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We study macroscopic behavior of populations of quadratic integrate-and-fire neurons subject to non-Gaussian noises;

we argue that these noises must be alpha-stable whenever they are delta-correlated (white). For the case of additive-

in-voltage noise, we derive the governing equation of the dynamics of the characteristic function of the membrane

voltage distribution and construct a linear-in-noise perturbation theory. Specifically for the recurrent network with

global synaptic coupling, we theoretically calculate the observables: population-mean membrane voltage and firing

rate. The theoretical results are underpinned by the results of numerical simulation for homogeneous and heteroge-

neous populations. The possibility of the generalization of the pseudocumulant approach to the case of a fractional

α is examined for both irrational and fractional rational α . This examination seemingly suggests the pseudocumulant

approach or its modifications to be employable only for the integer values of α = 1 (Cauchy noise) and 2 (Gaussian

noise) within the physically meaningful range (0;2]. Remarkably, the analysis for fractional α indirectly revealed that,

for the Gaussian noise, the minimal asymptotically rigorous model reduction must involve three pseudocumulants and

the two-pseudocumulant model reduction is an artificial approximation. This explains a surprising gain of accuracy for

the three-pseudocumulant models as compared to the the two-pseudocumulant ones reported in the literature.

The abundance of a surprisingly low effective dimension-
ality of macroscopic dynamics of classical model oscilla-

tor populations had been puzzling researchers for a long
time before it received a proper mathematical explana-

tion. The Watanabe–Strogatz and Ott–Antonsen theories
elucidated the laws of these dynamics for an important
class of systems. With individual (intrinsic) noise the at-

tractivity of low dimensional regimes is often even more
pronounced, but the Ott–Antonsen theory is inapplicable.

The mathematical key to the solution of this problem came
with the circular cumulant formalism. For the model of

quadratic integrate-and-fire neuron, which is the normal
form for the Class I excitability neurons near the bifur-

cation point, Montbrió, Pazó, and Roxin offered an alter-
native framework. It is mathematically equivalent to the

Ott–Antonsen theory, but employs generic observables:
population-mean membrane potential and firing rate. The

formalism of pseudocumulants provided a language for
dealing with violations of the Montbrió–Pazó–Roxin the-

ory and, specifically, the case of Gaussian noise. However,
the effective noise generated by fluctuations is not neces-

sarily Gaussian and can be alpha-stable, i.e., its distribu-
tion can possess heavy power-law tails. We look at the

possibility to generalize the Montbrió–Pazó–Roxin frame-
work to the case of fractional alpha-stable noises via the

pseudocumulant formalism and the dynamics of the char-
acteristic function. While our mathematical results can
be directly transferred to the problem of the Anderson lo-

calization in 1D setups and some other condensed matter
problems, for the sake of specificity, we focus on the inter-

pretations linked to the population of quadratic integrate-

and-fire neurons with global synaptic coupling.

I. INTRODUCTION

In collective dynamics of populations of neurons, fluctua-

tions play an essential role.1 These fluctuations can be both

extrinsic and endogenous; they can be often represented as an

effective noise. Noteworthily, many noise-induced collective

phenomena, like coherent oscillations, can be reproduced2–6

with the basic mathematical model of a quadratic integrate-

and-fire (QIF) neuron.7,8

Strictly saying, by virtue of the Central limit theorem, the

superposition of a large number of sources of finite fluctua-

tions can generate only Gaussian distributions. However, the

separation of time scales of different Gaussian components

can result in the necessity to introduce several effective Gaus-

sian noises with non-stationary properties or some other com-

plications. Meanwhile, in diverse limiting cases, mathemat-

ical idealizations result in a single non-Gaussian (α-stable)

noise. For many real-life systems the idealization of α-stable

distribution also provides an accurate description with only a

few quantifiers, while the representation by a superposition of

Gaussian components creates an obscure picture with a plenty

of parameters and large uncertainties in their values due to

the imperfectness and finiteness of any real-life statistical data

sets.

Thus, some real fluctuation sources can be either ade-

quately represented by a complex superposition of Gaussian

noises with sophisticated separation of time scales, or bet-
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ter described by an idealization of a single stationary noise

with heavy power-law tails9,10 ∝ 1/|x|α+1, an α-stable noise,

for which we will provide a moderately detailed introduction

in the section with mathematical preliminaries. In particu-

lar, the synchronization of limit cycle oscillators by common

noise11–13 in imperfect situations results in a Cauchy distribu-

tion of oscillator deviations from the cluster center;14 this cor-

responds to α = 1. Later on,15 in the limit of high synchrony,

it was found that the interplay of the mechanisms of synchro-

nization by coupling and common noise generates α-stable

fluctuations with α < 1 for a repulsive coupling and α > 1 for

an attractive one. Furthermore, the synchronization by com-

mon noise can be also viewed as a theoretical framework for

the generalized synchronization of chaotic oscillations,16–18

where the driving chaotic signal is considered as a colored

noise.19 Summarizing, the importance of α-stable fluctuations

in large ensembles of coupled oscillators with slightly imper-

fect synchrony can hardly be underestimated. If the effective

endogenous noise in the network of coupled QIFs emerges

from the asynchronous dynamics of individual elements, one

can expect the existence of setups (network structures) where

this noise can be α-stable with α 6= 2 (non-Gaussian).

In 2008, Ott and Antonsen (OA) constructed a theory which

gives an exact self-contained dynamic equation for the Ku-

ramoto order parameter for an important class of phase oscil-

lators.20,21 For QIFs, one can switch from a membrane po-

tential V to a phase-like variable θ via the transformation

θ = 2arctanV and find a phase dynamics equation of the

sort for which the OA theory is valid. On the basis of the

OA theory a “next generation of neuron mass models”22 was

constructed.23–26 Specifically for QIFs, Montbrió, Pazó, and

Roxin (MPR) discovered27 that if one deals with V without

switching to θ , one can derive an even more simple self-

contained dynamic equation system for two generic observ-

ables: the population-mean membrane potential and the in-

stantaneous firing rate. Mathematically, the OA and MPR

theories correspond to the dynamics on the same manifold

(though in different variables), but these approaches offer dif-

ferent primary observables and, more fundamentally, require

different perturbative approaches, where their applicability

conditions are imperfectly met. Both these theories are inap-

plicable when the elements are subject to nonidentical noise

signals. One can make their generalization for the case of a

Cauchy noise,28–31 but not any other noise.

For Gaussian noise, an advance with the theoretical

macroscopic description4–6,32 was made possible by the de-

velopment of the formalism of so-called “circular cumu-

lants”33,34which was introduced for the generalization of the

OA theory beyond its original applicability conditions. While

the circular cumulant formalism is a natural framework for the

OA theory, specifically for QIFs an alternative “pseudocumu-

lant” formalism3 offers a generalization of the MPR theory.27

Within the latter formalism, the firing rate and the population-

mean membrane voltage remain the primary dynamical vari-

ables entering the governing equations.

Recently, the cases of non-Gaussian stable noises acting

on QIFs started to attract the attention in mathematical neu-

roscience. However, currently, this interest is limited to the

only exactly solvable case of a Cauchy noise.29,30 The cir-

cular cumulant formalism was found useful for dealing with

non-Gaussian noises,35 but specifically for the case of QIFs

the more recent formalism of pseudocumulants can be even

more promising. In this paper, we explore the possibility of

the implementation/generalization of the pseudocumulant ap-

proach for/to the populations of QIFs subject to δ -correlated

non-Gaussian noise.

The paper is organized as follows. In Sec. II, we provide

mathematical preliminaries: a brief introduction for the α-

stable distributions and δ -correlated non-Gaussian noises, the

fractional Fokker–Planck equation for additive noise. Fur-

ther, we formulate the fractional Fokker–Planck description

for the macroscopic dynamics of the recurrent synaptic net-

work of quadratic integrate-and-fire neurons subject to non-

Gaussian noise in Sec. II C. In Sec. II D, we derive the gov-

erning equation for the dynamics of the characteristic function

of the membrane voltage distribution and present the pseu-

documulant formalism. In Sec. III, for the case of noninteger

α , we construct a first-order perturbation theory for the ef-

fect of noise on the characteristic function and derive macro-

scopic observables: population-mean voltage and firing rate.

In Sec. IV, the theoretical results for macroscopic states of ho-

mogeneous populations of QIFs are reported. In Sec. V, we

compare the theoretical results against the background of the

results of numerical simulation (also for a less mathematically

challenging case of heterogeneous populations) and discuss

general implications of the theoretical results and the exam-

ination (Appendix C) of the possibility to construct the gen-

eralization of the pseudocumulant expansion to the case of

noninteger α . In Sec. VI, conclusions are drawn.

II. MATHEMATICAL PRELIMINARIES AND
FORMULATION OF THE PROBLEM

A. Delta-correlated non-Gaussian noises

Let us consider a stochastic dynamical system subject to an

additive noise;

ẋ = f(x)+ gξ (t) , (1)

where x= {x1,x2, ...,xM}; the properties of δ -correlated noise

ξ (t) will be specified below, generally it is non-Gaussian.

