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Abstract—Communicating shapes our social word. For a robot
to be considered social and being consequently integrated in
our social environment it is fundamental to understand some
of the dynamics that rule human-human communication. In
this work, we tackle the problem of Addressee Estimation, the
ability to understand an utterance’s addressee, by interpreting
and exploiting non-verbal bodily cues from the speaker. We do
so by implementing an hybrid deep learning model composed
of convolutional layers and LSTM cells taking as input images
portraying the face of the speaker and 2D vectors of the speaker’s
body posture. Our implementation choices were guided by the
aim to develop a model that could be deployed on social robots
and be efficient in ecological scenarios. We demonstrate that our
model is able to solve the Addressee Estimation problem in terms
of addressee localisation in space, from a robot ego-centric point
of view.

Index Terms—Addressee Estimation, Deep learning, Social
Robot, Human activity recognition, Human-robot interaction

I. INTRODUCTION

Communicating means sharing, might it be a message,
a thought, or an inner state, and is an act that inherently
shapes the social world. To properly be part of the social
environment, each agent needs to understand some basic
dynamics of communication, such as to whom a message is
directed. Therefore, a crucial element is understanding who
the speaker and who the addressee/es are. This ability is even
more crucial for social robots in situations that go beyond the
mere dyadic interactions. For instance, understanding others’
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addressee in a group dynamics could help robots to discern
implicitly expressed robot-directed commands [1], the social
dynamics and roles in multiparty interactions [2], and the
correct meaning of sentences that contains deictic expressions
(you, he, she, they...) [3].

The scope of the present study is to implement a model
for Addressee Estimation to enhance Human-Robot Interaction
(HRI). Addressee Estimation is the capability to detect the
addressee of a user’s utterance [4]. Endowed with such skill,
robots would be able to estimate the addressee: to whom an
agent is addressing its message [5]. Behavioral studies demon-
strated that the human expression of communicative aspects
related to Addressee Estimation (i.e., turn yielding and turn
taking) involves verbal, para-verbal and non-verbal channels
[4]. Specifically it was proven that, for Addressee Estimation,
the speaker’s bodily cues, such as gaze and gestures, allow
listeners to better understand the speaker’s intentions [6], [7].
Our approach in developing our Addressee Estimation model
for social robots was inspired by these findings. Hence, we
conceive Addressee Estimation as the ability to understand
an utterance’s addressee by interpreting and exploiting non-
verbal/bodily cues from the speaker.

II. RELATED WORKS

Previous studies have often dealt with the problem of
Addressee Estimation by using a multimodal approach. Jo-
vanovic et al. [8] used an ad-hoc retrieved dataset, gathered on
meetings of groups of 4 humans, to train a Bayesian Network
and Naı̈ve Bayes Classifiers with contextual, lexical, and gaze
features and solve the task as a classification of whom, among
the four agents (or the group), was the addressee of each
utterance.
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Using the AMI corpus [9], containing data from 100 hours
of meetings, Op den Akker et al. [10] treated Addressee
Estimation as a binary problem from the perspective of each
agent and trained different classifiers with data about the
speakers’ focus of attention, dialogue acts, and contextual
information. Using the same dataset, Malik et al. [11] selected
several features (textual, contextual, and focus of attention)
to classify the role of the addressee instead of their identity.
In this way, they overcame some limitations in terms of
reducing Addressee Estimation to a mere binary problem.
In a later study, the same authors used similar features on
the MULTISIMO Corpus, a multiparty multimodal dataset
involving meetings of 3 participants [12]. In this work, the
authors trained different machine learning and deep learning
algorithms to improve their previous results and develop a real-
time Addressee Estimation model, without information about
previous addressees.

In embodied artificial agents, Addressee Estimation models
have started to be developed to go beyond the dyadic and
robot-centric structure of HRI [13], [14] and enable robots
to interact in ecological scenarios [15]. However, research
on Addressee Estimation, which directly involved artificial
conversational systems and robots, mostly solved the problem
as a binary classification. Bakx et al. [1] conducted multiparty
experiments with two humans at an information kiosk. By
recording participants with an external camera, they used a
rule-based approach to classify whether the participant at the
information kiosk was addressing the system or the human
partner, given its focus of attention and the length of the
utterance. Operating with the same scenario, Turnhout et al.
[16] trained a Naı̈ve Bayes Classifier to solve the same task.
Katzenmaier et al. [17] designed a multiparty interaction with
two humans (host and guest) and a simulated robot. They
approached the task as a binary classification (host speaking
either to the robot or to the guest) using visual data (automati-
cally extracted head pose) and speech data. In a multiparty HRI
scenario, Richter et al. [18] opted for a rule-based model taking
as input the human’s lips movement and the mutual gaze
between the human and the robot to understand if an utterance
was addressed to the robot or not. After a dataset collection of
multi-user human-virtual agent interaction, Huang et al. [19]
trained an SVM classifier for a binary classification (robot
addressed or human partner addressed) by giving as input
several features related to prosody, utterance length, and head
direction and equipped the virtual agent with a model for real-
time Addressee Estimation. The work of Sheikhi et al. [14]
relied on the role contextual information plays in Addressee
Estimation. The authors used context about the utterance, the
agents involved in the interaction, and the objects of interest
in the environment to extract information about the speaker’s
and the human partner’s visual focus of attention to train a
model to predict the addressee of each utterance in a binary
classification task.

Addressee Estimation has also been connected to other so-
cial communication problems. Johansson et al. [13] combined
turn-taking and addressee detection and used only automati-

cally extracted features to solve the task as binary classification
and as a linear regression problem (gradual opportunity to take
the turn). Horiguchi et al. [15] trained a LSTM neural network
combined with Logistic Regression with features related to
the speaker’s face, audio and text to solve the problem of
response obligation detection. Romeo et al. [20] implemented
a CNN model on a Pepper robot to endow it with the ability to
predict the other agent’s intention to interact using only visual
information.

