
1

Approximate and Weighted Data Reconstruction
Attack in Federated Learning

Yongcun Song, Ziqi Wang, and Enrique Zuazua

Abstract—Federated learning (FL) is a distributed learning paradigm that enables multiple clients to collaborate on building a machine
learning model without sharing their private data. Although FL is considered privacy-preserved by design, recent data reconstruction
attacks demonstrate that an attacker can recover clients’ training data based on the parameters shared in FL. However, existing methods
commonly fail to attack the most widely used federated averaging (FedAvg) scenario, where clients share model parameters after multiple
local training steps. To tackle this issue, we propose an interpolation-based approximation method, which makes attacking FedAvg
scenarios feasible by generating the intermediate model updates of the clients’ local training processes. Then, we design a layer-wise
weighted loss function to improve the quality of data reconstructions. We assign different weights to model updates in different layers
based on the neural network architecture, with the weights tuned by Bayesian optimization. Finally, experimental results validate the
superiority of our proposed approximate and weighted attack method over the other state-of-the-art methods, as demonstrated by the
substantial improvement in different evaluation metrics for image data reconstructions.

Index Terms—Data reconstruction attack, federated learning, Bayesian optimization, gradient inversion

✦

1 INTRODUCTION

W ITH the growing amount of data generated by dis-
tributed personal electronic devices, conventional

centralized approaches for training machine learning mod-
els face challenges in data collection and privacy protection.
To address these challenges, federated learning (FL) [1],
[2] has gained significant attention in recent years as a
promising paradigm.

One prominent feature of FL is its ability to facilitate
model training on distributed data sources owned by indi-
vidual clients while keeping the data localized and exchang-
ing only model updates. For example, in the most com-
monly used federated averaging (FedAvg) [2] algorithm,
each client trains its local model with its private data and
shares the updated model parameters to a server, where
the model parameters are aggregated and used to update
the global model. In other words, FL enables multiple par-
ticipants to build a common and robust machine learning
model without sharing data, thus addressing critical issues
such as data privacy, data security, and data access rights. As
a result, FL has gained significant attention in recent years
to handle the growing amount of data and the increasing
concerns about privacy in several applications, such as
healthcare [3], [4], and learning a controller model across

• Y.C. Song and Z.W. Wang (corresponding author) are with the Chair
for Dynamics, Control, Machine Learning and Numerics – Alexander
von Humboldt Professorship, Department of Mathematics, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 11, 91058 Er-
langen, Germany. Email: yongcun.song@fau.de, ziqi.wang@fau.de.

• E. Zuazua is with the Chair for Dynamics, Control, Machine Learning
and Numerics – Alexander von Humboldt Professorship, Department
of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Cauerstrasse 11, 91058 Erlangen, Germany; the Chair of Computational
Mathematics, Fundación Deusto Avda. de las Universidades 24, 48007
Bilbao, Basque Country, Spain; and also with the Departamento de
Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Email: enrique.zuazua@fau.de.

several autonomous vehicles without sharing their history
trajectories [5].

Although it was widely believed that model updates in
FL are safe to share, recent studies [6]–[9] have shown that
clients’ sensitive training data can be compromised through
data reconstruction attacks [9]. In these attacks, the adversary
first randomly initializes dummy samples and labels, and
then executes forward and backward propagation to obtain
dummy model updates. Through an iterative process of
minimizing the discrepancy between the dummy model up-
dates and the ground-truth ones, the dummy samples and
labels are updated simultaneously. In the literature, some
work has already been done to improve the reconstruction
performance, we refer to the label inference techniques in
[8], [10], the new distance functions and optimizers in [11],
[12], and the regularization methods in [13], [14].

By inferring labels in advance, the joint optimization
of both samples and labels can be avoided, thus reducing
the complexity of the optimization problem. It was first
discovered in [10] that the label information of a single
sample can be analytically extracted based on the model
updates of the last fully connected layer. Later, [8] extended
the single sample label extraction to batch samples, under
the limiting assumption of non-repeating labels in the batch.
The above limitation is further addressed by the batch label
inference approach proposed in [6].

To measure the discrepancy between the dummy and
ground-truth model updates, the Euclidean distance is com-
monly used in the loss function for the attack, see [8]–[10].
Moreover, the angle-based cosine similarity was suggested
in [7], [11] since the high-dimensional direction of the model
updates carries more information than the magnitude. In
[12], a Gaussian kernel of model updates differences was
proposed to measure the discrepancy, allowing the scaling
factor in the kernel to be adapted to the distribution of
model updates in each attack.

ar
X

iv
:2

30
8.

06
82

2v
2 

 [
cs

.L
G

] 
 2

6 
M

ar
 2

02
4



2

As for the optimizers employed in the attacks, the L-
BFGS [15] and the Adam [16] are the most commonly
used ones, see e.g., [8]–[14]. In particular, the reconstruction
performance of the above two optimizers was compared in
[11], [12], [14]. It has been shown in [14] that the L-BFGS
requires fewer attack iterations to achieve high reconstruc-
tion quality compared to the Adam when attacking the
LFW dataset [17]. On the other hand, in [11], the L-BFGS
performs worse than the Adam for the CIFAR-10 dataset
[18]. Although there is no definitive analysis guiding the
selection of cost functions and optimizers, it is evident that
appropriate choices can enhance the effectiveness of attacks
in specific scenarios.

Another important way to improve the reconstruction
performance is to add auxiliary regularization terms to the
loss function for the attack based on some prior knowledge
of the data. In [14], a label regularizer was proposed to
match the dummy samples and labels when both of them
are optimized simultaneously. Moreover, some image prior
information can be employed for image reconstruction at-
tacks, such as the total variation regularization [11] to reduce
the noise in images, and the group registration regulariza-
tion [8] to center the position of the main object in images. In
[8], a prior term is proposed based on the mean and variance
of a mini-batch used at the batch normalization layers. A
generative model pre-trained on the raw data distribution
was used in [13] to improve the reconstruction. However, in
normal distributed learning systems, batch normalization
information and raw data distribution are not necessarily
shared, which makes these methods less practical.

Despite remarkable progress, limited attention has been
paid to attacking the FedAvg with multiple-step model
updates, where clients share local model parameters after
training for multiple epochs, each executed over multi-
ple mini-batches. In this context, an approximate method
named AGIC is proposed in [7]. The AGIC method first
initializes a combined dummy batch whose size is the sum
of all mini-batches used in the client’s local training process.
This combined dummy batch is then used to perform a
single-step gradient descent and the computed dummy
model update is used to approximate the ground-truth
multi-step model update. Meanwhile, it employs a weighted
cosine similarity loss function for the attack by assigning
linearly increasing weights to different convolutional and
fully connected layers. However, such an approximation
method works only for scenarios with small local learning
rates and the layer weights are chosen empirically rather
than systematically.

To address the above issues, we propose a novel ap-
proximate and weighted attack (AWA) method in data
reconstruction against FL systems utilizing the FedAvg al-
gorithm. First, we present an interpolation-based approxi-
mation method that generates intermediate model updates
of clients’ local training processes. As a result, attacking
against the FedAvg with multiple-step model updates be-
comes feasible. Then, we propose a layer-wise weighted
loss function to enhance the reconstruction quality. Differ-
ent weights are assigned to model updates at each layer
based on the neural network architecture. The selection of
the weights is optimized using the Bayesian optimization
method [19].

