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We introduce feedback-measurement technologies to achieve flexible control of Weyl points and
conduct the first experimental demonstration of Weyl type I-II transition in mechanical systems.
We demonstrate that non-Hermiticity can expand the Fermi arc surface states from connecting Weyl
points to Weyl rings, and lead to a localization transition of edge states influenced by the interplay
between band topology and the non-Hermitian skin effect. Our findings offer valuable insights into
the design and manipulation of Weyl points in mechanical systems, providing a promising avenue
for manipulating topological modes in non-Hermitian systems.

In recent years, topological phenomena have received
considerable attention in photonics and phononics due
to their ability to support robust transport against per-
turbation [1–4]. A significant model in three dimensions
(3D) is that of Weyl semimetals [5, 6], which feature Weyl
points (WPs) as linear degeneracies in the band struc-
ture. The topological protection associated with WPs
gives rise to intriguing surface states known as “Fermi
arcs” [7, 8], which have been linked to various fascinat-
ing phenomena, including chiral anomalies [9, 10], uncon-
ventional superconductivity [11, 12], and large-volume
single-mode lasing [13]. There are two distinct types of
WPs: Type-I WPs (WP1) possess a standard cone-like
energy spectrum with a point-like Fermi surface, while
Type-II WPs (WP2) feature a tilted spectrum with two
bands touching at the intersection of electron and hole
pockets [14]. Different types of WPs feature distinct
transport anisotropies and chiral anomalies [10, 15–19].

However, it’s often challenging to achieve these dis-
tinct features in a specific material due to the difficulty
in varying the lattice structure [20–23]. Toward this goal,
synthetic matter is a promising avenue, where the flex-
ible parametric control not only offers versatile means
of manipulation but can serve as synthetic dimensions
and provide access to complex lattice designs [24–32].
More interestingly, the ability to realize non-Hermiticity
provides a method for exploring diverse non-Hermitian
topological properties in Weyl band structure, which has
sparked widespread interest [33–37].

Here, we utilize mechanical oscillators to achieve flex-
ible control over WPs. To generate WPs in three di-
mensions, we employ measurement-based feedback tech-
nologies to construct two additional parametric dimen-
sions in 1D mechanical arrays. We experimentally ob-
serve, for the first time, the transition between states
with WP1 and WP2. We characterize the transition
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through: i) direct detection of the band structure by
Fourier-transformed nonequilibrium dynamics; ii) direct
detection of the Fermi arc surface states under open
boundaries. A unique feature of our mechanical system is
its access to non-reciprocal feedback control, which can
have significant impacts on the topological transitions
through the non-Hermitian skin effect (NHSE). We show
that both the topological phase transition point and the
edge localization properties of the topological states are
tunable through the non-reciprocal coupling, shedding
new light on the interplay between Weyl phase transi-
tion and non-Hermitian physics.

Our experimental setup includes eighteen mechanical
oscillators, whose positions and momenta are continu-
ously measured. We apply individual feedback forces
to each oscillator that are responsive to the real-time
measurements. This approach allows us to effectively
engineer Hamiltonians of coupled mechanical oscillators
by mapping the Newton’s equations for feedback-driven
oscillators onto a set of Schrödinger equations of mo-
tion [38]. Experimentally, we implement feedback forces
by using real-time analog output signals to control the
currents in gradient coils around each oscillator. This in
turn generates magnetic forces on the oscillators, which
contain embedded dipole magnets. A desired Hamilto-
nian, denoted as h, is achieved by applying feedback
forces according to Hamilton’s equation, Fi = dpi/dt =
−∂h/∂xi, where xi denotes the displacement of the ith
oscillator. Naturally, self-feedback forces proportional to
the oscillator positions (Fi ∝ xi) shift their frequencies by
∆ω from a nominal starting value of ω0/2π ≈ 13.06 Hz.
Cross-feedback forces related to the nearest oscillators’
positions (Fi ∝ xi±1) introduce independent and possi-
bly non-reciprocal left-to-right and right-to-left hopping
terms [38–40]. The oscillator-specific control of feedback
forces also allows for the design of structured, multi-band
lattice models.

By this approach, we design a Weyl semimetal tight-
binding model [38], having two-site unit cells with sub-
lattice sites a and b, described in the momentum basis
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FIG. 1. Schematic diagram of experimental mechanical lattices and Weyl band structure. (a) Illustration of mechanical setup
based on measurements and feedback forces. The mechanical arrays consist of N unit cells, each containing sublattice a and
sublattice b, marked in blue and orange, respectively. (b) Phase diagram for WP1 and WP2 as a function of modulation
phase difference ∆ϕ and detuning frequency ratio ωb/ωa. (c) Band structure of Weyl type-I for periodic mechanical arrays,
corresponding to the orange triangle marked in (b) with ∆ϕ = π and ωb/ωa = 1/2. The isoenergy contours of the lower band
are shown at the bottom of each figure, where we marked the position and chirality of four WPs with signs “+” and “−”.
(d) The corresponding band structure for truncated mechanical arrays, showing the bulk states (transparent grey) and Fermi
arc surface states (blue and orange colors). (e,f) Band structure at Type I-II transition point at the red-cross point of (b).
(g,h) Type II Weyl band structure at the blue star of (b). In all plots, we take ωa = 1.5j, k = 0, and λ1 = λ2 = 2j.

as

h(θ, k, ϕ) =

(
ω0 + ωacosϕ λ1cosθ + jeik

λ2cosθ + je−ik ω0 + ωbcos(ϕ+∆ϕ)

)
.

(1)
Here, ω0 represents the on-site natural frequency, while
ωa,b are the detuning frequencies, modulated by ϕ and
∆ϕ. The off-diagonal terms, λ1(2) cos θ and j, corre-
spond to intra- and inter-hopping terms, respectively.
The parameter k signifies to the Bloch wave number in
1D real space. To construct a 3D Weyl Hamiltonian,
we treat θ and ϕ as additional dimensions in the para-
metric space, combining with k to effectively represent
the system as a 3D periodic structure. In Hermitian
systems (λ1 = λ2), WPs arise by breaking either time-
reversal symmetry [h∗(−q) = h(q)] or parity symmetry
[h(−q) = σxh(q)σx], influenced by the phase difference
∆ϕ and detuning frequency ratio ωa/ωb of our system,
where q is(θ, k, ϕ) [38].
Fig. 1(b) shows the phase diagram for WP1 and WP2

versus the phase difference ∆ϕ and detuning frequency
ratio ωb/ωa. This diagram precisely identifies the transi-
tion boundary between WP1 and WP2. In WP1, a point-
like isoenergy surface near WP displays isotropic prop-
erties, with isoenergy contours closed and elliptical, as
illustrated in Fig. 1(c). In contrast, WP2 features ‘elec-
tron’ and ‘hole’ pockets touching the isoenergy surface
of WP, leading to open, hyperbolic contours [Fig 1(g)].
At the transition point [Fig. 1(e)], the isoenergy contour
is a hybrid of hyperbolic and elliptical shapes, indicat-
ing unique anisotropic properties. When truncating the
mechanical arrays, two surface states emerge in an open-
ended section connecting a pair of WPs, akin to Fermi

arcs in electronic systems. As seen in the band structure
of Fig. 1(d,f,h), the two strip-like surface states (blue and
orange sheets) are well separated from bulk states, inter-
secting to form four arcs connecting four pairs of WPs.
The clear distinction between the two types of WPs leads
to different band dispersions of surface states, allowing us
to observe the type I-II transition experimentally.

