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ABSTRACT
Recent studies indicate that dense retrieval models struggle to per-
form well on a wide variety of retrieval tasks that lack dedicated
training data, as different retrieval tasks often entail distinct search
intents. To address this challenge, in this work we leverage instruc-
tions to flexibly describe retrieval intents and introduce I3, a unified
retrieval system that performs Intent-Introspective retrieval across
various tasks, conditioned on Instructions without any task-specific
training. I3 innovatively incorporates a pluggable introspector in
a parameter-isolated manner to comprehend specific retrieval in-
tents by jointly reasoning over the input query and instruction,
and seamlessly integrates the introspected intent into the original
retrieval model for intent-aware retrieval. Furthermore, we propose
progressively-pruned intent learning. It utilizes extensive LLM-
generated data to train I3 phase-by-phase, embodying two key
designs: progressive structure pruning and drawback extrapolation-
based data refinement. Extensive experiments show that in the
BEIR benchmark, I3 significantly outperforms baseline methods
designed with task-specific retrievers, achieving state-of-the-art
zero-shot performance without any task-specific tuning.

CCS CONCEPTS
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1 INTRODUCTION
Information Retrieval (IR) is a fundamental task with widespread ap-
plications not only in real-world scenarios such as web search [18]
and digital libraries [40], but also extending its significance to
retrieval-augmented large language models (LLMs) [12]. Recent
dense retrieval models have demonstrated remarkable performance
based on the transformer architecture in a manner of dual encoders.
Through the dual-encoders, they excel at encoding queries and
documents into a shared representation space to facilitate semantic
matching after the training with abundant annotated data [2, 19].

Nonetheless, this approach overlooks a critical fact that different
retrieval tasks often entail varied search intents. Recent studies [42]
indicate that existing dense retrieval models struggle to perform
well on a wide variety of retrieval tasks that lack dedicated training
data. When encountering a novel retrieval task, sufficient annotated
data is necessary for training retrieval models to implicitly grasp
the search intent, as demonstrated in Figure 1.a. Given the challenge
of obtaining such annotated data, a recent work, Promptagator [8]
instructs LLMs to generate task-specific training data by present-
ing them with sets of 8 examples. Then, it utilizes the generated
∗ Work done when interning at Alibaba DAMO Academy.
† Corresponding Author.
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Figure 1: (a) Existing methods require training a distinct
retrieval model for each task to implicitly grasp specific re-
trieval intent. (b) I3 directly handles different tasks through
intent-introspective retrieval following user instructions.

pseudo training data to train task-specific retrieval models for each
distinct task. While obtaining promising improvements, Promp-
tagator necessitates the training of a distinct model to implicitly
grasp the retrieval intent of each task, which limits the flexibility
to seamlessly transfer across diverse retrieval tasks.

Instead of training a specific model for each retrieval task, it is
desirable to enable pre-trained retrieval models to directly perform
different tasks guided by instructions that flexibly describe retrieval
intents in natural language [1]. To achieve this, an ideal approach
can be divided into two steps: (1) effective intent introspection:
deeply comprehending specific retrieval intent by jointly reasoning
over the input query and instruction; (2) harmless intent inte-
gration: integrating the introspected intent into the pre-trained
retrieval model, while avoiding disrupting the model’s original ca-
pabilities. Based on this insight, we aim to achieve such flexible
intent-aware retrieval from both model and learning perspectives.

From the model perspective, we introduce I3, a generic ap-
proach that enables pre-trained retrieval models to effectively per-
form intent-introspective retrieval across various tasks, while
simultaneously maintaining the pre-trained capabilities and avoid-
ing any task-specific training. Specifically, given an arbitrary dense
retrieval model with dual-encoders, I3 retains the original encoders
and innovatively develops a pluggable introspector in a parameter-
isolated manner to preserve the inherent capability of retrieval
models. The pluggable introspector subtly interprets the specific
retrieval intent by jointly comprehending the given query and
instruction. And the introspected intent is then seamlessly inte-
grated into the original query encoder, which is harmless due to
the parameter-isolated framework, endowing retrieval models with
a new facet of intent-aware retrieval conditioned on instructions.

From the learning perspective, to efficiently perform intent-
introspective retrieval across a wide range of retrieval tasks, the
pluggable introspector should (1) remain lightweight to avoid sig-
nificantly affecting the time efficiency of retrieval, (2) effectively
understand and perceive various retrieval intents within instruc-
tions. Therefore, we further propose progressively-pruned intent
learning to iteratively train I3 phase-by-phase, incorporating two
key designs: (1) progressive structure pruning, and (2) drawback

extrapolation-based data refinement. Specifically, we harness the
advancement of LLMs to automatically generate extensive data
with instructions as the seed training dataset and then divide the
total training into several phases. After each training phase, we
prune the pluggable introspector into a sheared module, and si-
multaneously extrapolate the drawback of the current model to
synthesize additional training data for refinement. This allows I3
to progressively comprehend a wide range of retrieval intents with
an increasingly streamlined structure.

Benefiting from the advancements in both model and learn-
ing perspectives, I3 finally evolves into a unified and lightweight
retrieval system, capable of efficiently following instructions to
directly perform various retrieval tasks with diverse intents. Re-
markably, in the BEIR benchmark [42], feeding with only natural
language descriptions of specific intent for each task, I3 signifi-
cantly outperforms competitive baselines without any task-specific
fine-tuning. Overall, our main contributions are three-fold:

• We innovatively propose I3, a generic and efficient approach
that endows retrieval models with a new facet of intent-
introspective retrieval following instructions, enabling them
to directly perform diverse tasks without specific tuning.

• We devise progressively-pruned intent learning, which incor-
porates progressive structure pruning and drawback extrap-
olation based data refinement, training I3 phase-by-phase
with extensive LLM-generated instruction data.

• Experiments show that I3 achieves state-of-the-art perfor-
mance on BEIR benchmark under both zero-shot retrieval
and reranking scenarios, without any task-specific tuning.

2 RELATEDWORK
Zero-shot Dense Retrieval. Dense retrieval [16, 17, 20, 50, 51] is

widely adopted in information retrieval that demonstrates strong
advantages over sparse retrieval methods [36]. However, Thakur
et al. [42] has shown that dense retrieval models still struggle to
generalize to out-of-domain data and do not perform well in zero-
shot settings, where no task-specific signals are available. To im-
prove zero-shot dense retrieval, some existing works [28, 47] bring
in domain adaptation techniques and utilize documents from the
target domain to generate corresponding pseudo queries for task-
specific training. Other efforts [15, 49, 54] focus on designing more
efficient unsupervised contrastive learning paradigm, while some
studies [31, 32] attempt to enhance generalizability by scaling up
retrieval models, among other approaches.