For numerical simulation and a consistent theoretical for-

mulation of the problem, it is instructive to consider the

discrete-time version of Eq. (1) and the limit of time step size

∆t → 0. In discrete time, we interpret Eq. (1) as

x(t +∆t) = x(t)+
[

f
(

x(t)
)

+ gξ∆t(t)
]

∆t . (2)

For a discrete-time version ξ∆t, j = ξ∆t(t j) of noise ξ (t), the

autocorrelation 〈ξ∆t, jξ∆t,l 6= j〉 = 0, where 〈. . . 〉 indicates aver-

aging over the noise realizations. The normalization of ξ∆t, j

for a non-Gaussian noise requires a subtle treatment and will

be defined below.

In real-world systems, the probability density of fluctua-

tions often possesses heavy tails;36 in particular, this prop-

erty is fundamentally inherent to fluctuations in oscillator
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ensembles synchronized by common noise.14,15 Let us con-

sider Eq. (2) with time step ∆t and probability density of ξ∆t

with tails ∝ 1/|ξ∆t |1+α . If we consider the system dynamics

on the time scale τN = N∆t, which is large compared to ∆t

(N ≫ 1) but still small compared to the reference time scale

of the noise-average dynamics (τN ≪ 1), the noise will act as

ξN∆t = N−1 ∑N
j=1 ξ∆t, j with independent ξ∆t, j. By virtue of the

generalized central limit theorem, such sums are distributed

according to a Gaussian distribution for α ≥ 2 and accord-

ing to the α-stable distributions for 0 < α < 2 (in the lat-

ter case, the distribution of ξN∆t possesses 1/|ξN∆t |1+α -tails).

Thus, in numerical simulations, picking-up an α-stable dis-

tribution will yield better convergence of the results to the

limit ∆t → 0. In theoretical analysis, a physically consistent

consideration must employ the α-stable statistics for a delta-

correlated noise.

Now we briefly recall the properties of α-stable distribu-

tions.36 For α ≤ 0 the distribution cannot be normalized. Gen-

erally, these distributions are defined via their characteristic

functions; for a random number ξ ,

〈eikξ 〉 ≡ Fξ (k;α,β ,c,µ) = eikµ−|ck|α (1+iβ sign(k)Θ), (3)

where µ ∈ R is a shift parameter, c > 0 is a scale parameter

featuring the distribution width, β ∈ [−1,1] called the skew-

ness parameter (typically the term “skewness” is related to the

third cumulant, which diverges here, for α < 2),

Θ =

{

tan
(

πα
2

)

, for α 6= 1 ;

− 2
π ln |k| , for α = 1 .

In particular, for a Cauchy random variable, α = 1, µ is the

distribution median, β = 0, and c is a half-width at half-

maximum; for a Gaussian random variable, α = 2, µ is the

mean value, β is multiplied by 0, and the variance is 2c2.

It is important to discuss the scaling properties of the

discrete-time version of a δ -correlated α-stable noise with

∆t. The sum of two independent α-stable random variables

is an α-stable random variable with parameters [see Eq. (3)]

µ = µ1 + µ2,

|c|= (|c1|α + |c2|α)1/α , (4)

β = (β1|c1|α +β2|c2|α)/(|c1|α + |c2|α). For the sum of two

noise increments ξ∆t∆t the equivalent increment for the time

step size (2∆t) is ξ2∆t2∆t = 21/αξ∆t∆t [see the rule for the

summation of amplitudes (4)]; therefore,

ξ∆t ∝ (∆t)1/α−1.

In particular, for a δ -correlated Cauchy noise (α = 1) of

amplitude σ , one should take characteristic function (3) of

ξ∆t with c = σ . For a Gaussian noise (α = 2) of inten-

sity σ2, which corresponds to the continuous-time noise with

〈ξ (t)ξ (t + t ′)〉 = 2σ2δ (t ′), one should take characteristic

function (3) of ξ∆t with c2 = σ2/∆t.

B. Fractional Fokker-Planck equation for alpha-stable noise

For the stochastic system (1) with additive noise, the prob-

ability density function w(x, t) obeys a fractional Fokker-

Planck equation:37,38

∂w

∂ t
+

M

∑
l=1

∂

∂xl

(

fl(x)w
)

− Φ̇
(ξ )
t (iQ̂)w = 0 , (5)

where Q̂ ≡ ∑M
l=1 gl(∂/∂xl). For the case of symmetric α-

stable noise [Eq. (3) with µ = β = 0] of amplitude σ , func-

tion Φ̇
(ξ )
t (k) = −σα |k|α [see Appendix A for a minimalistic

derivation and Eq. (A3) for the intuition on notations]. A more

general derivation can be found in Refs. 37, 38 or Secs. III.A

and B of Ref. 35; e.g., Refs. 39, 40 also deal with Eq. (5).

Here and hereafter, we consider only this symmetric case and

use the form of operator Φ̇
(ξ )
t (iQ̂) in the Fourier space, where

Φ̇
(ξ )
t

(

i∑M
l=1 gl(∂/∂xl)

)

eik·x =−σα |g ·k|αeik·x.

With the characteristic function

Fx(k, t)≡ 〈eik·x〉=
∫

w(x, t)eik·xdMx , (6)

one can write the Fourier transform

w(x, t) =
1

(2π)M

∫

Fx(k, t)e−ik·xdMk , (7)

and

Φ̇
(ξ )
t (iQ̂)w(x, t) =

−σα

(2π)M

∫

|g ·k|αFx(k, t)e−ik·xdMk . (8)

C. Populations of quadratic integrate-and-fire neurons

Our consideration in Secs. II A and II B was performed in

the general form. Further advance cannot be made with the

same level of generality; it must be specific for a specific form

of the deterministic part of Eq. (1). Henceforth, we consider

populations of quadratic integrate-and-fire neurons (QIFs).8

Let us consider the recursive network of QIFs with global

synaptic coupling and endogenic noise:

V̇ j =V 2
j + I j , (9)

I j = η j +σξ j(t)+ Js(t)+ I(t) , (10)

where V j: the membrane voltage; η j: the excitability param-

eter of individual neuron, an isolated neuron is excitable for

η j < 0 and periodically spiking otherwise; I(t): the external

input current; independent α-stable endogenic (or intrinsic)

noises ξ j(t) are normalized [see Eqs. (1), (3) for amplitude

c = 1]. When V j reaches the threshold value B+ it is reset to

−B− and a synaptic spike is generated.7 The values of B± are

large and the theoretical results converge for B± → ∞. In the

limit B± → ∞, the inequality between B+ and B− is found to

effect the macroscopic dynamics of the population in the pres-

ence of the electrical gap coupling between neurons,42 which

is not considered in the model (9,10); its effect is controlled

by the ratio B+/B−. The impact of inequality of finite B±
on the macroscopic dynamics without gap junctions was also

thoroughly studied.43 Specifically for the model (9,10), with-

out the loss of generality, one can consider B+/B− = 1 and
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B± → ∞. The input synaptic current from other neurons Js(t)
is characterised by the coupling coefficient J, which is nega-

tive for an inhibitory coupling, and a common field

s(t) =
1

N

N

∑
j=1

∑
n

δ (t − t
(n)
j ) ,

where N is the number of neurons and t
(n)
j is the time instant

of the nth firing event of the jth neuron. In the thermody-

namic limit of a large population, N → ∞, the common field

s(t) = r(t), where the firing rate r(t) is the probability rate

of the firing event of an individual neuron averaged over the

population.

We consider a heterogeneous population with η j distributed

according to a Cauchy distribution

g(η) =
π−1∆

(η −η0)2 +∆2
, (11)

where η0 is the median of the distribution and ∆ is the half-

width at half-maximum (HWHM).

Let us index the QIFs by the value of parameter η j.

For (9,10), fractional Fokker–Planck equation (5) with one-

dimensional x =V for the η-subpopulation reads

∂wη

∂ t
+

∂

∂V

(

(Iη +V 2)wη

)

− Φ̇
(ξ )
t

(

iσ
∂

∂V

)

wη = 0 , (12)

with

Iη = η + Jr(t)+ I(t) .

Here the population-mean firing rate

r(t) =
∫ +∞

−∞
rη(t)g(η)dη , (13)

where the η-subpopulation firing rate rη is the probability

density flux qη(V, t) at V =±∞.

The probability density flux

qη(V, t) = (Iη +V 2)wη (V, t)

−
(

∂

∂V

)−1

Φ̇
(ξ )
t

(

iσ
∂

∂V

)

wη (V, t) ,

where (∂/∂V )−1 f (V ) ≡ ∫V
−∞ dV1 f (V1), the diffusive (latter)

term vanishes at V = ±∞ by virtue of its physical origin as

wη (V, t) and all its derivatives vanish at ±∞ for all α > 0.

Therefore, the relation

rη (t) = qη |V=∞ = lim
V→∞

V 2wη(V, t) (14)

holds for all α > 0.