In experiments, we can differentiate WP1 from WP2
by measuring the dispersion relations between parameter
ϕ and frequency f , which is given by the group velocity
vϕg = ∂f/∂ϕ. To this aim, we probe the edge modes by
beginning with energy only at either the first or last os-
cillator positions, while we explore the bulk modes by be-
ginning with energy in the ninth site. By measuring the
time evolution of the oscillator dynamics and perform-
ing a Fourier transform of the xi(t) signals, we obtain
the relevant frequency spectra as shown in Fig. 2(a)-(c).
Here, the orange dots are the peaks of the Fourier spectra
of x1(t) after initializing at oscillator 1, the blue dots are
the peaks of the Fourier spectra of x18(t) after initializing
at oscillator 18, and the gray bands are the regions of the
Fourier spectra of xj(t) after initializing at inner oscilla-
tor j that have weight above a chosen cutoff value. For
WP1, the group velocities of the two edge states should
have opposite directions [Fig. 2(a)]. On the contrary for
Type-II WPs, the two group velocities should have the
same directions [2(c)]. And at the transition point, one
of the edge states manifests a flat dispersion relation with
vanishing group velocity, as depicted in Fig. 2(b). Addi-
tionally, when we measure the projected band structure
as a function of θ along a specific cut that passes through
the WPs, we observe the Fermi arcs that connect a pair
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FIG. 2. Observation of Weyl type I-II transition and Fermi
arcs. (a-c) Experimentally measured projected band structure
in truncated mechanical arrays, showing the case of WP1 (a),
the transition point (b), and WP2 (c) at nontrivial cuts of
θ = 0.45π. (d) The projected WP1 (∆ϕ = π) band structure
dependence on θ at a special cut of ϕ = π/2 passing through
WPs, where the two edge states appear as arcs connecting a
pair of WPs with different chiralities. Here the orange and
blue solid curves represent the two numerical calculated edge
states. In experiments, we take λ1/2π = λ2/2π = 60 mHz,
j/2π = 30 mHz, ωa/2π = 45 mHz, ωb/2π = 22.5 mHz, and
2N = 18. The experimental error bars for the edge mode
frequencies (typically smaller than the data points) are the
standard error based on five measurements.

of WPs, as demonstrated in Fig. 2(d). Here, each set of
data (points/bands) is acquired from five repeated mea-
surements, incorporating small error bars to depict the
minor fluctuations observed in the experiments. These
experimental results align well with the theoretical pre-
dictions shown in solid orange and blue curves, exhibiting
the first experimental observation of Weyl transition be-
tween WP1 and WP2.

Besides measuring the band structure, the Fermi arc
surface states can also be probed through the edge dy-
namics. In the experiments, we initialize energy at the
first or last oscillator and then measure the energy trans-
port throughout the lattice. If a surface state is present,
the oscillators’ energies should remain relatively confined
to the system’s edge, otherwise, it will extend into the
bulk. In the trivial region where the parameter θ is cho-
sen not between two WPs (WPs located at θ = π/3 and
2π/3), there is no surface state [Fig. 3(a)]. Thus, we
find that the initial excitations propagate into the sys-
tem’s bulk as shown in Fig. 3(b,c). In contrast, in the
topologically nontrivial region [Fig. 3(d)], the states can
be strongly confined to the initial edge. As shown in
Fig. 3(e,f), the states exhibit strong confinement to the
edges, resulting in less penetration depths along the trun-
cated directions.

Going further, by applying a nonreciprocal feedback
force between sublattice a and b in each unit cell (i.e.,
intra-cell hopping λ1 ̸= λ2), we demonstrate that non-
Hermiticity can impact the Weyl band structure in three
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FIG. 3. Direct observation of the Fermi arc surface states.
(a) Numerically calculated mode profiles in the trivial region
(ϕ = π/2 and θ = 0.3π). The inset shows the band struc-
ture as a function of ϕ when θ = 0.3π. (b-c) Experimentally
observed energy distribution of all oscillators evolving with
time, where we initially shake either the first (b) or last (d)
oscillator. The brightness in these plots reflects the amount
of normalized energy at each oscillator. (d-f) Numerically cal-
culated (d) and experimentally observed (e,f) results in the
nontrivial region with θ = 0.45π, showing the presence of
edge states. The orange and blue curves represent the two
edge states. Here, all figures are plotted in the WP1 region
(∆ϕ = π), and the parameters used in experiments remain
consistent with those presented in Fig. 2.

ways. First, it transforms Weyl points of band struc-
ture into Weyl rings, as shown in Fig. 4(a) and experi-
mentally explored in the Supplement [38]. Second, the
energy spectra under periodic-boundary conditions form
loops in the complex plane, as shown in Fig. 4(b). This
indicates that the NHSE occurs in the bulk modes un-
der open boundary conditions [41]. Unlike the Hermitian
case in Fig. 3(a), the NHSE modifies the topological tran-
sition point, leading to the emergence of surface states
appearing at θ = 0.3π in Fig. 5(a). Third, it changes the
localization properties of the Fermi arc surface states. As
shown in Fig. 4(c), in the area where band topology is
dominant, the two edge states localize on opposite sides.
In contrast, in regions where skin effects dominate, these
states localize on the same edge.