Nevertheless, expecting retrieval models to perform well solely
based on the query in a zero-shot setup can be inherently chal-
lenging as different tasks entail different retrieval intents. To re-
veal the retrieval intent, for each task Promptgator [8] samples 8
query-document pairs and then generates pseudo retrieval data
for training task-specific retrievers. In comparison, our method
proposes a single unified retrieval model to perform various tasks
following instructions without any task-specific tuning.

Another recent work TART [1], leverages instructions to flex-
ibly describe the retrieval intents. It collects 40 existing retrieval
datasets and manually annotates them with instructions. Then
TART directly inputs instructions into the query encoder, simply
concatenating them ahead of the queries. On this basis, it trains
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a multi-task retrieval model to perform retrieval tasks following
instructions. However, TART faces the following challenges: (1)
the human-annotated training datasets are costly and suffer from
limited diversity, with many of them sharing common retrieval
intent (e.g., retrieve correct answer to a question). (2) Given that
retrieval models typically lack advanced in-context understanding
capabilities, TART does not assure that the query encoder effec-
tively understands the retrieval intents within the instruction. And
the addition of extra instructions also disrupts the original input
format of the query encoder, potentially diminishing its inherent
abilities. In contrast, 𝐼3 leverages LLMs to automatically generate
instruction data comprising a wide range of retrieval intents with it-
erative drawback extrapolation-based refinement. It also preserves
the inherent capability of retrieval models and efficiently empowers
themwith a new facet of intent-aware retrieval conditioned on task-
specific instructions through a parameter-isolated architecture.

3 METHODOLOGY
In this section, we first give the preliminaries of dense retrieval
(§3.1). Then, we introduce I3, which performs intent-introspective
retrieval with a parameter-isolated architecture (§3.2). Finally, we
elaborate on the progressively-pruned intent learning (§3.3). It
capitalizes the advancement of LLMs to automatically generate ex-
tensive data (§3.3.1). And the LLM-generated data is then leveraged
to train I3 phase-by-phase, which incorporates two key designs:
progressive structure pruning (§3.3.2) and drawback extrapolation-
based data refinement (§3.3.3).

3.1 Preliminaries
Dense retrieval leverages a dual-tower architecture, consisting of a
query encoder 𝐸𝑄 and a document encoder 𝐸𝐷 , to encode query
𝑞 and document 𝑑 into dense vectors. After obtaining the repre-
sentations of both query and document, a similarity function (e.g.,
dot product) 𝑠 (𝑞, 𝑑) is leveraged to calculate the relevance score
between them:

𝑠 (𝑞,𝑑 ) =
〈
𝐸𝑄 (𝑞;Θ𝑞 ), 𝐸𝐷 (𝑑 ;Θ𝑑 )

〉
(1)

To train the dual encoders, given a query and the relevant (positive)
document 𝑑+, a common approach is to sample irrelevant (nega-
tive) documents 𝑑− , which can be either in-batch negatives, BM25
negatives [16], or hard negatives mined by dense retrieval mod-
els [48]. The objective is to maximize the probability of selecting the
positive document over other negative documents via contrastive
learning [6, 58]:

𝑝 (𝑑+ |𝑞,𝑑− ) = 𝑒𝑠 (𝑞,𝑑
+ )

𝑒𝑠 (𝑞,𝑑+ ) +∑
𝑒𝑠 (𝑞,𝑑− )

(2)

Furthermore, to realize retrieval with instructions that describe
the retrieval intents in natural language, the instruction I is incor-
porated into the query encoding. Then the query encoder can be
formulated as 𝐸′

𝑄
(𝑞,I;Θ′

𝑞) with the similarity function defined as:

𝑠 (𝑞, I, 𝑑 ) =
〈
𝐸′
𝑄 (𝑞, I;Θ′

𝑞 ), 𝐸𝐷 (𝑑 ;Θ𝑑 )
〉

(3)
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Figure 2: Parameter-isolated framework of I3, with a plug-
gable introspector enabling retrieval models to efficiently
integrate the introspected intents for better query encoding.

3.2 Intent-Introspective Retrieval Conditioned
on Instructions

In this section, we introduce the framework of I3. As a generic
approach, given an arbitrary dense retrieval model, I3 fully retains
its document encoder and encompasses two indispensable compo-
nents within the query encoder: (1) a pluggable introspector, deeply
comprehends the retrieval intent by jointly reasoning over the in-
put query and instruction; (2) the original query encoder, which is
frozen, faithfully integrates the introspected intent for better query
encoding. These two components integrate seamlessly to construct
a parameter-isolated architecture. This design not only preserves
the inherent capability of retrieval models, but also efficiently em-
powers them with a new facet of intent-aware retrieval following
task-specific instructions.

Specifically, we fully keep the original document encoder to
eliminate the substantial time expanse of re-encoding all docu-
ments from a large corpus. For the query encoder, we first retain
and fix its original parameters Θ𝑞 to preserve the existing capa-
bilities. Additionally, we construct a pluggable introspector (with
its parameters denoted as Θ𝑝 ) to explicitly introspect for specific
retrieval intents. Then the query encoding can be conceptualized
as a two-step process involving intent introspection and intent-
integrated encoding. We first derive the query embedding from
the output of the early layer within the original query encoder. The
introspector subtly interprets the specific retrieval intent by jointly
comprehending the derived query embedding and an additional
instruction embedding (denoted as 𝑐). The introspected intent is
then seamlessly re-integrated into the late layer of the original
encoder via a skip connection, enhancing subsequent encoding.

To facilitate efficient intent introspection and integration, we
construct two instances of “zero linear-projection" (ZP), Θ𝑧𝑝1 and
Θ𝑧𝑝2, which involve unique fully connected layers with weights
and biases initialized as zeros. Firstly, the instruction embedding
𝑐 ∈ R1×𝑑 is projected to compose with the query embedding
derived from the early layer’s output of the original query en-
coder: ℎ𝑞,𝑐 = ZP(𝑐,Θ𝑧𝑝1) + ℎ

𝑙𝑒𝑎𝑟𝑙𝑦
𝑞 , where ℎ𝑙𝑒𝑎𝑟𝑙𝑦𝑞 ∈ R𝑛×𝑑 and
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ZP(𝑐,Θ𝑧𝑝1) is added to each token of ℎ𝑙𝑒𝑎𝑟𝑙𝑦𝑞 . And then ℎ𝑞,𝑐 serves
as the input of the pluggable introspector, enabling it to perceive
both the input query and instruction for intent comprehension.
Finally, after introspecting for the specific intents 𝐾 , the intent
embedding after projection is re-integrated with the hidden rep-
resentations from the late layer of the query encoder, via skip
connection: ℎ𝑙𝑙𝑎𝑡𝑒𝑞 = ℎ

𝑙𝑙𝑎𝑡𝑒
𝑞 + ZP(𝐾,Θ𝑧𝑝2), which is taken as the

input to the next, i.e., (𝑙𝑙𝑎𝑡𝑒 + 1)-th layer in the original encoder. It
achieves a cohesive integration between the query encoding and
the introspected intents.

