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Confinement is a paradigmatic phenomenon of gauge theories, and its understanding lies at the
forefront of high-energy physics. Here, we study confinement in a simple one-dimensional Z2 lat-
tice gauge theory at finite temperature and filling, which is within the reach of current cold-atom
and superconducting-qubit platforms. By employing matrix product states (MPS) calculations, we
investigate the decay of the finite-temperature Green’s function and uncover a smooth crossover
between the confined and deconfined regimes. Furthermore, using the Friedel oscillations and string
length distributions obtained from snapshots sampled from MPS, both of which are experimentally
readily available, we verify that confined mesons remain well-defined at arbitrary finite temperature.
This phenomenology is further supported by probing quench dynamics of mesons with exact diago-
nalization. Our results shed new light on confinement at finite temperature from an experimentally
relevant standpoint.

Introduction.— Lattice gauge theories (LGTs) were
first proposed to unravel the intricate mechanism of
quark confinement [1], which is one of the key steps to-
wards understanding the formation of hadrons at finite
temperature and their transition to quark-gluon plasma
[2]. Although LGTs are still mainly considered when
tackling problems in high energy physics, they are also
extremely powerful when applied to condensed matter
physics [3–5]. There, confined phases emerge in many
models which are used to describe strongly correlated
systems [6, 7], and Z2 LGTs have direct connections to
high-Tc superconductivity [8, 9]. LGTs’ full power is un-
veiled when gauge fields are coupled to dynamical matter
at finite doping, where the confinement–deconfinement
transition still lacks a comprehensive theoretical descrip-
tion. This is also partially due to the fact that numerical
simulations of LGTs are demanding [10], especially when
the dimension surpasses the simplest case of one spatial
and time dimension (1 + 1D) [11]. The study of LGTs
becomes even more involved at finite temperature, where
the usual numerical limitations are amplified.

Significant advances in quantum simulations using cold
atoms in recent years introduced a new platform to study
strongly correlated many-body problems [12–14]. Con-
siderable progress has been made specifically towards
quantum simulation of LGTs using cold atoms [15]. A
first proof of concept of experimentally simulating a Z2

LGT has already been made [16, 17] by employing a Flo-
quet scheme [18]. Recently, new proposals have been put
forward that utilize Rydberg tweezer arrays [19], where
the tedious implementation of the gauge protection has
been greatly simplified by making use of the so-called
local pseudogenerators [20, 21]. Furthermore, proposals
using superconducting qubits have also appeared [22]. A
lot of effort has also been made in using digital quan-
tum computers [23–27] with a version of a LGT already
experimentally realized [28], however, limited in size.

Here we study finite-temperature properties of a sim-
ple 1+1D Z2 LGT where dynamical charges are coupled
to a gauge field at finite doping. This Z2 LGT is the
simplest non-trivial, LGT which can be obtained after
discretization of the U(1) Schwinger model to a Zn LGT
[29], and is already within the reach of existing quan-
tum simulators [15–18]. The dynamics of the gauge field
is induced by an electric-field term, which also acts as
a linear confining potential in the sector without back-
ground charges. As a result, individual particles become
confined into mesons which themselves remain dynami-
cal. So far, the study of confinement in a Z2 LGT at
finite temperature has been limited to challenging Monte
Carlo calculations [30], and the sign problem could be
mitigated in a U(1) Schwinger model [31–33]. A theoret-
ical study of a phase diagram at finite temperature and
chemical potential utilizing digital quantum simulator al-
gorithms has also been performed, however the study of
confinement was hindered by small system size [26].

In this work, we employ large scale state-of-the-art ma-
trix product states (MPS) calculations [34], where we
make use of the concept of quantum purification [35–37]
in order to obtain finite-temperature states. We study
the decay of the Z2-invariant Green’s function at finite
temperature, which is a direct probe of confinement, and
uncover a smooth confinement–deconfinement crossover
at finite temperature. This goes against the conventional
wisdom where one would expect a deconfined phase at
any finite temperature T > 0, since the system has to
be deconfined in the limit T → ∞. In addition to the
Green’s function, we study Friedel oscillations, which also
contain direct signatures of confinement. Furthermore,
we sample snapshots from MPS and study string and
anti-string length histograms, that we propose as a new
simple but robust measure of confinement suitable for
cold-atom experiments. All these quantities, as well as
dynamical quenches at finite and zero temperature, show
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FIG. 1. (a) In the physical sector without background charges, pairs of hard-core bosons (blue spheres) are connected with
the Z2 strings (red horizontal lines), which denote the orientation of the Z2 electric field. (b) Green’s function (3) for different
temperatures T at a constant chemical potential yielding a filling of nt = 0.389 in the ground state, together with the fitting
function containing exponential and power-law decay (dashed lines) [38]. (c) Heat diagram of the difference between the
correlation lengths at h = 0 and h = t as a function of target lattice filling nt and temperature T (white dots indicate data
points). For the details on exact fillings at finite temperatures see [38].

signatures of confinement at any temperature T <∞, al-
beit becoming less pronounced as T increases.
Model.— We consider a 1+ 1D Z2 LGT where hard-

core bosons (partons) are minimally coupled to a Z2

gauge field [39–42]

Ĥ = −t
∑
j

(
â†j τ̂

z
j,j+1âj+1 +H.c.