We define local density of edge states LD =∑⌊N/2⌋
n=1

∑
i=a,b[|ϕ

e1
n,i|2 + |ϕe2

n,i|2] to quantify the topologi-

cal dominant region (TDR) and the non-Hermitian skin
effect dominant region (NHDR). Here, e1 and e2 denote
the two edge modes. A value of LD = 1 indicates that
the two states are independently localized at the two
chain ends, and an LD value of 0 implies that the two
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FIG. 4. The impacts of non-Hermiticity. (a) The Weyl
ring of non-Hermitian band structure at ∆ϕ = π. (b) The
periodic- and open boundary spectra at ϕ = θ = 0.4π. (c) The
wavefunctions of the edge modes for different θ at ϕ = 0.4π,
showing an edge state localization transition from one side
to the other. (d) TDR-NHDR diagram of edge state as a
function of θ and ϕ for WP1 (∆ϕ = π), WP1-WP2 transition
point (∆ϕ = π/3), and WP2 (∆ϕ = 0). In all plots, we take
ωa = 1.5j, k = 0, ωb/ωa = 0.5, and λ2 = 2.5λ1 = 2j.

states are localized at the right chain end. As depicted
in Fig 4(d), we plot LD as a function of the parame-
ters θ and ϕ, demonstrating the transition from TDR
to NHDR for Weyl type I, the Weyl transition point,
and type II. We note that the peaks, where the skin ef-
fects are most pronounced, align with the locations of
the Fermi arcs (where two edge states are degenerate).
Furthermore, the width of these peaks (depicted in red)
increases from WP1 to WP2. This is because, at the de-
generate point, the coupling between two edge modes be-
comes significant, which enhances the skin effect of edge
modes and enlarges the non-Hermitian dominant region.
When ϕ deviates from the degeneracy point, a gap begins
to form between the two edge states, reducing their cou-
pling. Consequently, the area impacted by the skin effect
starts to diminish. Given that WP1 and WP2 possess
distinct dispersion relations, the velocities for opening
a gap vary significantly. For WP1, the two edge states
diverge in opposite directions, whereas for WP2, they
move in the same direction. These differences result in
a larger gap at WP1 compared to WP2 when ϕ deviat-
ing from the degeneracy point by the same amount. A
larger gap causes a more pronounced reduction in peak
size, explaining why WP1’s peak is narrower than that
at WP2 (further details in the Supplement [38]).

To observe the edge localization properties in exper-
iments, we initially excited energy at the first or last
oscillator. When skin effects are dominant, as seen in
Fig. 5(a)-(c), the energy initialized at the first oscilla-
tor exhibits a directional flow for short-time dynamics,
and finally tends to the same edge as the case of ini-
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FIG. 5. Edge localization transition on Fermi arc from the
competition of band topology and non-Hermiticity. We ex-
hibit the numerical mode profiles, band structure, and the
experimental time evolution of normalized oscillator energies
with θ = 0.3π (a-c) and θ = 0.45π (d-f), respectively. The
surface states exhibit a localization transition, moving from
one edge to the opposite edge. Here, we take λ1/2π = 24
mHz, λ2/2π = 60 mHz, and other parameters are same as
those depicted in Fig. 3.

tially exciting energy at the last oscillator. When band
topology is dominant (Fig. 5 (d)-(f)), the energy initial-
ized at the first oscillator in Fig. 5(e) separates into two
distinct parts. One tends to flow towards the bulk, dis-
playing a directional flow, and eventually localizes at the
upper edge. In contrast, the other part remains localized
at the lower edge, together with the excited edge mode
seen in Fig. 5(f), revealing the existence of two differ-
ent localized mode distributions. These behaviors differ
markedly from those in the Hermitian region. The capa-
bility to reshape surface mode wavefunctions enables the
engineering of diverse topological modes in the bulk lat-
tice, a development that has recently garnered significant
interest [42, 43].

In conclusion, our study presents a synthetic 3D Weyl
model in a mechanical lattice, which was realized by
measurement-based feedback. Through flexible control
in parametric space, we successfully observed the transi-
tion between WP1 and WP2 and demonstrated the emer-
gence of Fermi-arc states by the observed band structure
and edge dynamics in experiments. Furthermore, by im-
plementing non-reciprocal feedback control, we demon-
strate that the non-Hermiticity can impact the topologi-
cal modes in two ways: i) the Fermi arc surface states are
extended from connecting two Weyl points to Weyl rings;
ii) The Fermi arc surface states exhibit localization tran-
sition due to the competition between band topology and
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non-Hermiticity. These exciting findings not only provide
the first experimental demonstration of a Weyl type I-II
control but also contribute to the advancement of our
understanding of Weyl semimetals in the non-Hermitian
region [44–54], opening up new avenues for controlling
and manipulating topological modes.
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Appendix A: Experimental implementation

The theoretical basis for our synthetic mechanical lattices is mapping Newton’s equation of motion to the Heisenberg
equations for a given Hamiltonian, as described in Ref. [39]. In this section, we give the theoretical derivation and
describe the implementation in our experiments.

The equations of motion for uncoupled and identical harmonic oscillators are:

mẋi(t) = pi(t), ṗi(t) = −mω2xi(t), (A1)

where xi(t) and pi(t) are position and momentum of ith oscillator, ω is the natural oscillation frequency, and m is the

mass. For simplicity, we introduce the notation Xi ≡ −ω2xi(t) and Pi ≡ −ω2

m pi(t), so that the equations of motion
become

Ẋi = Pi, Ṗi = −ω2Xi. (A2)

To couple these oscillators as a basis for simulating different Hamiltonians, we now add feedback forces to the system
such the equations of motions become

Ẋi = Pi, Ṗi = −ω2Xi + fi. (A3)

where fi is a linear function of (X1, X2, · · · , Xn, P1, P2, · · · , Pn).
To map the above equations to Heisenberg equations, we introduce the classical complex variables:

αi ≡
√

ω

2
Xi + i

√
1

2ω
Pi (A4)

in analogy with the annihilation operator of the quantum harmonic oscillator. From this, it follows that

Xi =

√
1

2ω
(αi + α∗

i ) , Pi = −i

√
ω

2
(αi − α∗

i ) , (A5)

and hence the equations of motion are

α̇i = −iωαi +
i√
2ω

fi = −iωαi +
i√
2ω

∑
j

Mij(αj + α∗
j ). (A6)

where the feedback term, fi, is expressed as a linear function of fi =
∑

j Mij(αj + α∗
j ). To note, this form is specific

to the implementation of only Xj-dependent feedback forces, relating to real-valued hopping terms and real site-
dependent frequency shifts, as utilized in this work. This equation can be regarded as the Heisenberg equation of
motion derived from a quantum mechanical Hamiltonian (with ℏ = 1):

Ĥ =
∑
i

ωα̂†
i α̂i −

1√
2ω

∑
i,j

α̂†
iM̂ij(α̂j + α̂†

j), (A7)

where α̂†
i and α̂i are creation and annihilation operators for site i obeying bosonic commutation relations, with

αi = ⟨α̂i⟩ and α∗
i =

〈
α̂†
i

〉
.