Training Objectives. To achieve the desired outcome of intent-
introspective retrieval, the two key steps, i.e., intent introspection,
and intent-integrated encoding, should be well adapted to each
other. In this regard, we design training objectives in two aspects
for this mutual adaptation.

On the one hand, the intent introspection should effectively
empower the subsequent query encoding. So we train the model
to accurately match related queries and documents after explic-
itly introspecting for retrieval intents. For a given query 𝑞𝑖and
corresponding instruction I+

𝑖
from the training data, we select mis-

matched documents {𝑑−
𝑖, 𝑗
}𝑚
𝑗=1 as negative samples, minimizing the

negative log-likelihood of the relevant document 𝑑+
𝑖
:

L1 =
𝑛∑︁
𝑖=1

−𝑙𝑜𝑔 𝑒𝑠 (𝑞𝑖 ,I
+
𝑖
,𝑑+
𝑖
)

𝑒
𝑠 (𝑞𝑖 ,I+

𝑖
,𝑑+
𝑖
) +∑𝑚

𝑗=1 𝑒
𝑠 (𝑞𝑖 ,I+

𝑖
,𝑑−
𝑖,𝑗

) (4)

On the other hand, the intent-integrated encoding should also
be capable of understanding the introspected intents in order to
utilize the knowledge therein to the fullest extent. To achieve this,
we explicitly optimize I3 to recognize what constitutes correct
retrieval intents in different scenarios. For each training group
of instruction, query, and relevant document, we sample some
irrelevant instructions {I−

𝑖, 𝑗
}𝑚
𝑗=1 as negative examples, misleading

the introspector to produce incorrect retrieval intents. We optimize

the negative log-likelihood of the positive instruction:

L2 =
𝑛∑︁
𝑖=1

−𝑙𝑜𝑔 𝑒𝑠 (𝑞𝑖 ,I
+
𝑖
,𝑑+
𝑖
)

𝑒
𝑠 (𝑞𝑖 ,I+

𝑖
,𝑑+
𝑖
) +∑𝑚

𝑗=1 𝑒
𝑠 (𝑞𝑖 ,I−

𝑖,𝑗
,𝑑+
𝑖
) (5)

Finally, the training loss is represented as L = L1 + 𝛼L2, with
𝛼 as the hyper-parameter. During training, we fix the parameters
of the original dual-encoders (i.e., Θ𝑞 and Θ𝑑 ), only optimizing
parameters of the pluggable introspector and the two instances
of zero linear-projection (i.e., Θ𝑝 , Θ𝑧𝑝1 and Θ𝑧𝑝2). This realizes
efficient training while simultaneously effectively preserving the
original capabilities of retrieval models.

Analysis of Harmless Intent Integration. Because the weight
and bias of the fully connected layers in “zero linear-projection”
are both initialized as zeros, it ensures harmless intent integration,
providing better optimization than training from scratch for the
introduced parameters. Specifically, in the initial training step, the
instruction embedding 𝑐 does not introduce any additional noise
to the query embedding. Moreover, the integration of intent em-
bedding also does not alter the hidden representations within the
original query encoder, effectively maintaining the original output
as if the pluggable introspector did not exist. It indicates that before
any parameter optimization, integrating the pluggable introspector
into the retrieval model is completely harmless to the original en-
coding process. With the parameters of the original dual-encoders
fixed, we ensure the preservation of previously learned knowledge,
while also facilitating efficient intent introspection and integration.
Consequently, I3 effectively enhances retrieval models, controlling
them to perform intent-aware retrieval following instructions.

3.3 Progressively-Pruned Intent Learning
To efficiently perform intent-introspective retrieval following in-
structions, the pluggable introspector should be trained to adeptly
perceive various retrieval intents within instructions, while also
maintaining a lightweight architecture to guarantee minimal im-
pact on the time efficiency of query encoding. To achieve this goal,
we propose progressively-pruned intent learning, as shown
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in Figure 3. It harnesses the advancement of LLMs to automati-
cally generate extensive data with instructions as the seed training
dataset, and then divides the total training into several phases. In
each phase, we leverage the LLM-generated data to train I3 with
the objectives mentioned in §3.2, and also incorporate two key
designs: (1) progressive structure pruning that streamlines the
pluggable introspector into a more lightweight module; (2) draw-
back extrapolation-based data refinement that extrapolates the
drawback of the current model to synthesize additional data for
enhancing the initial seed training dataset.

3.3.1 LLM-guided Instruction Data Synthesizing. To effec-
tively optimize I3 for intent introspection conditioned on instruc-
tions, first it is crucial to construct a diverse set of training data
comprising various retrieval instructions. We develop a generation
pipeline that utilizes an LLM to automatically synthesize a large
amount of query-document pairs together with instructions as the
seed training dataset.

(1) Instruction Generation. First, we prompt the LLM to gen-
erate a diverse range of retrieval instructions. To ensure compre-
hensive expression of different retrieval tasks, when generating
instructions, we require the LLM to specify the topic (e.g., scientific,
legal) and organizational formats (e.g., sentence, paragraph, dia-
logue) of the retrieved text, while also incorporating a clear defini-
tion of relevance (i.e., search intent) for the retrieval task. Moreover,
To further elevate the quality of instruction generation, we also
incorporate some instruction examples (selected from previously
generated instructions) into the prompt template as in-context sam-
ples. (2) Query-Document Pair Generation. For each generated
instruction, we subsequently ask the LLM towrite some appropriate
documents and their associated queries. The generated documents
and queries should align with the designated topic, organizational
formats and the relevance definition outlined in the instructions.
(3) Query Self-check. However, the query and document simulta-
neously generated in the preceding step may not always correctly
capture the retrieval intents expressed in the instructions. To tackle
this issue, we ask the LLM to verify if the query-document rela-
tionship matches the relevance criteria set by the instruction. And
the LLM is further required to rewrite the query that fails to meet
the relevance criteria, ensuring a cohesive association among the
instruction, query, and document.

Through the above three steps, we have generated extensive seed
data, encompassing a diverse range of retrieval instructions. For
each instruction, we select a small subset of corresponding query-
document pairs to form the validation set, while the remainder is
utilized as the seed training dataset for fine-tuning I3.