To develop an Addressee Estimation model that could be
deployed in social robots, the approach of our work is to
design and train a hybrid deep-neural network (CNN+LSTM)
to interpret the non-verbal behavior of the speaker as a cue
to localize the addressee in the HRI space. The idea is
to provide the robot with the ability to read the speaker’s
intentions only with the visual information on their behaviour.
This work considers Addressee Estimation with the idea of
enabling multiparty natural HRI. For this reason, with respect
to previous models implemented on robots, our work answers
to three needs: going beyond the mere binary prediction (robot
being addressed or not), using only data from the robot’s
sensors, and taking into account more realistic and ecological
scenarios.

III. METHODS

The core objective of this study is to develop a model
for Addressee Estimation in terms of addressee localisation.
We approached the task as a three-class classification of
the addressee position starting from the speaker’s non-verbal
behaviour and we designed a deep neural network composed
of two parts: a CNN and an LSTM network. As Skatnze
[4] showed, bodily information can be crucial to estimate
the addressee of an utterance. Based on such evidences, the
model developed in this work leverage two types of visual
data collected from the speaker: 1) Images of the speakers’
face, to retrieve information about their head direction and
visual focus. 2) Vectors representing the speakers’ body pose,
as a proxy of their focus of attention but also as a way to
encapsulate the body language and gestures.

A. The dataset

We decided to use the Vernissage Corpus [21], [22] to train
and test our model for Addressee Estimation. Vernissage is
a synchronised multimodal corpus of multiparty interactions
in which two humans converse with a Nao robot (Aldebaran,
United Robotics Group). During the interaction, the robot asks
participants to present themselves to the group, shows them
some paintings on the walls of the room, and asks them some
questions about the paintings. Participants are given time to
discuss among themselves before answering the robot, and
are left free to comment with their peer on the situation.
The aim of the corpus was to leave participants as free as
possible during the interaction. All recordings take place in
the same room, where participants are not required to keep a
specific absolute position, although most of the time, because
of the configuration of the room and of the interaction, they are
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Fig. 1. Illustrative frames from Vernissage Dataset. Examples of multiparty
HRI data recorded from the Nao robot’s cameras. Some pictures show blurred
faces for privacy reasons.

standing in front of Nao and hold a relative position to each
other: one on the left, the other on the right side (see Figure 1
for some examples). Dialogues about the paintings on the walls
ensure the presence of a more complex and natural interaction.
More specifically, triadic interactions (two agents and a target
object) occur when the speaker talks to the addressee about
something in the environment, might it be an object or another
agent. This situation, which is typical of social interactions,
modifies the gaze pattern and the body posture of both agents
so that they not only look at each other but also at the target
object [4]. In the Vernissage Corpus, participants focus their
attention on the paintings and even get closer to see them
better when describing them. Therefore, although the dialogue
is controlled by the questions of the robot, the scenario grants
sufficient flexibility and spontaneity to human behavior, as it
normally happens in ecological scenarios.

Yet another positive feature of the Vernissage Corpus is
that the authors recorded the interactions from the cameras
of the Nao robot, a single camera installed in the head of
the robo with a resolution of 640x480 pixels at a frequency
of about 15 fps (mean), and YUV422 color mode. The idea

Fig. 2. Illustration of a sequence. Aggregation of frames in a sequence of
0.8s and extraction of body poses and face images

guiding the development of our model was to be able to
carry out Addressee Estimation in unconstrained interaction
settings. With this objective in mind, we chose to focus on
data that could be automatically extracted through the robot’s
sensors without the need for any external device. This way, the
model could be trained with data recorded from the ego-centric
perspective of a robot, extremely important for portability. As
a side effect, data result noisier because of the movements
made by the robot (e.g., nodding or turning its head). However,
this could also represent an advantage while training a model
suitable for ecological scenarios.

The Vernissage Corpus is manually annotated to have a
Ground Truth about addressees. More specifically, the ad-
dressee is annotated as the target person of a speech utterance.
Five different labels are used: “ROBOT”, “RIGHT”, “LEFT”,
“GROUP”, and “NOLABEL”. “RIGHT” and “LEFT” refer to
the person at the right and the left of the robot, “GROUP”
means that both the robot and the other agent are addressed,
whereas “NOLABEL” indicates a silent time interval.

B. Features selection and pre-processing data pipeline

The data chunk on which our neural network for Addressee
Estimation has been trained is a sequence of 10 frames of face
images and vectors representing body poses. The process to
obtain the chunks from the Vernissage Corpus involved the
following five steps:

a) Division in utterances: The dataset comprises record-
ings of 10 interactions between two humans (different for each
interaction) and the Nao robot. Video clips were trimmed ac-
cording to the speech detection annotations and extracted from
the recordings of the 10 interactions, leaving out the frames
labeled “silence”. Therefore, utterances were considered as the
time intervals in which an agent continuously speaks without
being interrupted by silence pauses longer than 0.08s.

b) Extraction of body poses and face images: Firstly,
utterances were divided into frames of 0.08s. Then, using
OpenPose [23], vectors of 2D coordinates for body poses were
extracted for each frame for all participants. The OpenPose
COCO body format was adopted, which predicts the x and y
coordinates for 18 key points of each person (5 for the head, 3
for each limb, and 1 for the torso). Coordinates ranged from -1
to 1 for both axes. Given the poses, from the five coordinates
of each person’s head-key points, a square-size cropped face
image was obtained by the original frame, resized at 50x50px.
Body poses and face images were labeled as “speaker” or
“other”. During the interactions in the Vernissage Corpus, both
human participants play the role of “speaker” and “other”.
Hence, since the corpus comprises 10 interactions, each with
two possible speakers, 20 instances of speakers were finally
available.