Now, we assume that the feedback is sufficiently weak compared to the natural oscillations. Within this limit,
the complex amplitudes’ time-dependence is still given by αi(t) ∝ e−iωt. This allow us to apply the ”rotating-wave
approximation” (RWA) to simplify Eq. (A8):

ĤRWA =
∑
i

ωα̂†
i α̂i −

1√
2ω

∑
i,j

α̂†
iM̂ijα̂j . (A8)

In experiments, as shown in Fig. 6, our “lattice of synthetically coupled oscillators” consists of modular mechanical
oscillators. In the absence of applied feedback forces, these oscillators exhibit nearly identical natural oscillation
frequencies, ω0/2π ∼ 13.06 Hz. Each oscillator is equipped with an analog accelerometer (EVAL-ADXL203). Real-
time measurements of acceleration a(t) are obtained by sending the signals to a common computer (via very high-gauge
wire connections). Additionally, by numerically differentiating the acquired signal, we obtain real-time measurements
of the oscillators’ jerk, j(t) ≡ ȧ(t). Because a(t) ∝ x(t) and j(t) ∝ p(t) for a harmonic oscillator, we treat the a and
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FIG. 6. Implementation of our model in a mechanical system via measurement and feedback. (a) Schematic diagrams of our
experimental system and approach. The Hamiltonian can be realized through applied forces that are responsive to real-time
measurements. The mechanical arrays consist of N unit cells, each containing sublattice a and sublattice b, marked in blue and
orange, respectively. (b) A depiction of the implemented mechanical oscillators, which features embedded accelerometers for the
real-time measurement of proxies for the position (x) and momentum (p), a set of two springs and a dipole magnet embedded
in a pair of anti-Helmholtz coils for the application of forces. Real-time feedback forces F , which depend on the real-time
measurements xi and pi, are used to implement the target Hamiltonian H. (c) A photograph of our main experimental setup
supporting 16 oscillators (2 additional oscillators are located on a separate structure).

j signals as proxies for the position x and momentum p. We additionally multiply (i.e., normalize) the signals to put
them on a common scale, reflecting the equipartition of harmonic oscillators.

In this work, p-dependent feedback is only used for one purpose, to cancel the natural damping of each of the
individual oscillators. By applying self-feedback terms proportional to the oscillator momenta (pi), we cancel the
oscillators’ natural damping and explore coherent dynamics for well over 500 s (> 6500 periods). These long timescales
are essential for achieving the high frequency resolution of the experimental spectra.

We implement the feedback forces magnetically, avoiding any added mechanical contacts. Each oscillator has a
dipole magnet attached to a central, cylindrical shaft. The dipole magnet is embedded in a pair of anti-Helmholtz
coils. We control the current in these coils, which produces an axial magnetic field gradient that in turn creates a
force on the oscillator. We note that we operate the current in a polar fashion, with only one direction of current
flow allowed. In the previous iteration of these experiments (Refs. [39, 40]), we controlled positive and negative
variations about an overall offset gradient, thus achieving relative bi-directional control of the forces. In this updated
iteration, we operate with no current offset, instead simply applying feedback currents only when the oscillating force
control signals are determined to be positive (i.e., multiplying by an appropriate Heaviside function). The time-
averaged effective feedback is the same, as the reduced duty cycle (forces are only applied for a half of each oscillation
period) is compensated by an enlarged dynamic range (as no offset current value is applied), while reducing the power
consumption of the experiment.

In terms of our data and its analysis, our primary data consists of the real-time measurements of the x and p signals
for each of the oscillators. From these signals, the energy dynamics as presented in Fig. 3 and Fig. 4 of the main
text are determined simply by taking the sum of x2 and p2 (having previously scaled these to signals to be on the
same footing). We can additionally acquire representative energy spectra for the bulk and edge modes of the system
by simply taking a Fourier transform (and plotting its absolute value) of the measured x nonequilibrium dynamics
signals after applying the appropriate state initialization. As described in the text in relation to Fig. 2, three separate
spectra are explored: that of the left edge mode, the right edge mode, and the bulk. The left and right edge modes
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are explored by initially exciting either the first or last oscillator and then finding the peak of the power spectrum
based on the Fourier transform of the x1(t) or x18(t) signals, respectively. For the bulk modes, where more than just
the peak of the spectrum is displayed, the gray band regions of Fig. 2 are obtained as follows. We excite only the
ninth oscillator from the system bulk and then perform a Fourier transform of the x9(t) dynamics. The gray bands
plotted in Fig. 2 represent the regions of the resulting power spectra that have weight above a chosen cutoff value.
Each of these three spectra is derived from 500 s of nonequilibrium dynamics after the stated initialization.

Appendix B: Weyl Hamiltonian in synthetic systems

Before proceeding, let us first provide an introduction to WPs. WPs in three dimensions exhibit distinct charac-
teristics that set them apart from their two-dimensional counterparts, the Dirac point. The Dirac cone Hamiltonian
in 2D has the form of h(k) = vxkxσx + vykyσy, where vi are the group velocities. This form is protected by the
product of parity (P) symmetry [h(k) = σxh(−k)σx] and time-reversal (T) symmetry [h∗(−k) = h(k)]. Any pertur-
bation on σz terms, which break P or T, will open a band gap. In comparison, the Weyl Hamiltonian is expressed as
h(k) = vxkxσx+vykyσy+vzkzσz. Since all three Pauli matrices are utilized in the Hamiltonian, it becomes impossible
to introduce a perturbation that would open a band gap. This unique characteristic ensures the stability and robust-
ness of WPs in 3D periodic systems. The elimination and creation of WPs can only occur through pair-annihilations
and pair-generations of WPs with opposite chiralities. These processes typically require a strong perturbation in the
system. The chirality (c = ±1) of a WP can be defined as c = sgn(det[vij ]) for h(k) =

∑
ij kivijσj [20].

1. Derivation of Weyl Hamiltonian

In our model, the system consists of N unit cells, with each unit cell hosting two sites (sublattice a and b), which
takes the form of

Ĥ =

N∑
m

(ω0 + ωacosϕ) α̂
†
m,aα̂m,a +

N∑
m

(ω0 + ωbcos(ϕ+∆ϕ)) α̂†
m,bα̂m,b

+

N∑
m

(
λ1cosθ α̂†

m,aα̂m,b + λ2cosθ α̂m,aα̂
†
m,b

)
+

N−1∑
m

(
j α̂†

m+1,aα̂m,b + j α̂m+1,aα̂
†
m,b

)
,

(B1)

where the first two terms represents on-site terms, including natural frequency ω0, detuning frequency ωa(b), and
modulating terms ϕa and ∆ϕ. The middle terms v1(2) cos θ represent the intra-cell hopping terms, while the
term j corresponds to the inter-hopping terms. Due to the translation invariance of the bulk, we can make a

Fourier transformation α̂k,a(b) = 1√
N

∑N
i=1 e

−imkα̂m,a(b). Thus, Eq. (B1) can be rewritten in momentum basis

H =
∑

k(α̂
†
k,a α̂†

k,b) h(k) (α̂k,a α̂k,b)
T with

h(k) =

(
ω0 + ωacosϕ λ1cosθ + jeik

λ2cosθ + je−ik ω0 + ωbcos(ϕ+∆ϕ)

)
. (B2)

where σj , j = x, y, z is Pauli matrix, and the complex parameter hj = hR
j + ihI

j takes the form of

hR
x = (λ1cosθ + λ2cosθ + 2jcosk) /2, hI

x = 0,

hR
y = −jsink, hI

y = (λ1cosθ − λ2cosθ) /2,

hR
z = (ωacosϕa − ωbcos(ϕ+∆ϕ)) /2, hI

z = 0,

hR
0 = (2ω0 + ωacosϕa + ωbcos(ϕ+∆ϕ)) /2, hI

0 = 0.