)
− h

∑
j

τ̂xj,j+1. (1)

Here â†j (âj) are hard-core boson creation (annihilation)
operators, and we represent the Z2 gauge and electric
fields on the links between lattice sites with Pauli ma-
trices τ̂zj,j+1 and τ̂xj,j+1. We note that in 1+1D one can
map the bosons to fermions via the Jordan-Wigner trans-
formation [43], meaning that our results can be also ex-
tended to spinless fermions.

In addition, we consider the set of local operators [39]

Ĝj = τ̂xj−1,j τ̂
x
j,j+1(−1)n̂j , (2)

where n̂j = â†j âj . These local operators generate the
local symmetry of the Z2 gauge group and are the Z2

LGT counterpart of the Gauss law. They commute with
the Hamiltonian,

[
Ĥ, Ĝj

]
= 0,∀j, and with each other,[

Ĝj , Ĝi

]
= 0. The eigenvalues of Ĝj are gj = ±1. The

Hilbert space can thus be divided into different sectors
specified by the values of gj on each lattice site. In
this work we choose the so-called physical sector without
background charges where gj = 1,∀j [39]. Hence, the
orientation of the Z2 electric field changes only across an
occupied lattice site and it is thus convenient to define the
Z2 electric string and anti-string, which graphically rep-
resent the orientation of the electric field as τx = ∓1, re-
spectively; see Fig. 1(a). We note that we do not include
a staggered mass term in our LGT, which would give the

vacuum state as the ground state in the Schwinger model
[1, 29]. This is because we are interested in finite fillings,
which translates to finite hole doping in a t − Jz model
to which the above LGT can be exactly mapped [41].

The first term in Hamiltonian (1) is the hopping term
where the τ̂z operator ensures that the Gauss law re-
mains satisfied, i.e., that the partons remain attached
to a string. The second term induces a linear confin-
ing potential among partons connected with the same
string, since strings become energetically unfavorable.
In the ground state, partons connected with the same
string thus become confined into mesons (dimers), where
the string length is minimized. This happens for any
non-zero value of h > 0 [40]; at h = 0 partons are
free/deconfined [39]. A solution of the confinement prob-
lem in the ground state of this Z2 LGT has been found
by performing a non-local transformation to the so-called
string-length basis [41]. There, confinement can formally
be understood as translational-symmetry breaking in the
new basis [41].

We use the concept of quantum purification [35–37, 44]
in order to obtain finite-temperature states. We add an
auxiliary lattice site to every physical lattice site. These
are entangled to the physical lattice sites and act as a
thermal bath [35]. By using DMRG [34, 45], we first
compute the maximally entangled state between the aux-
iliary and physical sites on which we then perform imagi-
nary time evolution [46] in order to obtain states at finite
temperature T [35–37]. We use SyTen [47, 48], an MPS
toolkit where DMRG as well as standard time evolution
algorithms for MPS are implemented. For more details
on the numerical calculations see [38].

For practical purposes, we consider an even number of
hard-core bosons in the lattice. Since we employ open
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FIG. 2. Fourier transformation of Friedel oscillations. (a) Fourier coefficients |nk| in the deconfined phase exhibits broad peaks
at k = 2πnt (vertical dotted line), which correspond to Friedel oscillations of free partons. (b) In the confined phase the
Fourier transformation exhibits peaks at k = πnt (vertical dashed line), which correspond to Friedel oscillations of mesons.
(c) Substantial peaks are visible at k = πnt (vertical dashed line) and at k = 2πnt (vertical dotted line) at higher target filling
nt = 26/36 in the confined phase h/t = 1. Both peaks rise simultaneously with decreasing temperature T . For precise fillings
at finite temperature see [38].

boundary conditions, we consider that the chain always
starts with an anti-string, i.e., a link with positive ori-
entation τx0,1 = +1 in the confined phase when h/t > 0.
These conditions prevent the partons from being con-
fined to the boundaries. This is automatically satisfied in
the numerical implementation with DMRG in the ground
state, where we map the model to a spin-1/2 system and
also add a chemical potential term proportional to µ [38].
Green’s function.— In order to probe the confine-

ment of partons into mesons we consider the Z2-invariant
Green’s function defined as [40–42]

G(i− j) =

〈
â†i

 ∏
i≤ℓ<j

τ̂zℓ,ℓ+1

 âj

〉
, (3)

which can also be considered as a one-dimensional ver-
sion of the Fredenhagen-Marcu order parameter [49]. At
T = 0, it decays exponentially in the confined regime and
with a power-law in the deconfined regime [40].

