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A novel class of antiferromagnets, dubbed altermagnets, exhibit a non-relativistically spin-split band structure
reminiscent of 𝑑-wave superconductors, despite the absence of net magnetization. This unique characteristic
enables utilization in cryogenic stray-field-free memory devices, offering the possibility of achieving high storage
densities. We here determine how a proximate altermagnet influences the critical temperature 𝑇𝑐 of a conventional
𝑠-wave singlet superconductor. Considering both a bilayer and trilayer, we show that such hybrid structures may
serve as stray-field free memory devices where the critical temperature is controlled by rotating the Néel vector of
one altermagnet, providing infinite magnetoresistance. Furthermore, our study reveals that altermagnetism can
coexist with superconductivity up to a critical strength of the altermagnetic order as well as robustness of the
altermagnetic influence on the conduction electrons against non-magnetic impurities, ensuring the persistence of
the proximity effect under realistic experimental conditions.

I. INTRODUCTION

The intricate interplay of superconductivity and magnetism
remains a focal point in modern condensed matter physics [1–
3]. Its allure stems both from a fundamental viewpoint and
cryogenic technology applications such as extremely sensi-
tive detectors of radiation and heat as well as circuit com-
ponents such as qubits and dissipationless diodes. Whereas
superconductor-ferromagnet (SC-FM) structures have been
studied extensively, the interest in antiferromagnetic materials
has been comparatively limited [4–9] up until recently [10–22].

A particularly interesting new development is antiferromag-
nets that break time-reversal symmetry and feature a spin-split
band structure that does not originate from relativistic effects
such as spin-orbit coupling. Dubbed altermagnets in the lit-
erature, these are spin-compensated magnetic systems with a
huge momentum-dependent spin splitting even in collinearly
ordered antiferromagnets. Ab initio calculations have identified
several possible material candidates that can host an altermag-
netic state, including metals like RuO2 and Mn5Si3 as well as
semiconductors/insulators like MnF2 and La2CuO4 [23–28].

Superconducting memory devices with infinite magnetore-
sistance have been proposed [29, 30] and observed [31] using
superconducting spin-valves, a trilayer configuration comprised
of a central superconductor flanked by two ferromagnets. By ex-
ploiting the inverse proximity effect, the critical temperature 𝑇𝑐
of the superconductor can be dynamically modulated through
manipulation of the relative magnetization orientations. In this
way, 𝑇𝑐 changes up to 1 K have been reported [32]. However,
the property enabling the functionality of such structure via
external fields is also its drawback, depending on the precise
mode of operation: the magnetization. The disadvantage is the
inevitable existence of a stray field surrounding the structure,
which limits how closely multiple structures of this type can
be packed together without disturbing each other. Therefore,
finding a way to control 𝑇𝑐 in a structure without any net mag-
netization could offer a major advantage to the implementation
of such architecture in cryogenic devices. Recent strides in
unraveling the altermagnet/superconductivity interplay encom-
pass a spectrum of phenomena, including studies of Andreev
reflection [33, 34], Majorana zero modes [35], the Josephson

effect [36–38], and interplay with spin-orbit interaction [39].
We here determine the effect of the altermagnetic spin split-

ting on the critical temperature of an adjacent superconductor
and suggest using an AM-SC-AM trilayer as a stray field–free
memory device. Commencing our study, we investigate a
simple model demonstrating coexistence of altermagnetism
and superconductivity and show that the altermagnetic field is
detrimental to the superconducting order parameter, akin to the
Pauli limit in superconductors subjected to magnetic fields [40].
Progressing to AM-SC bilayers, we unveil a modulation in the
critical temperature, caused by the altermagnetic order. This
modulation is non-monotonic as a function of the altermagnetic
strength, and can both suppress or increase 𝑇𝑐 compared to the
normal metal case. We explore different geometries, showing
that the relative direction of the interface and the altermag-
netic order parameter yield vastly different results. A study
of AM-SC-AM trilayers is then performed, highlighting the
influence of the parallel or antiparallel directions of the order
parameters in the two altermagnets. Finally, we investigate
the role of impurities in the altermagnetic material. We find
that impurities do not suppress the influence of altermagnetic
spin order on the itinerant electrons, making the altermagnetic
proximity effect relevant even in experiments utilizing materials
that have a short mean free path.