(B3)

The complex-energy spectrum of Eq. (B2) can be explicitly expressed as follows

E± = h0 ±
√

h2
R − h2

I + 2i hR · hI, (B4)

where h = hR + i hI with h ∈ R3.
For the Hermitian case (λ1 = λ2 = v with hI = 0), degeneracies in the spectrum [Eq. B4] occur only if all three

components of hR are simultaneously tuned to zero. Here, h has one mirror symmetry, h(θ) = h(−θ), and anti-
translation symmetry h(ϕ) = −h(ϕ+ π). Consider, for instance, a Weyl point at (θ, k, ϕ) with chirality C = 1. The
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mirror symmetry reverses the chirality and gives a Weyl point at (−θ, k, ϕ). The anti-translation symmetry also gives
a Weyl point at (−θ, k, ϕ+ π) with C = −1. Since the Weyl points in our system require sink = 0, with k = 0 or π,
we conclude that there are a total of 8 Weyl cones in the first Brillouin zone. We assume a WP located at (θ0, k0, ϕ0)
and near the point are θ0 + qθ, k0 + qk, and ϕ0 + qϕ. In the vicinity of the WP, the Hamiltonian Eq. (B3) should take
the Weyl Hamiltonian form [5], and thus can be rewritten as

hx = vcosθ0 + jcosk0 − vsinθ0qθ − jsink0qk = vθqθ,

hy = −jsink0 + jcosk0qk = vkqk,

hz = (ωAcosϕ0 − ωBcos(ϕ0 +∆ϕ) /2− ωAsinϕ0qϕ/2 + ωBsin(ϕ0 +∆ϕ)qϕ/2 = vϕqϕ,

h0 = (2ω0 + ωacosϕ0 + ωbcos(ϕ0 +∆ϕ)) /2− ωasinϕ0qϕ/2− ωbsin(ϕ0 +∆ϕ)qϕ/2 = ϵ0 + v0qϕ,

(B5)

where

vθ = −vsinθ0, with sinθ0 = ±
√

v2 − j2

v
;

vk = jcosk0, with k0 = 0, π;

vϕ = −ωasinϕ0/2 + ωbsin(ϕ0 +∆ϕ)/2, withϕ0 = ±arccos

(
∓ ωbsin∆ϕ√

ω2
a + ω2

b − 2ωaωbcos∆ϕ

)
;

v0 = −ωasinϕ0/2− ωbsin(ϕ0 +∆ϕ)/2, and ϵ0 = (2ω0 + ωacosϕ0 + ωbcos(ϕ0 +∆ϕ)) /2.

(B6)

The corresponding energy spectrum of the two bands are denoted as follows:

ϵ±(q) = ϵ0 + v0qϕ ±
√

v2θq
2
θ + v2kq

2
k + v2ϕq

2
ϕ, (B7)

where “+” and “-” correspond to the upper and lower bands, respectively. In order to distinguish between the two
types of WPs, we decompose the Hamiltonian (Eq. (B3)) into hW (q) = ϵ0σ0 +HU +HT , with

hU = vθqθσx + vkqkσy + vϕqϕσz,

hT = v0qϕσ0,
(B8)

where hU and hT constitute the potential and kinetic energy components of hW (q). The total energy spectra ϵ± can
thus be decomposed into the constant energy component of ϵ0 as well as the potential and kinetic energy spectra U
and T , with

U =
√

v2θq
2
θ + v2kq

2
k + v2ϕq

2
ϕ;

T =v0qϕ.
(B9)

For WP1, U > T should be satisfied in all directions. On the contrary, if there exists a particular direction along
which T dominates over U with T > U , the WPs are of Type-II. Therefore, the system exhibits a phase transition
from WP1 to WP2 at T = U . The phase transition point can be obtained by comparing T and U . It can also be
obtained by measuring the group velocity in ϕ parametric space, which is given by

vϕg,±(qθ, qk, qϕ) =
∂ϵ±(q)

∂qϕ
= v0 ±

qϕv
2
ϕ√

v2θq
2
θ + v2kq

2
k + v2ϕq

2
ϕ

. (B10)

In the vicinity of WPs with qθ = qk = 0, the group velocities can be reduced to vϕg,±(0, 0, qϕ) = v0 ± vϕ. For WP1,
the group velocities of two bands should have opposite directions, which means |v0| < |vϕ|. On the contrary for WP2,
the two group velocities should have the same direction, such that |v0| > |vϕ|. So at the phase transition point, the
group velocity satisfies |v0| = |vϕ|. Thus, the two group velocities will become{

vϕ,+ = v0 + vϕ;
vϕ,− = 0,

(B11)

showing that one of the bands will become flat in the vicinity of WPs with zero group velocity while the other band
has finite group velocity. So the local flat band structure is a physical signature of phase transition occurring at the
boundaries between WP1 and WP2. In Fig. 7, we exhibit the projected band structures and isoenergy contours in
parametric space with k=0 and k=π. For each type, there are 8 WPs in the first Brillouin zone.
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FIG. 7. (a-c) Band structure of WP1, transition point, and WP2, where the phase difference satisfies ∆ϕ = π, π/3, and
0, respectively. The corresponding isoenergy contours of the lower band are shown in the second line, where we marked the
position and chirality of four WPs with signs “+” and “-”. Here we take λ1 = λ2 = 2j, ωa = 1.5j, and ωb/ωa = 0.5. (d-f) The
real part of the non-Hermitian band structure, with an inset in (d) displaying the band structure of the imaginary part (the
imaginary part band structures in the other figures exhibit the same pattern, hence, for brevity and clarity, we present the
results for only one). Here we take non-reciprocal hopping terms satisfying λ2 = 2.5λ1 = 2j, and other parameters remain
consistent with the Hermitian case.