The Green’s function decays exponentially in both
regimes at T > 0, albeit with different decay rates. This
makes a clear distinction between the confined and decon-
fined phases at finite temperature difficult. To overcome
this complication, we compare the rate of decay of the
Green’s function (3) in both regimes and determine the
crossover temperature, at which the thermal fluctuations
start to dominate.

To this end, we fit the Green’s function results
with a function containing algebraic and exponential
(∼ e−|i−j|/ξ) decay profiles, and extract the correlation
length ξ, see Fig. 1(b) (for details see also [38]). We
consider the difference between the correlation lengths,
∆ξ(T ) = (ξh=0(T )− ξh=t(T )), in the two regimes at the
same temperature T and comparable target fillings nt, for
which we know that the charges are confined and decon-
fined in the ground state, see Fig. 1(c). From this we de-
termine the crossover region where thermal fluctuations

begin to dominate the exponential decay of the Green’s
function. We define the approximate crossover boundary
in the region where ξh=0(T )− ξh=t(T ) =

1
2ξh=0(T ).

We find that the typical crossover region is at
T/t ≈ 0.25, which is also influenced by the lattice fill-
ing, see Fig. 1(c). The so-called target filling nt is the
filling obtained in the ground state at a given chemical
potential µ, which is kept constant during the imaginary
time evolution. The actual densities n(T ) at finite tem-
perature thus slightly deviate from nt for each run at
h/t = 0 and h/t = 1, respectively. These deviations do
not exceed |nh=t(T )−nh=0(t)|/n(T ) < 20% for T/t < 1.
We thus plot the data points as a function of nt [38].

Friedel oscillations.— Another hallmark of confine-
ment in the 1 + 1D Z2 LGT is an abrupt change of the
frequency of the Friedel oscillations in the confined phase.
The frequency in the confined phase equals 2kF = πn,
which is half the frequency found in the deconfined phase
of free partons [40]. This indicates that the confined
mesons are indeed well-defined constituents that remain
mobile and form a Luttinger liquid with intricate inter-
actions.

In order to analyze the Friedel oscillations at finite tem-
perature, we perform the Fourier transformation of the
density profile ⟨n̂j⟩ and extract the frequency of oscilla-
tions. In the deconfined phase h/t = 0, we observe broad
peaks at k = 2πn which is the expected frequency for
the Friedel oscillations of free partons, see Fig. 2(a). The
peaks are broad and only become well defined for tem-
peratures T/t ≤ 1/4. With lower temperature the peaks
rise and converge to the ground-state results. Contrarily,
we observe peaks at k = πn for low temperatures in the
confined phase h/t = 1 as expected, see Fig. 2(b). These
peaks appear again at around T/t ≤ 1/4 and converge to
the ground-state results at lower temperature in a similar
fashion as in the deconfined case.

There are no deconfined peaks visible in our results for
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FIG. 3. String and anti-string length distributions. (a) Distributions are qualitatively similar in the deconfined phase, h = 0,
at a fixed temperature T and filling obtained from the snapshots ns. The peaks shift to ℓ = 1 with increasing temperature.
(b) Different distributions of strings and anti-strings can be observed in the confined phase h/t = 1. There is a strong peak
at ℓ = 1 in the string length distribution, and there are no strings with lengths larger then ℓ ≥ 3. In contrast, the anti-string
length distribution is wide, spreading over ℓ > 8 at finite temperatures and peaking at around ℓ ≈ 3 in the ground state.

the filling of nt = 0.3889 and h/t = 1 at any temperature,
which rules out a deconfined parton gas in this regime. If
the later would exist, we would expect a shift in the peak
position from k = πn to k = 2πn with increasing temper-
ature. The absence of this shift thus suggests that mesons
are pre-formed already well above the crossover temper-
ature, i.e., partons are confined up to high temperatures
where thermal fluctuations completely dominate the be-
havior of the system.

At higher fillings, n ≳ 0.5, we observe coexistence of
peaks at k = πn and 2πn, see Fig. 2(c). However, peaks
at both positions rise simultaneously with lower tempera-
ture and there is again no exchange of the position of the
peaks with temperature. The peaks observed at higher
fillings at k = 2πn can be associated with hole fluctua-
tions, which become significantly more mobile relative to
mesons.

String-length distributions.— Our model is within
reach of modern cold-atom experiments. However, ex-
tracting the Green’s function would be a rather compli-
cated task. We therefore consider string and anti-string
length histograms, that are easily accessible from on-site
density-resolved snapshots which can be obtained exper-
imentally. There, one simply has to extract the number
of empty lattice sites between odd-even and even-odd
particles respectively, see [38] for more details. This is
a robust, experimentally feasible probe of confinement,
since strings are on average shorter than anti-strings in
the confined regime; we thus expect different distribu-
tions of strings and anti-strings as a clear indicator of
confinement.