D. Logarithm of characteristic function and
pseudocumulants

a. Characteristic function. One can project fractional

Fokker–Planck equation (12) into the Fourier space and

find the evolution equation for the characteristic function

Fη (k, t) = 〈eikVη 〉 of the η-subpopulation (see Ref. 3 for a

rigorous derivation);

∂Fη

∂ t
= ik

[

IηFη − ∂ 2

∂k2
Fη

]

−σα |k|αFη . (15)

With distribution (11), one can employ the residue theorem

and find the evolution equation for the population-mean char-

acteristic function3

F(k, t) =

∫ +∞

−∞
g(η)Fη (k, t)dη :

∂F

∂ t
= ik

[

I0F − ∂ 2F

∂k2

]

−|k|∆F −σα |k|α F , (16)

where I0 = η0 + Jr(t)+ I(t).
For the logarithm of characteristic function, Φ(k, t) =

lnF(k, t), one finds

∂Φ

∂ t
= ik

[

I0 −
∂ 2Φ

∂k2
−
(

∂Φ

∂k

)2
]

−∆|k|−σα |k|α . (17)

From definition (6), one can see the symmetry properties of

Φ(k, t) [and F(k, t)]:

Φ∗(k, t) = Φ(−k, t) , (18)

where the asterisk indicates complex conjugate.

For α = 1 and 2, Eq. (17) and the symmetry property (18)

suggest the most general form of the integer power-series ex-

pansion for Φ(k, t):

Φ(k, t) =−a(t)|k|+ iv(t)k− q2(t)|k|2 + ip2(t)|k|k
2

−q3(t)|k|3 + ip3(t)|k|2k

3
− . . .

−qm(t)|k|m + ipm(t)|k|m−1k

m
− . . . ,

where the series starts from the piecewise linear term as

Φ(0, t) = lnF(0, t) = 0 by construction; for this series, one

can alternatively write

Φ(k > 0) =−
∞

∑
m=1

Wm
km

m
, (19)

W1 = a− iv , Wm = qm + ipm .

Recently,3 the framework of quantities Wm was successfully

employed for the theoretical study of noise-induced collective

dynamics of populations of QIFs and Wm received the name

‘pseudocumulants.’

For a noninteger rational α = L/N, where L and N are nat-

ural numbers, Eq. (17) does not admit integer power series but

might admit

Φ(k > 0) =−
∞

∑
m=N

Wm
N

k
m
N

m/N
, (20)

Φ(k < 0) =−
∞

∑
m=N

W ∗
m
N

|k|m
N

m/N
,
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with nonzero fractional power terms, and the elements with

m < N are inadmissible as they induce the elements with neg-

ative m in Eq. (17).

For an irrational α , Eq. (17) cannot admit anything but

“mixed” power series:

Φ(k > 0) =−∑
m,n

Wm,n
km+nα

m+ nα
, (21)

where Wm,n = 0 for m+ nα < 1.

b. Boundary conditions for Φ(k, t). Partial differential

equation (17) is a second order equation with respect to k, and

generally one must have two boundary conditions for Φ(k, t).
First, by definition, F(0, t) = 1 and thus

Φ(0, t) = 0 . (22)

Second, for a physically meaningful distribution w(V, t), its

inverse Fourier transform F(k, t) must tend to zero at k → ∞.

Since F = eΦ, one must claim

lim
k→±∞

Re[Φ(k, t)] =−∞ . (23)

c. Pseudocumulants. In noise-free heterogeneous popu-

lations, σ = 0 and ∆ > 0, a Cauchy distribution of voltage V

was found to be attracting.27,2957 A Cauchy distribution

wLD(V, t) =
π−1a(t)

a(t)2 +[V − v(t)]2

corresponds to the characteristic function FLD(k) =
exp[−a|k|+ ivk], and

ΦLD(k) =−a|k|+ ivk .

Indeed, Eq. (17) with σ = 0 admits the latter solution. The

distribution width a determines the firing rate:

rLD(t) = lim
V→∞

V 2wLD(V, t) =
a(t)

π
.

The framework of pseudocumulant expansion (19) was in-

troduced for dealing with perturbations of a Cauchy distribu-

tion.3 This approach was employed to study the effect of a

Gaussian noise (α = 2) in populations of QIFs. The states of

the form Wm =W1δ1m, where δnm is the Kronecker delta, cor-

respond to a Cauchy distribution and higher pseudocumulants

Wm>1 describe deviations from it.

After substitution (19), partial differential equation (17)

with α = 1 (Cauchy noise) or 2 (Gaussian noise) yields an

infinite equation chain for pseudocumulants Wm ;

Ẇm = (∆− iI0)δ1m +ασαδαm

+ im
(

−mWm+1 +∑
m

n=1
WnWm+1−n

)

, (24)

with r(t) =
1

π
Re(W1) .

The convergence of a pseudocumulant series allows one to use

finite truncations of the infinite equation chain (24), where one

sets Wm = 0 for m larger than some truncation threshold mtr.

Such truncations yield low dimensional neural mass models.

However, substitution (19) is questionable for noninteger

values of α as |k|α with 0 < α < 1 or 1 < α < 2 cannot be

adequately represented by a series in integer powers of k. Be-

low, we consider partial differential equation (17) for nonin-

teger α . One of the aims of this paper is also to examine the

options (20) and (21) for the generalization of the concept of

pseudocumulants to the fractional α case.

III. NONINTEGER α

A. Linear approximation for a time-independent macroscopic
state

Let us consider the case of a weak noise and use ε = σα as

a smallness parameter. We substitute

Φ = Φ0 + εΦ1 + . . .

into Eq. (17) for k > 0 [the case of k < 0 is similar according

to the symmetry (18)] and obtain the following:

• In the ε0-order,

Φ0 =−W
(0)
1,0 k , (25)

d

dt
W

(0)
1,0 = ∆− iI0 + i

(

W
(0)
1,0

)2
. (26)

Here the superscript (0) indicates the leading order solution

for ε = 0. Eq. (26) admits two time-independent solutions

W
(0)
1,0 =±

√
I0 + i∆. Since I0 can be both positive and negative

and ∆ > 0, the plus-solution always belongs to the first quad-

rant of the complex plane, while the minus-solution does to

the third one. Hence, only

W
(0)
1,0 =+

√

I0 + i∆ (27)

satisfies the condition (23) [see Eq. (25)].

• In the ε1-order, a time-independent solution obeys

Φ′′
1 − 2W

(0)
1,0 Φ′

1 − ikα−1 = 0 , (28)

where the prime denotes the k-derivative.

The formal solution of Eq. (28) reads

Φ′
1(k > 0) = e

2W
(0)
1,0 k

(

C0 + i

k
∫

0

dk1kα−1
1 e

−2W
(0)
1,0 k1

)

, (29)

where the integration constant C0 is determined by condi-

tion (23). For ∆ > 0, W
(0)
1,0 has a positive real part and a

nonzero imaginary one, i.e., exp[2W
(0)
1,0 k] grows and oscil-

lates with k; therefore, condition (23) can be satisfied only

if C0 + i
∫+∞

0 dk1kα−1
1 e

−2W
(0)
1,0 k1 = 0. Hence,58

C0 =−i
Γ(α)

(

2W
(0)
1,0

)α
, (30)
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where Γ(·) is the complete gamma function. Therefore,

Eq. (29) can be rewritten as

Φ′
1(k > 0) =−i

+∞
∫

k

dk1kα−1
1 e

2W
(0)
1,0 (k−k1) ,

and, after integration with condition Φ1(0) = 0 (22), one ob-

tains

Φ1(k > 0) =−i

k
∫

0

dk1

+∞
∫

k1

dk2kα−1
2 e

2W
(0)
1,0 (k1−k2) . (31)

Now we must check that condition (30) is sufficient for so-

lution (31) to satisfy (23). For k ≫ 1, the integral

+∞
∫

k1

dk2kα−1
2 e

2W
(0)
1,0 (k1−k2)

≈ kα−1
1

+∞
∫

0

dk2e
−2W

(0)
1,0 k2 =

kα−1
1

2W
(0)
1,0

,

and

−i

k
∫

0

dk1
k1

2W
(0)
1,0

=
−ikα

2αW
(0)
1,0

=
kα (−W

(0)
1,0i − iW

(0)
1,0r)

2α
∣

∣W
(0)
1,0

∣

∣

2
,

where W
(0)
1,0 ≡W

(0)
1,0r + iW

(0)
1,0i and, for Eq. (27), one can calcu-

late W
(0)
1,0i =

[

(
√

I2
0 +∆2 − I0)/2

]1/2
. Hence, ReΦ1|k=±∞ =

−∞ and solution (31) satisfies the boundary conditions.

Summarizing,

Φ(k > 0) =−W
(0)
1,0 k− iσα

k
∫

0

dk1

+∞
∫

k1

dk2 kα−1
2 e

2W
(0)
1,0 (k1−k2)

+O
(

[σα ]2
)

. (32)

B. Expansion of Φ(k)

In order to put solution (32) into the context of the pseu-

documulant expansion, we consider the series of (32) for

small k. For this task, it is convenient to recast the integral
∫ +∞

k1
. . .dk2 into the form with the integration from 0, i.e.,

∫ k1
0 . . .dk2 [see (29)];

Φ(k > 0) =−W
(0)
1,0 k+σα

k
∫

0

dk1e
2W

(0)
1,0 k1

×
(

C0 + i

k1
∫

0

dk2kα−1
2 e

−2W
(0)
1,0 k2

)

+O
(

[σα ]2
)

.