II. THEORY

The lattice Bogoliubov–de Gennes (BdG) framework [41, 42]
is suitable for studying AM-SC heterostructures. We employ
an attractive Hubbard Hamiltonian to model a conventional
phonon-mediated 𝑠-wave singlet superconductor:

𝐻U = −
∑︁
𝑖

𝑈𝑖𝑐
†
𝑖↓𝑐

†
𝑖↑𝑐𝑖↑𝑐𝑖↓, (1)

where 𝑐𝑖𝜎 and 𝑐
†
𝑖𝜎

destroy and create an electron with spin 𝜎,
and 𝑈𝑖 > 0 is the magnitude of the attractive potential. The
attractive Hubbard 𝑈-term generally differs from the effective
electron-electron interaction mediated by phonons (obtained
by performing a Schrieffer-Wolff transformation) in terms of
momentum and spin indices. Nevertheless, at the mean-field
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level these models give the same result for the conventional
BCS channel for Cooper pairing. We define 𝑏𝑖 = 𝑐𝑖↓𝑐𝑖↑ and
perform a mean-field expansion 𝑏𝑖 = 𝛿𝑏𝑖 + ⟨𝑏𝑖⟩, ignoring
second-order terms in the deviation from expectation values.
Finally, we define a (site-dependent) superconducting order
parameter

Δ𝑖 = 𝑈𝑖 ⟨𝑐𝑖↑𝑐𝑖↓⟩, (2)

and arrive at the mean-field Hamiltonian

𝐻mf = −
∑︁
𝑖

(Δ𝑖𝑐
†
𝑖↓𝑐

†
𝑖↑ + Δ∗

𝑖 𝑐𝑖↑𝑐𝑖↓), (3)

where we disregarded a constant term which is absorbed in the
ground state energy.

We note that a constant on-site potential𝑈𝑖 = 𝑈 corresponds
to an isotropic gap in momentum-space that pairs electrons
with opposite spin and momentum, which is consistent with the
Bardeen-Cooper-Schrieffer theory for an 𝑠-wave superconduc-
tor. We employ this mean-field superconducting Hamiltonian,
including also the effect of altermagnetism and impurities,

𝐻 =𝐸0 −
∑︁
𝑖𝜎

(𝜇 − 𝑤𝑖)𝑐†𝑖𝜎𝑐𝑖𝜎 −
∑︁
𝑖

(Δ𝑖𝑐
†
𝑖↓𝑐

†
𝑖↑ + Δ∗

𝑖 𝑐𝑖↑𝑐𝑖↓)

−
∑︁

⟨𝑖, 𝑗 ⟩𝜎
𝑡𝑖 𝑗𝑐

†
𝑖𝜎
𝑐 𝑗 𝜎 −

∑︁
⟨𝑖, 𝑗 ⟩𝜎𝜎′

(𝒎𝑖 𝑗 · 𝝈)𝜎𝜎′𝑐
†
𝑖𝜎
𝑐 𝑗 𝜎′ ,

(4)