Overall, our main contributions are as follows:

1) To attack the FedAvg using multiple-step model
updates, we propose an interpolation-based approx-
imation method. The model update corresponding
to each epoch is approximated by interpolating
the received multiple-step model updates. The pro-
posed approximation method makes attacks against
FedAvg scenarios feasible and effective, as demon-
strated by numerical experiments.

2) To further improve the attack performance after
approximation, we employ a layer-wise weighted
loss function for the attack. Different weights are
assigned to different layers, and these weights are
determined by Bayesian optimization. Additionally,
we enhance the weights of layers with large er-
rors, improving the attack’s adaptability and per-
formance.

3) Our method demonstrates environment general-
ity by being compatible with various neural net-
work architectures, such as Convolutional Neural
Networks (CNNs) and Residual Neural Networks
(ResNets). Furthermore, it is capable of reconstruct-
ing training data based on the model updates leaked
at different stages of the training process.

The rest of the paper is organized as follows. In Section 2,
we provide a comprehensive background on FL and data
reconstruction attacks. In Section 3, various attack scenar-
ios are analyzed. Section 4 presents our proposed AWA
method, including the approximation method and the layer-
wise weighted loss function. The experimental setup and
simulation results are presented in Section 5. Finally, we
conclude the paper in Section 6.

2 PRELIMINARIES

In this section, we first provide a detailed description of the
mathematical formulation and training process of FL. Then,
we introduce the formulation and setup of data reconstruc-
tion attacks.

2.1 Problem Statement of FL

FL aims to learn a model h : Rdx×Rdθ → Rdy parameterized
by θ ∈ Rdθ such that, given any data x ∈ Rdx , the value
h(x; θ) offers an accurate prediction about the label y ∈ Rdy .
A crucial constraint in FL is that the training data and labels
are stored across C distributed clients, and each client’s data
and labels can only be accessed and processed locally during
the training process.

Mathematically, the training process of FL can be formu-
lated as the following minimization problem [1]:

min
θ

C∑
k=1

pkFk(θ), (1)

where Fk : Rdθ → R represents the local loss function for
client k, and pk ≥ 0 with

∑C
k=1 pk = 1 specifies the relative

impact of client k. In practice, Fk is typically defined as the
empirical risk over client k’s local dataset {(x(k)

i , y
(k)
i )}N(k)

i=1

of size N (k), i.e., Fk(θ) = 1/N (k)
∑N(k)

i=1 ℓ(h(x
(k)
i ; θ), y

(k)
i ),



3

where ℓ: Rdy ×Rdy → R is a prescribed loss function. Com-
mon choices of ℓ include the ℓ2 and the cross-entropy loss
function, see [20] for more options. The relative impact pk is
often chosen as pk = N (k)/NC , where NC =

∑C
k=1 N

(k) is
the total size of all the clients’ datasets.

2.2 FedAvg Algorithm

For solving (1), FL algorithms normally combine local model
update processes performed by each client with model
aggregation steps performed by a central server. To fix ideas,
we focus on the FedAvg [2], which is the most commonly
used algorithm in FL. The FedAvg presented in Algorithm 1
involves a series of training rounds, in which the server first
dispatches the latest global model parameters to a subset of
clients. Then, the selected clients compute model updates
to the current global model with their private data and
send the updated model parameters back to the server.
Finally, the server aggregates the received model parameters
to update the global model parameters, which serve as the
initializer for the next training round.

Algorithm 1 Federated Averaging.

1: Server initializes the global model parameters θ1.
2: for each training round t = 1, 2, . . . , T do
3: Server selects a subset K ⊆ {k}Ck=1 of clients and

sends them θt.
4: for each client k ∈ K in parallel do
5: θ

(k)
t+1 ← ClientUpdate(k, t, θt).

6: end for
7: NK =

∑
k∈K N (k),

8: θt+1 =
∑

k∈K
N(k)

NK
θ
(k)
t+1.

9: end for

1: ClientUpdate(k, t, θt) :
2: Client k sets its local model parameters θ(k)t,1,1 := θt.
3: for each epoch e = 1, 2, . . . , E do
4: Randomly split dataset D(k) = {(X(k)

t,e,b, Y
(k)
t,e,b)}B

(k)

b=1 .
5: for each mini-batch b = 1, 2, . . . , B(k) do
6: θ

(k)
t,e,b := θ

(k)
t,e,b − η∇

θ
(k)
t,e,b

ℓ(X
(k)
t,e,b, Y

(k)
t,e,b).

7: end for
8: end for
9: Set θ(k)t+1 := θ

(k)
t,e,b.

10: return θ
(k)
t+1 back to the server.

Next, we elaborate on the implementation of Algo-
rithm 1. At each round t = 1, 2, . . . , T , the server selects
a set of clients K ⊆ {k}Ck=1 to participate in the training and
sends them the current global model parameters θt. Then,
each selected client k ∈ K sets its local model parameters
θ
(k)
t = θt and updates θ

(k)
t for E epochs, each consisting of

B(k) mini-batches.
In each epoch e = 1, 2, . . . , E, client k first shuffles its

dataset D(k) and partitions it into B(k) = N (k)/M mini-
batches (without loss of generality, we assume that the
dataset is divisible into B(k) mini-batches of size M ):

D(k) = {(X(k), Y (k))} = {(X(k)
t,e,b, Y

(k)
t,e,b)}

B(k)

b=1 , (2)

where X(k) = {x(k)
i }N

(k)

i=1 is the set of the training
data, Y (k) = {y(k)i }N

(k)

i=1 is the set of the labels, and
{(X(k)

t,e,b, Y
(k)
t,e,b)} represents the b-th mini-batch at round t,

epoch e. If not otherwise stated, the subscripts t, e, and b in
the following discussions indicate the index of the round,
the epoch, and the mini-batch, respectively.

For each mini-batch b = 1, 2, . . . , B(k), client k updates
its local model parameters θ(k)t,e,b := θ

(k)
t using the mini-batch

gradient descent:

θ
(k)
t,e,b := θ

(k)
t,e,b − η∇

θ
(k)
t,e,b

ℓ
(
X

(k)
t,e,b, Y

(k)
t,e,b

)
, (3)

where η > 0 is the learning rate (step size), and we use
ℓ(X,Y ) := 1/M

∑M
i=1 ℓ(h(xi; θ), yi) to represent the aver-

age loss of a mini-batch {(X,Y )} := {(xi, yi)}Mi=1 of size M
for simplicity.

