
e1 ∗ . . . ∗

...
... . . .

...
en−k−1 ∗ . . . ∗
en−k ∗ . . . ∗




∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

=τ(M,α, z, T ).

This completes the proof.

5.2 Proof of Theorem 1.10

By Proposition 2.22, we can regard z2 as a rational map defined on a Zariski open subset W ⊂ VT1 . By
[8, Theorem 1.4, 4.1] and Proposition 5.1, for any z1 ∈W , we have

τ(M,α, z1, T1) = τ(M,α, z2(z1), T2).

By continuity of both sides, we have the desired result.

5.3 Proof of Corollary 1.12

Note that Conjecture 1.5 follows immediately from Theorem 1.9 and 1.10. Suppose Conjecture 1.6 is
true for some ρ0-regular ideal triangulation T1. Let T2 be another ρ0-regular ideal triangulation. By
Proposition 2.22, we can regard z1 as a rational map defined on a Zariski open subset W ⊂ V0(T2). By
assumption and Theorem 1.10, for any z2 ∈W and ρz2 = PT2(z2), we have

τ(M,α, z2, T2) = τ(M,α, z1(z2), T1) = ±T(M,α)([ρz]).

By continuity of both sides, we have the desired result.
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6 Surgery formula with respect to nice triangulations

6.1 Proof of Theorem 1.15

We first consider the case where l = 1, i.e. we only fill the first torus boundary T1. The general case
follows from the same argument by doing the Dehn-fillings one by one. In the context of Theorem
1.15, for all the ideal triangulations in the rest of this section, we always assume that solutions of gluing
equations exist.

Let T̂ ′ = {∆i}ni=1 and T̂ = T̂ ∪{∆1
1,∆

1
2} be respectively the triangulations ofM ′ andM described

in Proposition 1.14, where ∆1
1,∆

1
2 are the only two ideal tetrahedra intersecting T1. Let z1, . . . , zn be an

assignment of shape parameters to ∆1, . . . ,∆n. Let f, g, h be the edges of the base triangles and assign
shape parameters zn+1, zn+2 to ∆1

1,∆
1
2 as shown in Figure 23. We first compare the determinants of

the Jacobian of the gluing maps before and after the Dehn-filling. For the representation ρ = ρ′|π1(M),
since the two bottom faces of ∆1

1,∆
1
2 are glued together in M ′, by considering the product of the shape

parameters above those two faces, we have

zn+1zn+2 = 1. (6.1)

f

fg

g

h

zn+1
zn+1

zn+1

zn+2

zn+2

'

zn+2

zn+2
zn+1

'
''

''

Figure 23: We assign shape parameters zn+1, zn+2 to ∆1
1, ∆1

2 as shown on the left of this figure. On the
right, the curve with a single arrow represents the curves α = α1. The curve γ = γ1 with a double arrow
represents the core curve of the Dehn-filled solid torus after doing the Dehn-filling to homotopically
“kill” α. Note that the intersection number of α and γ is 1.

By Remark 2.20, we ignore all possible multiples of π
√
−1 in the following computation. Consider

the edge equations around edges f and g. Note that they can be written in the form

f = log z′n+1 + log z′n+2 + sum of logarithms of shape parameters of tetrahedra in {∆i}ni=1, (6.2)

g = log z′′n+1 + log z′′n+2 + sum of logarithms of shape parameters of tetrahedra in {∆i}ni=1. (6.3)

Note that in Figure 23, the curve with a single arrow represents α = α1 and the curve with a double
arrow represents the core curve γ = γ1. Moreover, the logarithmic holonomies of α and γ are given by

α = log z′n+1 + log z′′n+2 − log z′′n+1 − log z′n+2, (6.4)

γ = log z′n+1 − log z′n+2. (6.5)
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Locally, by (6.2), (6.3) and (6.4), the Jacobian of the gluing map is given by


zn+1 zn+2

f 1
1−zn+1

1
1−zn+2

g 1
zn+1(zn+1−1)

1
zn+2(zn+2−1)

α 1
1−zn+1

− 1
zn+1(zn+1−1)

1
zn+2(zn+2−1) −

1
1−zn+2

. (6.6)

By adding the second row to the first row, we have


zn+1 zn+2

f + g − 1
zn+1

− 1
zn+2

g 1
zn+1(zn+1−1)

1
zn+2(zn+2−1)

α 1
1−zn+1

− 1
zn+1(zn+1−1)

1
zn+2(zn+2−1) −

1
1−zn+2

 (6.7)

The following elementary computations will be used to study the change of the determinants of the
Jacobians of the gluing maps.