where 𝜇 is the chemical potential, 𝝈 = (𝜎1, 𝜎2, 𝜎3) is the Pauli
vector, and 𝑤𝑖 is an impurity potential taken to be randomly
distributed at a given number of sites in the magnet. For com-
parison, we consider two different forms of the spin-dependent
interaction 𝒎𝑖 𝑗 : i) an on-site potential 𝒎𝑖 𝑗 = 𝑚𝑧𝛿𝑖 𝑗 𝑧, corre-
sponding to a ferromagnetic term, and ii) 𝒎𝑖 𝑗 = +𝑚𝒆𝑧 for
nearest-neighbor hopping along the 𝑥 axis and 𝒎𝑖 𝑗 = −𝑚𝒆𝑧 for
hopping along the 𝑦 axis, corresponding to an effective alter-
magnetic term, similar to what was used in Ref. 36. The spin-
dependent hopping term parametrized by 𝒎𝑖 𝑗 in our Hamilton-
operator can be understood as a Coulomb-exchange interaction
experienced by electrons that are hopping on top of a back-
ground of localized spins that form collinear antiferromagnetic
order [27]. For a bulk altermagnet, the spin-dependent hopping
used this article as well as in Ref. 36 takes exactly the cosine
form suggested discussed in Refs. 27, 43, and 44, when Fourier
transforming to momentum space. Moreover, both the Hubbard
model [45, 46] and the tight-binding model with spin coupling
between itinerant and localized spins have recently used [47] to
derive dispersions that qualitatively match the low-energy form
of the cosine Hamiltonian. The effect of the antiferromagnetic
order in the localized spins exerted on the itinerant fermions
{𝑐𝑖𝜎 , 𝑐†𝑖𝜎} in the Hamiltonian Eq. (4) is thus modelled via
𝒎𝑖 𝑗 , owing to the fact that this is an effective model for the
conduction electrons which breaks the 𝑃𝑇-symmetry required
to have a spin-split altermagnetic band structure. Formally, one
could in principle solve self-consistently for the parameter 𝑚
in the altermagnet to determine how it is affected by supercon-
ductivity. This would be relevant for spontaneous and intrinsic
coexistence of altermagnetism and superconductivity in the

same material. Instead, we take 𝑚 to be a fixed constant and
solve for Δ self-consistently. This scenario is experimentally
relevant in a scenario where the altermagnetic spin-splitting
has been induced by placing a thin superconductor on top of
an altermagnet, stacking them along the 𝑧-direction, whereas
the spin-splitting of the bands is present in the 𝑘𝑥 − 𝑘𝑦 plane.
This is similar to what has been done experimentally in thin
ferromagnetic insulator/superconductor systems [31, 48, 49],
and obviates the need to solve self-consistently for the spin-
splitting parameter as it is induced from an external source.
Note that in such a case, the induced 𝑚 in the superconductor
can be smaller than Δ despite the altermagnetic spin-splitting
in the host material being much larger than Δ. This is because
the induced spin-splitting via the proximity effect scales with
the tunnel coupling to the material, which strongly suppresses
its magnitude.

We assume nearest neighbor hopping, i.e. 𝑡𝑖 𝑗 = 𝑡, and scale
all other parameters in units of 𝑡. The superconducting order
parameter is determined from the site-dependent self-consistent
gap equation in Eq. (2). We assume here that the attraction
only occurs in the singlet channel. The singlet phase is more
robust than the triplet channel when impurity scattering, which
is always present to some extent in real materials, is included.
We note that even if the pairing potential only exists in the
singlet channel, triplet superconducting correlations can still be
induced via the proximity effect when such a superconductor is
in contact with an altermagnet. For a discussion concerning the
pairing potential in the triplet channel when superconductivity
coexists with altermagnetism, see Ref. 50. Throughout the
paper, we fix 𝜇 = −𝑡/2 and 𝑈𝑖 = 1.7𝑡. The magnetic terms,
superconducting order parameters, and impurity potentials
are only nonzero in their respective regions. Specifically,
the altermagnetic term 𝒎𝑖 𝑗 is finite only when both sites 𝑖, 𝑗
inside are in the altermagnet. Expectation values of physical
observables are formally computed by performing a trace (using
a complete basis set) over the density matrix 𝜌 and the matrix-
representation of the observable under consideration. The
details of this density matrix are not needed for the results
presented in our work. This is because the superconducting
order parameter and other expectation values can in practice be
obtained self-consistently without explicitly computing 𝜌 first,
the reason being that expectation values of creation-annihilation
pairs of the diagonalized quasiparticle operators give Fermi-
Dirac distribution functions.