In the latter equation, we can substitute expansions of all func-

tions in series of k and find

Φ(k > 0) =−W
(0)
1,0 k+σα

[

C0

(

k+W
(0)
1,0 k2 +

2

3

[

W
(0)
1,0

]2
k3

)

+
ikα+1

α(α + 1)
+

i2W
(0)
1,0 kα+2

α(α + 1)(α + 2)

]

+O
(

σα k4,σα kα+3, [σα ]2
)

.

Substituting C0 (30), we obtain

Φ(k > 0) =−W
(0)
1,0 k+

σα

2α



− iΓ(α)k
[

W
(0)
1,0

]α
− iΓ(α)k2

[

W
(0)
1,0

]α−1

− i2Γ(α)k3

3
[

W
(0)
1,0

]α−2
+

i2α kα+1

α(α + 1)
+

i2α+1W
(0)
1,0 kα+2

α(α + 1)(α + 2)





+O
(

σα k4,σα kα+3, [σα ]2
)

. (33)

One can write Φ(k) with the leading terms of expan-

sion (21) for both positive and negative k:

Φ(k) =−W1,0r|k|− iW1,0ik−W2,0r
k2

2
− iW2,0i

k|k|
2

−W1,1r
|k|α+1

α + 1
− iW1,1i

|k|α k

α + 1
− . . . , (34)

where Wm,nr and Wm,ni are the real and imaginary parts of Wm,n

and, according to (33) and (27),

W1,0 =W
(0)
1,0 +

iσα Γ(α)
[

2W
(0)
1,0

]α
+O

(

[σα ]2
)

(35)

=

√

√

√

√

√

I2
0 +∆2 + I0

2
+ i

√

√

√

√

√

I2
0 +∆2 − I0

2

+
σα Γ(α)

2α(I2
0 +∆2)

α
2

[

sin

(

α

2
arccos

I0
√

I2
0 +∆2

)

+ icos

(

α

2
arccos

I0
√

I2
0 +∆2

)]

+O
(

[σα ]2
)

.

(36)

C. Probability distribution

With (34), one can find (see Appendix B)

w(V ) =

(

1+
W2,0r

2

∂ 2

∂V 2
+

W2,0i

2

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

+
W1,1r

α + 1

∂ 2

∂V 2

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α−1

+
W1,1i

α + 1

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α

+ . . .

)

π−1W1,0r

W 2
1,0r +(V +W1,0i)2

. (37)
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Here W1,0 is given by Eq. (35) [or (36)].

In Appendix B we show that with distribution (37), one can

calculate firing rate (14):

r =
Re(W1,0)

π
, (38)

and this formula is valid with any number of corrections Wm,n.

Substituting (36), we find

r =

√

√

I2
0 +∆2 + I0

√
2π

+
σα Γ(α)sin

(

α
2

arccos
I0√

I2
0+∆2

)

2απ(I2
0 +∆2)

α
2

+O
(

[σα ]2
)

. (39)

Further, the mean value of w(V ) is −W1,0i and not affected by

the higher order corrections Wm,n (Appendix B):

〈V 〉=−Im(W1,0) . (40)

Substituting (36), we find

〈V 〉=−

√

√

√

√

√

I2
0 +∆2 − I0

2

−
σα Γ(α)cos

(

α
2

arccos
I0√

I2
0+∆2

)

2α(I2
0 +∆2)

α
2

+O
(

[σα ]2
)

. (41)

Equations (39) and (41) constitute the result (36) of the lin-

ear approximation for time-independent regimes in terms of

physically meaningful macroscopic observables.

IV. MACROSCOPIC STATES OF HOMOGENEOUS
POPULATIONS OF QIFS SUBJECT TO α-STABLE NOISE

In this section we employ the results for firing rate (39) and

mean voltage (41) to construct a self-consistent mathemati-

cal description of the macroscopic states of the population of

QIFs with global synaptic coupling (9,10). Here I0 = η0 + Jr.

In the studies with circular and pseudo- cumulants for a Gaus-

sian noise,3,32,44 the most challenging cases were that of a

small or vanishing heterogeneity ∆. Therefore, it will be in-

structive to demonstrate the application of our theoretical find-

ings to the case of ∆ = 0, where in the absence of noise the

OA (and MPR) manifold is marginally stable. The results for

a less technically challenging case of heterogeneous popula-

tions will be provided in the next section.

One can distinguish two kinds of macroscopic regimes.

(i) For I0 > 0, the macroscopic states are mean-field driven

ones, where the individual QIFs are forced above their ex-

citability threshold. (ii) For I0 < 0, the macroscopic states are

noise-driven ones, where the individual QIFs are excitable and

all the firing events are induced by noise fluctuations.

A. Mean-field driven regimes

For I0 > 0 and ∆ = 0, Eq. (39) takes the form

r =

√
I0

π
+O(σ2α) . (42)

With I0 = η0 + Jr, neglecting the σ2α -corrections, one finds

the self-consistency condition

r =
J±
√

J2 + 4π2η0

2π2
; (43)

a parametric form of the dependence r versus η0 will be also

useful

η0 =−Jr+π2r2 . (44)

With (44) one can find the saddle-node bifurcation point from

the condition dη0/dr = 0 :

η0mf =− J2

4π2
, rmf =

J

2π2
. (45)

With Eq. (41), one obtains for these regimes a noise-

induced negative shift of mean voltage:

〈V 〉=− σα Γ(α)

2α(η0 + Jr)α
+O

(

σ2α
)

. (46)

B. Noise-driven regimes

For I0 < 0 and ∆ = 0, Eq. (39) takes the form

r =
Γ(α)

π

(

σ

2|I0|

)α

sin
απ

2
+O(σ2α) , (47)

where the firing rate is purely noise-induced. With I0 = η0 +
Jr < 0, neglecting the σ2α -corrections, one can write the self-

consistency condition as

η0 =−Jr− σ

2

(

Γ(α)

πr
sin

απ

2

)
1
α

, (48)

which gives a parametric form of the dependence r versus η0.

With (47) one can find the saddle–node bifurcation point from

the condition dη0/dr = 0 :

η0nd =−(1+α)

(

σα Γ(α)J

π(2α)α
sin

απ

2

)
1

1+α

, (49)

rnd =

(

σα Γ(α)

π(2αJ)α
sin

απ

2

)
1

1+α

. (50)

With Eq. (41), one obtains for these regimes a noise-

induced shift of mean voltage

〈V 〉=−
√

|η0 + Jr|− σα Γ(α)cos απ
2

2α |η0 + Jr|α +O
(

σ2α
)

; (51)
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FIG. 1. For a homogeneous population of quadratic integrate-and-

fire neurons (9,10) subject to α-stable noise. The exact solution for

a Cauchy noise (54) is plotted with the bold magenta dotted curve;

the dependence of the firing rate r versus η0 exhibits multistability

between the mean-field and noise driven macroscopic regimes (the

upper and lower branches of solution). Points Tmf and Tnd mark

the saddle–node bifurcation points of mean-field and noise driven

regimes, respectively. The green dash-dotted line depicts the states

with I0 = η0 + Jr = 0. Above I0 = 0, the black curves represent the

approximate mean-field driven solution (43), for which the firing rate

r is independent of α , to the leading order. The solid curve is a stable

solution. Below I0 = 0, the approximate noise driven solution (48) is

plotted for α = 1/2, 1, 3/2 (from left to right: blue, red, black); the

solid curves are stable solutions. Parameters: J = 15 and σ = 1.

the shift is positive for α > 1 and negative for α < 1.

For both mean-field and noise driven regimes, the approx-

imate solutions near I0 = η0 + Jr = 0 (dash-dotted line in

Fig. 1) are inaccurate, since for I0 = 0 in (42), (46), (47), and

(51) the leading order vanishes or diverges. The σ2α - and

higher terms become non-negligible. However, these inaccu-

rate branches of solutions are unstable (see subsection IV E),

while the stable branches are farther from this line and reason-

ably accurate (see Fig. 1).

The hysteretic transition between the mean-field and noise

driven regimes occurring in the parameter domain where they

overlap was confirmed with the direct numerical simulations

of the microscopic dynamics of a homogeneous population

of 1000 QIFs (9,10); the results are presented in Fig. 2. See

Appendix F for details on the direct numerical simulation of

the microscopic dynamics.

C. The exactly solvable case of a Cauchy noise

The case of Cauchy noise (α = 1) can be solved ex-

actly:29–31 in Eq. (17), σα - and ∆-terms can be combined and

yield an effective disorder parameter ∆+σ → ∆σ . For this

case, one can take Eqs. (39) and (41), set σα to zero and then

replace ∆ with ∆+ σ . For a homogeneous population, one

finds

r =

√

√

I2
0 +σ2 + I0

√
2π

, (52)

〈V 〉=−

√

√

√

√

√

I2
0 +σ2 − I0

2
. (53)

From Eq. (52), one can derive a parametric form of the depen-

dence r versus η0:

η0 =−Jr+π2r2 − σ2

4π2r2
. (54)

The saddle–node bifurcation points can be obtained from the

condition dη0/dr = 0 (54) in a parametric form, parameter-

ized by r∗ (earlier reported in Appendix C of Ref. 45):

J∗ = 2π2r∗+
σ2

2π2r3∗
, (55)

η0∗ =−π2r2
∗ −

3σ2

4π2r2∗
. (56)

The approximate solutions (43) and (47) for α = 1 are tested

against this exact solution in Figs. 1 and 3.