c) Aggregation in sequences: Sequences, thereby, re-
sulted being 0.8s portions of the utterances, consisting of 10
body poses and 10 face images. Since the objective was to
train a network with only data from the speaker, the speaker’s
sequences were saved separately from those belonging to
the other participant. All sequences were annotated with the
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Fig. 3. Illustration of an utterance. The utterance is partitioned into sequences of 0.8s. Utterances were defined as speech intervals addressed to the same
addressee and delimited by silence. Each utterance comprised at least one sequence.

addressee (“ROBOT”, “LEFT”, “RIGHT”, “GROUP”). Figure
2 shows an illustrative sequence, whereas Figure 3 shows the
difference between sequences and utterances.

d) Data augmentation: We tackle the implementation of
Addressee Estimation as the classification of the addressee’s
position with respect to the speaker and from the ego-centric
perspective of the robot. Therefore, we selected three labels
among the ones already annotated in the original corpus, as
the addressee’s position could be classified as “LEFT”, in
case the addressee was at the left of the speaker (from the
robot’s perspective), “RIGHT”, in case the addressee was at
the speaker’s right, or “ROBOT”, in case the addressee was
the robot. The interaction scenario in Vernissage, with the Nao
robot asking questions and managing the interaction, caused
an imbalanced representation of classes in the dataset, with
a prevalence of sequences labeled as “ROBOT” (addressed
to the robot). With the twofold objective of augmenting the
dataset and balancing the number of sequences, all frames
labeled as “LEFT” and “RIGHT” (and accordingly, the body
poses and the face images extracted by them) were flipped, and
their label inverted. As a consequence, “LEFT” and “RIGHT”
data were doubled, and the resulting dataset was composed
of 18190 speaker’s face images and body poses partitioned in
1819 sequences: 529 for “ROBOT”, 645 for “LEFT”, and 645
for “RIGHT”.

e) Body pose shifting: As it appears from Figure 1,
participants at the left of the robot never spoke toward a left
addressee, and participants at the right never did it toward
a right one. Therefore, even though participants could mildly
move, the coordinates of their bodies could bias the prediction
of their addressee. To overcome this issue, for each sequence,
the 10 body poses were shifted along the x-axis of a random
measure ranging from the two extremes of the image.

C. Architecture Design
Our Addressee Estimation model is a CNN + LSTM hybrid

architecture that extracts features through convolutions and
then supports learning temporal sequential patterns through
LSTM cells. Previous works related to human activity recog-
nition combined CNNs with an LSTM final layer. For instance,
Subramaniam et al. [24] used this combination to train a model
for classifying first impressions of personality. Romeo et al.
[25] used a similar architecture to predict apparent personality
from body language cues for HRI. Moreover, Ullah et al.

[26] integrated convolutional and LSTM layers for action
recognition from videos, while Nakisa et al. [27] developed
a multimodal neural network with convolutional and LSTM
layers for emotion recognition through physiological signals.

Our model is also designed to exploit and integrate both
visual input modalities: the face images and the body pose vec-
tors. Face images and body pose vectors pass independently
in two parallel streams of convolutional layers. Consequently,
the two embeddings received as output are concatenated
before the LSTM layer. In this way, features are extracted
separately in convolutions and then combined at a higher
level of abstraction. This was inspired by a gradual fusion of
modalities at an intermediate level of the network, which has
been demonstrated beneficial [28], [29], and by the training on
joint representations of temporal sequences as, for instance, in
Nakisa et al. [27], which proved fusing streams between the
convolutional and LSTM layers being beneficial rather than a
late fusion after temporal training.

Therefore, our Addressee Estimation model implements the
intermediate-fusion approach and consists of two blocks, each
including two 2D convolutional layers (the second followed
by a LeakyReLU activation function) and one max-pooling
layer. The two convolutional blocks are followed by two fully
connected layers (the first followed by a LeakyReLU activation
function) providing the embeddings of the input modalities to
be concatenated. The fusion of the two streams is carried out
as a simple concatenation, with the body pose embeddings
repeated 29 times so as to balance the information in the final
embedding. The sequence of the 10 fused embeddings is then
passed through the LSTM layer. Eventually, after two final
fully connected layers (the first followed by a LeakyReLU
activation function), the output is given by a LogSoftMax
layer, as shown in Figure 4 and described in Table I.

D. Training Procedure and Experiment Lineup

To train and test our model, a 10-fold cross-validation was
established. In this way, the prediction of the classes (“LEFT”,
“RIGHT”, “ROBOT”) could be evaluated based on the average
performance of the model when trained and tested on different
sets of data. To create the 10 different train and test sets, the
dataset of sequences derived from the pre-processing of the
Vernissage Corpus was partitioned along the 10 multiparty
interactions of the original corpus. Each interaction comprised
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Fig. 4. Illustration of the Deep Neural Network for Addressee Estimation employing an intermediate fusion approach (Exp. 1a). Face images and body
pose vectors are passed separately to two blocks of convolution, each including two 2D convolutional and one max-pooling layers. Then, the two embeddings
resulting from fully connected layers are concatenated and sequences of 10 fused embeddings are passed to the LSTM layer. The output is provided after two
others fully connected layers and a LogSoftMax layer. * represents LeakyReLU activation function.

two agents for a total of 20 speakers. The ratio to create the
train sets was 9:10, with the remaining 1:10 for the test set.
Accordingly, each train set included all the face image and
body pose sequences of 18 participants, whereas the test set
the ones of the remaining 2 participants. From the train sets,
90 sequences (30 for each class) were randomly extracted,
removed, and used for the validation phase during the training
in order to check the trend of the loss function.