Lemma 6.1. When zn+1zn+2 = 1, there exists some constant C ∈ C such that( 1

zn+1
,

1

zn+2

)
= C

( 1

1− zn+1
− 1

zn+1(zn+1 − 1)
,

1

zn+2(zn+2 − 1)
− 1

1− zn+2

)
∈ C2.

Besides, we have

det

(
1

zn+1(zn+1−1)
1

zn+2(zn+2−1)
1

1−zn+1
− 1

zn+1(zn+1−1)
1

zn+2(zn+2−1) −
1

1−zn+2

)
=

zn+1 + zn+2 + 2

(zn+1 − 1)(zn+2 − 1)

and

4 sinh2
H(γ)

2
= −(zn+1 + zn+2 + 2).

Proof. Note that

det

(
1

zn+1

1
zn+2

1
1−zn+1

− 1
zn+1(zn+1−1)

1
zn+2(zn+2−1) −

1
1−zn+2

)
=

1

zn+1zn+2(zn+2 − 1)
− 1

zn+1(1− zn+2)
+

1

zn+1zn+2(zn+1 − 1)
− 1

zn+2(1− zn+1)

=
1

1
zn+1

− 1
− 1

zn+1(1− 1
zn+1

)
+

1

zn+1 − 1
− 1

1
zn+1

(1− zn+1)

= 0,

where the second last equality follows from zn+1zn+2 = 1. This proves the first equality. The second
equality follows from direct computation using the equation zn+1zn+2 = 1. For the last equality, by
(6.5),

4 sinh2
H(γ)

2
= eH(γ) + e−H(γ) − 2 =

z′n+1

z′n+2

+
z′n+2

z′n+1

− 2 =
1− zn+2

1− zn+1
+

1− zn+1

1− zn+2
− 2.

Since zn+1zn+2 = 1,

4 sinh2
H(γ)

2
=

1− zn+2

1− 1
zn+2

+
1− zn+1

1− 1
zn+1

− 2 = −(zn+1 + zn+2 + 2).
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Next, we compare the contribution of the correction terms coming from the combinatorial flattenings.
Figure 24 shows how the tetrahedra ∆1

1,∆
1
2 meets the cusp T1. Note that by the second condition of

Definition 2.12 and 2.14, a (generalized) strong combinatorial flattening must satisfy

f1 = f2, f ′1 = f ′2 and f ′′1 = f ′′2 . (6.8)

Given a combinatorial flattening F̂ ′ = (f , f ′, f ′′) of T̂ ′, we extend F̂ ′ to a generalized combinatorial
flattening F̂ = (f̂ , f̂ ′, f̂ ′′) of T̂ as shown in Figure 25, where b is unique number so that the second
condition of Definition 2.12 for the edges f and g are satisfied. Note that b is either an integer or a half
integer.

f1

f1

f1

f1

f1
f2

f2

f2f2

f2

f2
f1

f

f

h

h

g

g '

f1'

f1'

f1'

'
f2'

f2'

f2'

''
f1''

f1'' f1''

''

f2''

f2''

f2''

C1

C2

Figure 24: A combinatorial flattening restricted on T1. The figure on the left shows the triangles around
the edge that goes into T1. From the figure on the right, by considering the second condition of Definition
2.12 and 2.14 for the simple closed curves C1, C2, we have f1 = f2, f

′
1 = f ′2 and f ′′1 = f ′′2 .

0

0

0

0

b
0

0

00

1-b

b
1-b

f

f

h

h

g

g

b

b

b

b

b

b

1-b

1-b 1-b

1-b

1-b

1-b

Figure 25: A generalized strong combinatorial flattening restricted on T1.

Lemma 6.2. Let τ(M,α, ρ, T̂ , F̂) be the 1-loop invariants defined with respect to the generalized strong
combinatorial flattenings F̂ = (f̂ , f̂ ′, f̂ ′′). Then we have

τ(M,α, ρ, T̂ , F̂) = τ(M,α, ρ, T̂ ).