After training for E epochs (each epoch consists of
B(k) mini-batches), client k’s model update ∆θ

(k)
t can be

obtained as

∆θ
(k)
t = −η

E∑
e=1

B(k)∑
b=1

∇
θ
(k)
t,e,b

ℓ
(
X

(k)
t,e,b, Y

(k)
t,e,b

)
. (4)

As a result, client k’s local model parameters θ(k)t+1 become

θ
(k)
t+1 = θ

(k)
t +∆θ

(k)
t . (5)

Then, client k sends its updated local model parameter θ(k)t+1

back to the server for averaging.
After receiving updated local model parameters

{θ(k)t+1}k∈K from the clients, the server performs the
weighted model parameters averaging as follows:

θt+1 =
∑
k∈K

N (k)

NK
θ
(k)
t+1, (6)

where NK =
∑

k∈K N (k) is the total size of K participated
clients’ datasets. Finally, the aggregated global model pa-
rameters θt+1 are used as the initializer for the next round.

2.3 Data Reconstruction Attack
Despite the fact that the clients only share the updated
model parameters with the server, their private training data
are still vulnerable to data reconstruction attacks [8], [9],
[11]. In this subsection, we introduce the formulation and
the general procedure of a data reconstruction attack.

As shown in (4), during the local training process at
round t, client k’s model update ∆θ

(k)
t consists of the

gradients computed over E × B(k) mini-batches. Let G(k)
t

be a mapping from the training data {(X(k), Y (k))} defined
in (2) to the model update ∆θ

(k)
t , then we can rewrite (4) in

a compact manner as

∆θ
(k)
t = G

(k)
t

(
X(k), Y (k)

)
. (7)

For an attacker with access to ∆θ
(k)
t , reconstructing

{(X(k), Y (k))} is essentially an inverse problem. In particu-
lar, if [G(k)

t ]−1 exists and is known analytically, the attacker
can recover {(X(k), Y (k))} directly as follows:(

X(k), Y (k)
)
= [G

(k)
t ]−1

(
∆θ

(k)
t

)
. (8)



4

However, since neural networks are highly nonlinear and
the model updates are aggregated over multiple mini-
batches, it is generally difficult to identify [G

(k)
t ]−1. To

address this issue, we introduce a numerical approach for
solving (7).

Notice from (8) that the attacker can independently
attack any client k ∈ K that participated in the training
at round t. Therefore, in the sequel we omit the superscript
k to simplify the notation.

Assuming an attacker can get access to the client’s train-
ing process and hence knows Gt, then problem (7) can be
solved by the numerical approach elaborated below. First,
to launch the attack, the attacker randomly initializes a
dummy dataset (X̂, Ŷ ) with the same dimension as that of
the client’s ground-truth dataset (X,Y ). The attacker uses
Gt to calculate the dummy model update ∆θ̂t given by

∆θ̂t = Gt(X̂, Ŷ ). (9)

Proceeding as in [9], the attacker can reconstruct the client’s
dataset by matching the dummy model update ∆θ̂t with
the ground-truth model update ∆θt, minimizing a model
update matching loss function ℓm, for instance, of the type

ℓm(X̂, Ŷ ) = ∥∆θ̂t −∆θt∥2. (10)

In practice, one can also use other loss functions like the
cosine similarity loss [11] to evaluate the distance between
∆θ̂t and ∆θt. Finally, the reconstructed data (X̂∗, Ŷ ∗) can
be obtained by solving the following optimization problem:

(X̂∗, Ŷ ∗) = argmin
X̂,Ŷ

ℓm(X̂, Ŷ ). (11)

This can be done using the gradient descent method with a
learning rate η̂:

X̂ := X̂ − η̂∇X̂ℓm(X̂, Ŷ ), Ŷ := Ŷ − η̂∇Ŷ ℓm(X̂, Ŷ ).

Remark 2.1. In FL, the central server holds substantial informa-
tion about the training process. Data reconstruction attacks can
typically be developed by an honest-but-curious server [11], acting
as an attacker, who has access to the following information, and in
particular Gt in (9).

1) Model architecture of h: Normally the server decides the
architecture of the neural network that is shared among
all the clients.

2) Initial model parameters θt: For each client, its initial
local model parameter θt is dispatched from the server.

3) Model update ∆θt: Each client sends the updated model
parameters θt+1 obtained in (5) back to the server. Thus,
∆θt = θt+1 − θt can be obtained by the server easily.

4) Loss function ℓ: Similar to h, it is common for the server
to know the form of the loss function that is shared among
all the clients. The choice made is kept unchanged during
the training process.

5) Dataset size N : This information is shared with the
server for weighted aggregation as shown in (6).

6) Client’s local training hyperparameters: As shown in (4)
and (7), the knowledge of Gt depends on the hyperparam-
eters listed below. In general cases, the server can assign
these hyperparameters to each client:

a) Number of epochs E;
b) Number of mini-batches B;
c) Learning rate η.

3 ANALYSIS OF ATTACK SCENARIOS: DIFFERENT
E AND B

As shown in (9), a data reconstruction attack requires the
knowledge of Gt to calculate the dummy model update ∆θ̂t.
In this section, we discuss the difficulty of knowing Gt for
four FedAvg scenarios in terms of different values of E and
B, especially when E > 1 and B > 1.
Scenario 1: E = 1, B = 1. As we shall see, the attacker can
get access to Gt and replicate the client’s training process.
Indeed, since E = 1 and B = 1, the client uses the full-batch
gradient descent for one epoch as follows:

Gt(X,Y ) = −η∇θtℓ (X,Y )

= −η 1

N

N∑
i=1

∇θtℓ (xi, yi) .
(12)

Thus, the attacker can replicate the client’s training process
by replacing (X,Y ) with the dummy dataset (X̂, Ŷ ) =
{(x̂i, ŷi)}Ni=1 in the following way:

Gt(X̂, Ŷ ) = −η∇θtℓ
(
X̂, Ŷ

)
= −η 1

N

N∑
i=1

∇θtℓ (x̂i, ŷi) .
(13)

Scenario 2: E > 1, B = 1. The attacker can also obtain the
knowledge of Gt in this scenario. To be concrete, the client
uses the full-batch gradient descent for E epochs:

Gt(X,Y ) = −η
E∑

e=1

∇θt,eℓ (X,Y ) . (14)

In each epoch, since B = 1, the gradients are computed on
the N samples, as in Scenario 1. In this case, the attacker can
replicate the client’s training process by replacing (X,Y )
with the dummy dataset (X̂, Ŷ ), and train the model for E
epochs as follows:

Gt(X̂, Ŷ ) = −η
E∑

e=1

∇θt,eℓ
(
X̂, Ŷ

)
. (15)

Scenario 3: E = 1, B > 1. In this scenario, since B > 1, the
client uses the mini-batch gradient descent for one epoch in
the following way:

Gt(X,Y ) = −η
B∑

b=1

∇θt,bℓ (Xt,b, Yt,b) . (16)

When using the mini-batch gradient descent, at the begin-
ning of each epoch, the client randomly shuffles the dataset
and separates it into B mini-batches. In this scenario, since
E = 1, the dataset is only shuffled once.

The attacker can first separate its dummy dataset (X̂, Ŷ )
into B mini-batches {(X̂t,b, Ŷt,b)}Bb=1. Then, by replacing
(Xt,b, Yt,b) in (16) with (X̂t,b, Ŷt,b), it can replicate the
client’s training process as below:

Gt(X̂, Ŷ ) = −η
B∑

b=1

∇θt,bℓ
(
X̂t,b, Ŷt,b

)
. (17)

The only difference is that the reconstructed (X̂, Ŷ ) are
in the same order as that of the shuffled client’s dataset.