2. Symmetry analysis

Weyl points arise from Dirac points by breaking Parity (P) or time-reversal (T) symmetry. The Hamiltonian near
Dirac point takes the form of h(k) = v1k1σx + v2k2σy, where vi is the group velocity. In our model, we introduce
the hopping terms among sublattices a and b to realize the Dirac Hamiltonian, which is protected by sublattice
symmetry [h(k) = σzh(k)σz] and the product of parity symmetry [h(k) = σxh(−k)σx] and time-reversal symmetry
[h∗(−k) = h(k)]. Then we add the phase modulation to realize Weyl Hamiltonian in synthetic dimension, expressed
as h(k) = v1k1σx + v2k2σy + v3k3σz.
To analyze the Weyl Hamiltonian symmetry in parametric space, , we replace it with (k, θ, ϕ). In the vicinity of

WPs (k0, θ0, ϕ0), we have (k, θ, ϕ) = (k0 + qk, θ0 + qθ, ϕ0 + qϕ). For time-reversal symmetry, we have

h(θ, k, ϕ) = σxqθvθ + σyqkvk + σzqϕvϕ

h∗(−θ,−k,−ϕ) = σxqθv
′
θ − σyqkv

′
k + σzqϕv

′
ϕ

(B12)

And time-reversal symmetry [h∗(−θ,−k,−ϕ) = h(θ, k, ϕ)] requires vθ = v′θ, vk = −v′k, and vϕ = v′ϕ.

For parity symmetry (inversion symmetry), we have

σxh(−θ,−k,−ϕ)σx = σxqθv
′
θ − σyqkv

′
k − σzqϕv

′
k (B13)

and parity symmetry [σxh(−θ,−k,−ϕ)σx = h(θ, k, ϕ)] requires vθ = v′θ, vk = −v′k, and vϕ = −v′ϕ.
For PT symmetry, we have

σxh
∗(−θ,−k,−ϕ)σx = σxqθv

′
θ + σyqkv

′
k − σzqϕv

′
ϕ (B14)
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FIG. 8. Weyl Dispersion Diagram for Type-I (a), Transition (b), and Type-II (c). The bottom of each figure illustrates the
isofrequency contours, with the isofrequency surface passing through the Weyl points. WP1 is characterized by a point-like
feature, whereas WP2 displays a crossing at the Weyl point, maintaining a constant spatial direction with k1 = k2=const. At
the transition point, linear dispersion emerges solely in one direction, revealing unique asymmetric propagation properties.

and PT symmetry [σxh
∗(−θ,−k,−ϕ)σx = h(θ, k, ϕ)] requires vθ = v′θ, vk = v′k, and vϕ = −v′ϕ.

In our model, as shown in Eq. (B6), we have vθ = −vsinθ0 = vsin(−θ0) = v′θ, vk = jcosk0 = jcos(−k0) = −v′k,
vϕ = −ωasinϕ0/2 + ωbsin(ϕ0 +∆ϕ)/2, and v′ϕ = ωasin(−ϕ0)/2− ωbsin(−ϕ0 +∆ϕ)/2. For ∆ϕ ̸= 0 or ±π, vϕ ̸= ±v′ϕ,

both T- and P-symmetry are broken. For ∆ϕ = 0 or ±π, vϕ = v′ϕ, T-symmetry is preserved while P-symmetry is

broken, except for ∆ϕ = 0 and ωa = ωb. In that case, vϕ = v′ϕ = 0, and both P- and T-symmetry are protected. Note
that the analysis of T and P symmetry is conducted in the parametric space, and thus can not reflect the true T and
P symmetries observed in real space.

3. Application of the Weyl type I-II transition

In Weyl semimetals, type-I and type-II Weyl points exhibit markedly different properties. Specifically, type-II Weyl
points are associated with a novel chiral anomaly and varying densities, influencing their thermodynamic behaviors
distinctively [14]. This is further exemplified in photonic systems, where the diverse band dispersions of these Weyl
points enable manipulation of the direction of light propagation. Thus, using flexible parametric control to realize a
transition from Weyl type-I to type-II provides a method to manipulate the dynamic behaviors of Weyl semimetals.
We would like to present the applications from previous studies as follows:

As demonstrated in Ref. [27], the band dispersion of edge states can be applied to frequency control and manip-
ulation, such as one-way frequency conversion. In type-I Weyl points, two group velocities (vg = ∂E(q)/∂q) have
opposite signs, while in type-II, both velocities are of the same sign. At the transition point, the emergence of a flat
band structure leads to the vanishing of one of the two velocities, thus offering control over the orientation, location,
and anisotropy of the Weyl points.

The isofrequency surfaces for type-I and type-II Weyl points exhibit significant differences. As illustrated in Fig. 8,
these include (a) Type-I with point-like Fermi surfaces; (b) Transition point characterized by unidirectional conical-
like Fermi surfaces; and (c) Type-II with symmetric or asymmetric conical-like Fermi surfaces. Near the Weyl point,
type-I with point-like surfaces show isotropic properties, whereas type-II displays linear dispersion with a fixed spatial
direction k1/k2 = const. At the transition point, the linear dispersion emerges in only one direction as shown in
Fig. 8(b), revealing unique asymmetric propagation properties. These variations in isofrequency surfaces between
type-I and type-II result in different light propagation behaviors, as has been theoretically and experimentally studied
in Ref. [18, 19].

In our research, we experimentally demonstrate varying dispersion responses of different Weyl types. The flexible
Weyl type I-II control gives us a method to modify the dispersion diagram, thus allowing control over the anisotropy
of isofrequency contours around Weyl points. This paves the way for further applications in manipulating dynamic
behaviors in Weyl semimetals.
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Appendix C: Impact of non-Hermiticity in Weyl Hamiltonian

1. Non-Hermitian band structure

The non-reciprocal hopping terms are introduced in our system by nonreciprocal feedback forces. Specifically,
a desired Hamiltonian, denoted as h, is achieved by applying feedback forces to the oscillators in the form Fi =
dpi/dt = −∂h/∂xi, where xi denotes the displacement of the ith oscillator. Cross-feedback forces related to the
nearest oscillators’ positions allow us to introduce independent and possibly non-reciprocal left-to-right (Fi ∝ xi+1)
and right-to-left (Fi+1 ∝ xi) hopping terms. In our model, the non-Hermiticity is achieved by applying a nonreciprocal
feedback force between sublattice sites a and b in each unit cell, with intra-cell hopping term λ1 ̸= λ2. With breaking
parity symmetry, degeneracies occur when h2

R − h2
I = 0 and hR · hI = 0 are simultaneously satisfied [see Eq. (B4)].

These conditions transform the Weyl points into Weyl rings in the θ-ϕ space.
As shown in Fig. 9(a,b), we plot the real and imaginary band structure when λ1 ̸= λ2 (due to the mirror symmetry,

it suffices to showcase the portion of parameters ranging from 0 to π). It is observable that the degeneracy points
form a nodal line in the parametric space, indicating a transformation of the WPs from the Hermitian band structure
into a Weyl ring in the non-Hermitian system. The presence of this Weyl ring in the non-Hermitian region can be
experimentally confirmed within our systems. As depicted in Fig. 9(c,d), we examine the projected band structure
using a θ cut and ϕ cut.