To demonstrate the effectiveness of such a probe, we
sample snapshots from MPS states [50] using perfect
sampling [51] implemented withing SyTen [47, 48]. The
results presented in Fig. 3 show a clear difference in dis-

tributions in the confined and deconfined regimes. In
the deconfined regime there is no difference between the
string and anti-string length distributions since partons
are free, see Fig. 3(a).

In the confined phase, the string length distribution is
peaked at ℓ = 1, meaning that most of the mesonic states
are tightly confined with few empty lattice sites between
the two partons making up a meson, see Fig. 3(b). (There
is a small fraction of mesons with ℓ ≥ 2, which can be at-
tributed to quantum fluctuations. The presence of ℓ = 2
states is in fact necessary for the mesonic states to remain
mobile, since the hopping of mesons can be understood
as a second-order perturbation process when we consider
the limit of h ≫ t [40].) In contrast, the anti-string-
length distribution is broad, with a long tail. Further-
more, the anti-string-length distribution has a peak at
ℓ > 1 in the ground state. This is also influenced by the
overall filling of the chain, see [38].

The combined bimodal distribution of string and anti-
string lengths is thus a clear indicator of confinement.
These features are present up to temperatures consistent
with our previous calculations of the Green’s function
and Friedel oscillations. For higher temperatures T ≥ t,
the distributions become more similar to each other and
both peak at ℓ = 1: this is consistent with a continuous
crossover to the deconfined regime at T = ∞. However,
at finite temperature T ≳ t, a slight difference between
string and anti-string length histograms remains, sup-
porting our claim of pre-formed mesons up to any finite
temperature.

Quench dynamics.— Next we consider another ex-
perimentally accessible, dynamical probe. To this end,
an initially tightly bound parton pair is introduced into
a finite-density thermal gas and we probe whether it re-
mains confined during the subsequent time evolution.
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FIG. 4. Starting in a thermal ensemble at temperature T/t =
0.5 and at half-filling at a given value h, with a well-defined
particle pair at the middle (see the inset), we quench with

Ĥ and calculate in ED the probabilities of a pair of particles
being one site apart over evolution time. (a) In the case of
h = 0, we find that any two consecutive pairs are equally likely
to be a site apart at long evolution times. (b) When h/t = 1,
we find that the middle pair is bound, as are the two other
pairs on its either side, which is indicative of confinement.

Specifically, we localize a meson on the central two
sites of an L-site chain; the left (right) remaining (L −
2)/2 sites are prepared independently in a thermal state
of Ĥ in Eq. (1) at a given temperature T and density
n = (N − 2)/(L− 2), see inset in Fig. 4(a). Then, we
calculate the time-evolution of this initial density under
the full system Hamiltonian (1), including all L sites.

We perform numerical exact simulations for L = 12,
N = 6 at different values of h and T . Our results in-
dicate no confinement at any temperature when h = 0,
while we again find evidence of confinement at any tem-
perature T < ∞ when h > 0: We consider dynamics
of the probabilities pa,b(r) that the ath and bth parti-
cle, counted from the left, are r sites apart, shown in
Fig. 4(a,b) for h/t = 0 and 1, respectively, at T/t = 0.5.
By construction, the probability of the middle pair to be
a site apart is p3,4(1) = 1 before the quench. In the wake
of the quench, we find a fundamental difference between
zero and nonzero h. At long times, we find that when
h = 0 any two consecutive particles are equally probable
to be a site apart. On the other hand, when h/t = 1,
we find that it is always more probable that the middle
pair is bound, as well as the two pairs to its left and
right, indicating confinement. This qualitative picture
holds also at other values of T [38, 52], but consistent
with a deconfinement crossover, the signal becomes less
pronounced for higher temperatures T → ∞.

Summary and outlook.— In this work, we stud-
ied confinement in a 1 + 1D Z2 LGT at finite tem-
perature. We considered a Z2-invariant Green’s func-
tion as the direct probe of confinement at finite tem-
perature, where we uncovered a smooth confinement–
deconfinement crossover at approximately T/t ≈ 0.25.

By additionally considering the Friedel oscillations,
where the confinement manifests itself in halving of
the frequency, we confirmed that the confinement–
deconfinment crossover extends up to temperatures
where the thermal fluctuations dominate the behavior
of the system. These results were furthermore affirmed
by the string and anti-string length distributions that we
proposed as an experimentally feasible, robust measure
of confinement. Finally, we complemented our results
with dynamical probes, also experimentally readily ac-
cessible in current state-of-the-art quantum simulators
[53]. There, we showed that, again, confinement persists
up to high temperatures, albeit signatures of confinement
become less pronounced as the system approaches the de-
confined infinite-temperature state.