5

Hence, the attacker can still obtain Gt and replicate the local
training process in this scenario.

Scenario 4: E > 1, B > 1. In this case, the attacker cannot
gain the needed knowledge of Gt to calculate the dummy
model update ∆θ̂t defined in (9).

Indeed, the client uses the mini-batch gradient descent
for E epochs:

Gt(X,Y ) = −η
E∑

e=1

B∑
b=1

∇θt,e,bℓ (Xt,e,b, Yt,e,b) . (18)

In each epoch, the client first shuffles its dataset and then
separates it into B mini-batches. As a result, the attacker
cannot replicate the client’s mini-batch separation when
E > 1 due to the randomness of the shuffling process.

The existing attack methods are normally applicable to
Scenarios 1-3 and limited attention has been given to the
more challenging Scenario 4. To address it, we propose an
interpolation-based approximation method. By interpolat-
ing the intercepted model updates, the attacker can ap-
proximate the intermediate model updates corresponding
to each epoch, thereby reducing the problem from Scenario
4 to Scenario 3. The details of the proposed method are
presented in Section 4.1.

4 APPROXIMATE AND WEIGHTED ATTACK IN DATA
RECONSTRUCTION

In this section, we propose an approximate and weighted
data reconstruction attack method for solving (7).

4.1 Approximation of the Intermediate Model Updates

As discussed in Section 3, when E > 1 and B > 1,
the shuffle of the dataset in each epoch makes it diffi-
cult for the attacker to know Gt. However, if the attacker
knows the intermediate model update ∆θt,e of any epoch
e ∈ {1, 2, . . . , E}, the problem can be reduced from Scenario
4 (E > 1 and B > 1) to Scenario 3 (E = 1 and B > 1) by
attacking each epoch separately.

To this end, we interpolate between θt+1 and θt to
approximate the intermediate model parameters {θt,e}Ee=1

corresponding to each epoch. Particularly, consider a client
who trains its model for E epochs, the approximate inter-
mediate model parameters {θ̃t,e}Ee=1 can be obtained as

θ̃t,e =
θt+1 − θt

E
e+ θt, e = 1, 2, . . . , E. (19)

Then, the approximate model updates {∆θ̃t,e}Ee=1 corre-
sponding to each epoch can be obtained as

∆θ̃t,e = θ̃t,e − θ̃t,e−1, e = 1, 2, . . . , E, (20)

where θ̃t,0 = θt is the initial model parameter at round t.
After obtaining the approximate {∆θ̃t,e}Ee=1, the attacker

can use it to represent the unknown intermediate model
update ∆θt,e for any epoch e ∈ {1, 2, . . . , E}. In other
words, the attack problem is reduced from Scenario 4 (E > 1
and B > 1) to Scenario 3 (E = 1 and B > 1).

We denote by Gt,e the client’s training process at round
t, epoch e. Then, the dummy model update ∆θ̂t,e can be
obtained based on (17), given as

∆θ̂t,e = Gt,e(X̂, Ŷ ) = −η
B∑

b=1

∇θt,e,bℓ
(
X̂t,e,b, Ŷt,e,b

)
. (21)

Finally, the attack can be conducted following the proce-
dures of Scenario 3.

4.2 Improved Weighted Loss Function for the Data Re-
construction Attack
The commonly used loss function (10) for the data recon-
struction attack treats different components of the model
update ∆θt equally. However, as observed in [21], different
layers in a neural network provide different contributions to
boosting the performance. Inspired by this fact, we propose
to assign different weights to the model updates at different
layers to facilitate the reconstruction. The implementation of
our method is elaborated below

Consider a neural network with L layers. Then the
model update ∆θt consists of superposition of the updates
∆θ

(l)
t of each layer:

∆θt = {∆θ
(l)
t }Ll=1. (22)

The same applies to the dummy model updates ∆θ̂t =

{∆θ̂
(l)
t }Ll=1. Then, by assigning the weight q(l) > 0 to the

model updates at layer l, the loss function (10) for the attack
becomes

ℓQ(X̂, Ŷ ) =
L∑

l=1

q(l)
∥∥∥∆θ̂

(l)
t −∆θ

(l)
t

∥∥∥2 . (23)

The weighted loss function (23) leverages the distinct char-
acteristics of different layers in the model update. In the
next subsection, we introduce a systematic method to design
the layer weights q(l) to enhance the reconstruction perfor-
mance.

4.2.1 Design of Layer Weights

Increasing weights layer by layer. We consider linearly
increasing weight functions for different types of layers.
To expose our ideas clearly, we focus on the commonly
used ResNet architecture [22], which contains convolutional,
batch normalization, and fully connected layers. Specifically,
we design the following weight functions for each kind of
layer:

q(l)cv =

{
qcv−1
Lcv−1 (l − 1) + 1, if l = 1, 2, ..., Lcv > 1,

qcv, if l = Lcv = 1,
(24a)

q
(l)
bn =

{
qbn−1
Lbn−1 (l − 1) + 1, if l = 1, 2, ..., Lbn > 1,

qbn, if l = Lbn = 1,
(24b)

q
(l)
fc =

{
qfc−1
Lfc−1 (l − 1) + 1, if l = 1, 2, ..., Lfc > 1,

qfc, if l = Lfc = 1,
(24c)

where Lcv , Lbn, and Lfc are the numbers of the convo-
lutional, batch normalization, and fully connected layers,
respectively, and L = Lcv + Lbn + Lfc. The values qcv > 1,
qbn > 1, and qfc > 1 are the largest weights assigned to



6

the last layer of each respective kind. For a given neural
network with a fixed number of layers (Lcv , Lbn and Lfc),
the values of qcv , qbn and qfc determine the slope of the
linearly increasing weight functions in (24).
Enhancing the weights of layers with larger errors. Adding
linearly increasing weights determined by (24) to the loss
function (23) may overly emphasize the importance of some
layers in the neural network and lead to a biased reconstruc-
tion. To strike a balance between adding linearly increasing
weights and avoiding biased reconstructions, we propose to
modify the weights of layers with larger errors by exploiting
the statistical information including the mean µ(·) and the
variance σ2(·) of the layer-wise model updates {∆θ

(l)
t }Ll=1 in

(22). The procedure of our enhancing method is elaborated
below.