D. The exactly solvable case of a Gaussian noise

The problem (12)–(14) can be also solved analytically5 for

the case of a homogeneous population η = η0 with Gaussian

noise, α = 2, and I(t) = 0. Fokker–Planck equation (12) with

α = 2 and given I0 yields time-independent firing rate (14)5

r = σ2/3
R2(A)

=























−9σ2/(4π2I0)

I2
1
3

(χ−)+ I2

− 1
3

(χ−)+ I 1
3
(χ−)I− 1

3
(χ−)

, I0 < 0 ,

9σ2/(4π2I0)

J2
1
3

(χ+)+ J2

− 1
3

(χ+)− J 1
3
(χ+)J− 1

3
(χ+)

, I0 > 0 ,

(57)

where A = I0/σ4/3, χ± = 2(±A)3/2/3, Jn and In are the nth

order Bessel function of the first kind and the modified one,

respectively. The two branches of this solution (for positive

and negative I0) are analytic continuation of each other, but

the form (57) allows one to keep all calculations explicitly

real-valued.

Substituting I0 = η0+Jr, one finds a self-consistency prob-

lem for the firing rate r:

r = σ2/3
R2

(

η0 + Jr

σ4/3

)

. (58)

This equation yields dependence r = r(η0,J,σ) in a paramet-

ric form, parameterized by A, −∞ < A < ∞:

r = σ2/3
R2(A) , η0 = σ4/3A− Jσ2/3

R2(A) .
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FIG. 2. The results of the direct numerical simulation of the micro-

scopic dynamics of a homogeneous population of 1000 QIFs (9,10)

subject to α-stable noise are plotted with triangles for α = 1/2 (blue)

and α = 3/2 (black) and the same parameter values as in Fig. 1.

One observes a hysteretic transition; the rightwards pointed trian-

gles: quasiadiabatic increase of η0, the leftward pointed triangles:

quasiadiabatic decrease of η0. The microscopic simulation results

are guided by the curves of the high-precision time-independent so-

lutions (D4) for a thermodynamic limit of N → ∞; these solutions

are calculated with power series expansions as described in Appen-

dices D and E. The pale color bold lines show the approximate ana-

lytical solutions (43) and (48).

Similarly to the case of α 6= 2, this dependence has a mul-

tistability domain and the boundaries of this domain can be

calculated from dη0/dr = 0:

dr = σ2/3
R

′
2(A)dA , 0 = σ4/3dA− Jdr ,

which yields

J∗ =
σ2/3

R ′
2(A)

, (59)

η0∗ = σ4/3

(

A− R2(A)

R ′
2(A)

)

. (60)

E. Stability of macroscopic time-independent states

For a Cauchy noise, the stability can be analyzed rigorously

in the entire parameter space. We note that Eq. (17) for α = 1

is identical to this equation without noise but with a redefined

heterogeneity parameter ∆ + σ → ∆σ . The Ott–Antonsen

manifold is known to be attracting in this case.21,52,53 Hence,

for α = 1, the instabilities of macroscopic regimes can be

treated within the framework of the Ott–Antonsen ansatz.

Eq. (24) for α = 1 and Wm = (πr− iv)δ1m yields

ṙ =
∆σ

π
+ 2rv , (61)

v̇ = η0 + Jr−π2r2 + v2 (62)

(cf Ref. 27).

The time-independent states (r0,v0) are given by the equa-

tion system

0 =
∆σ

π
+ 2r0v0 , (63)

0 = η0 + Jr0 −π2r2
0 + v2

0 . (64)

For linear perturbations of (r0,v0), one finds the exponential

growth rates

λ = 2v0 ±
√

2r0(J− 2π2r0) .

According to Eq. (63), v0 = −∆σ/(2πr0) is always nega-

tive (r0 cannot be negative by its physical meaning). If the

perturbations are oscillatory (the square root in λ is imagi-

nary) then Reλ = 2v0 < 0. Hence, the instability can be only

monotonous. For a monotonous instability the only possible

codimension 1 bifurcation is a saddle–node one, which can

be always detected from the dependence of the solution on

parameters, as a folding point. In Fig. 1, one can see two

saddle–node bifurcation points Tmf and Tnd on the bold dot-

ted curve; along the curve, the stability changes only in these

points. The analysis of λ confirms that, for all parameter val-

ues, the upper and lower branches are the branches of linearly

stable regimes, while the branch near the dash-dotted line is

unstable.

For α 6= 1, in the examined parameter domain, no oscil-

latory instabilities of time-independent macroscopic regimes

were observed with direct numerical simulations. Similarly

to the case of a Cauchy noise, the change of stability can be

related only to saddle–node bifurcations and the upper and

lower branches in Fig. 1 are stable.

V. DISCUSSION

In the phase diagram in Fig. 3, one can see that the bifur-

cation curve of the mean-field regime is weakly affected by

the noise and its statistical properties, while the bifurcation

curve of the noise-driven regime is significantly influenced by

α . The bistability domain shrinks as α decreases. The self-

consistent perturbation theory for Φ(k) (linear in Φ1) yields

reasonable accuracy even for as strong noise as σ = 0.5 (see

Figs. 1 and 3). For α = 3/2, the direct numerical simula-

tion of Eq. (15) for the evolution of the characteristic function

F(k, t) was performed using the modification of the exponen-

tial time differencing method46 for equation systems with a

non-diagonal linear part.47 The numerical method was tested

for the case α = 1 (Cauchy noise), where an analytical so-

lution is known. For α = 1/2, a high-precision computation

procedure for time-independent states was employed (see Ap-

pendix D).
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FIG. 3. The phase diagram of the collective regimes of a homo-

geneous population of QIFs (9,10) subject to α-stable noise. The

bifurcation curves bound the tongue-shaped bistability domain. The

dotted magenta line shows the exact results (55,56) for a Cauchy

noise (α = 1): the left branch is the line of a saddle–node bifurcation

of the mean-field driven regime and the right branch is the one of

the noise-driven regime (see Fig. 1). The dotted cyan and gray lines:

numerical simulation of Eq. (16) for α = 1/2 and 3/2, respectively.

The green dotted line show the exact results (59,60) for a Gaussian

noise (α = 2, shown for comparison). Black dashed line: the approx-

imate bifurcation curve (45) of the mean-field driven regime, which

is identical (up to the approximation accuracy) for all α; solid lines:

the approximate bifurcation curves (49,50) for α = 1/2, 1, 3/2 (from

left to right). Noise strength σ = 0.5.

For the case of a heterogeneous population with a Cauchy

distribution of η , the theoretical analytical approximation (36)

[equivalently, Eqs. (39) and (41)] is examined by compari-

son to the ‘exact’ numerical results in Fig. 4. The analyt-

ical theory exhibits a decent accuracy even for the noise-

driven regimes (the right bifurcation curve) and as large noise

strength as σ = 0.5. The numerical results in Fig. 4 are calcu-

lated with power-series expansions of time-independent F(k)
(Appendix E) with controlled accuracy 10−15. A fine detail of

the mean-field driven regime can be noticed for both homo-

and heterogeneous populations in Figs. 3 and 4: the results

indicate that both noises with α < 1 and α > 1 slightly ex-

tend the domain of the existence of this regime towards lower

excitability η0. Both the analytical and exact left curves with

α 6= 1 are shifted leftwards as compared to the case of α = 1.

The results of our analytical consideration shed light on two

important issues, which we discuss below in this section.

a. Three-pseudocumulant reduction for the case of a

Gaussian noise. For a Gaussian noise (α = 2), one can em-

ploy a pseudocumulant approach that yields an infinite chain

of dynamical equations for pseudocumulants Wm (19). Gen-

erally, pseudocumulants form a rapidly decaying hierarchy

of smallness3, |Wm+1|/|Wm| ∝ ε ≪ 1. Hence, one can con-

�� �� ���

�

�

��

��

��

�

FIG. 4. The phase diagram of the collective regimes of a heteroge-

neous population of QIFs (9,10) subject to α-stable noise, ∆ = 0.5
and σ = 0.5. The bifurcation curves bound the tongue-shaped bista-

bility domain; the color coding is the same as in Fig. 3: α = 0.5
(cyan/blue), 1 (magenta/red), 1.5 (grey/black), and 2 (green/dark-

green). Dotted lines: exact results for Eq. (16). Thin solid lines:

theoretical bifurcation curves for approximate solution (39). Bold

black line: the domain boundary for the noise-free population.

sider finite truncations of this chain and work with low di-

mensional neural mass models. Obviously, in order to study

the effect of noise, one must keep at least W2, as W1 corre-

sponds to a wrapped Cauchy distribution of states. But is a

two-pseudocumulant truncation an optimal approximation?

For a population of QIFs (10,11) with global synaptic cou-

pling and Gaussian noise, the two-element reduction was re-

ported to yield correct predictions of the thresholds of the

hysteretic transitions between the time-independent regime of

asynchronous firing and the regime of collective oscillations

(see Fig. 1(g) in Ref. 3). The three-element reduction was re-

ported to reproduce all the quantitative results of the network

simulation perfectly. However, there was no clear reason to

include the third pseudocumulant W3, but neglect higher el-

ements. Now, with Eq. (33), one can see that the fractional

power terms start from kα+1; in Eq. (17), this term of Φ(k)
emerges as an immediate response to the noise term σα |k|α .