Our results pave the way towards understanding con-
finement crossover at finite temperature in a simple 1+1D
Z2 LGT with dynamical matter, which can be probed
with current quantum simulators. We show that the par-
tons remain confined at low temperature, with a smooth
crossover at finite temperature to an incoherent regime
dominated by thermal fluctuations. At any finite tem-
perature T < ∞, signatures of confinement remain.
This result challenges the conventional reasoning in one-
dimension, where one would naively expect a deconfined
regime at any finite temperature as the system is de-
confined for T → ∞. We expect that our results can
be extended to higher gauge groups and models with
more complicated interactions. Our work paves the way
for explorations of confinement in state-of-the-art analog,
or digital, quantum simulators, which naturally include
thermal fluctuations. Such setups can also naturally ex-
plore mixed-dimensional settings of coupled 1D chains,
where even richer confinement-deconfinement physics can
be expected [30].
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Supplemental Material: Confinement in 1+1D Z2 Lattice Gauge Theories at Finite
Temperature

NUMERICAL SIMULATIONS OF THE GROUND STATE

Ground-state calculations are performed using finite-system DMRG [34, 45] through the DMRG toolkit SyTen [47,
48]. Furthermore, we use the Gauss-law constraint and map the original Z2 lattice gauge theory (LGT) Hamiltonian
to the pure spin-1/2 Hamiltonian [40–42]

Ĥs = t

L−1∑
j=1

(
4Ŝx

j−1Ŝ
x
j+1 − 1

)
Ŝz
j − 2h

L∑
j=0

Ŝx
j + 4µ

L−1∑
j=0

Ŝx
j Ŝ

x
j+1, (S1)

where µ is the chemical potential that we add in order to control the filling n, see Fig. S1. The devil’s staircase
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FIG. S1. Lattice filling n as a function of chemical potential µ in the absence of field h = 0 (blue) and at finite field h/t = 1
(red) in the ground state. Total chain length is L = 36.

structure comes from the fact that we perform our calculations on a chain of finite length. Hence, the width of the
observed plateaus of constant filling are proportional to the charge gap, which is system size-dependent. This gap
completely disappears in the thermodynamic limit L→ ∞ in the considered parameter regime presented in Fig. S1.
The mapping of the 1 + 1D Z2 LGT to the spin model (S1) is exact and comes from the Gauss-law constraint,

where we only consider the physical sector defined as Ĝj |ψ⟩ = +1 |ψ⟩ ,∀j [39]. This constraint explicitly relates spin

configurations to the position of hard-core bosons as n̂j =
1
2

(
1− 4Ŝx

j Ŝ
x
j+1

)
[41]. Note that the total number of spin

sites is equal to L + 1, where L is the number of matter lattice sites, since the chain always begins and ends with
a link. The Green’s function presented in the main text can also be rewritten in terms of spin operators and reads

G(i− j) =
〈(∏

i≤ℓ≤j 2Ŝ
z
ℓ

)
1
2

(
1− 4Ŝx

i−1Ŝ
x
i

)
1
2

(
1 + 4Ŝx

j Ŝ
x
j+1

)〉
. In addition, we denote the total number of hard-core

bosons in the chain as N and the filling is thus defined as n = N/L. We typical simulate chains up to L = 36. We
could easily increase the chain length up to L ≳ 100 for the ground-state calculations; however, such lengths would
become increasingly difficult to compute at finite temperature. For easier comparison with the finite-temperature
calculations we thus limit our calculations to lower system sizes.

FINITE-TEMPERATURE SIMULATIONS

Finite temperature calculations are performed using the purification scheme where we enlarge our Hilbert space by
adding an auxiliary lattice site to every physical lattice site [35, 37, 44]. Here a thermal state is represented with a
pure state of the extended system as [35, 37]

|ψ(β)⟩ = e−βĤ/2 |ψ(β = 0)⟩ , (S2)
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where β = 1/T is the inverse temperature T and |ψ(β = 0)⟩ is a maximally entangled state between physical and
auxiliary lattice sites. Thermodynamic averages of physical observables are computed as [35, 37]〈

Ô
〉
=

⟨ψ(β)| Ô |ψ(β)⟩
⟨ψ(β)|ψ(β)⟩

. (S3)

By attaching an auxiliary lattice site to every physical lattice site, we double our spin chain length L+1 → 2(L+1),
which we implement with matrix product states (MPS), see also Fig. S2. Furthermore, we consider physical sites to

FIG. S2. Physical and auxiliary (ancilla) lattice sites of the enlarged system where j denotes the index of the MPS lattice site.

reside on even lattice sites and for the auxiliary lattice sites to reside on odd lattice sites as proposed in [35]. In order
to implement the maximally entangled state |ψ(β = 0)⟩ between physical and auxiliary sites, we first use DMRG to
calculate the ground state of the entangler Hamiltonian [37]

Ĥe = −
L∑

j=0

(
Ŝ+
2jŜ

−
2j+1 +H.c.

)
. (S4)

To be more precise, the resulting state is that where physical lattice sites are maximally entangled to their corre-
sponding auxiliary lattice sites. Auxiliary lattice sites can thus be understood as providing a thermal bath [35].