First, we calculate the relative error e(l)mean and e
(l)
var of the

dummy model update ∆θ̂
(l)
t and the ground-truth model

update ∆θ
(l)
t at each layer as follows:

e(l)mean =
|µ(∆θ̂

(l)
t )− µ(∆θ

(l)
t )|

|µ(∆θ
(l)
t )|

, l = 1, 2, ..., L, (25)

e(l)var =
|σ2(∆θ̂

(l)
t )− σ2(∆θ

(l)
t )|

|σ2(∆θ
(l)
t )|

, l = 1, 2, ..., L. (26)

Next, we select a subset P ⊆ L = {l}Ll=1 of layers with the
largest relative errors in terms of {e(l)mean}Ll=1 and {e(l)var}Ll=1,
and set their layer weights q(l) to qen ∈ R, i.e.,

q(l) = qen, l ∈ P. (27)

The choice of the subset P can be decided by the pro-
portional parameters pmean ∈ [0, 1] and pvar ∈ [0, 1]
in the following way: For a given pmean, we first select
Nmean = ⌈pmean ·L⌉ layers with the largest relative error in
terms of {e(l)mean}Ll=1. Let the set of indices corresponding to
the Nmean layers be denoted as Pmean, that is

Pmean = {i1, i2, . . . , iNmean}, (28)

where i1, i2, . . . , iNmean ∈ {1, 2, . . . , L} are the indices se-
lected such that e

(i1)
mean ≥ e

(i2)
mean ≥ . . . ≥ e

(iNmean )
mean ≥

e
(l)
mean, l ∈ L \ Pmean.

Similarly, we can get a set Pvar with Nvar = ⌈pvar · L⌉
elements as

Pvar = {j1, j2, . . . , jNvar
}, (29)

where j1, j2, . . . , jNvar
∈ {1, 2, . . . , L} are the indices that

satisfy e
(j1)
var ≥ e

(j2)
var ≥ . . . ≥ e

(jNvar )
var ≥ e

(l)
var, l ∈ L \ Pvar .

Finally, the subset P can be obtained as the intersection
of Pmean and Pvar:

P = Pmean ∩ Pvar. (30)

Hyperparameters to tune. Following (24) and (27), the layer
weights {q(l)}Ll=1 in (23) are determined by the parameter
vector Q ∈ R6, which is defined as

Q = (qcv, qbn, qfc, qen, pmean, pvar). (31)

Given a Q, by using the weighted loss function (23), one
can obtain the reconstructed data (X̂∗, Ŷ ∗) by solving the
following optimization problem:

(X̂∗, Ŷ ∗) = argmin
X̂,Ŷ

ℓQ(X̂, Ŷ ). (32)

We then use Bayesian Optimization to choose a proper Q
for a better reconstruction.

4.2.2 Choice of Q by Bayesian Optimization

Objective function. As shown in (32), one can obtain the
reconstructed data (X̂∗, Ŷ ∗) with a given Q. Then, the
corresponding reconstructed model update ∆θ̂∗t can be cal-
culated as ∆θ̂∗t = Gt(X̂

∗, Ŷ ∗).
Let f : R6 → R be the objective function that measures

the distance between the reconstructed model update ∆θ̂∗

and the ground-truth model update ∆θ in the following
form:

f(Q) =
∥∥∥∆θ̂∗t −∆θt

∥∥∥2 . (33)

Finding the optimal Q∗ is equivalent to solving the follow-
ing optimization problem:

Q∗ = argmin
Q

f(Q). (34)

For the above optimization problem, f is a black box func-
tion that does not have an analytic expression. Meanwhile,
calculating f is computationally expensive since one has
to complete a data reconstruction attack to obtain ∆θ̂∗t .
As a result, traditional parameter determination methods
like grid search are not feasible. To overcome the above
difficulties, we employ the Bayesian optimization [19] to
solve (34).

A Bayesian optimization algorithm for (34). Bayesian op-
timization is a powerful technique for optimizing black-box
functions that are expensive to evaluate and may have noise
or other sources of uncertainty. In general, Bayesian opti-
mization iteratively uses a surrogate model to approximate
the black-box function and then employs an acquisition
function to determine the next set of parameters to evaluate.

As for the surrogate model, it works to approximate the
black-box objective function f , which is commonly chosen
to be a Gaussian process (GP) [23]. Formally, a GP is a
collection of random variables, any finite number of which
have a joint Gaussian distribution.

Given an initial set O = {(Qi, f(Qi))}ni=1 that contains
n pairs of the sampling points and their function values, the
resulting prior distribution can be given as

f ∼ N (µ,ΣQQ) , (35)

where f = (f(Q1), . . . , f(Qn))
⊤, Q = (Q1, . . . , Qn)

⊤, µ =
(µ (Q1) , . . . , µ (Qn))

⊤ with µ(·) being the mean function
and is commonly set to zero, ΣQQ ∈ Rn×n is the matrix
of the covariances with its (i, j) entry being κ (Qi, Qj), and
κ(·, ·) is a positive definite kernel function, typically set to
the Gaussian kernel.

Then, we can infer the value of f(Q) at a new point Q
by computing the posterior distribution of f(Q) given prior
observations [23] as follows:

f(Q) | f ∼ N
(
µQ, σ

2
Q

)
,

µQ = ΣQQΣ−1
QQf ,

σ2
Q = ΣQQ − ΣQQΣ−1

QQΣQQ.

(36)

As for the acquisition function, it is used to propose
the parameters for the next trial by trading off exploitation



7

and exploration. Exploitation means sampling at locations
where the surrogate model predicts a high objective value
and exploration means sampling at locations where the
prediction uncertainty is high.

One of the most popular acquisition functions is Ex-
pected Improvement (EI) [24]. Let fmin denote the best
function value obtained so far. Then, the improvement over
fmin at point Q can be defined as

I(Q) = max(fmin − f(Q), 0). (37)

The improvement I(Q) is a random variable since f(Q) ∼
N

(
µQ, σ

2
Q

)
as shown in (36). To obtain the expected im-

provement, we can take the expected value as follows:

EI(Q) = E[max(fmin − f(Q), 0)]. (38)

The expected improvement can be evaluated analytically
under the GP [25], given as:

EI(Q) = (fmin − µQ) Φ

(
fmin − µQ

σQ

)
+ σQφ

(
fmin − µQ

σQ

)
,

(39)

where φ and Φ are the probability density and cumulative
distribution functions of the standard normal distribution,
respectively. It can be seen that EI(Q) is higher for a point
Q predicted to have a smaller µQ and a larger σQ, indicating
the trade-off between exploitation and exploration.

Given the EI , the parameter Qn+1 for the next trial is
chosen to be the point with the largest expected improve-
ment:

Qn+1 = argmax
Q

EI(Q). (40)

The evaluation of EI(Q) is much easier than that of the
function f in (34). The optimization problem (40) can be
solved by some classic optimization techniques such as
Newton’s method.

4.3 Approximate and Weighted Data Reconstruction
Attack Method

Based on the discussions in Sections 4.1-4.2, we propose
an approximate and weighted data reconstruction attack
method and summarize it in Algorithm 2.

5 EXPERIMENTAL TESTS

In this section, we conduct numerical experiments to vali-
date the effectiveness of our proposed AWA method given
in Algorithm 2. We first introduce experimental environ-
ments and implementation details used in our experiments.
We then explain the choice of hyperparameters and describe
the evaluation metrics. Finally, we test our proposed AWA
method for image data reconstructions and compare its per-
formance with two state-of-the-art methods, namely AGIC
[7] and DLG [9]), in attacking various FedAvg scenarios.

Algorithm 2 Approximate and Weighted Attack (AWA).