Meanwhile, the k2-term emerges from the C0-part of (29); the

value of constant C0 was derived from the boundary condition

on Φ(k) at k → ∞ (23). To summarize, noise immediately en-

forces the kα+1-term, while the k2-term is merely a result of a

finer tune-up. For α = 2, the reproduction of this scheme re-

quires W3 to be included in the analysis. Thus, a three-element

reduction is the minimal model which can potentially repro-

duce the generic mechanism of the effect of Gaussian noise.

A two-element reduction serves here as an approximation,

which might yield a decent accuracy, but not an asymptoti-

cally rigorous result. This explains a dramatic enhancement
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of the accuracy of the three-element model compared to the

two-element one in Fig. 1(g) of Ref. 3. Therefore, we con-

clude that a three-pseudocumulant reduction is a preferable

default neural mass model for the case of a Gaussian noise.

b. Generalization of pseudocumulant approach for nonin-

teger α-stable noises. The fractional Fokker–Planck equa-

tion (12) or its projection into Fourier-space (15) describe the

noninteger α case. However, it seems to be impossible to gen-

eralize the pseudocumulant framework to solve this equation,

at least, via series Φ(k > 0, t) = ∑mn Wm,n(t)k
m+nα/(m+ nα)

and the derivation of an analog of dynamical equation sys-

tem (24) for Wm,n. First, with Eq. (29), we witnessed that the

kα+m-terms are linked to the km-terms (with coefficient C0)

by the boundary condition (23) at infinity, where these two

groups of terms must compensate the growing parts of each

other. Generally, the latter task cannot be accomplished with

a finite truncations for irrational α . Second, for such series

we have the cases of rational α , where terms Wm,n(t)k
m+nα

with the same (m+ nα) must merge. Each case of rational

α = L/N, requires individual treatment. In Appendix C we

consider two primary cases of rational α , α = 1/2 and 3/2,

and demonstrate that, at least in the limit of a weak noise, fi-

nite truncations of Wm,n series fail to reproduce the impact of

the α-stable noise accurately.

VI. CONCLUSION

We have addressed the problem of mathematical descrip-

tion of the macroscopic dynamics of populations of quadratic

integrate-and-fire neurons subject to α-stable white noises.

The interest to these models are multifold: QIF is not only

the normal form for the neuron models with the Class I ex-

citability near the threshold between the excitable regime and

the regime of periodic spiking, but also is mathematically

equivalent to the problem of the Anderson localization in one-

dimensional setup48 in condensed matter. The mathematical

challenges emerging in our study are related to the specificity

of QIF but not to the nature and topology of the connection

network. While we report on the case of the recurrent network

of chemical synaptic all-to-all connections, the formalism can

be readily extended to the cases of balanced networks with

sparse synaptic connections,2,5 electrical synapses,41,42,45 etc.

The research interest to non-Gaussian (α-stable) noises in

oscillator populations is additionally reinforced by the discov-

ery that the interplay of the mechanisms of synchronization

by common noise and by coupling results in non-Gaussian

phase deviations θ j from the synchronous cluster.15 In the

limit of a nearly perfect synchrony (small heterogeneity of

oscillators and weak individual component of noises), these

deviations θ j possess power-law tails, ∝ 1/|θ |2+2m, where

m is linearly proportional to the ratio of the coupling coeffi-

cient to the common noise intensity. For a repulsive coupling,

m < 0, the common noise prevails the desynchronizing ac-

tion by the coupling for m > −1/2; the corresponding values

of α = 1+ 2m are in range (0;1). For a non-strong attrac-

tive coupling, 0 < m < 1/2, we still observe heavy power-law

tails and 1 < α < 2. For a stronger attractive coupling the

power-law tails decay non-slower than 1/|θ |3, and, by virtue

of the Central limiting theorem, these fluctuations generate an

effective noise which converges to the Gaussian statistics. For

finite populations of noise-free oscillators, the finite-size fluc-

tuations were revealed to act as an effective common noise

on the nearly identical oscillators.49,50 Therefore, there are

generic mechanisms inducing the α-stable component in os-

cillator fluctuations not only for noisy oscillator populations

but also in finite ensembles of deterministic oscillators or in

large ensembles with a sparse network of connections and a

finite number of inbound connections for each oscillator. The

macroscopic dynamics of the latter network was demonstrated

to be well reproducible with an effective mean field (global)

coupling endowed with an effective noise.2,3,5 To summarize,

one can expect abundance of oscillator (in particular, QIF)

network setups where an effective noise emerge with signifi-

cant α-stable component.

The analysis of the case of fractional α yielded new re-

sults for the case of integer α = 2. Considering α = 2 as

a limit of fractional α with a vanishing deviation from 2,

one sees that the minimal consistent model reduction requires

three pseudocumulants {W1,W2,W3} for the Gaussian noise

case, and the formal first-order correction of W2 to the zeroth-

order no-noise solution W1 is not an asymptotically rigorous

result. This sheds light on the puzzle why, for some systems,

the three-pseudocumulant model reduction can provide per-

fect results (see the diagram in Fig. 1(g) of Ref. 3) where

the two-pseudocumulant reduction provides a reasonable but

not very accurate picture. Normally, with a small parameter,

the second-order correction provides an enhancement to the

first-order correction, but not such a dramatic increase of ac-

curacy. Thus, one can make a general recommendation for

constructing low dimensional model reductions on the basis

of pseudocumulants:3 the rigorous asymptotic leading-order

correction is given by the three-pseudocumulant model and

the simplified two-pseudocumulant model can be sometimes

insufficient even with a small parameter violating the applica-

bility of the Montbrió–Pazó-Roxin Ansatz.27

It turned out to be seemingly impossible to generalize the

the pseudocumulant formalism to rational fractional α = L/N

via expansions of the logarithm Φ(k, t) of the characteristic

function in series with respect to k1/N or some other ratio-

nal fractional powers of k. Noticeably, the circular cumulant

approach33,34 was reported to be useful for dealing with frac-

tional α-stable noises in term of oscillation phases35 at least

in the case of an additive-in-phase noise, which is of course

not our case, where the additive-in-voltage noise corresponds

to a multiplicative noise in terms of the oscillation phase.

Nonetheless, for α-stable noises, one can construct expan-

sions of Φ(k, t) in series of the noise intensity σα . The the-

oretical results derived with the latter expansion for a pop-

ulation of QIFs with excitatory synaptic coupling subject to

non-Gaussian noise are in good agreement with the results of

numerical simulation for both homogeneous (Fig. 3) and het-

erogeneous populations (Fig. 4). One observes a reasonable

accuracy even for the bifurcation curves of the noise-driven

regimes for as large noise amplitude as σ = 0.5 (the right-

hand-side branches of the cusps in Figs. 3 and 4).
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Appendix A: Fractional Fokker-Planck equation for additive
noise

Here we recall the derivation of the evolution equation for

the probability density function w(x, t) for the stochastic sys-

tem (2). For additive noise, one can evaluate the increment

∆w(x, t) = w(x, t +∆t)−w(x, t) for infinitesimal ∆t;

w(x, t +∆t) =−
M

∑
l=1

∂

∂xl

(

fl(x)w(x, t)
)

∆t

+

+∞
∫

−∞

dξ∆tP(ξ∆t)w(x− gξ∆t∆t, t) . (A1)

With the characteristic function

Fx(k, t) = 〈eik·x〉=
∫

w(x, t)eik·xdMx ,

one can write w(x, t) = (2π)−M
∫

Fx(k, t)e−ik·xdMk , and

Eq. (A1) can be rewritten as

w(x, t +∆t) =−
M

∑
l=1

∂

∂xl

(

fl(x)w(x, t)
)

∆t

+

∫

dMk

(2π)M

+∞
∫

−∞

dξ∆tP(ξ∆t)Fx(k, t)e−ik·(x−gξ∆t ∆t)

= w(x, t)−
M

∑
l=1

∂

∂xl

(

fl(x)w(x, t)
)

∆t

+
1

(2π)M

∫

dMk
[

Fξ∆t
(k ·g∆t)− 1

]

Fx(k, t)e−ik·x .

For ∆t → 0, Fξ∆t
(k · g∆t) = e

Φξ∆t
(k·g∆t)

= 1+Φξ∆t
(k · g∆t)+

O
(

[Φξ∆t
(k ·g∆t)]2

)

. Hence,

∆w(x, t)

∆t
+

M

∑
l=1

∂

∂xl

(

fl(x)w(x, t)
)

=
∫

dMk

(2π)M

Φξ∆t
(k ·g∆t)

∆t
Fx(k, t)e−ik·x . (A2)

With ξ∆t ∝ (∆t)1/α−1, and noise of amplitude σ , one should

take c = (∆t)1/α−1σ and find

Φ̇
(ξ )
t (k ·g)≡

Φξ∆t
(k ·g∆t)

∆t
=−σα |g ·k|α (A3)

(here µ = β = 0). Eq. (A2) with (A3) is identical to (5).