Furthermore, with respect to F̂ = (f̂ , f̂ ′, f̂ ′′),

n+2∏
i=n+1

ξfii ξ
′f ′

i
i ξ

′′f ′′
i

i = ± 1

(1− zn+1)(1− zn+2)
.
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Proof. We first specify the quad type and the set of edge equations we used for the computation of the
1-loop invariants. First, we let Ê′ = {e1, . . . , en−k−1, f+g} be a set of linearly independent edges of the
ideal triangulation T̂ ′ ofM ′ and let α2, . . . , αk be a system of simple closed curves on T2

∐
· · ·
∐
Tk. By

[8, Lemma A.3], we may choose a quad type for T̂ ′ so that the corresponding matrix BT̂ ′ = G′′
T̂ ′ −G′

T̂ ′

is invertible, where G′′
T̂ ′ and G′

T̂ ′ are the Neumann-Zagier matrices defined in Section 2.3 with respect

to T̂ ′. By abuse of notations, {e1, . . . , en−k−1} and {α2, . . . , αk} are also edges and boundary curves of
T̂ . Let Ê = {e1, . . . , en−k−1, f, g}. Extend the quad type of T̂ ′ to a quad type of T̂ by assigning shape
parameters to ∆1

1,∆
1
2 as shown in Figure 23. Let BT̂ = G′′

T̂
− G′

T̂
. Note that by (6.2), (6.3) and (6.4),

by switching the rows of BT̂ , the matrix BT̂ is of the form



z1 . . . zn zn+1 zn+2

α2 ∗ . . . ∗ 0 0
...

... . . .
...

...
...

αk ∗ . . . ∗ 0 0
e1 ∗ . . . ∗ 0 0

...
... . . .

...
...

...
en−k−1 ∗ . . . ∗ 0 0

f ∗ . . . ∗ −1 −1
g ∗ . . . ∗ 1 1
α 0 . . . 0 −2 2


,

which has the same determinant as the matrix



z1 . . . zn zn+1 zn+2

α2 ∗ . . . ∗ 0 0
...

... . . .
...

...
...

αk ∗ . . . ∗ 0 0
e1 ∗ . . . ∗ 0 0

...
... . . .

...
...

...
en−k−1 ∗ . . . ∗ 0 0
f + g ∗ . . . ∗ 0 0

g ∗ . . . ∗ 1 1
α 0 . . . 0 −2 2


.

By Proposition 1.14 (3), we may assume that the Neumann-Zagier datum for α2, . . . , αk remains un-
changed under the Dehn-filling. This implies that detBT̂ = ±4 detB′

T̂
̸= 0. As a result, Ê is a set of

linearly independent edges of T̂ and BT̂ is invertible.
Now we can prove the lemma as follows. Let F = (f̂ , f̂ ′, f̂ ′′) be a strong combinatorial flattening of

T̂ . Similar to the proof of Lemma 4.2, since detBT̂ ̸= 0, by the argument in [8, Section 4.5], we have

∏n+2
i=1

(
zf̂i

′′

i z′′−f̂i
i

)
∏n+2

i=1

(
z
f ′′
i

i z′′−fi
i

) = e(f
′′·f̂−f ·f̂ ′′)π

√
−1.

We consider (f ′′ · f̂−f · f̂ ′′) inside and outside hexagon shown in Figure 25. Note that outside the hexagon
shown on the left of Figure 25, since f, f ′′, f̂ , f̂ ′′ ∈ Z, we have (f ′′ · f̂ −f · f̂ ′′) ∈ Z. Inside the hexagon,
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by (6.8), we also have (f ′′ · f̂ − f · f̂ ′′) ∈ Z. Altogether, we have∏n+2
i=1

(
zf̂i

′′

i z′′−f̂i
i

)
∏n+2

i=1

(
z
f ′′
i

i z′′−fi
i

) = e(f
′′·f̂−f ·f̂ ′′)π

√
−1 = ±1.

This proves the first claim. For the second claim, note that

n+2∏
i=n+1

ξfii ξ
′f ′

i
i ξ

′′f ′′
i

i =

n+2∏
i=n+1

(
1

zi

)0( 1

zi − 1

) 1
2
(

1

zi(zi − 1)

) 1
2

= ± 1

(1− zn+1)(1− zn+2)
,

where the last equality follows from zn+1zn+2 = 1.