1: Intercept a client’s model update ∆θt at round t.
2: Calculate approximate ∆θ̃t,e and Gt,e. ▷ (20)
3: Initialize an empty set O.
4: for each trial i = 1, 2, ..., n do
5: Generate a random test point Qi.
6: Obtain X̂ , Ŷ , f(Qi)← RecAttack(Qi,∆θ̃t,e, Gt,e).
7: Update O := O ∪ {(Qi, f(Qi))}.
8: end for
9: for each trial i = n+ 1, n+ 2, ..., NBO do

10: Fit GP over f with samples in O. ▷ (35)
11: Choose Qi with the largest EI. ▷ (40)
12: Obtain X̂ , Ŷ , f(Qi)← RecAttack(Qi,∆θ̃t,e, Gt,e).
13: Update O := O ∪ {(Qi, f(Qi))}.
14: end for
15: Get Q∗ = argminQi{f(Qi)}NBO

i=1 .
16: Obtain X̂∗, Ŷ ∗, f(Q∗)← RecAttack(Q∗,∆θ̃t,e, Gt,e).
17: return X̂∗, Ŷ ∗.

1: RecAttack(Qi,∆θ̃t,e, Gt,e) :
2: Initialize the dummy data (X̂, Ŷ ) and set Q := Qi.
3: for each attack iteration from 1 to NAT do
4: Compute ∆θ̂t,e = Gt,e(X̂, Ŷ ).
5: Calculate {q(l)}Ll=1 based on Q. ▷ (24)
6: Select layers l ∈ P with the largest errors. ▷ (30)
7: Set q(l) = qen,∀l ∈ P based on Q. ▷ (27)
8: Calculate ℓQ(X̂, Ŷ ) =

∑L
l=1 q

(l)∥∆θ̂
(l)
t,e −∆θ̃

(l)
t,e∥2,

9: Update X̂ := X̂ − η̂∇X̂ℓQ(X̂, Ŷ ),
10: Update Ŷ := Ŷ − η̂∇Ŷ ℓQ(X̂, Ŷ ).
11: end for
12: Calculate f(Q) = ∥Gt,e(X̂, Ŷ )−∆θ̃t,e∥2.
13: return X̂ , Ŷ , f(Q).

5.1 Setups

Hardware. For all the experiments, we use a computer
equipped with an Xeon E5-2680 v4 CPU, 32GB of RAM,
and an NVIDIA GeForce RTX 1080 Ti GPU.

Implementation details. To implement the FedAvg, we
select images from the training set of CIFAR-10 [18] (color
images of 10 categories, size 32×32) as the clients’ ground-
truth data. The model used by each client is the ResNet18
[22]. The client’s local training process employs stochastic
gradient descent with a learning rate of 0.001. For the attack
optimizations, the Adam optimizer [16] with a learning rate
of 0.1 is used and each attack runs for 1,000 iterations.
Following the label inference method in [6], [8], we proceed
with the assumption that the label information is known. Ta-
ble 1 lists the simulation scenarios of the data reconstruction
attack.

TABLE 1: Simulation settings of the data reconstruction
attack.

Client’s dataset CIFAR-10
Client’s neural network ResNet18

Attack optimizer Adam
Attack learning rate 0.1

Attack iterations 1,000



8

In our AWA method, the parameter Q defined by (31)
is selected by using Bayesian optimization, where we use
the Gaussian process (36) as the surrogate model and the
expected improvement (39) as the acquisition function. The
objective function of Bayesian optimization is the squared
Euclidean norm of the dummy model update ∆θ̂∗ and the
ground-truth model update ∆θ as defined in (33). We run
Bayesian optimization for NBO = 50 iterations, with the
first n = 12 iterations initiating the dataset O. The search
ranges of Q are listed in Table 2.

TABLE 2: Search ranges of Q in Bayesian optimization.

Parameters Search ranges
qcv [1, 1000]
qbn [1, 1000]
qfc [1, 1000]
qen [1, 1000]

pmean [0, 0.5]
pvar [0, 0.5]

Evaluation metrics. To evaluate the efficiency of the at-
tack and the quality of the data reconstruction, we use
three different metrics to measure the dissimilarity between
reconstructed data and the ground-truth data: pixel-wise
Mean Square Error (MSE) [26], Peak Signal-to-Noise Ratio
(PSNR) [26], and Structural Similarity Index Measure (SSIM)
[27]. The above three metrics are prevalent and appropriate
indicators in evaluating the effect of image reconstruction
[26], and they have been widely used in evaluating the
existing data reconstruction attacks, see e.g., [8], [11], [14].

• MSE quantifies the discrepancy between the ground-
truth image D and the reconstructed image D′, and
it is defined as

MSE(D,D′) =
1

dmdn

dm∑
i=1

dn∑
j=1

[D(i, j)−D′(i, j)]2,

where dm×dn is the image size, D(i, j) and D′(i, j)
represent the pixel values at coordinates (i, j) of D
and D′. A smaller MSE indicates a better reconstruc-
tion quality.

• PSNR represents the rate of the maximum possible
signal power to the distortion noise power. PSNR can
be calculated as

PSNR(D,D′) = 10 log10
max2D

MSE(D,D′)
,

where maxD is the maximum pixel value in the
ground-truth image D. It is easy to see that the larger
the PSNR value, the better the image reconstruction
quality.

• SSIM measures the structural similarity between the
ground-truth and reconstructed images. The value
of SSIM ranges between zero and one, and a higher
value indicates a better reconstruction. To be con-
crete, SSIM is calculated as

SSIM(D,D′) =
(2µDµD′ + c1) (2σDD′ + c2)

(µ2
D + µ2

D′ + c1) (σ2
D + σ2

D′ + c2)
.

Here, µD and µD′ are the average pixel values of D
and D′, σD and σD′ are the standard deviations of
pixel values of D and D′, σDD′ is the covariance

of D and D′, c1 = (k1H)
2 and c2 = (k2H)

2 are
constants with k1 = 0.01, k2 = 0.03, and H being
the range of the pixel values.

5.2 Results for Image Data Reconstruction Attacks

To verify the feasibility and effectiveness of our proposed
AWA method, we test it in image data reconstruction attacks
and compared the results with two state-of-the-art attack
methods (AGIC [7] and DLG [9]) under the following four
different FedAvg scenarios:

• Case 1: N = 4, E = 1, and B = 1;
• Case 2: N = 4, E = 4, and B = 1;
• Case 3: N = 4, E = 1, and B = 4;
• Case 4: N = 4, E = 2, and B = 2.

Recall the analysis in Section 3, when E > 1 and B > 1,
the attacker has to use an approximate method for the
attack. Therefore, only AWA and AGIC can conduct the
attack for Case 4. The approximate strategy of each method
is given below. Our proposed AWA method uses (20) to get
the approximate intermediate model updates ∆θ̃t,e in each
epoch e = 1, 2, . . . , E. Then, the attacker can reconstruct
the client’s dataset by using any of the ∆θ̃t,e and the corre-
sponding Gt,e. In Case 4 with E = 2, we have two options:
∆θ̃t,1 and ∆θ̃t,2. In the following test, we choose ∆θ̃t,1 as
the target model update for the reconstruction. On the other
hand, AGIC assumes that a combined batch consisting of all
the mini-batches used in the client’s local training process
can approximate the received model update in a single
local update step. For this purpose, it assumes all the mini-
batches used in the client’s local training form a combined
batch. Then, the dummy model update is calculated by
doing a full-batch gradient descent using the combined
batch.