Finally, in order to obtain finite-temperature states, we perform imaginary time evolution, Eq. (S2), of our MPS
[46], with the LGT Hamiltonian (S1) that acts only on the physical lattice sites and is rewritten as

Ĥt
s = t

L−1∑
j=1

(
4Ŝx

2j−2Ŝ
x
2j+2 − 1

)
Ŝz
2j − 2h

L∑
j=0

Ŝx
2j + 2µ

L−1∑
j=0

Ŝx
2jŜ

x
2j+2. (S5)

We use the Krylov algorithm for the first few time steps and the TDVP algorithm for the remaining time steps [46],
which are both implemented in SyTen [47, 48]. The initial maximally entangled state |ψ(β = 0)⟩ has a very low bond
dimension of only χ = 2 on every other MPS lattice site. This is the reason why we us the Krylov algorithm for the
first 10 time steps of ∆βKt/2 = 0.01 in order to increase the bond dimension in a controlled way. For the successive
time evolution, we use the two-site TDVP algorithm with time step of ∆βT t/2 = 0.05 all the way up to the final
inverse temperature βt/2 = 10. We typically limit the truncation error below ∼ 10−9 per time-step.

In order to benchmark the results, we compute the expectation value of the Hamiltonian and the total number
of particles N as a function of inverse temperature β, see Fig. S3. Both quantities converge towards the target
values obtained from the ground-state calculations with increasing β. The expectation value of the Hamiltonian
monotonically decreases towards the ground-state results since the total energy of the system decreases as it cools
down, see Fig. S3(a)–(c). The expectation value of the total particle number has a more interesting behavior. It
typically slightly overshoots the ground-state target at βt ≈ 2 and then converges to the integer target value with
increasing β as expected, see Fig. S3(d)–(f).
In all cases we use a constant value of the chemical potential µ while performing the imaginary time evolution.

The choice of µ was made by considering the devil’s staircase structure of the ground-state calculations presented in
Fig. S1. Hence our target filling becomes more precise for higher values of inverse temperature. However, the biggest
error of the average filling that we get for βt > 1 is at most around ∆N ∼ ±2. This results in a density error of
around ∆n ∼ 20% for lowest filling n = 0.2778 presented in the main text. This error decreases dramatically for
higher fillings. We could obtain more precise results by varying the chemical potential value for specific temperature.
This would be a rather tedious task where we would have to map out different chemical potentials and their resulting
fillings at different temperatures. However, since the errors are nevertheless relatively low and most importantly, well
controlled, we consider such an approach not necessary. Our results capture all the qualitative features and we are
not interested in extracting very precise numerical values in great detail.
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FIG. S3. (a) Expectation value of the Hamiltonian (S1) at a chemical potential µ/t = 0.33275 which yields the ground-state
filling of n = 14/36 in the deconfined regime h/t = 0. (b) Expectation value of the Hamiltonian in the confined regime h/t = 1
at a chemical potential µ/t = 0.242, which also gives the filling of n = 14/36 in the ground state. The convergence to the
ground state is slightly slower in the confined regime. (c) Finally, we also present the expectation value of the Hamiltonian
for a chemical potential µ/t = 0.6875, which yields a slightly higher target filling of nt = 24/36 in the confined regime. We
observe a monotonic decrease of the energy with increasing inverse temperature β = 1/T in all cases. Horizontal black lines
denoted with EGS/t are the values of the ground-state energies at the corresponding chemical potential. Expectation value of
the total particle number N as a function of β = 1/T at a chemical potential with the ground-state filling of n = 14/36 in the
deconfined regime h/t = 0 (d) and in the confined regime h/t = 1 at a chemical potential which yields the same target filling
of nt = 14/36 (e), as well as the particle number at a chemical potential with a slightly higher target filling of nt = 26/36 in
the confined regime (f). The expectation values of the particle number slightly overshoot the target fillings for low values of β
in all cases and then quickly converge to the ground-state results with increasing β. Horizontal black lines denoted with NGS

are the corresponding target values in the ground state.

GREEN’S FUNCTION FITS

As mentioned in the main text, we want to compare the exponential decay of the Green’s function at finite temper-
ature in the deconfined regime to the confined regime. To this end, we fit the absolute value of the Green’s function
results obtained from our numerical calculations with a simple function which contains exponenital and algebraic
decay,

fG = Ax−αe−x/ξ. (S6)

Here we defined the correlation length ξ of the exponential decay and a power-law decay exponent α. Due to the
exponential nature of the numerical results, we fit the logarithm of our data. Hence, we rewrite the fitting function
defined above in Eq. (S6) as

f̃G = Ã− α log(x)− x

ξ
. (S7)