3.3.2 Progressive Structure Pruning. To design the specific
structure of the pluggable introspector for efficient intent introspec-
tion, a straightforward approach entails copying an extra query
encoder as the introspector and training it to understand diverse
instructions[55]. However, the introspector only needs to perceive
specific intents over the input query and instruction, without the
necessity to match the model size of the query encoder. Moreover,
it is essential for the introspector to maintain a lightweight design,
ensuring minimal impact on the time efficiency of query encoding.

To address these considerations, we duplicate an additional query
encoder as the initial pluggable introspector, and propose progres-
sive structure pruning that prunes the introspector into a sheared
structure after each training phase. Only a subset of the weights
from the larger introspector is selected to initialize the smaller
version. This facilitates the transfer of knowledge learned by the
larger introspector to the smaller counterpart, ensuring that the
model becomes increasingly lightweight with almost no perfor-
mance degradation.

Specifically, prior to the first training phase, the pluggable in-
trospector possesses the same architecture and parameters as the
original query encoder. In this setup, the introspector and the orig-
inal query encoder are connected only at their input and output
spaces: the input embedding of the query encoder is derived as the
input for the introspector, and the introspected intent embedding is
directly integrated with the output of the query encoder, producing
the final query representation. In subsequent phases, before train-
ing we first perform structure pruning on the introspector from
the previous phase, streamlining it into a sheared module. And the
weights of the sheared introspector are initialized from the larger
counterpart, resembling the process of knowledge distillation. We
refer to the larger introspector before pruning as the teacher intro-
spector, and the target sheared one as the student introspector. And
structure pruning involves two aspects: layer pruning and element
pruning, as shown in Figure 3.b.

(1) Layer pruning: The student introspector comprises a re-
duced number of transformer layers compared to its teacher coun-
terpart. And each layer in the student introspector is initialized
using a corresponding layer from the teacher. Specifically, we omit
several initial and final layers while retaining the intermediate ones
from the teacher introspector. Consequently, the early derivation
of query embedding which serves as the input for the introspector,
and the late integration of specific retrieval intents, both take place
within the more intermediate layers of the original query encoder.
This not only enables the query encoder to provide enhanced query
embeddings for the introspector, but also allows more subsequent
layers in the query encoder to effectively integrate the introspected
intents for improved encoding.

(2) Element pruning: After layer pruning, we need to initialize
each component within the student introspector’s layers, using the
corresponding larger counterpart from the teacher introspector.
To streamline the model architecture, targets for element pruning
may include the number of attention heads, and the hidden or
intermediate dimension within the transformer layer, among others.
We employ a uniform selection strategy, wherein evenly-spaced
elements are selected from the teacher’s tensor to initialize the
student’s corresponding component. For example, when leveraging
weight tensor𝑊𝑡 ∈ R𝑡1×𝑡2×...×𝑡𝑛 from the teacher introspector to
initialize the student’s weight tensor𝑊𝑠 ∈ R𝑠1×𝑠2×...×𝑠𝑛 which is
of the same component type (𝑠𝑖 ≤ 𝑒𝑖 ), we evenly-spaced select 𝑠𝑖
slices out of 𝑡𝑖 for each dimension 𝑖 of𝑊𝑡 to facilitate initialization
of𝑊𝑠 . And previous research [52] has demonstrated that such a
uniform selection strategy is likely to yield benefits of knowledge
transfer from the teacher model to the student.

Besides pruning the introspector into a sheared structure, at the
beginning of each training phase, we also reinitialize the weights
and biases within the two “zero linear-projection" instances to zeros.
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Throughout each phase of training, we consolidate and strengthen
the model capability based on that inherited from the larger in-
trospector in the preceding phase. Ultimately, we streamlined the
introspector into a more lightweight module, which improves the
time efficiency of query encoding while maintaining the perfor-
mance with minimal degradation.

3.3.3 Drawback Extrapolation-Based Data Refinement. We
then describe the drawback extrapolation-based data refinement. It
extrapolates the drawbacks of the trained model from each training
phase by detecting instructions that the model struggles to under-
stand, and then specifically generates new training data to enhance
the original seed dataset.

In particular, after each training phase, we evaluate the current
model’s performance on the synthesized validation set for each
instruction. Instructions that are not fully comprehended by the
model inevitably result in sub-optimal performance. We then utilize
these challenging instructions as in-context samples for the LLM
to generate new instructions, which often bear a resemblance to
the original in-context instructions and may similarly pose com-
prehension challenges to the current model. Moreover, we follow
the data-generation pipeline to synthesize corresponding query-
document pairs that align with these new instructions, and incor-
porate them into the original training dataset for refinement. In
subsequent training phases, these data can specifically target the
identified weaknesses of the current model, thereby enhancing its
ability to understand a diverse range of retrieval instructions.

4 EXPERIMENTAL SETUP
To illustrate the effectiveness of I3, we evaluate our approach in
two settings: (1) zero-shot evaluation on retrieval scenarios and (2)
zero-shot evaluation on reranking scenarios after cooperating I3
with reranking models.

4.1 Benchmark
Our experiments are conducted on the BEIR [42] benchmark for
zero-shot evaluation on retrieval and reranking scenarios. Fol-
lowing prior works[15, 42], we leverage Normalized Discounted
Cumulative Gain 10 (nDCG@10) as the evaluation metric and
use the 15 publicly available datasets in BEIR for evaluating re-
trieval models, including 14 out-of-domain datasets (i.e., TREC-
COVID [44], NFCorpus [4], NQ [19], HotpotQA [53], FiQA-
2018 [29],ArguAna [45],Touché-2020 [3],Quora [42],DBPedia-
entity [13], SCIDOCS 7, Fever [43], Climate-Fever [10], Sci-
Fact [46], CQADupStack [14]) and one in-domain dataset (i.e.,MS
MARCO [2]). Besides, the evaluation instructions for all datasets,
which describe the retrieval intents, are in alignment with those
employed in [1]. Moreover, When evaluating reranking models, we
conduct experiments across 11 of the above datasets following [8].

4.2 Baselines
Retrieval Baselines. We compare I3 with various competitive

retrieval methods, which can be categorized into four groups. The
first group employs a sparse retrieval method known as BM25.

The second group trains retrievers on a few supervised datasets
(e.g., MS MARCO [2]) and directly transfer them to new tasks,
includingContriever [15],GTR [32],ColBERT-v2 [39],CPT [31],

LaPraDoR [49], COCO-DR [54], and SGPT [30]. These baseline
models have varying parameter sizes. Notably, GTR comprises 4.8B
parameters, SGPT consists of 5.8B parameters, and CPT boasts
an impressive 175B parameters, almost directly utilizing LLMs for
retrieval tasks.