In all the tests, the DLG method utilizes the unweighted
loss function (10) for the attack, while the AGIC method
employs a weighted cosine similarity loss function by as-
signing linearly increasing weights to convolutional and
fully connected layers. However, these weights are assigned
empirically and not tailored case by case. In contrast, the
AWA method employs the weighted and enhanced loss
function (23) for the attack, with the layer weights deter-
mined by (24) and (27). The values of Q are selected by
utilizing Bayesian optimization. The cumulative minimum
loss f(Q) of Bayesian optimization in 50 trials is presented
in Figure 1. It can be seen that the Bayesian optimization
approach successfully finds a trend of smaller f(Q) values
as the trial count increases. Finally, the parameter settings
refined by Bayesian optimization for our AWA method in
each case are listed in Table 3.

TABLE 3: Parameter settings tuned by Bayesian optimiza-
tion for our AWA method in four cases.

Parameters Case 1 Case 2 Case 3 Case 4
qcv 519.19 236.31 547.17 655.98
qbn 802.55 552.31 222.48 692.94
qfc 42.83 54.28 394.39 283.42
qen 946.44 837.80 899.47 665.28

pmean 0.24 0.11 0.31 0.40
pvar 0.07 0.13 0.01 0.33



9

0 10 20 30 40 50
Trials

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

f(Q
)

Case 1
Case 2
Case 3
Case 4

Figure 1: Cumulative minimum loss f(Q) of Bayesian opti-
mization in four cases.

The numerical comparisons of the above three data
reconstruction attack methods for Cases 1-4 are presented
in Figure 2 and Table 4. We observe that in all four cases,
our proposed AWA method consistently yields images with
substantially enhanced resolution compared to those ob-
tained by DLG and AGIC. This is further validated by the
consistently highest values of PSNR and SSIM achieved by
AWA in each case. Another noteworthy finding is the con-
sistency in the reconstruction qualities of images produced
by our AWA method across the diverse FedAvg cases, which
demonstrates the robustness of our proposed approach.

Figure 2: Comparison of the reconstruction results achieved
by three data reconstruction methods in four FedAvg scenar-
ios after 1,000 attack iterations. FedAvg parameters: batch
size N , number of epochs E, number of mini-batches B.
Methods: AWA (ours): reconstruction with the method in
Algorithm 2, AGIC: reconstruction with the method in [7],
DLG: reconstruction with the method in [9].

In Case 4, where E > 1 and B > 1, DLG encounters
difficulties in performing the attack due to the absence of an
approximate strategy. On the other hand, although AGIC
incorporates an approximate strategy, it fails to reconstruct
images with identifiable objects effectively. In sharp con-
trast, the proposed AWA method demonstrates its capability

TABLE 4: Detailed evaluation metrics of the data recon-
structed by three data reconstruction methods in four cases.

Metrics DLG AGIC AWA(ours)

Case 1
PSNR 14.06 15.89 22.40
SSIM 0.534 0.689 0.935
MSE 0.042 0.028 0.006

Case 2
PSNR 16.43 16.07 20.40
SSIM 0.739 0.631 0.901
MSE 0.024 0.035 0.009

Case 3
PSNR 14.05 15.63 22.47
SSIM 0.505 0.718 0.936
MSE 0.044 0.029 0.006

Case 4
PSNR - 16.41 19.68
SSIM - 0.734 0.882
MSE - 0.025 0.011

to successfully reconstruct images with reasonable resolu-
tions, overcoming the limitations faced by DLG and AGIC.
Furthermore, the PSNR of images reconstructed in Case
4 is found to be comparable to that achieved in the first
three cases, which strongly suggests the effectiveness of our
proposed approximate strategy.

Furthermore, we present the reconstruction results of our
AWA method after 3,000 attack iterations in four cases in
Figure 3 and Figure 4. All the other parameters maintain
the same as listed in Table 1. The resulting reconstructed
images and the corresponding SSIM metrics for each case
are represented in Figure 3. Evidently, the attained SSIM
values surpass those presented in Table 4 for the 1000-
iteration attack. The results clearly show a significant vi-
sual proximity between the reconstructed images and their
ground-truth counterparts. Additionally, Figure 4 presents
the evaluation metrics PSNR and SSIM, as well as the
cumulative minimum value of the weighted loss during the
attack across all four cases. It is evident that our method
achieves a satisfactory level of reconstruction, with SSIM
values exceeding 0.9 within 1500 attack iterations for all
four cases. The outcomes of Case 4 exhibit a marginally
inferior performance compared to Cases 1-3 due to the need
for approximation. However, the reconstructed images in
Case 4 remain sufficiently clear to facilitate object identifica-
tion. These results further validate the effectiveness of our
proposed AWA method.

Figure 3: Reconstruction results of our AWA method in four
cases after 3,000 attack iterations.

Overall, the aforementioned results demonstrate a sub-
stantial improvement in reconstruction achieved by our
AWA method. The comprehensive evaluation strongly sup-
ports the superiority of our method AWA in data reconstruc-
tion attacks against various FedAvg scenarios.



10

0 500 1000 1500 2000 2500 3000
Attack iterations

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

PS
NR

Case 1
Case 2
Case 3
Case 4

(a) PSNR.

0 500 1000 1500 2000 2500 3000
Attack iterations

0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

Case 1
Case 2
Case 3
Case 4

(b) SSIM.

100 101 102 103

Attack iterations

10 2

10 1

Lo
ss

Case 1
Case 2
Case 3
Case 4

(c) Weighted Loss.

Figure 4: Evaluation metrics of our AWA method in four
cases after 3,000 attack iterations.

6 CONCLUSIONS

The privacy benefits of federated learning (FL) are compro-
mised by recently developed data reconstruction attacks.
In this paper, we first formulate the attack as an inverse
problem, allowing us to reconstruct the client’s training
data iteratively by solving an optimization problem. To
attack the widely used federated averaging (FedAvg) sce-
nario, we propose an interpolation-based approximation
method, where the intermediate model updates correspond-
ing to each epoch are approximated by interpolating the
model parameters. Furthermore, we propose a layer-wise
weighted and enhanced loss function for the attack to
improve the quality of reconstructed data. By assigning
appropriate weights to model updates in different layers
by using the Bayesian optimization method, we achieve
superior reconstruction results compared to the existing

state-of-the-art methods. Moreover, our method is compat-
ible with various neural network architectures like Convo-
lutional Neural Networks and Residual Neural Networks.
Numerical results validate that our proposed approximate
and weighted data reconstruction attack method is effective
for adversaries to exploit the vulnerabilities of FL systems
utilizing the FedAvg algorithm. The ability to reconstruct
data from intermediate model updates highlights the need
for robust defense mechanisms. Future research could focus
on developing countermeasures and enhancing the security
of FL frameworks to mitigate the risks associated with such
attacks.