As a first experiment (Exp 1.a), the addressee localisation
model was thus trained 10 times, one for each train set, and
evaluated on as many test sets. The model was fed with
temporal sequences of data in mini-batches of 10 sequences.
Each sequence included 10 face images and 10 body pose
vectors. The convolutional section of the network for face
images was trained by employing Stochastic Gradient Descent
(SGD) optimizer whereas the one for body pose vectors and
the LSTM section were trained using the Adam algorithm
[30]. Cross entropy was used as the criterion to compute the
loss function. The model was trained for 50 epochs with a
learning rate of 1e-3, with a decay of 0.1 (multiplicative factor)
after 40 epochs. To prevent overfitting, early stopping was
implemented to stop the training after 10 trials in which the
loss function of the evaluation phase increased. The model
was implemented using PyTorch 1.12 (Python version 3.8),
whereas the training was carried out through an NVIDIA
Quadro RTX 5000 with 16 GB of RAM1.

In order to test the developed intermediate-fusion model,
and validate the results from Exp 1.a, we conducted three
additional experiments:

• Exp. 1.b: our original model was modified to a late-
fusion approach, to be compared to our intermediate-
fusion model

• Exp. 1.c: our model was trained on face images only,
to verify whether the two input modalities were equally
necessary

1the code is available at the following link
https://gitlab.iit.it/cognitiveInteraction/addressee estimation ijcnn23.git

• Exp. 1.d: single modality: our model was trained on
body pose vectors only, to verify whether the two input
modalities were equally necessary

In Exp. 1.b, we trained the model using both visual in-
put modalities but, differently from the original model, we
combined them after the LSTM layer. The fusion of the
two streams was carried out as a concatenation of the two
embeddings resulting from the LSTM layer. In this way, for
each sequence, one fused embedding was passed through
the two final fully connected layers (the first followed by a
LeakyReLU activation function) and the LogSoftMax layer.
In Exp. 1.c and 1.d, we trained and tested two mono-stream
models, the former with face images, the latter with body
pose vectors. For each modality, the architecture of the neural
network matched the late-fusion approach model except for
the last fully connected layers, which were designed for mono-
modality embeddings. Table I provides a description for the
four architectures of Exp. 1.a-b-c-d.

Finally, we carried out a last experiment (Exp. 2) to
compare our results from Exp 1.a with the state-of-the-art
model used on Vernissage as a binary classification, predicting
whether either the robot or another user was the addressee
of an utterance [14]. Therefore, we trained and tested our
intermediate-fusion binary model to identify whether the robot
was addressed by the speaker. For this experiment, we used
the same architecture employed in Exp. 1.a, except for the last
two layers (last fully connected and LogSoftMax), changed
to give binary predictions. For this reason, the previous
three-class data labeling of the addressee’s position (“LEFT”,
“ROBOT”, “RIGHT”) was replaced by a binary one: “NOT-
ADDRESSED” (including data referred to as “LEFT” and
“RIGHT” ) and “ADDRESSED” (including data referred to as
“ROBOT” and “GROUP” in the original Vernissage labeling
system).

E. Evaluation Metrics
To evaluate our model Precision, Recall, and F1-score were

computed for each class and expressed as a percentage. Results
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TABLE I
DESCRIPTION OF NEURAL NETWORKS IN THE FOUR THREE-CLASSES

EXPERIMENTS (EXP. 1.A-B-C-D).

FACE IMAGE BODY POSE VECTOR
Layers Input Param. Input Param.
Layers common to all models (convolutional part of the nn)
Conv [100,3,160,160] k=7,s=1 [100,1,18,3] k=(3,1),s=1
Conv* [100,6,154,154] k=5,s=1 [100,16,16,3] k=(3,1),s=1
MPool [100,8,150,150] k=2,s=2 [100,16,14,3] k=(2,1),s=2,1
Conv [100,8,75,75] k=5,s=1 [100,16,7,3] k=(3,1),s=1
Conv* [100,12,71,71] k=3,s=1 [100,32,5,3] k=(3,1),s=1
MPool [100,16,69,69] k=2,s=2 [100,32,3,3] k=2,s=2
Flatten [100,16,34,34] [100,32,1,1]
FC* [100,18496] [100,32]
FC [100,4624] [100,24]
... ... ...

Layers after convolution in Exp. 1.a.: Intermediate fusion model
Concat. [100,578] [100,20] x 29 times
FC* [10,256]
FC [10,128]
LSoftm. [10,3]

Layers after convolution in Exp. 1.b.: Late fusion model
LSTM [10,10,578] h dim=512 [10,10,20] h dim=256
FC [10,512] [10,256]
Concat. [10,128] [10,128]
FC* [10,256]
FC [10,128]
LSoftm. [10,3]

Layers after convolution in Exp. 1.c (Face model) and 1.d (Pose model)
Exp. 1.c.: Face Model Exp. 1.d.: Pose Model

LSTM [10,10,578] h dim=512 [10,10,20] h dim=256
FC* [10,256] [10,256]
FC [10,128] [10,128]
LSoftm. [10,3] [10,3]
k: kernel size; s: stride; h dim: hidden layer dimension
*: + LeakyReLU

for each class were subsequently weighted for the number of
samples of each class and averaged to provide a performance
of each model in terms of Weighted F1-score. Eventually,
the results of the 10 testing from the 10-fold cross-validation
were averaged to obtain a final estimate of the model’s
performances.

In all experiments, the training and testing of the model
were first achieved by keeping the 10-frames sequences as data
chunks. However, since sequences were extracted from utter-
ances, the same metrics could be used to verify the model’s
performance in predicting the addressee of an entire utterance.
The utterance classification was computed by averaging the
predictions of all the sequences belonging to that utterance,
weighted for the prediction score provided by the LogSoftMax
layer.

For Exp. 2, Precision, Recall (Sensitivity), F1-score, and
Specificity (true negative rate) were calculated considering the
positive prediction as “the robot is addresse” and expressed as
a percentage. In addition to these parameters, for a further
measure of the model’s performance, an overall-F1-score of

TABLE II
PERFORMANCE OF THE ADDRESSEE ESTIMATION MODEL. RESULTS OF

THE 10-FOLD CROSS-VALIDATION EXPERIMENTS (EXP. 1.A-B-C-D) ARE
PROVIDED IN TERMS OF MEAN AND STANDARD DEVIATION OF WEIGHTED

F1-SCORE.

considering
sequences

considering
utterances

considering
1st seq.
of each utt.