Proof of Theorem 1.15. By Lemma 6.2, we can compute the 1-loop invariant by using the generalized
combinatorial flattening F̂ = (f̂ , f̂ ′, f̂ ′′). Using the same notations in the proof of Lemma 6.2, by (6.7)
and Lemma 6.1, the 1-loop invariant τ(M,α, ρ, T̂ ) of M is up to a sign equal to

det





z1 . . . zn zn+1 zn+2

α2 ∗ . . . ∗ 0 0
...

... . . .
...

...
...

αk ∗ . . . ∗ 0 0
e1 ∗ . . . ∗ 0 0

...
... . . .

...
...

...
en−k−1 ∗ . . . ∗ 0 0

f ∗ . . . ∗ 1
1−zn+1

1
1−zn+2

g ∗ . . . ∗ 1
zn+1(zn+1−1)

1
zn+2(zn+2−1)

α 0 . . . 0 1
1−zn+1

− 1
zn+1(zn+1−1)

1
zn+2(zn+2−1) −

1
1−zn+2




(∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)(∏n+2
i=n+1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)

=

det





z1 . . . zn zn+1 zn+2

α2 ∗ . . . ∗ 0 0
...

... . . .
...

...
...

αk ∗ . . . ∗ 0 0
e1 ∗ . . . ∗ 0 0

...
... . . .

...
...

...
en−k−1 ∗ . . . ∗ 0 0

f + g + Cα ∗ . . . ∗ 0 0
g ∗ . . . ∗ 1

zn+1(zn+1−1)
1

zn+2(zn+2−1)

α 0 . . . 0 1
1−zn+1

− 1
zn+1(zn+1−1)

1
zn+2(zn+2−1) −

1
1−zn+2




(∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

)(∏n+2
i=n+1 ξ

fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

) ,

where C is the constant in Lemma 6.1. Note that the (z1, . . . , zn) components of f + g+Cµ and f ′+ g′
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are the same. By Lemmas 6.1 and 6.2, we have

τ(M,α, ρ, T̂ ) =±

det





z1 . . . zn
α2 ∗ . . . ∗

...
... . . .

...
αk ∗ . . . ∗
e1 ∗ . . . ∗

...
... . . .

...
en−k−1 ∗ . . . ∗
f ′ + g′ ∗ . . . ∗




∏n

i=1 ξ
fi
i ξ

′f ′
i

i ξ
′′f ′′

i
i

× (z1 + z2 + 2)

=± τ(M ′,α′, ρ′, T̂ ′)

(
4 sinh2

H(γ)

2

)
.

6.2 Proof of Corollary 1.16

LetM ′ be a hyperbolic manifold obtained by doing sufficiently long Dehn-fillings on the boundary com-
ponents of a fundamental shadow link complement. Let ρ′ : π1(M ′) → PSL(2;C) be a representation
that is sufficiently close to the discrete faithful representation of M ′ such that ρ = ρ′|π1(M) ∈ UM . Let
T̂ be the ideal triangulation of M in Theorem 1.15. We want to apply Theorem 1.9 and 1.10. However,
it is not clear whether the triangulation T in Theorem 1.1 is ρ-regular. Nevertheless, since T̂ is ρ-regular
and [ρ] ∈ Zα, it is also ρ̃-regular for ρ̃ sufficiently close to ρ. Moreover, generically the triangulation T
in Theorem 1.1 is ρ̃-regular. By Theorem 1.9, [8, Theorem 1.4, 4.1], Proposition 5.1 and [17, Theorem
A.1], for a generic ρ̃ sufficiently close to ρ with ρ̃ = PT̂ (z̃) for some z̃ ∈ V0(T̂ ), we have

τ(M,α, z̃, T̂ ) = ±T(M,α)([ρ̃]).

By continuity if necessary, we have

τ(M,α, ẑ, T̂ ) = ±T(M,α)([ρ]).

By Theorem 1.15, Theorem 2.6 (iii), Remark 2.7, we have

τ(M ′,α′, ẑ′, T̂ ′) = ±T(M ′,α′)([ρ
′]).

By Proposition 2.21, both the 1-loop invariant and the torsion are analytic functions on the gluing variety
V0(T ). As a result, by analyticity, they agree on V0(T ′). By Corollary 1.12, we have the desired result.
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