ACKNOWLEDGMENTS

This work has been funded by the Humboldt Research
Fellowship for postdoctoral researchers, the Alexander
von Humboldt-Professorship program, the European
Union’s Horizon Europe MSCA project ModConFlex (grant
number 101073558), the COST Action MAT-DYN-NET,
the Transregio 154 Project of the DFG, grants PID2020-
112617GB-C22 and TED2021-131390B-I00 of MINECO
(Spain). Madrid Government - UAM Agreement for the
Excellence of the University Research Staff in the context
of the V PRICIT (Regional Programme of Research and
Technological Innovation).

REFERENCES

[1] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Fed-
erated Learning: Challenges, Methods, and Future
Directions,” IEEE Signal Processing Magazine, vol. 37,
no. 3, pp. 50–60, 2020, ISSN: 1558-0792.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-Efficient Learning of
Deep Networks from Decentralized Data,” in Proceed-
ings of the 20th International Conference on Artificial
Intelligence and Statistics, PMLR, 2017, pp. 1273–1282.

[3] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C.
Paschalidis, and W. Shi, “Federated learning of
predictive models from federated Electronic Health
Records,” International Journal of Medical Informatics,
vol. 112, pp. 59–67, 2018, ISSN: 1386-5056.

[4] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F.
Wang, “Federated Learning for Healthcare Informat-
ics,” Journal of Healthcare Informatics Research, vol. 5,
no. 1, pp. 1–19, 2021, ISSN: 2509-498X.

[5] T. Zeng, O. Semiari, M. Chen, W. Saad, and M. Bennis,
“Federated Learning on the Road Autonomous Con-
troller Design for Connected and Autonomous Ve-
hicles,” IEEE Transactions on Wireless Communications,
vol. 21, no. 12, pp. 10 407–10 423, 2022, ISSN: 1558-2248.

[6] J. Geng, Y. Mou, Q. Li, et al., “Improved Gradient In-
version Attacks and Defenses in Federated Learning,”
IEEE Transactions on Big Data, pp. 1–13, 2023, ISSN:
2332-7790.

[7] J. Xu, C. Hong, J. Huang, L. Y. Chen, and J. De-
couchant, “AGIC: Approximate Gradient Inversion
Attack on Federated Learning,” in 2022 41st In-
ternational Symposium on Reliable Distributed Systems
(SRDS), 2022, pp. 12–22.



11

[8] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz,
and P. Molchanov, “See through gradients: Image
batch recovery via gradinversion,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 16 337–16 346.

[9] L. Zhu, Z. Liu, and S. Han, “Deep Leakage from Gra-
dients,” in Advances in Neural Information Processing
Systems, vol. 32, Curran Associates, Inc., 2019.

[10] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: Im-
proved Deep Leakage from Gradients,” arXiv preprint
arXiv:2001.02610, 2020.

[11] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller,
“Inverting Gradients - How easy is it to break privacy
in federated learning?” In Advances in Neural Informa-
tion Processing Systems, vol. 33, Curran Associates, Inc.,
2020, pp. 16 937–16 947.

[12] Y. Wang, J. Deng, D. Guo, et al., “SAPAG: A Self-
Adaptive Privacy Attack From Gradients,” arXiv
preprint arXiv:2009.06228, 2020.

[13] J. Jeon, J. Kim, K. Lee, S. Oh, and J. Ok, “Gradient In-
version with Generative Image Prior,” in Advances in
Neural Information Processing Systems, vol. 34, Curran
Associates, Inc., 2021, pp. 29 898–29 908.

[14] W. Wei, L. Liu, M. Loper, et al., “A Framework
for Evaluating Client Privacy Leakages in Federated
Learning,” in Computer Security – ESORICS 2020, L.
Chen, N. Li, K. Liang, and S. Schneider, Eds., ser. Lec-
ture Notes in Computer Science, Cham: Springer In-
ternational Publishing, 2020, pp. 545–566, ISBN: 978-3-
030-58951-6.

[15] D. C. Liu and J. Nocedal, “On the limited memory
BFGS method for large scale optimization,” Mathe-
matical Programming, vol. 45, no. 1, pp. 503–528, 1989,
ISSN: 1436-4646.

[16] D. P. Kingma and J. Ba, “Adam: A Method for Stochas-
tic Optimization,” arXiv preprint arXiv:1412.6980, 2017.

[17] G. B. Huang, M. Mattar, T. Berg, and E. Learned-
Miller, “Labeled Faces in the Wild: A Database
forStudying Face Recognition in Unconstrained En-
vironments,” in Workshop on Faces in ’Real-Life’ Images:
Detection, Alignment, and Recognition, 2008.

[18] A. Krizhevsky and G. Hinton, “Learning multiple
layers of features from tiny images,” 2009.

[19] P. I. Frazier, “A Tutorial on Bayesian Optimization,”
arXiv preprint arXiv:1807.02811, 2018.

[20] O. Calin, Deep Learning Architectures: A Mathematical
Approach (Springer Series in the Data Sciences). Cham:
Springer International Publishing, 2020, ISBN: 978-3-
030-36720-6 978-3-030-36721-3.

[21] S. Chen and Q. Zhao, “Shallowing Deep Networks:
Layer-Wise Pruning Based on Feature Representa-
tions,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 41, no. 12, pp. 3048–3056, 2019,
ISSN: 1939-3539.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016, pp. 770–778.

[23] C. E. Rasmussen and C. K. I. Williams, Gaussian
Processes for Machine Learning (Adaptive Computation

and Machine Learning). Cambridge, Mass: MIT Press,
2006, ISBN: 978-0-262-18253-9.

[24] J. Močkus, “On Bayesian methods for seeking the
extremum,” in Optimization Techniques IFIP Technical
Conference: Novosibirsk, July 1–7, 1974, Springer, 1975,
pp. 400–404, ISBN: 3-662-37713-6.

[25] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient
Global Optimization of Expensive Black-Box Func-
tions,” Journal of Global Optimization, vol. 13, no. 4,
pp. 455–492, 1998, ISSN: 1573-2916.

[26] U. Sara, M. Akter, and M. S. Uddin, “Image Quality
Assessment through FSIM, SSIM, MSE and PSNR—A
Comparative Study,” Journal of Computer and Commu-
nications, vol. 7, no. 3, pp. 8–18, 2019.

[27] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli,
“Image quality assessment: From error visibility to
structural similarity,” IEEE Transactions on Image Pro-
cessing, vol. 13, no. 4, pp. 600–612, 2004, ISSN: 1941-
0042.


	Introduction
	Preliminaries
	Problem Statement of FL
	FedAvg Algorithm
	Data Reconstruction Attack

	Analysis of Attack Scenarios: Different E and B
	Approximate and Weighted Attack in Data Reconstruction
	Approximation of the Intermediate Model Updates
	Improved Weighted Loss Function for the Data Reconstruction Attack
	Design of Layer Weights
	Choice of Q by Bayesian Optimization

	Approximate and Weighted Data Reconstruction Attack Method

	Experimental Tests
	Setups
	 Results for Image Data Reconstruction Attacks

	Conclusions