Model avg std avg std avg std
Exp. 1.a
Intermediate Fusion 75.01 8.60 76.48 8.42 74.15 9.19

Exp. 1.b
Late Fusion 73.18 7.57 74.19 7.97 71.88 5.03

Exp. 1.c
Only Face 72.83 5.86 73.22 6.93 72.07 8.89

Exp. 1.d
Only Body Pose 72.60 6.75 71.05 7.76 70.77 8.84

the two classes (“ADDRESSED” vs “NOT-ADDRESSED”)
was computed as in the three-class model.

IV. RESULTS

In a first set of experiments (Exp. 1.a-b-c-d), we trained
the Addressee Estimation model on a three-class classification
task. The four experiments (a-b-c-d) were designed to verify
the best approach for the Addressee Estimation model: either
multi-feature (and more specifically an intermediate (1.a) of
late-fusion (1.b) approach) or mono-feature (and more specif-
ically using the face (1.c) or body pose (1.d) information).

In each experiment, the model was first tested on single
sequences of 0.8s, hence without combining them in utterances
(Figure 3 illustrates the difference between sequences and
utterances). In terms of weighted F1-score, in Exp. 1.a, the
model achieved 75.01% , whereas in Exp. 1.b, 1.c, and 1.d the
performance was, respectively, 73.18%, 72.83% and 72.61%
(see Table II and Figure 5).

However, Addressee Estimation is defined as the ability to
understand the addressee of an utterance. Accordingly, we
tested the model considering sequences of the same utter-
ance together, because each utterance might comprise several
sequences. In this case, in Exp. 1.a the weighted F1-score
increased up to 76.48%, whereas in Exp. 1.b, 1.c and 1.d,
the performance measured, respectively, 74.19%, 73.22% and
71.05%.

An additional score was computed only focusing on the
first sequence of each utterance, which means measuring the
model’s performance in providing a correct prediction at 0.8s
from the beginning of the utterance. Considering the limited
amount of time, the model achieved a weighted F1-score of
74.15% in Exp. 1.a, whereas in 1.b, 1.c, and 1.d, it was,
respectively, 71.88%, 72.07% and 70.77%.

Precision, Recall, and F1-score have been computed for
each class (“LEFT”, “ROBOT”, “RIGHT”) to observe if the
model performances resulting from the 4 experiments (1.a-b-c-
s) were equally distributed among classes. Results are reported
in Table III and visually displayed in Figure 6.

Our model was trained on sequences of 0.8s but utterances
can be composed of multiple sequences. For such utterances,
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Fig. 5. Bar plots reporting performance of Addressee Estimation model in the four 3-class experiments. Results of the 10-fold cross-validation
experiments (Exp. 1.a-b-c-d) are provided in terms of mean and standard deviation (error bar) of weighted F1-scores. On the y-axis the performance score is
expressed in %.

Fig. 6. Spider plot reporting performance of Addressee Estimation model
for each class. Results of the 10-fold cross-validation experiments (Exp. 1.a-
b-c-d) are provided in terms of weighted F1-score (means) for each of the 3
classes and expressed in %.

fresh updated predictions can be released every 0.8s, computed
by averaging the prediction of each sequence. Therefore,
we could check the performance of utterances’ Addressee
Estimation as time passes. Figure 7 displays the trend of
such performances in terms of weighted F1-score in the four
experiments (1.a-b-c-d). For what concerned Exp. 1.a, the
weighted F1-score was 74.15% at 0.8s, 76.48% at 1.6s, 76.5%
at 2.4s and 79.8% after 2.4s. At the same time intervals, in Exp
1.b, the performance measured respectively 71.88%, 72.03%,
75.22%, and 77.22%; in Exp. 1.c, 72.07%, 75.04%, 77.26%,
and 78.25%; and in Exp 1.d, 70.77%, 70.23%, 70.44%, and
70.49%.

In Exp. 2, we trained our model to solve Addressee Es-
timation as a binary classification task in the shape of the
robot being addressed or not (“ADDRESSED” vs “NOT-
ADDRESSED”). Considering the test on single sequences, our
repurposed model’s Recall to the affirmative answer (robot
addressed) was 73.78%, whereas Precision was 74.23%, and

TABLE III
PERFORMANCE OF ADDRESSEE ESTIMATION MODELS FOR EACH

CLASS. RESULTS OF THE 10-FOLD CROSS-VALIDATION EXPERIMENTS
EXPERIMENTS (EXP. 1.A-B-C-D) ARE COMPUTED CONSIDERING

SEQUENCES NOT COMBINED IN UTTERANCES

Model Class recall precision F1-score
LEFT 80.72 79.07 78.61

Exp. 1.a ROBOT 70.09 72.05 67.52
RIGHT 81.76 84.34 81.75
LEFT 83.34 77.28 79.38

Exp. 1.b ROBOT 54.91 72.63 59.51
RIGHT 89.22 75.43 80.78
LEFT 78.43 77.58 77.46

Exp. 1.c ROBOT 62.83 68.59 61.21
RIGHT 80.73 78.11 78.13
LEFT 71.99 76.84 72.95

Exp. 1.d ROBOT 75.16 65.37 68.56
RIGHT 67.11 73.19 68.87

F1-score 72.73%. Sensitivity achieved 80.7%. Additionally,
the general performance of the model, as measured by the
overall-F1-score was 77.36% if measured on single sequences,
79.7% considering utterances, and 79.97% considering the
first 0.8s of each utterance. The performance of the model in
Sheikhi et al. [14] was 76.3% utterances correctly predicted
employing a measure of the speaker’s visual focus of attention
automatically computed as input.