For the real parts we initialize on the left site, measure the dynamics for a total of 500 s, and find the peaks of the
fourier spectra of x1(t). For the imaginary parts, we fit the x2

1 + p21 dynamical growth to the form e4πgt and relate
g = Im[ε] (note that the negative imaginary parts, which indicate the decay rate of oscillators, are not shown in
our plots as the competition between gain and loss makes it difficult to measure the decay rate). In the PT-phase
symmetric region, it is noticeable that the imaginary part of the system is zero. However, in the PT-phase broken
region, the imaginary part becomes non-zero, leading to a significant increase or decay in the energy of the oscillator.
The bifurcation structure observed in both θ and ϕ closely align with the theoretical prediction (black and gray
curves). This correspondence suggests that the observed bifurcation patterns serve as evidence for the existence of
Weyl rings in the non-Hermitian regions.

2. Non-Hermitian skin effects and edge state localization transition

One of the intriguing and distinct features of non-Hermitian systems is the presence of the non-Hermitian skin
effect when truncating to open boundary conditions, which will lead all modes to localize on the same edge. In non-
Hermitian systems, the sufficient and necessary conditions for the skin effect are [41]: (i) Any part of the generalized
Brillouin zone (GBZ) that lies within (without) the unit circle corresponds to a set of skin modes on the right (left)
side. (ii) The skin effects occur if and only if the periodic spectra enclose a finite area. In our cases, the nonreciprocal
hopping terms break parity symmetry, resulting in the entire GBZ being inside the unit circle [Fig. 10(a)] and the
periodic spectra’s shape enclosing a finite area [Fig. 10 (b)]. Consequently, all bulk states manifest as skin modes on
the right side, as depicted in Fig. 10(c).

We demonstrate that the non-Hermitian skin effect (NHSE) can impact the Weyl band structure in two ways. First,
it modifies the topological transition point (see Fig. 3(a) and Fig. 5(a) of main text). Second, it changes the edge
localization of the Fermi arc surface states. With the skin effect, the bulk modes tend to be localized on the right
side. In contrast, the edge states show a different localization due to the competition between band symmetry and
skin effects. In the topologically nontrivial area where symmetry is dominant, the two edge states localize on opposite
sides. In contrast, when the skin effect is dominant, these states localize on the same edge. The interplay between
these two dynamics leads to a localization transition of the edge states.

To quantify the topological dominant region (TDR) and the non-Hermitian skin effect dominant region (NHDR),
we use a local density (LD) of edge modes over the left-half cells, defined as:

LD =

⌊N/2⌋∑
n=1

∑
i=a,b

[|ϕe1
n,i|

2 + |ϕe2
n,i|

2], (C1)

where ⌊N/2⌋ denotes the floor function rounding down N/2 to its next lowest integer. The superscripts e1 and e2
refer to the two edge modes. The quantity LD serves as a count for the number of localized states at the left end of
the chain. Specifically, a value of LD = 1 indicates that the two states are independently localized at the two chain
ends, signifying the occurrence of the TDR. On the other hand, an LD value of 0 implies that the two states are
localized at the right chain end, representing the presence of edge modes associated with the NHDR.



14

Im[ 𝜖𝜖]

𝜋𝜋
𝜋𝜋/2

0

𝜋𝜋/2
𝜋𝜋𝜙𝜙𝜃𝜃0

𝜋𝜋
𝜋𝜋/2

0

𝜋𝜋/2
𝜋𝜋𝜙𝜙

Re[ 𝜖𝜖]

𝜃𝜃0

𝜙𝜙
0 𝜋𝜋𝜋𝜋/2

13.06

12.98

13.14

13.06

13.00

13.12
Re[𝜖𝜖](Hz) Im[𝜖𝜖](mHz)

0

-15

15

Re[𝜖𝜖](Hz) Im[𝜖𝜖](mHz)

0

-15

15

𝜃𝜃
0 𝜋𝜋𝜋𝜋/2

(a) (b)

(c) (d)

FIG. 9. Non-Hermitian band structure. (a,b) The real and imaginary parts of the band structure are plotted in parametric
space. The experimental results are shown through a θ = π/2 cut in (c) and a ϕ = π cut in (d), where the orange and blue
dots are real parts and the red dots represent the positive imaginary parts. The black and gray curves are the corresponding
theoretical results. In experiments, we set k = 0, ∆ϕ = π, λ1/2π = 24 mHz, λ2/2π = 60 mHz, j/2π = 30 mHz, and
ωa/2π = ωb/2π = 45 mHz. Each data point here is acquired from five repeated measurements in two oscillators, with the error
bars representing the standard error of those sets of measurements.

The transition points and localization characteristics differ between type-I and type-II Weyl points. As depicted
in Fig. 11, we plot the LD as a function of the parameters θ and ϕ, demonstrating the transition from topological
dominated region (TDR) to non-Hermitian skin effect dominated region (NHDR) for Weyl type I (a), the Weyl
transition point (b), and type II (c). We note that the peaks, where the skin effects are most pronounced (dashed
grey lines), align with the locations of the Fermi arcs (where two edge states are degenerate). Furthermore, the width
of these peaks (depicted in red) increases from WP1 to WP2. This widening is due to the varying band dispersion.
A detailed explanation is provided below:

At the degenerate point, the coupling between two edge modes becomes significant. This coupling enhances the
skin effect of edge modes and enlarges the non-Hermitian dominant region. When ϕ deviates from the degeneracy
point, a gap begins to form between the two edge states, reducing their coupling. Consequently, the area impacted by
the skin effect starts to diminish. Given that WP1 and WP2 possess distinct dispersion relations, the velocities for
opening a gap vary significantly. For WP1, the two edge states deviate in opposite directions, whereas for WP2, they
move in the same direction. These differences result in a larger gap at WP1 compared to WP2 when deviating from
the degeneracy point by the same amount, as illustrated by the black bidirectional arrow in Fig. 11 (e)-(g). A larger
gap causes a more pronounced reduction in peak size, explaining why WP1’s peak is narrower than that at WP2.
Interestingly, in a particular scenario where two edge states are degenerate for any value of ϕ (Fig. 11(h)), most of
the region is dominated by skin effects, as illustrated in Fig. 11(d).