The third group of models train a task-specific retriever for each
downstream task with pseudo generated training data, including
GenQ [42], GPL [47], Promptgator [8]. GenQ and GPL utilize a
specifically trained T5 for data generation. And Promptgator is a
few-shot LLM-enhanced method that prompts LLMs to synthesize
training data.

And the final group includesTART-dual [1] and InstructOR [41].
TART-dual collects a large number of supervised datasets and aug-
ments them with human-annotated instructions. The collected
datasets, known as 𝐵𝑒𝑟𝑟𝑖 , are then employed to train a single re-
triever to solve different tasks with instructions. And InstructOR
adopts a similar approach, focusing on instruction-based retrieval.

Reranking Baselines. In contexts where speed is not critical,
the reranking model with a cross-encoder is often used to compute
the query-document relevance by jointly encoding them with cross-
attention. Under the reranking settings, a retrieval model is first
utilized to retrieve the Top-K documents, followed by the applica-
tion of a reranking model to reorder these retrieved documents. In
our experimental setup, we first leverage I3 to retrieve the Top-K
documents (where K=100) and then employ a competitive reranking
model, monoT5 (3B) [33], to reorder these retrieved documents.

We comparewith the following state-of-the-art Retriever+Reranker
combinations:UPR (3B) [38] that initially retrieves 1000 documents
with Contriever, Contriever+CE that initially retrieves 100 docu-
ments with Contriever, BM25+monoT5 (3B) [33, 37] that initially
retrieves 100 or 1000 documents with BM25, COCO-DR+monoT5
(3B) [33, 37] that initially retrieves 100 documents with COCO-DR,
Promptgator++ (zero-shot version & few-shot version) [8] that
initially retrieves 200 documents with Promptgator, TART-full
(T0-3B version & Flant5-XL version) [1] that initially retrieves 100
documents with Contriever.

4.3 Implementation Details
To automatically generate retrieval data with diverse instructions,
we leverage ChatGPT [34] (OpenAI gpt-3.5-turbo) as the LLM.
We set the temperature to 1 and generate approximately 100 in-
structions with different retrieval intents. Concurrently, we syn-
thesize about 140K query-document pairs in total, including 100K
pairs in the seed training dataset and 20K pairs created during data
refinement. Furthermore, we rigorously eliminate the generated
instructions that exhibit similar retrieval intents as downstream
tasks, thereby preventing any overlap or similarities between
the generated training data and the test data.

With LLM-generated training data, we leverage COCO-DRLarge [54],
a dual-encoder consisting of 335M parameters, as the backbone
model to implement I3. Specifically, COCO-DRLarge has the same
architecture as BERTLarge [9] and takes the [CLS] pooling of the
top encoder layer as the query/document embeddings. We retain
the original dual-encoders and duplicate an extra query encoder
as the pluggable introspector. And the instruction embedding 𝑐 is



I3: Intent-Introspective Retrieval Conditioned on Instructions SIGIR ’24, July 14–18, 2024, Washington, DC, USA

Table 1: nDCG@10 on the BEIRBenchmark.We compare I3with other retrievermodels. AvgCPT Sub is the average performance
on 11 BEIR tasks used in [31]. Avg TART Sub is the average performance on 9 BEIR tasks used in [1].

Datasets BM25 Contriever GTR ColBERTv2 CPT LaPraDoR COCO-DR SGPT GenQ GPL Promptgator TART-dual InstructOR I3

MS MARCO 22.8 40.7 44.2 — — 36.6 42.4 39.9 40.8 — — — 41.6 41.8

TREC-COVID 65.6 59.6 50.1 73.8 64.9 77.9 80.4 87.3 61.9 70.0 75.6 62.6 71.4 81.6
NFCorpus 32.5 32.8 34.2 33.8 40.7 34.7 35.4 36.2 31.9 34.5 33.4 33.7 36.0 37.1
NQ 32.9 49.8 56.8 56.2 — 47.9 54.7 52.4 35.8 48.3 — — 57.3 57.4
HotpotQA 60.3 63.8 59.9 66.7 68.8 66.6 64.1 59.3 53.4 58.2 61.4 — 55.9 63.3
FiQA-2018 23.6 32.9 46.7 35.6 51.2 34.3 32.9 37.2 30.8 34.4 46.2 33.7 47.0 35.7
ArguAna 41.4 44.6 54.0 46.3 43.5 50.8 51.5 51.4 49.3 55.7 59.4 48.9 55.7 59.8
Touché-2020 36.7 23.0 25.6 26.3 29.1 33.3 26.3 25.4 18.2 25.5 34.5 20.1 23.4 23.7
Quora 78.9 86.5 89.2 85.2 63.8 87.5 87.2 84.6 83.0 83.6 — — 88.9 89.3
DBPedia-entity 31.3 41.3 40.8 44.6 43.2 39.1 40.7 39.9 32.8 38.4 38.0 41.5 40.2 41.8
SCIDOCS 15.8 16.5 16.1 15.4 — 18.4 17.8 19.7 14.3 16.9 18.4 14.2 17.4 19.9
Fever 75.3 75.8 74.0 78.5 77.5 76.3 79.3 78.3 66.9 75.9 77.0 — 70.0 80.8
Climate-Fever 21.3 23.7 26.7 17.6 22.3 26.1 24.7 30.5 17.5 23.5 16.8 13.8 26.5 31.1
SciFact 66.5 67.7 66.2 69.3 75.4 68.7 72.2 74.7 64.4 67.4 65.0 69.0 64.6 79.9
CQADupStack 29.9 34.5 39.9 — — 29.0 39.3 38.1 34.7 35.7 — — 43.0 40.0

Avg CPT(TART) Sub 48.5 50.2 51.6 52.5 52.8 54.1 54.1 55.0 46.4 51.6 —(43.0) —(37.4) 52.7 56.7(45.6)
Avg 43.7 46.6 48.6 — — 49.3 50.5 51.1 42.5 47.7 — — 49.8 52.9

Table 2: We cooperate I3 with monoT5 [33] and compare with other reranking baselines on 11 datasets in BEIR.