Example fits in the log-log scale are presented in Fig. S4. The finite-temperature results clearly converge to the
ground-state calculations as the temperature decreases. This is seen in the deconfined case presented in Fig. S4(a).
Ground-state calculations exhibit a power-law decay which is reflected in a linear curve in the log-log plot. Slight
deviations from the power-law decay can already be seen for the lowest-temperature data sets. The biggest difference
can then be seen for the data set at temperature T/t = 1/4, where the exponential decay is already pronounced.
This is also consistent with the onset of Friedel oscillations discussed in the main text (see also the section on Friedel
oscillations in the supplementary material). Similar convergence to the ground-state results with lower temperature
T can also be observed in the case when the confining electric field is non-zero, h/t = 1, see Fig. S4(b). The onset
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FIG. S4. Log-log plots of the Green’s function at a target filling of nt = 0.3889 for different temperatures and electric field
strengths. (a) Green’s function in the absence of the electric field term h = 0, where ground-state results clearly exhibit a linear
decay in the log-log plot, which corresponds to the algebraic decay attributed to the deconfined phase. Finite-temperature
results in this regime start to deviate from the ground-state calculations with higher temperature T . (b) For finite electric
field strength h/t = 1, the Green’s function decays exponentially for any finite temperature. The decay is slower for low
temperatures where the results converge to the ground-state results. The most obvious change in the exponential decay in both
cases presented here can be observed for temperatures T/t ≥ 4. The actual densities at finite temperature follow the curves
presented in Fig. S3(a)–(c).

of deviations from the ground-state results can also be observed at around T/t ∼ 1/4, which is again consistent with
the Friedel-oscillation results in the main text.

We compare the extracted correlation lengths at h/t = 0 to the results at h/t = 1 at the same temperature T
and at approximately same filling n by computing the difference between the correlation lengths in both regimes
∆ξ(T ) = (ξh=0(T )− ξh=t(T )), which is presented in the main text. The actual fillings n at finite temperature in both
regimes are slightly off from the target filling nt in the ground state and follow the curves similar to those presented
in Fig. S3(d)–(f). To be more precise, every set of vertical data points positioned at a constant nt in Fig. 1(c) of
the main text, comes from comparing results for h/t = 0 and h/t = 1 at constant chemical potentials µ in the both
regimes, which give the corresponding nt in the ground state. This results in errors of the horizontal position of
the data points which we discuss in the previous section of the supplementary material, as well as in errors of the
actual correlation lengths. However, the errors are relatively small and the qualitative behavior is still captured. We
therefore take the target filling value obtained in the ground state when presenting our results in the main text as
extrapolating between the precise fillings n(h/t = 0, T ) and n(h/t = 1, T ) would unnecessarily complicate the general
picture.

FRIEDEL OSCILLATIONS

Real space density profile at finite temperature

Here we briefly comment on the density profiles in the chain for different fillings in the confined and deconfined
regimes which we present in Fig. S5. In the main text, we study the behavior of Friedel oscillations at finite tem-
perature by considering the Fourier transformation to extract their frequencies. By doing so, we determine up to
which temperature signatures of confinement persist. Here we show that the same behavior is already apparent by
considering the Friedel oscillations directly. At high temperatures, we observe a featureless flat density profile and
Friedel oscillations appear only when the temperature is lowered. This is the same in the confined and deconfined
regimes regardless of the filling, see Fig. S5. First signatures of oscillations appear close to the edges of the system at
around T/t ≈ 1/2. Oscillations become stronger and visible also in the bulk with decreasing temperature T/t < 1/4
when the oscillations start to resemble the ground-state results.

By comparing the Friedel oscillations at the same target filling nt = 0.3889 in the deconfined and confined regimes
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FIG. S5. Density profile for different target fillings in the confined and deconfined regimes. (a) Friedel oscillations for filling
nt = 14/36 ≈ 0.3889 in the deconfined regime h = 0. (b) The frequency of the Friedel oscillations in the confined regime when
h/t = 1 is half the frequency in the deconfined regime at the same filling. This can be easily observed by comparing the number
of peaks in (a) and (b). (c) Friedel oscillations at higher filling nt = 26/36 = 0.7222 in the confined regime. In both cases, the
finite-temperature Friedel oscillations converge to the ground-state results with decreasing temperature T . The actual densities
at finite temperature follow the curves presented in Fig. S3(a)–(c).

in Fig. S5(a) and (b), one can observe that the frequency of oscillations in the confined regime is indeed only half
the frequency in the deconfined regime. We also show oscillations at a higher filling nt = 0.7222 where we observe
double peaks in the Fourier transform. Although the oscillatory behavior becomes slightly less clear due to the high
frequency, we do see that the leading frequency is the one corresponding to the confined phase.

Fourier transformation of the Friedel oscillations

The Fourier transform of the Friedel oscillations which we present in the main text is defined as

nk =
1

L

L−1∑
j=0

e−ikj ⟨n̂j⟩ . (S8)

We discretize our k modes as ∆k = 2π
L .