To further understand these behaviors, we provide the exact calculation of edge states as detailed in Sec. C 3 of
the supplement. Our findings reveal that when the eigenvalues of two edge states are degenerate, the transition
point occurs at θ = π/3 in the thermodynamic limit. In this scenario, the two edge states are separately located
at opposite ends of the chain, with no overlap or coupling. However, in systems with a finite number of cells, the
coupling between edge states becomes significant. This coupling enhances the skin effect of the edge modes and
enlarges the non-Hermitian dominant region. As a result, the NHDR expands when the system size is reduced, as
shown in Figure 12(a). In contrast, when the two edge states are non-degenerate, as demonstrated in Fig. 12(f), the
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FIG. 11. Influence of skin effects on WP1 and WP2. (a)-(c) TDR-NHDR diagram of edge state localization transition as a
function of system size ϕ and θ for WP1 (a), Weyl transition point (b), and WP2 (c). TDR (blue region) and NHDR (orange
region) are characterized by LD = 0, and 1, respectively. The peaks marked by dashed grey lines are the location of the Fermi
arc, where the eigenvalues of two edge states are degenerate. (e)-(g) The corresponding energy spectrum at θ = 0.35π. Here
we take λ2 = 2j = 2.5λ1, ωa = 2ωb = 1.5j, and 2N = 18. (d)(h) A specific scenario with ωa = ωb and ∆ϕ = 0. The NHDR is
significantly larger than the TDR, and the two edge states are degenerate for any value of ϕ.

gap between them prevents mode coupling. This makes the TDR-NHDR diagram more robust to variations in system
size. This explains why, when ϕ deviates from the degenerate point, the edge state transition point finally stabilizes
at θ = π/3 in Fig 11 (a)-(c).

More interestingly, at the degenerate point, the localization of the edge state undergoes a sudden transition from the
same end to the opposite ends of the chain, as demonstrated in our analytical solutions and Fig. 12(b)-(e). In contrast,
in the non-degenerate case, the distribution of one edge mode gradually shifts from the right to the left, as shown
in Fig. 12(g)-(j). At the edge localization transition point in Fig 12(h), it displays total delocalized properties. This
in-gap extended mode is a result of the competition between the non-Hermitian skin effect and band topology, which
reveals a promising method for topologically-protected wave control. It’s worth noting that in Wang et al., Nature
608, 50 (2022) [42], they find a similar phenomenon, which is induced by the competition between a Hermitian-non-
Hermitian domain wall and skin effects. They point out that these delocalized states, called ”topological morphing
modes”, are very useful for deforming topological modes into a diversity of shapes. Our research not only expands and
deepens the current understanding of non-Hermitian edge state transitions but also paves the way for new approaches
in topological engineering.
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FIG. 12. The edge state transition in finite-size systems. (a) Numerically calculated TDR-NHDR diagram of edge state
transition as a function of system size L and θ when two edge states are degenerate. TDR (blue region) and NHDR (orange
region) are characterized by LD = 0, and 1, respectively. The dashed line with the red triangles denotes four examples at L = 60
as illustrated in (b)-(e), where the mode profiles for two surface modes (blue and orange) and bulk modes (gray) are presented.
The insets show the corresponding PBC and OBC spectra of the systems. Here we take λ2 = 2j = 2.5λ1, ωa = 2ωb = 1.5j,
ϕ = π/2, and ∆ϕ = 0, (f)-(j) Similar studies are plotted at ϕ = 0.4π with two edge states being non-degenerate, revealing the
robustness of edge state to system size and the emergence of delocalized surface modes at transition points (h). Here we take
ϕ = 0.4π, and other parameters are the same as those presented in (a)-(e).

3. Exact calculation of edge states

This competition between symmetry and non-Hermitian skin effect can be understood by the analytical solution of
the two surface states of our Hamiltonian in Eq. (B1), satisfying

H

N∑
n=1

(an|n, a⟩+ bn|n, b⟩) = ϵs (an|n, a⟩+ bn|n, b⟩) . (C2)

This gives 2N equations for the amplitudes an and bn as follows,

for n = 1, 2..., N − 1 : λ2cosθ an + (ω0 + ωbcos(ϕ+∆ϕ)) bn + j an+1 = ϵs bn;

j bn + (ω0 + ωacosϕa) an+1 + λ1cosθ bn+1 = ϵs an+1;

for boundaries : (ω0 + ωacosϕa) a1 + λ1cosθ b1 = ϵs a1;

λ2cosθ aN + (ω0 + ωbcos(ϕ+∆ϕ)) bN = ϵs bN .

For the sake of computational convenience, we can decompose the on-site terms ωacosϕa and ωbcos(ϕ + ∆ϕ) into
a common central frequency and a detuning frequency. This decomposition takes the form: ωacosϕa = ωc + δω,
ωbcosϕa = ωc − δω, where ωc = (2ω0 + ωacosϕa + ωbcos(ϕ+∆ϕ)) /2 and δω = (ωacosϕa − ωbcos(ϕ+∆ϕ)) /2. The
common part acts as a frequency shift, which does not influence the mode profiles. Without loss of generality, we can
remove it by switching to a frame rotation at frequency ωc. Thus, the Eq. (C3) can be rewritten in:

for n = 1, 2..., N − 1 : λ2cosθ an − δω bn + j an+1 = ϵs bn;

j bn + δω an+1 + λ1cosθ bn+1 = ϵs an+1;

for boundaries : δω a1 + λ1cosθ b1 = ϵs a1;

λ2cosθ aN − δω bN = ϵs bN .

where the surface states satisfy ϵs = ±δω. When δω = 0, we have two zero energy surface states. The solution to the
above equation is

an = a1

(
−λ2cosθ

j

)n−1

, for n = 1, . . . , N ;

bn = bN

(
−λ1cosθ

j

)N−n

, for n = 1, . . . , N. (C3)
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where aN =
√
λ2
2cos

2θ − j2/j and b1 =
√
j2 − λ2

1cos
2θ/j are normalized parameters. In the thermodynamic limit

(N → ∞), to satisfy the boundary condition aN = b1 = 0, the intercell hopping must be stronger than the intracell
hopping, i.e., λ1(2)cosθ < j. If λ1cosθ < j and λ2cosθ < j, we have two zero-energy solutions, which localize at the
different boundaries:

|L⟩ =
N∑

n=1

an|n, a⟩, |R⟩ =
N∑

n=1

bn|n, b⟩. (C4)

In this region, dominated by band topology, the edge states separately distribute at two ends.
In contrast, if |λ1cosθ| < |j| and |λ2cosθ| > |j| (assuming |λ2| > |λ1|), the boundary condition aN = 0 requires

an = 0 for all n, thus the edge states will only takes this form:

|R⟩ =
N∑

n=1

bn|n, b⟩. (C5)

This result indicates the two edge states will localize at the same edge, which can be understood as driven by the
non-Hermitian skin effect. The interplay and competition between band topology and non-Hermiticity leads to a
transition from non-Hermitian dominance to symmetry dominance in the behavior of the localized boundary modes.
The transition point where the edge states distribute at different ends to the same end is determined by the condition:

max{|λ1cosθ|, |λ2cosθ|} = |j|. (C6)
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