V. DISCUSSION

In this work, Addressee Estimation has been conceived as
the robot’s ability to understand an utterance’s addressee by
interpreting the speaker’s bodily cues. We tackle this problem
as a three-class classification of the addressee’s position with
respect to the speaker.

A. The impact of the two visual input modalities on the model
performance

To solve this task, we designed a deep-learning model with
convolutional layers and LSTM cells and we trained it with
sequences of face images and body pose vectors of the speaker.
As Skantze [4] reported, information from the speaker’s head
pose, as a proxy of visual focus of attention, is highly relevant
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Fig. 7. Plot reporting performance of Addressee Estimation model as
a function of the duration of the utterance. Results of the 10-fold cross-
validation experiments (Exp. 1.a-b-c-d) are provided in terms of mean of
F1-score. Performance are computed at 0.8s, 1.6s, 2.4s, and for utterances
lasting 2.4s or more. On the y-axis the performance score is expressed in %.

for humans when estimating others’ addressee and beneficial
when implementing automatic Addressee Estimation models.
Results from the testing phase of our Addressee Estimation
model corroborated this perspective as the model could predict
the position of the addressee.

Interestingly, the model trained with only body pose in-
formation proved to be equally effective. It is true that also
the body pose vectors contained information about the head
direction, but this was gathered only by 5 key points: 1 for
the nose, 2 for the eyes, and 2 for the ears. Compared to the
face image, the body pose presented evidence of the speaker’s
whole-body direction.

Though the difference was not substantial, the models
trained with both visual modalities (face and body pose)
performed better than the single-modality ones. This outcome
was expected, as well as the fact that the intermediate-fusion
approach resulted to be more effective than the late-fusion, as
literature on the topic suggested [28], [29].

The beneficial effect of combining the two visual input
modalities may be explained by analysing the performance of
each class more thoroughly. Although the overall performance
of the two single-feature models was nearly identical, relevant
differences appear when considering each class separately. As
it appears in Figure 6, the only-face model predicts with higher
F1-score the “LEFT” and “RIGHT” classes with respect to
the “ROBOT” with a gap greater than 15%. Different is the
case for the only-pose model, whose performance is more
stable along the three classes. What impacts more this result
is the high recall for the “ROBOT”, meaning that the model
recognises the “ROBOT” more easily from body poses than
face images.

This situation seems to be reflected in the performance
of the intermediate-fusion model, which combines a high

performance for the “LEFT” and “RIGHT” classes with results
more balanced for the “ROBOT”. This indicates that beyond
a general increase in performance given by the help of two
channels instead of one, relevant features for “LEFT” and
“RIGHT” are provided by the face modality, whereas for
“ROBOT” by the body pose of the speaker. Interestingly, this
pattern is not shared with the late-fusion model, in which
the same gap between “LEFT”/“RIGHT” and “ROBOT” is
even more evident than in the only-face model. Accordingly,
this difference between the intermediate and the late-fusion
approach suggests that fully-connected layers are not enough
to optimally balance the two modalities.

In Exp. 2, we trained the model using both visual modalities
combined with an intermediate fusion approach to solve a
binary classification task and to compare our methods with the
state-of-the-art model on the Vernissage Corpus [14]. Results
of the overall-F1 score demonstrated that our approach slightly
outperformed previous model. In addition, while in [14] the
prediction required contextual information such as the possible
targets of attention in the environment and could be obtained
only at the end of the utterance, our model relies only on visual
information automatically extracted from the robot’s sensors
and reliable results can be obtained just 0.8s after the start of
the utterance.

B. The longer you talk, the better I estimate

Our Addressee Estimation model was developed so as to
have predictions independent from the utterance length and
available less than 1s after the utterance start. The method
chosen to solve this task was to focus on sequences of data
lasting 0.8s. For each utterance, this allowed providing a
first prediction about the addressee at 0.8s, as well as other
predictions every 0.8s after that, so that the final utterance
prediction was incrementally weighted on all the predictions
of sequences of that utterance. Longer utterances are formed
by a higher number of sequences, hence more ample evidence
for a correct estimate. This is what appears from results in
Figure 7. The longer the speaker talks, the better the estimate
of the addressee.

The intermediate-fusion, late-fusion, and only-face models
share this pattern. Conversely, this is not the case for the only-
pose model. It appears, therefore, that the two multimodal
models inherit this characteristic from the only-face model.
Moreover, one may speculate that the reason underlying this
different behavior is that humans often turn their heads while
speaking, in particular, if they are referring to some objects
in the environment, as is the case in triadic interactions. The
situation might be different for body poses that, although
including information about the face pose, are more stable
if considering the whole body, at least in the scenario of the
Vernissage Corpus.

C. Addressee Estimation: a skill for social robots

The present model is planned to be implemented on social
robots. With this aim, we followed three general principles
for its design: (i) keep the focus on speaker’s bodily behavior,
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Fig. 8. Examples of sequences wrongly predicted. The face images of
four sequences are exhibited reporting the wrong prediction given by the
intermediate-fusion model (Exp. 1.a) and the ground truth (correct addressee).

crucial to develop human-aware robots; (ii) integrate the
temporal dimension of the task; (iii) produce an ecologically
valid model, suitable for ecological scenarios.

Visual non-verbal information from the speakers’ body
(face and body pose) were used to achieve the prediction
of their addressee. Our work highlights how important non-
verbal behavior is to correctly interpret the meaning and the
dynamics underlying verbal communication and advocates for
making further use of this component for developing robots
as conversational agents. Non-verbal behavior offers profound
insights into other agents’ intentions. Targeting that is a valid
solution to improve robot’s skills of human awareness, crucial
to enhance natural and effective HRI.