Appendix B: Probability distribution for a nonsmooth
characteristic function

With (34), one can find the following characteristic function

with derivative discontinuity at k = 0:

F(k) = eΦ = e−W1,0r|k|−iW1,0ik

× e−W2,0r
k2

2 −iW2,0i
k|k|

2 −W1,1r
|k|α+1

α+1 −iW1,1i
|k|α k
α+1 −...

=

[

1−W2,0r
k2

2
− iW2,0i

k|k|
2

−W1,1r
|k|α+1

α + 1

−iW1,1i
|k|α k

α + 1
− . . .

]

e−W1,0r|k|−iW1,0ik .
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The inverse Fourier transform (7) yields

w(V ) =

+∞
∫

−∞

dk

2π

(

1−W2,0r
k2

2
− iW2,0i

k|k|
2

−W1,1r
|k|α+1

α + 1
− iW1,1i

|k|α k

α + 1
− . . .

)

e−W1,0r|k|−i(W1,0i+V )k

=

+∞
∫

−∞

dk

2π

(

1+
W2,0r

2

∂ 2

∂V 2
+

W2,0i

2

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

+
W1,1r

α + 1

∂ 2

∂V 2

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α−1

+
W1,1i

α + 1

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α

+ . . .

)

e−W1,0r|k|−i(W1,0i+V )k

=

(

1+
W2,0r

2

∂ 2

∂V 2
+

W2,0i

2

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

+
W1,1r

α + 1

∂ 2

∂V 2

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α−1

+
W1,1i

α + 1

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α

+ . . .

)

π−1W1,0r

W 2
1,0r +(V +W1,0i)2

. (B1)

a. Firing rate. With distribution (B1), one can calculate

firing rate (14). For large V , the differentiation |∂/∂W1,0r|
does not decrease the exponent of the power law of a tail

∝ 1/V 2 and the differentiation ∂/∂V turns ∝ 1/V n into ∝
1/V n+1; therefore,

r = lim
V→±∞

V 2w(V ) =
Re(W1,0)

π
, (B2)

and this result holds with any number of corrections Wm,n.

b. Mean value 〈V 〉. The mean value of w(V ) is −W1,0i

and also not affected by the higher order corrections Wm,n.

Indeed, using partial integration, one can calculate the integral

〈V 〉= P.V.

+∞
∫

−∞

dV

(

V +V
W2,0r

2

∂ 2

∂V 2

+V
W2,0i

2

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

+V
W1,1r

α + 1

∂ 2

∂V 2

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α−1

+V
W1,1i

α + 1

∂

∂V

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α

+ . . .

)

wLD(V )

= P.V.

∫ +∞

−∞
VwLD(V )dV − W2,0r

2
wLD(V )

∣

∣

∣

+∞

−∞

− W2,0i

2

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

∫ +∞

−∞
wLD(V )dV

− W1,1r

α + 1

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α−1

wLD(V )
∣

∣

∣

+∞

−∞

− W1,1i

α + 1

∣

∣

∣

∣

∂

∂W1,0r

∣

∣

∣

∣

α ∫ +∞

−∞
wLD(V )dV + . . .

=−Im(W1,0) , (B3)

where we used the conditions
∫ +∞
−∞ wLD(V )dV = 1 and

wLD(±∞) = 0.

Appendix C: Expansions for half-integer α

Let us first make a general observation about Φ(k) and

Eq. (17). Function Φ(k) vanishes at k = 0 and thus its se-

ries can contain only positive powers of k. In Eq. (17), the

term k(∂ 2Φ/∂k2) decreases the degree of any term by one and

leads to inadmissible negative degrees for noninteger power

exponents if only these terms are not canceled at some order.

The noise term σα |k|α forces terms with noninteger power

exponents which have to be canceled for some lower degrees.

1. Expansion for α = 1/2

For α = 1/2, we consider

Φ(k > 0) =
+∞

∑
n=2

Wn
2

k
n
2

n/2
,

where term W1
2
= 0 is inadmissible, as it induces terms with

negative power exponents. For this series Eq. (17) yields in

the orders k1/2, k1, k3/2, k2, k5/2, and k3:

0 = i
1

2
W3

2
−σα , (C1a)

Ẇ1 = ∆− iI0+ i
(

−W2 +W2
1

)

, (C1b)

Ẇ3
2
= i

3

2

(

−3

2
W5

2
+ 2W1W3

2

)

, (C1c)

Ẇ2 = 2i
(

−2W3 +(W3
2
)2 + 2W1W2

)

, (C1d)

Ẇ5
2
= i

5

2

(

−5

2
W7

2
+ 2W1W5

2
+ 2W2W3

2

)

, (C1e)

Ẇ3 = 3i

(

−3W4 +W2
2 + 2W1W3 + 2W3

2
W5

2

)

, (C1f)

. . . .

In the odd lines of the latter equation system we find al-

gebraic equations but not the dynamical ones. Indeed, in

(C1a) we find W3
2
= −i2σα ; in (C1c) the variable W3

2
and

its derivative are already superimposed by (C1a) and we have

expression for W5
2
=(4/3)W1W3

2
=−i8σαW1/3; and so forth.

Therefore, for α = 1/2, one cannot write down an ODE sys-

tems and immediately run it numerically. Instead, one should

deal with some of these ODEs carefully and perform direct

numerical integration only for the integer-order dynamical

equations (C1b), (C1d), (C1f), etc. The former ODEs should

be solved as algebraic equations, where some terms can be

time-derivatives of the integer-order elements. For α = 1/2,

the leading noise-induced term W3
2

appears for the first time in

the integer-order equations in (C1d) for the evolution of W2.

In the limit of a weak noise σ ≪ 1, any truncated expan-

sion (C1) is inconsistent with solution (33). Indeed, according

to Eqs. (C1) with zero time-derivatives Ẇn
2
, the noninteger el-

ements impact the integer ones only via quadratic terms of the

form W2n+1
2

W2m+1
2

. All noninteger elements W2n+1
2

are propor-

tional to σα and can have higher-order contributions ∝ σ3α ,
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etc. Hence, W2n+1
2

W2m+1
2

∝ σ2α and can have contributions

∝ σ4α , etc., which means that the integer-order elements have

corrections starting from ∝ σ2α and the leading σα -correction

[see Eq. (33)] is lost.

2. Expansion for α = 3/2

For α = 3/2, we consider

Φ(k > 0) =W1k+
+∞

∑
n=4

Wn
2

k
n
2

n/2
,

where terms W1
2
= W3

2
= 0 are inadmissible, as they induce

terms with negative power exponents. For this series Eq. (17)

yields in the orders k1, k3/2, k2, . . . :

Ẇ1 = ∆− iI0 + i
(

−W2 +W2
1

)

, (C2a)

0 = i
3

2
W5

2
−σα , (C2b)

Ẇ2 = 4i(−W3 +W1W2) , (C2c)

Ẇ5
2
= i

5

2

(

−5

2
W7

2
+ 2W1W5

2

)

, (C2d)

Ẇ3 = 3i
(

−3W4 +W 2
2 + 2W1W3

)

, (C2e)

Ẇ7
2
= . . . ,

Ẇ4 = 4i
(

−4W5 +(W5
2
)2 + 2W1W4 + 2W2W3

)

, (C2f)

. . . .

Notice, in the even lines of the latter equation system we

again find algebraic equations but not the dynamical ones. In-

deed, in (C2b) we find W5
2
=−i(2/3)σα ; in (C2d) the variable

W5
2

and its derivative are already superimposed by (C2b) and

we have expression for W7
2
= (4/5)W1W5

2
= −i8σαW1/15;

and so forth. Therefore, for rational noninteger α , one can-

not write down an ODE systems and immediately run it nu-

merically. Instead, one should perform direct numerical inte-

gration only for the integer-order dynamical equations (C2a),

(C2c), (C2e), (C2f), etc., and deal with the rest of equa-

tions carefully (solve them as algebraic equations, where some

terms can be time-derivatives of the integer-order elements).

Remarkably, for α = 3/2, the leading noise-induced term W5
2

appears for the first time in the integer-order equations only in

(C2f) for the evolution of W4.

In the limit of a weak noise σ ≪ 1, any truncated expan-

sion (C2) is inconsistent with solution (33). As well as for

α = 1/2, truncated equation systems yield the integer-order

elements with corrections starting from ∝ σ2α and the lead-

ing σα -correction [see Eq. (33)] is lost.

Appendix D: High-precision computation of
a time-independent state for α = 1/2

For the time-independent states of a homogeneous pop-

ulation (∆ = 0), the characteristic function evolution equa-

tion (16) simplifies to the problem

d2F

dk2
− I0F − iσαkα−1F = 0 , k > 0 , (D1)

where I0 = η0 + Jr and r =−π−1Re
(

dF
dk
|k=+0

)

. We consider

only the case of a homogeneous population here, since a fi-

nite heterogeneity ∆ lifts the convergence issues and a plain

direct numerical simulation of (16) can be carried out with a

modified exponential time differencing method46,47 for all α .