Methods K arg touché covid nfc hotpot dbp climate fever scifact scidocs fiqa Avg TART Sub Avg

UPR (3B) 1000 50.3 21.3 60.4 33.3 72.2 33.8 9.5 57.3 69.6 17.3 45.0 37.8 42.7

Contriever+CE 100 41.3 29.8 70.1 34.4 — 47.1 25.8 — 69.2 17.1 36.7 41.3 —
BM25+monoT5 (3B) 100 32.3 21.1 82.0 39.4 73.1 44.1 27.0 83.9 76.2 19.4 46.2 43.0 49.5
BM25+monoT5 (3B) 1000 38.0 30.0 79.5 38.4 75.9 47.8 28.0 85.0 77.7 19.7 51.4 45.6 51.9
COCO-DR+monoT5 (3B) 100 40.6 28.4 85.9 39.8 71.4 47.7 29.1 84.6 76.4 20.0 48.5 46.3 52.0
Promptgator++ (zero-shot) 200 52.1 27.8 76.0 36.0 71.2 41.3 22.6 83.8 73.2 19.1 45.9 43.8 49.9
Promptgator++ (few-shot) 200 63.0 38.1 76.2 37.0 73.6 43.4 20.3 86.6 73.1 20.1 49.4 46.7 52.8

TART-full (T0-3B) 100 49.8 31.2 71.7 34.0 — 45.1 30.0 — 75.8 17.5 42.2 44.1 —
TART-full (FlanT5-XL) 100 51.5 24.9 72.8 33.4 — 46.8 35.4 — 77.7 18.7 41.8 44.8 —

I3+monoT5(3B) 100 41.4 29.0 86.3 40.0 72.8 48.5 35.6 86.7 77.9 20.4 51.4 47.8 53.6

pre-encoded by the original query encoder. Moreover, we encom-
pass three phases within progressively-pruned intent learning and
perform structure pruning after each of the first two phases. In the
final version of the introspector, the number of layers is reduced
from the original 24 to 12, the hidden dimension decreases from
1024 to 768, the intermediate dimension decreases from 4096 to
3072, and the number of attention heads decreases from 16 to 12.

During training, we set the batch size as 64, with the maximum
sequence length as 256, the learning rate as 5e-6, and 𝛼 as 0.5.
When conducting contrastive learning, we randomly sample 4 mis-
matched instructions as negative examples in L2. Moreover, in
each phase we leverage the model from the previous phase (COCO-
DR in the initial phase) to retrieve documents with high similarity
scores yet unrelated to the query from generated documents as hard
negatives, together with in-batch negatives for L1. Furthermore,
when evaluating on BEIR, we follow the same hyperparameters in
COCO-DR [54] to ensure a fair comparison.

5 EXPERIMENTAL RESULTS
5.1 Main Results on Retrieval Scenarios
Table 1 lists the zero-shot evaluation results of retrieval models
on BEIR. The results for baseline methods are derived from their
respective papers. As some baselines employ datasets from BEIR for
training, their downstream test excludes these datasets to ensure a
fair comparison, leading to results missing for some baselines on

specific datasets. When compared with these baselines, we compute
the average performance for I3 exclusively on the datasets they
test. We have the following observations from the experimental
results.

First of all, I3 outperforms all previous retrieval models on
the average nDCG@10 metric of BEIR tasks. It shows significant
improvements over its backbone model, i.e., COCO-DR, improving
the average nDCG@10 by 2.3 points and achieving superior per-
formance on 12 of 14 out-of-domain tasks. The significantly higher
zero-shot performance of our model demonstrates the stronger
generalizability of I3 across various retrieval tasks.

Second, while some approaches (e.g., Promptgator) leverage
LLMs to generate pseudo training data and train task-specific mod-
els for each downstream task, our model achieves superior trans-
ferability across diverse retrieval intents of tasks. For example, I3
yields 2.6 point nDCG improvement over the few-shot method
Promptgator. This indicates that our I3 can efficiently and effec-
tively transfer to different retrieval tasks using only instructions
without any task-specific training.

Third, compared with models that have significantly more pa-
rameters,e.g., SGPT (5.8B parameters), CPT (175B), our method
still achieves stronger average performance with much fewer pa-
rameters (445M). It highlights smaller models can still achieve
remarkable effectiveness when designed with an ingenious archi-
tecture to well understand the retrieval intents.
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Table 3: Results of ablation study to illustrate the effect of
individual components.

0 backbone
COCO-DR

1 w/o intro-
spection

2 w/o
instr

3 w/o
progressive

4 w/o
refine

5 w/o
pruning I3

MS MARCO 42.4 37.9 40.3 40.9 41.7 41.8 41.8

TREC-COVID 80.4 77.9 76.1 80.3 80.8 82.1 81.6
NFCorpus 35.4 34.1 36.2 36.3 36.4 36.5 37.1
NQ 54.7 51.0 55.3 56.0 56.3 57.2 57.4
HotpotQA 64.1 58.6 61.0 62.9 63.2 64.5 63.3
FiQA-2018 32.9 31.8 34.1 34.8 35.2 35.3 35.7
ArguAna 51.5 56.4 55.9 57.4 56.4 58.8 59.8
Touché-2020 26.3 25.5 22.8 22.9 24.3 24.5 23.7
Quora 87.2 86.7 87.6 87.7 88.2 88.6 89.3
DBPedia-entity 40.7 32.3 41.2 41.4 41.0 42.1 41.8
SCIDOCS 17.8 16.7 18.2 18.8 19.2 19.6 19.9
Fever 79.3 77.7 79.7 80.1 80.4 81.3 80.8
Climate-Fever 30.4 25.3 30.9 30.6 30.9 32.0 31.1
SciFact 72.2 72.0 77.4 78.5 78.8 79.0 79.9
CQADupStack 39.3 38.3 39.5 39.1 39.3 40.1 40.0

Avg 50.5 48.9 51.1 51.9 52.2 53.0 52.9

Table 4: The average retrieval time efficiency across each
dataset within BEIR.

Method COCO-DR I3 w/o pruning I3

#Query per second 1600 700 1150
#Document per second 500 500 500
Query encoding time 2.3s 5.2s 3.1s
Document encoding time 4514s 4514s 4514s
Retrieval Latency 7.5s 7.5s 7.5s

Total Time 4523.8s 4526.7s 4524.6s

Finally, I3 leverages a large margin improvement compared
with TART-dual (45.6 v.s. 37.4 on average) and InstructOR (52.9 v.s.
49.8 on average), which leverage human-annotated training data
for instruction-based retrieval. We argue that it can be attributed
to two key factors. First, the parameter-isolated architecture of I3
better preserves the original capability of the retrieval model, while
also flexibly unleashing its ability to conduct intent-introspective
retrieval following instruction. Second, progressively-pruned intent
learning explicitly optimizes the transferability of I3 based on
extensive automatically LLM-generated retrieval data with diverse
search intents.

5.2 Main Results on Reranking Scenarios
To further illustrate that our method can be applied to reranking
scenarios and yield performance improvements, we cooperate I3
with a competitive reranking model, monoT5 (3B) [33] and con-
duct experiments on BEIR. As shown in Table 2, the combination
of I3+monoT5 has achieved the new state-of-the-art reranking
performance in BEIR. Compared to BM25+monoT5 and COCO-
DR+monoT5, our approach involves a mere substitution of the
retrieval model, yet results in a marked enhancement in perfor-
mance. And the combination of I3+monoT5 is also notably superior
to zero-shot reranking models like TART-full [1] and Promptga-
tor++ [8]. With a zero-shot setup, it even outperforms few-shot
Promptgator++ which achieves previous SOTA performance, ex-
hibiting average gains of 0.8 nDCG@10 points.