The idea of temporality influenced the design of the classi-
fication task and of the neural network. Firstly, temporality
was conceived within each utterance. Utterances were not
considered as a whole but partitioned in multiple time intervals
of 0.8s, each of them generating a prediction. In this way,
predictions about the addressee are available just after 0.8s the
start of the utterance: a feature that reveals to be essential in
case of real-time HRI. Secondarily, temporality was conceived
within each sequence, i.e., within each time interval of 0.8s.
The inputs of the neural network were not snapshots but
temporal sequences connecting 10 frames. In this way, the
final estimation does not only rely on instants but also on
information related to the temporal dimension of the sequence,
fundamental to interpret human behavior.

We chose the Vernissage Dataset to make the model suitable
for ecological HRI scenarios. Since our Addressee Estimation
model is designed and trained to be implemented on social
robots, it was important to rely on data acquired directly
through the robot’s sensors and from its first-person per-
spective for its training. Moreover, using dataset recorded
in embodied interaction with a physical robot was important
because people behave differently in front of a physical robot
[31]. In this respect, the Vernissage Corpus was optimal
because it was also designed on triadic interactions, that is with
a large part of the speech related to objects in the environments
(in this case, the pictures on the wall). Instead of having a
fixed conversational scenario (e.g., everybody sat at a table
directly looking at their addressee), the Vernissage Corpus also

includes situations more difficult to predict, but more common
in ecological scenarios. Figure 8 displays some sequences
wrongly predicted by our model in Exp 1.a and shows that
the speaker’s head direction was not always predictive of the
addressee’s position. On the contrary, in certain cases, it even
caused errors. Triadic interactions are one of the causes of such
errors because participants could talk to Nao while looking at
a picture on the right or, vice versa, talking to their companion
on the left while looking at a picture collocated over the
robot. This demonstrates that approaches relying only on the
speaker’s visual focus of attention may have difficulties when
it comes to provide predictions in ‘in-the-wild’ scenarios. To
overcome this difficulty, our approach combined information
about the face and the whole body pose and balanced the
predictions over time. In this way, our approach could achieve
reliable results in situations more representative of ‘in-the-
wild’ interactions and outperform state-of-the-art models.

D. Limitations and Future Work

Our current Addressee Estimation model presents two major
limitations. The model does not envisage the presence of a
large number of people in the environment. A three-class
classification of the position of the addressee would not be
enough in case of crowded places such as airports, hotel
reception areas, malls. However, this work is a step in advance
with respect to most of the previous implementations of
Addressee Estimation in HRI, which provide a binary output
or require a fixed conversational scenario. Morover, tackling
Addressee Estimation as prediction of the addressee’s position
may bring an additional benefit to the robot in terms of
augmented perception of the external world. Since our model
rely only on the speaker and no information about other agents
is required, the information about the addressee’s position may
improve the robot’s awareness and localization of other agents
not yet detected in the environment.

With regards to the second limitation, at the moment, the
model has been designed only for visual information. No au-
ditory or contextual information is used. By design, the model
was conceived not to rely on contextual information, so that
a first prediction of the addressee may be provided with the
only use of visual information, without any knowledge about
the number of agents in the environment, previous addressees,
previous speakers, topic of the dialogue, hot-words, etc. Fu-
ture works may add such contextual features to improve the
performance of the model. Future implementations could also
envisage the use of auditory cues, which comprise not only
verbal information but also, for instance, prosody. Auditory
data were already available in the Vernissage Corpus, but too
noisy to extract reliable prosodic information.

VI. CONCLUSION

In this work, we tackled the problem of Addressee Es-
timation, understanding to whom a speaker is addressing
an utterance, by developing a deep learning hybrid model
(CNN+LSTM) taking as input two visual information: the
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speaker’s face and body pose. Our approach aims to de-
velop a model for Addressee Estimation for real-time and
ecological HRI. Our model achieves reliable performances
even before the conclusion of the utterance and without any
use of contextual information. When it comes to develop
social skills for robots, deep learning architectures prove to
be a suitable solution but need to be designed combining the
richness of information provided by human bodily behaviour,
integrating the temporal dimension of the task, and considering
the ecological validity of the model. In this direction, the
present work represents a good stepping stone to be able to
equip robots with Addressee Estimation skills and to enhance
natural and effective HRI.
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ACT 2003 ZÃ1/4rich, Switzerland, pp. 163–170, 2003.

[2] S. Strohkorb, I. Leite, N. Warren, and B. Scassellati, “Classification
of children’s social dominance in group interactions with robots,” in
Proceedings of the 2015 ACM on International Conference on Multi-
modal Interaction, ser. ICMI ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 227–234.

[3] K. Gold, M. Doniec, C. Crick, and B. Scassellati, “Robotic vocabulary
building using extension inference and implicit contrast,” Artificial
Intelligence, vol. 173, no. 1, pp. 145–166, 2009.

[4] G. Skantze, “Turn-taking in conversational systems and human-robot
interaction: A review,” Computer Speech & Language, vol. 67, p.
101178, 2021.

[5] R. Jakobson, Linguistics and Poetics. Berlin, Boston: De Gruyter
Mouton, 1981, pp. 18–51.

[6] P. Auer, Gaze, addressee selection and turn-taking in three-party inter-
action. John Benjamins Amsterdam, 2018, pp. 197–231.

[7] R. Ishii, K. Otsuka, S. Kumano, and J. Yamato, “Prediction of who
will be the next speaker and when using gaze behavior in multiparty
meetings,” ACM Trans. Interact. Intell. Syst., vol. 6, no. 1, may 2016.

[8] N. Jovanovic, R. op den Akker, and A. Nijholt, “Addressee identification
in face-to-face meetings,” in 11th Conference of the European Chapter
of the Association for Computational Linguistics, 2006, pp. 169–176.

[9] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot, T. Hain,
J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal, G. Lathoud, M. Lin-
coln, A. Lisowska, I. McCowan, W. Post, D. Reidsma, and P. Wellner,
“The ami meeting corpus: A pre-announcement,” in Machine Learning
for Multimodal Interaction, S. Renals and S. Bengio, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 28–39.