Consider an excitable state (noise-driven regime) I0 < 0 and

k → ∞ for α < 1. One finds F ∝ e±i
√−I0k as σα kα−1 → 0;

the characteristic function does not decay for large k. This is

expectable, since the probability distribution of the noise-free

population with I0 < 0 is w(V ) = δ (V +
√−I0) and

lim
σ→0

F(k) = lim
σ→0

〈eikV 〉= e−ik
√−I0 for I0 < 0 , (D2)

and the noise term vanishes in (D1) for large k and α < 1. In

practice, for σ 6= 0 the characteristic function decays but not

exponentially fast. For an exponentially fast decay of F(k)
with k (α > 1) we simulated problem (16) within a finite

domain 0 ≤ k ≤ Lk with Lk providing |F(Lk)| < 10−15. For

α < 1, the decay is exponentially fast only for I0 > 0 and the

cases of positive and negative I0 should be handled separately.

First, for time-independent states, we find the scaling laws

with respect to the noise strength σ . With rescaling k →
κ/σ

α
α+1 , one can recast (D1) as

d2F

dκ2
−AF − iκα−1F = 0 , κ > 0 , (D3)

where A = I0/σ
2α

α+1 and F = 1+(−πr+ iv)κ/σ
α

α+1 + · · · ≡
1+(−πRα + iVα)κ + . . . . Hence, the firing rate

r = σ
α

α+1 Rα

(

I0

σ
2α

α+1

)

(D4)

[cf (58) for α = 2]. Second, we restrict our consideration in

this section to the case α = 1/2, where arbitrary precision of

computations can be achieved.

For A > 0, the characteristic function is not only exponen-

tially fast decaying but also its power series around κ = 0

F(κ > 0) =
∞

∑
n=0

anκn +
∞

∑
n=1

bnκn+ 1
2 (D5)

converges. Here one sets a0 = 1, complex a1 =−W1 and finds

from (D3) b0 = 0, b1 = 4i/3, and

an+2 =
Aan + ibn

(n+ 2)(n+ 1)
, bn+2 =

Abn + ian+1

(n+ 5/2)(n+ 3/2)
(D6)
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FIG. 5. Firing rate functions Rα(A) for time-independent states of

homogeneous populations of QIFs subject to noise are plotted with

the solid line for α = 1/2 and with the dashed line for α = 2 (57).

for n ≥ 0. Expansion (D5) with coefficients (D6) acquires the

form

F(κ > 0) = F0(κ)+W1F1(κ) , (D7)

where functions F0(κ) and F1(κ) grow exponentially fast with

κ but finite complex coefficient

W1 =− lim
κ→+∞

F0(κ)

F1(κ)
(D8)

provides an exponentially fast decay for the sum F(κ) (D7).

The series (D5) truncated at N = 40 allows for computation of

R1/2(A) with error below 10−15.

Noticeably, with A < 0 but close to zero, large finite

κ in (D3) still yield an exponentially fast decay F(κ) ∝

exp
[

−i
√

−A− i/
√

κκ
]

. In practice, series (D5) converges

for κ large enough to provide the accuracy 10−15 as far as for

A & −0.5 and 10−5 for A & −1, but not only for positive A.

Accurate computations with this procedure below A ≈−1 are

impossible.

For A < 0, the convergence radius of series (D5) for F0(κ)
and F1(κ) becomes quite short and the series form of F0(κ)
and F1(κ) becomes insufficient for accurate computation of

the limit (D8). We calculate F0(κ0), F ′
0(κ0) and F1(κ0),

F ′
1(κ0) for κ0 = 0.5 and use them as the initial conditions for

the numerical integration of the ordinary differential equation

(D3) by a 4th order Runge–Kutta method. Notice, this numer-

ical integration of (D3) from κ = 0 is impossible due to the

divergence of the coefficient of the last term for α < 1. The

accumulation of the numeric error does not allow for such in-

tegration far beyond Lk = 60/(1+
√
−A) (the error is kept

below 10−15).

Further, we have to calculate the asymptotic behavior of

F(κ) at large κ . This can be better done in terms of

the logarithm of the characteristic function Φ(κ); the time-

independent solution of (17) obeys

Φ′′+(Φ′)2 +κ
2 − i√

κ
= 0 ,

where A ≡−κ
2. According to Eq. (D2), the required asymp-

totic solution Φ′(κ)→−iκ; therefore, we consider perturbed

Φ′(κ > 0) =−iκ+ψ(κ):

ψ ′+ψ2 − 2iκψ − i√
κ
= 0 .

For this equation one can find the asymptotic expansion of ψ
with the following converging iterative procedure:

ψn+1 =
ψ ′

n +(ψn)
2

2iκ
− 1

2κ
√

κ
.

Starting with ψ0 = 0, the nth iteration of this mapping yields

the expansion of ψ(κ) up to the term ∝ 1/κn/2. Approxima-

tion ψN=20 with terms beyond 1/κN/2 dropped yields ψ(Lk)
with error below 10−15 uniformly over negative A. Finally, we

can compute W1 from

F ′
0(Lk)+W1F ′

1(Lk)

F0(Lk)+W1F1(Lk)
=−iκ+ψ(Lk)

and R1/2 = π−1ReW1.

With the firing rate (D4), similarly to the case of Gaussian

noise in Sec. IV D, one obtains the bifurcation curves from the

condition dη0/dr = 0:

J∗ =
σ1/3

R ′
1/2

(A)
, (D9)

η0∗ = σ2/3

(

A−
R1/2(A)

R ′
1/2

(A)

)

. (D10)

Computed dependence R1/2(A) plotted in Fig. 5 yields the

bifurcation curves plotted in Fig. 3 with the blue dashed line.

Appendix E: Power-series expansion of characteristic function
for time-independent states of heterogeneous populations and
α = n/2

For α = 1/2 and ∆ 6= 0, Eq. (16) yields a straightfor-

ward modification of expansion (D5,D6) for time-independent

states:

F(κ > 0) =
∞

∑
n=0

anκn +
∞

∑
n=1

bnκn+ 1
2 (E1)

a0 = 1 , a1 =−W1 , b0 = 0 , b1 =
4i

3
, (E2)

n ≥ 0 : an+2 =

[

A+ i∆

σ
2α

α+1

]

an + ibn

(n+ 2)(n+ 1)
, (E3)

n ≥ 0 : bn+2 =

[

A+ i∆

σ
2α

α+1

]

bn + ian+1

(n+ 5/2)(n+ 3/2)
. (E4)
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For α = 3/2, one finds

F(κ > 0) =
∞

∑
n=0

anκn +
∞

∑
n=2

bnκn+ 1
2 (E5)

a0 = 1 , a1 =−W1 , a2 =
A

2
+

i∆

2σ
2α

α+1

, (E6)

b0 = b1 = 0 , b2 =
4i

15
, (E7)

n ≥ 1 : an+2 =

[

A+ i∆

σ
2α

α+1

]

an + ibn−1

(n+ 2)(n+ 1)
, (E8)

n ≥ 1 : bn+2 =

[

A+ i∆

σ
2α

α+1

]

bn + ian

(n+ 5/2)(n+ 3/2)
. (E9)

For α = 2 (Gaussian noise), we have an analytical solution for

a homogeneous population, but the Residue theorem is un-

applicable for analytic function (57) and we do not have an

exact analytical solution for ∆ 6= 0. Eq. (16) yields for time-

independent states:

F(κ > 0) =
∞

∑
n=0

anκn (E10)

a0 = 1 , a1 =−W1 , a2 =
A

2
+

i∆

2σ
2α

α+1

, (E11)

n ≥ 1 : an+2 =

[

A+ i∆

σ
2α

α+1

]

an + ian−1

(n+ 2)(n+ 1)
. (E12)

Appendix F: Direct numerical simulation of the microscopic
dynamics of population of QIFs

The simulation of microscopic dynamics of QIFs (9,10)

(Fig. 2) was performed with the Euler method, as no higher-

order stochastic Runge–Kutta schemes are available for non-

Gaussian white noises. The voltage reset threshold B = 1000,

time stepsize ∆t = 5 · 10−5. The iteration for one time step

was conducted in two stages:

At the first (dynamical) stage, we calculated

V j(t +∆t) :=V j(t)+
(

η j +V 2
j (t)
)

∆t +σ(∆t)1/αζ j ,

where independent identically distributed symmetric (β = 0)

α-stable random variables ζ j with scale c = 1 were generated

by means of the following formula54,55:

ζ j =







tanR1 , for α = 1 ,

sinαR1

(cosR1)
1/α

(

cos(R1−αR1)
− lnR2

)
1−α

α
, for α 6= 1 ,

(F1)

the auxiliary random number R1 is uniformly distributed in

open interval (−π/2;π/2) and R2 is in (0;1). Importantly, the

build-in pseudorandom number generators (of FORTRAN, C,

etc.) have too short period, which is marginally sufficient

for α = 1 or 2 but dramatically insufficient for fractional val-

ues of α when the statistical convergence is slower. We em-

ployed the pseudorandom number generator MT1993756 with

declared period 219937.

At the second (resetting) stage, we counted the number NB

of QIFs with V j > B and reset these V j to −B, then shifted

the states of all QIFs V j(t +∆t) := V j(t +∆t)+ JNB/N, and

repeated the procedure until NB = 0.

For quasiadiabatic parameter variation, we simulated the

population for a transient period of length 100 and computed

the average values over the next period of length 400; the final

population state was used as an initial state for the next set of

parameters.
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