STRING AND ANTI-STRING LENGTH DISTRIBUTIONS FROM SNAPSHOTS

As already mentioned in the main text, we sample snapshots from MPS [50] using the so-called perfect sampling
[51]. The algorithm for sampling snapshots is implemented in the SyTen toolkit [47, 48]. We sample snapshots
in the x-basis of our spin-1/2 chain. In each snapshot we thus obtain the configuration of the Z2 electric fields τ̂x

on every lattice site. We then extract the length of every string and anti-string in the snapshot. This is done by
considering the distances between odd-even and even-odd particles, respectively. To locate the particles in our chain,
we once again use the Gauss law, where we consider the physical sector that yields the simple connection between

the spin configuration on the links and particle number on the sites n̂j =
1
2

(
1− 4Ŝx

j Ŝ
x
j+1

)
. Hence, we simply search

for the domain walls in the spin configuration in order to extract the positions of particles. We typically sample 2000
snapshots from every MPS to produce the histograms in the main text.

We also check the average density ns of partons obtained from snapshot sampling and compare them with the
results obtained directly from the MPS, see Fig. S6. The snapshot results in the ground state exactly match the
results obtained from the MPS directly. Finite-temperature results match the particle number on average, since we
performed grand canonical calculations at finite temperature, i.e., we also have snapshots where the particle number
is slightly lower or higher than the target filling. As a result we also have snapshot contributions with an odd number
of particles, which do not break the Gauss law. A small statistical error is acquired also due to the finite number of
taken snapshots.
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FIG. S6. Lattice filling for different temperatures as a function of chemical potential obtained from the snapshots (filled markers
with error bars) and filling results obtained directly from the MPS calculations (black empty markers). (a) Density profiles
are symmetric in µ = 0 as expected in the deconfined regime h/t = 0. (b) Slight asymmetry is observed in µ in the confined
regime h/t = 1. The same marker shapes represent the same temperature of the snapshot and MPS calculation in all cases.
The ground-state results match almost perfectly across different chemical potentials and temperatures in the confined and
deconfined regimes. The error bars which we define as σ/

√
Ns, where σ is the standard deviation and Ns is the number of

snapshots, are smaller than marker size.

DYNAMICAL CALCULATIONS

With experimental feasibility in mind, let us consider the initial state

ρ̂(0) = ρ̂L(0)⊗
∣∣∣nL

2
= 1

〉〈
nL

2
= 1

∣∣∣⊗ ∣∣∣τxL
2 ,L2 +1

= −1
〉〈
τxL

2 ,L2 +1
= −1

∣∣∣⊗ ∣∣∣nL
2 +1 = 1

〉〈
nL

2 +1 = 1
∣∣∣⊗ ρ̂R(0), (S9)

where ρ̂L(R)(0) = e−ĤL(R)/T and ĤL(R) describe the original Hamiltonian Ĥ, Eq. (1) in the main text, on the left
(right) L/2 − 1 sites and links in the filling sector L/4 − 1 and gauge sector gj = +1, ∀j. The initial state (S9) is
experimentally easy to prepare. It involves pinning a meson pair in the center of the chain, while letting the left and
right parts of the system thermalize independently at temperature T , e.g., by coupling to an approximate thermal
bath at temperature T .
We then quench this initial state with Ĥ to obtain the time-evolved density operator

ρ̂(t) = e−iĤtρ̂(0)eiĤt. (S10)

In our ED calculations, we have used open boundary conditions with L = 12 matter sites.
We then calculate the dynamics of the probabilities pa,b(r) that the a

th particle from the left is r sites apart from
the bth particle, again counting from the left edge of the system. Our ED results indicate a fundamental difference
between h = 0 and h ̸= 0. In all cases, the probability of the two middle particles to be a site apart starts at unity
by construction of the initial state (S9). However, at long times we find that it is roughly equally probable for any
two consecutive particles to be a site apart when h = 0, regardless of the temperature, as shown in Fig. S7(a,b) for
T/t = 0 and 10, respectively.

On the other hand, when h = t, we find that at late times it is always more probable that the initially bound particles
will remain close to one another, as shown in Fig. S7(c,d) for T/t = 0 and 10, respectively. We have also tried even
higher temperatures (not shown), and this picture always holds, although the signal becomes less pronounced when
T → ∞. We also provide videos of the time evolution of the parton-separation probabilities.

https://www.youtube.com/playlist?list=PLoUsb3eaKix5yAeQWXmCgnU88Ivn9BzsR
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FIG. S7. Starting in a thermal ensemble at temperature T and at half-filling at a given strength h of the electric field, with
a well-defined particle pair at the middle sites and an equal number of particles to its left and right, we quench with Ĥ and
calculate in ED the probabilities of a pair of particles being one site apart over evolution time. In the case of h = 0, we find
that there is no confinement regardless of temperature, as shown in (a) for T = 0 and in (b) for T/t = 10. When h = t, we
find that at long times there will always be signs of confinement regardless of temperature, as shown in (c) for T = 0 and in
(d) for T/t = 10.
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