[10] H. op den Akker and R. op den Akker, “Are you being addressed?-
real-time addressee detection to support remote participants in hybrid
meetings,” in Proceedings of the SIGDIAL 2009 Conference, 2009, pp.
21–28.

[11] U. Malik, M. Barange, J. Saunier, and A. Pauchet, “Using multimodal
information to enhance addressee detection in multiparty interaction.”
in ICAART (1), 2019, pp. 267–274.

[12] ——, “A novel focus encoding scheme for addressee detection in
multiparty interaction using machine learning algorithms,” Journal on
Multimodal User Interfaces, vol. 15, no. 2, pp. 175–188, 2021.

[13] M. Johansson and G. Skantze, “Opportunities and obligations to take
turns in collaborative multi-party human-robot interaction,” in Proceed-
ings of the 16th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 2015, pp. 305–314.

[14] S. Sheikhi, D. Babu Jayagopi, V. Khalidov, and J.-M. Odobez, “Context
aware addressee estimation for human robot interaction,” in GazeIn ’13:
Proceedings of the 6th workshop on Eye gaze in intelligent human
machine interaction: gaze in multimodal interaction, ser. GazeIn ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
1–6.

[15] S. Horiguchi, N. Kanda, and K. Nagamatsu, “Multimodal response
obligation detection with unsupervised online domain adaptation.” in
INTERSPEECH, 2019, pp. 4180–4184.

[16] K. van Turnhout, J. Terken, I. Bakx, and B. Eggen, “Identifying the
intended addressee in mixed human-human and human-computer inter-
action from non-verbal features,” in Proceedings of the 7th International
Conference on Multimodal Interfaces, ser. ICMI ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 175–182.

[17] M. Katzenmaier, R. Stiefelhagen, and T. Schultz, “Identifying the
addressee in human-human-robot interactions based on head pose and
speech,” in Proceedings of the 6th International Conference on Multi-
modal Interfaces, ser. ICMI ’04. New York, NY, USA: Association for
Computing Machinery, 2004, p. 144–151.

[18] V. Richter, B. Carlmeyer, F. Lier, S. Meyer zu Borgsen, D. Schlangen,
F. Kummert, S. Wachsmuth, and B. Wrede, “Are you talking to me?
improving the robustness of dialogue systems in a multi party hri
scenario by incorporating gaze direction and lip movement of attendees,”
in Proceedings of the Fourth International Conference on Human Agent
Interaction, ser. HAI ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 43–50.

[19] H.-H. Huang, N. Baba, and Y. Nakano, “Making virtual conversa-
tional agent aware of the addressee of users’ utterances in multi-
user conversation using nonverbal information,” in Proceedings of the
13th International Conference on Multimodal Interfaces, ser. ICMI ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
401–408.

[20] M. Romeo, D. Hernández Garcı́a, R. Jones, and A. Cangelosi, “De-
ploying a deep learning agent for hri with potential ”end-users” at
multiple sheltered housing sites,” in Proceedings of the 7th International
Conference on Human-Agent Interaction, ser. HAI ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 81–88.

[21] D. B. Jayagopi, S. Sheikhi, D. Klotz, J. Wienke, J.-M. Odobez, S. Wrede,
V. Khalidov, L. Nguyen, B. Wrede, and D. Gatica-Perez, “The vernissage
corpus: A multimodal human-robot-interaction dataset,” L’IDIAP Lab-
oratory, Tech. Rep., 2012.

[22] D. B. Jayagopi, S. Sheiki, D. Klotz, J. Wienke, J.-M. Odobez, S. Wrede,
V. Khalidov, L. Nyugen, B. Wrede, and D. Gatica-Perez, “The vernissage
corpus: A conversational human-robot-interaction dataset,” in 2013
8th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2013, pp. 149–150.

[23] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh,
“Openpose: Realtime multi-person 2d pose estimation using part affinity
fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2019.

[24] A. Subramaniam, V. Patel, A. Mishra, P. Balasubramanian, and A. Mittal,
“Bi-modal first impressions recognition using temporally ordered deep
audio and stochastic visual features,” in Computer Vision – ECCV 2016
Workshops, G. Hua and H. Jégou, Eds. Cham: Springer International
Publishing, 2016, pp. 337–348.

[25] M. Romeo, D. Hernández Garcı́a, T. Han, A. Cangelosi, and K. Jokinen,
“Predicting apparent personality from body language: benchmarking
deep learning architectures for adaptive social human–robot interaction,”
Advanced Robotics, vol. 35, no. 19, pp. 1167–1179, 2021.

[26] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action
recognition in video sequences using deep bi-directional lstm with cnn
features,” IEEE Access, vol. 6, pp. 1155–1166, 2018.

[27] B. Nakisa, M. N. Rastgoo, A. Rakotonirainy, F. Maire, and V. Chan-
dran, “Automatic emotion recognition using temporal multimodal deep
learning,” IEEE Access, vol. 8, pp. 225 463–225 474, 2020.

[28] D. Ramachandram and G. W. Taylor, “Deep multimodal learning:
A survey on recent advances and trends,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 96–108, 2017.

[29] S. R. Stahlschmidt, B. Ulfenborg, and J. Synnergren, “Multimodal deep
learning for biomedical data fusion: a review,” Briefings in Bioinformat-
ics, vol. 23, no. 2, 01 2022.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

[31] J. Li, “The benefit of being physically present: A survey of experimental
works comparing copresent robots, telepresent robots and virtual agents,”
International Journal of Human-Computer Studies, vol. 77, pp. 23–37,
2015.

10


	Introduction
	Related Works
	Methods
	The dataset
	Features selection and pre-processing data pipeline
	Architecture Design
	Training Procedure and Experiment Lineup
	Evaluation Metrics

	Results
	Discussion
	The impact of the two visual input modalities on the model performance
	The longer you talk, the better I estimate
	Addressee Estimation: a skill for social robots
	Limitations and Future Work

	Conclusion
	References