Furthermore, for certain baseline methods like BM25+monoT5
and Promptgator++, we adhere to the experimental settings in their
original papers, and a value larger than 100 is selected for 𝐾 as
the number of documents initially retrieved. Typically, A larger
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Figure 4: Average nDCG@10 of I3 incorporating different
backbones on the BEIR benchmark.
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Figure 5: (a): Performance on BEIR with different instruction
treatments during testing. (b): Performance of I3 with differ-
ent training data scales.

K implies a greater reliance on the capabilities of more powerful
rerankingmodels that utilize cross-encoders. It tends to improve the
reranking performance but also increases the time cost for rerank-
ing (the time cost is proportional to the value of K), as reranking is
generally more time-consuming compared to retrieval. In contrast
to baselines with larger K values, our method still achieves supe-
rior performance under more stringent conditions and additionally
reduces the time cost of reranking.

5.3 In-Depth Analysis
Effect of Individual Components. We conduct the ablation

study to illustrate the effect of each component in Table 3. Specifi-
cally, we train the following ablation models: (1)w/o introspection:
we remove the pluggable introspector and directly tune the COCO-
DRLarge backbone with our generated data, following TART-dual.
(2) w/o instr: we do not provide any instructions to I3 during both
training and evaluation. (3) w/o progressive: Before training, we
prune the original query encoder directly to the desired sheared
structure to serve as the pluggable introspector, no longer con-
ducting progressive structure pruning during subsequent training
phases. (5) w/o refine: We do not perform drawback extrapolation-
based data refinement, with the synthesized seed dataset as the
only training data. (4) w/o pruning: We do not perform structure
pruning and the pluggable introspector always maintains the same
structure as the original query encoder.

The result of Column1 in Table 3 indicates that directly instruction-
tuning the backbone model actually undermines its inherent ca-
pabilities, resulting in a decline in performance. This observation
underscores the crucial role of the I3 architecture in enhancing
zero-shot retrieval. The result of Column 2 emphasizes the neces-
sity of fine-tuning I3with instruction-based data. Besides, the result
of Column 3 confirms the superiority of iterative training with
progressive structure pruning, which ensures that the knowledge
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Table 5: Performance on BEIR with different training data
(ChatGPT-Generated, LLaMA2-Generated, from TART-dual).

Datasets Backbone
COCO-DR

I3
TART-Data

I3
LLaMA2-Data

I3
ChatGPT-Data

MS MARCO 42.4 — 41.5 41.8

TREC-COVID 80.4 78.2 80.5 81.6
NFCorpus 35.4 36.0 36.2 37.1
NQ 54.7 — 55.9 57.4
HotpotQA 64.1 — 64.3 63.3
FiQA-2018 32.9 34.6 34.4 35.7
ArguAna 51.5 56.1 56.7 59.8
Touché-2020 26.3 23.9 26.4 23.7
Quora 87.2 — 87.5 89.3
DBPedia-entity 40.7 41.1 41.2 41.8
SCIDOCS 17.8 18.7 18.9 19.9
Fever 79.3 — 80.2 80.8
Climate-Fever 30.4 29.6 30.8 31.1
SciFact 72.2 76.7 77.8 79.9
CQADupStack 39.3 — 39.5 40.0

Avg TART Sub 43.1 43.9 44.8 45.6
Avg 50.5 — 52.2 52.9

learned by larger models is gradually and effectively transferred to
smaller models. Moreover, Column 4 suggests that the process of
data refinement is geared towards identifying and mitigating the
drawbacks of the model, thus further boosting the performance.
Lastly, the result of Column 5 demonstrates that structure pruning
effectively renders our model more lightweight, while simultane-
ously leading to almost no performance degradation compared to
the un-pruned model.

Retrieval Time Efficiency. Table 4 presents the average re-
trieval time efficiency across each dataset within BEIR, specifically
comparing I3, COCO-DR, and the un-pruned version of I3 (w/o
pruning). The results reveal that the integration of the pluggable
introspector, without pruning, significantly slows down the speed
of query encoding by over 50%. However, the incorporation of a
pruned lightweight introspector only slightly decelerates the query
encoding. Furthermore, the extra time incurred by the introspector
has a minimal impact on the overall time, which is dominated by
document encoding and the retrieval latency.

Incorporating with Different Backbones. As a generic ap-
proach, I3 can be seamlessly integrated into different retrieval
models with dual-tower architecture. Besides COCO-DRLarge, we
also leverage COCO-DRBase and Contriever as the backbone to
train I3 in the same way. As shown in Figure 4, across all three
backbone models, our method significantly enhances the zero-shot
results, enabling them to achieve stronger performance. Notably,
the performance of COCO-DRBase, after instruction tuning within
our framework, even surpasses the original COCO-DRLarge. This
underscores the universality of our proposed approach.

Impact of Instructions. To analyze the effectiveness of instruc-
tions, we employ different treatments for instructions during down-
stream zero-shot evaluation, i.e., Rewrite Instr, Remove Instr,
and Incorrect Instr, which involve rephrasing the instructions
without altering their original intents, entirely omitting the instruc-
tions, and providing misleading incorrect instructions, respectively.
As shown in Figure 5.a, rewriting test instructions without alter-
ing their original meaning has minimal impact on performance.
This demonstrates that our model is robust to various instructions.
However, the performance noticeably drops when no instructions

are provided during evaluation, and providing instructions with
incorrect retrieval intents leads to a more substantial decline in
performance. This highlights the pivotal importance of instructions
in intent-introspective retrieval.

Analysis of Training Data Sources. Besides generating train-
ing data with ChatGPT, we also leverage LLaMA2 to synthesize
an equivalent amount of training data. Additionally, we also ex-
periment with Berri, the manually-collected data in Tart-dual, as
the training data to tune I3 (BEIR datasets contained in Berri are
excluded in zero-shot evaluation). As shown in Table 5, replacing
ChatGPT with LLaMA results in a marginal decrease in perfor-
mance compared to the original I3 due to reduced data quality, but
it still surpasses COCO-DR and the model trained on Berri. The
results show that our method does not simply rely on ChatGPT
and highlight the efficacy of our data generation strategy.

Impact of Training Data Scales. To investigate the impact
of the training data scale, we control the total amount of training
data by altering the size of the seed training dataset. As shown
in Figure 5.b, the performance keeps increasing when the total
number of training data expands from 40K to 120K. While further
increasing the data size from 120K to 160K shows minimal impact
on performance. These observations underscore that our iterative
training paradigm is data-efficient.

6 CONCLUSION AND FUTUREWORK
In this paper, we present I3, a generic and efficient approach capable
of controlling retrieval models to introspect for specific retrieval in-
tent and directly perform varied retrieval tasks without task-specific
tuning. Integrating a pluggable introspector in a parameter-isolated
manner, I3 effectively preserves the original capability of the re-
trieval model, meanwhile efficiently empowering it with a new
facet of intent-introspective retrieval conditioned on instructions.
Furthermore, we also innovatively propose progressively-pruned
intent learning, which incorporates progressive structure pruning
and drawback extrapolation-based data refinement, training I3
phase-by-phase with extensive LLM-generated instruction data.
Extensive experiments demonstrate the superior zero-shot general-
izability of I3 on diverse retrieval tasks under both retrieval and
reranking scenarios.

In the future, we aim to extend the idea of instruction-based task-
intent introspection across various fields to enhance the capabilities
of different models [22, 25, 35, 57, 59]. Furthermore, we hope the
technology of intent-introspective retrieval technology can emerge
as an important tool for augmenting a range of downstream tasks,
such as LLM pre-training [21, 56], video comprehension [23, 24, 26,
27], and anomaly detection [5, 11].
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APPENDIX
A DETAILED PROMPT FOR DATA

SYNTHESIZING
The LLM-guided instruction data synthesizing involves three steps
as shown in Figure 6: 1) instruction generation; 2) query-document
pair generation; 3) query self-check (refinement).

Instruction Generation. We first utilize the following prompt
template to generate diverse instructions covering a wide range of
retrieval intents:

The task is to generate some diverse instructions that reveal
search intents for retrieval tasks. Here are some generation
requirements:
(1) Each generated instruction must explicitly outline the
retrieval intent, which describes how the retrieved text
relates to the query, such as whether the text answers a
question in the query.
(2) Within each generated instruction, you must specify
the expected source or topic of retrieved text, such as
Wikipedia, scientific, or legal.
(3) Within each generated instruction, you should also de-
fine the text block to retrieve, such as a document or a
paragraph.
Here are specific examples of instructions:
<GIVE INSTRUCTION EXAMPLES HERE>
Now please directly generate instructions without writing
any other explanations:

Query-Document Pair Generation. For each generated in-
struction, we first extract the TEXT TYPE of the retrieved text,
including the topic (e.g., scientific, legal) and the organizational
formats (e.g., document, paragraph). Subsequently, we employ the
following prompt template to generate query-document pairs for
each instruction:

I will give you an instruction that describes how the
retrieved text relates to the query in a retrieval task. The
task is to generate a pair of query and the retrieved text
based on the given instruction. Here are some generation
requirements:
(1) The retrieved text you generate should be <TEXT
TYPE> according to the instruction.
(2) The connection between your generated query and
the retrieved text should correspond to the relationship
specified in the instruction.
Here are examples of generating query and retrieved text
with instructions:
<EXAMPLES OF QUERY-DOCUMENT PAIR GENERATION>

Please directly generate the query and the retrieved text
without writing any other explanations, based on the
following instructions:
<INSTRUCTION>

Instruction: Retrieve passages from 
Wikipedia to answer the following question.

Instruction: Retrieve a scientific 
study that provides evidence for the 
following hypothesis.

Retrieval Task Instruc1ons

LLM

LLM

Step1: Instruction Generation

Step2: Query-Document Pair Genera9on

Query: What is the capital city of 
Australia?

Document: Canberra is the capital 
city of Australia. It is located in the 
southeastern part of the country……

Query: James Cameron directed the 
movie Avatar.

Document: Avatar is a 2009 
American science fiction film directed, 
written, produced, and co-edited by 
James Cameron.……

Query: Who directed the movie 
Avatar?

Document: Avatar is a 2009 
American science fiction film directed, 
written, produced, and co-edited by 
James Cameron.……

Instruction
Query
Document

LLM Check
❌ ✅ Step3: Query Refinement

Output

Refine

Instruction 
Template

Figure 6: LLM-guided instruction data synthesizing.

Query Self-check. We observed that for certain generated in-
structions, some of the subsequent generated queries and docu-
ments do not always correctly capture the retrieval intents ex-
pressed within those instructions. To address this challenge, we
finally design the following prompt templates to refine or regener-
ate these misaligned queries:

I will give you an instruction that describes how the
retrieved text relates to the query in a retrieval task. And
then you are provided with the query and the retrieved
text. You should assess the query for the following criteria:
(1) Does the given query adhere to the query format
specified in the instruction?
(2) Does the relationship between the query and the
retrieved text align with the relationship specified in the
instruction?
If the existing query satisfies the aforementioned criteria,
directly output the existing query without any alterations.
Conversely, if the query falls short of meeting the criteria,
please revise or rewrite the existing query to make it
satisfy the criteria and then directly output the revised
query. DO NOT provide any explanations.
Here is an example:
<EXAMPLES OF QUERY REFINEMENT>

Now I will give you the instruction, the retrieved
text, and the query:
The instruction: <INSTRUCTION>
The retrieved text: <RETRIEVED TEXT>
The query: <QUERY>
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Table 6: Evaluation instructions for BEIR benchmark.

Dataset Instruction

MS MARCO I want to know the answer to the question. Can you
find good evidence on the web?

TREC-COVID Retrieve Scientific paper paragraph to answer this
question.

NFCorpus Retrieve Scientific paper paragraph to answer this
question.

NQ retrieve passages from Wikipedia that provides
answers to the following question.

HotpotQA Find a paragraph that provides useful information
to answer this question.

FiQA-2018 Find financial web article paragraph to answer.

ArguAna Retrieve an argument that counter argues the
following paragraph.

Touché-2020 You have to retrieve an argument to this debate
question.

Quora Check if a Quora question is duplicated with this
question.

DBPedia-entity Retrieve a Wikipedia introduction paragraph of the
following entity.

SCIDOCS Find scientific paper titles that are related to
the following.

Fever Retrieve a Wikipedia paragraph to verify this
claim.

Climate-Fever Retrieve a Wikipedia paragraph to verify this
claim.

SciFact Retrieve a scientific paper sentence to verify if
the following claim is true.

CQADupStack I want to identify duplicate questions asked in
community question answering forums.

B EVALUATION INSTRUCTIONS
We conduct all experiments on the BEIR, a widely used benchmark
for zero-shot evaluation of information retrieval models. We follow
the evaluation instructions in Asai et al. [1] to provide an extra
instruction for each dataset to reflect specific retrieval intents. The
detailed evaluation instructions can be found in Table 6.
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