III. METHODOLOGY

At each site 𝑖, the fermionic operators can be organized
into Nambu vectors 𝑐𝑖 ≡ (𝑐

𝑖↑, 𝑐𝑖↓, 𝑐
†
𝑖↑, 𝑐

†
𝑖↓) , which may in

turn be collected into a 4𝑁-element vector 𝑐 ≡ (𝑐1, . . . , 𝑐𝑁 )
encompassing all fermionic lattice operators. The Hamiltonian
operator is subsequently represented using a 4𝑁 × 4𝑁 matrix:
𝐻 = 𝐸0 + 1

2𝑐
†�̌�𝑐. We solve the BdG equation by numerically

diagonalizing �̌� and expressing physical observables such as
the superconducting gap in Eq. (2) in terms of its eigenvectors
and eigenvalues. This process entails an initial guess Δ𝑔 for the
order parameter, and then self-consistently diagonalizing the
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Hamiltonian until the superconducting gap equation converges.
In this paper, however, our main interest is the critical tempera-
ture 𝑇𝑐, and thus we do not need the explicit numerical value
of the gap. With that said, we typically find a low-temperature
gap magnitude of order Δ ≃ 0.15𝑡 with our parameters. In-
stead, we perform 𝑁Δ self-consistent iterations and compare
the resulting value of the order parameter with the small initial
value Δ𝑔 = 10−4𝑡. This solution strategy is very similar to
the methodology used, e.g., in Ref. 51. We define the SC as
being in the superconducting state when the median value of
the order parameter inside the superconductor has increased
compared to the initial value Δ𝑔. The critical temperature is
subsequently ascertained by performing a binomial search in
critical temperatures, as was done in Ref. 52. In order to make
the computational time manageable, it is necessary to consider
a lattice size that is much smaller than in an experimental
setting. For instance, in order to ensure that the width of the
superconducting layer is comparable to the superconducting
coherence length, which is inversely proportional to Δ, one
must use a large value for the superconducting order parameter.
Nevertheless, the BdG lattice framework is known to give pre-
dictions that compare well, both qualitatively and quantitatively,
with experimentally realistic systems [53, 54] as long as the
ratio of the length scales in the problem (such as the width of
the system and the coherence length) is reasonable, which is
the approach we have taken.

IV. RESULTS AND DISCUSSION

A. Altermagnetic destruction of the superconducting order

Prior to delving into heterostructures of superconductors and
altermagnets, it is instructive first to understand the effects of
the altermagnetic term in Eq. (4) on the superconducting order,
and employ periodic boundary conditions along both axes. To
this end, we consider a system with coexisting altermagnetic
and superconducting order. We vary the altermagnetic strength
𝑚 and calculate the critical temperature self-consistently using
the methodology outlined above. The results are shown in
Fig. 1: the effect of altermagnetism is to suppress the super-
conducting order, which vanishes for an altermagnetic strength
of 𝑚 ≈ 0.05𝑡. The results are juxtaposed with the effects of
ferromagnetism, which also suppresses the superconductivity
in a similar way, as is well-known [40, 55], although the critical
field is much larger than in the altermagnetic case. We note
that in general there exists additional solutions to the self-
consistency equation besides the one shown in the upper pane
of Fig. 1, such as Δ = 0. These solutions have a higher free
energy than the solution for Δ that we have presented. Thus,
we are presenting the solution for Δ which corresponds to the
thermodynamic ground-state of the system. These unstable
branches are discussed in detail in the Appendix of Ref. 56.

After establishing the analogous interaction between the
altermagnetic and ferromagnetic terms with superconductivity,
a natural inquiry arises regarding the impact of altermagnets
on superconductors within heterostructures. Specifically, we
shall focus our attention on the influence of altermagnets on

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

∆/
∆ 0

m/t , mz/t

AM
FM

(a)

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

T c
/
T c

(m
=

0)

m/t , mz/t

AM
FM

(b)

FIG. 1. The (a) order parameter and (b) critical tempera-
ture as a function of the alter- and ferromagnetic strength in a
𝑁𝑥 = 𝑁𝑦 = 20𝑎0 structure with coexisting superconductivity and
altermagnetic/ferromagnetic spin splitting. The termperature in (a) is
set to 𝑇 = 0.01𝑡/𝑘𝐵, where 𝑘𝐵 is the Boltzmann constant.

the critical temperature within AM-SC systems.

B. Junction geometries

Employing a square lattice with lattice constant 𝑎0, we
explore two distinct AM-SC geometries: a straight junction,
where the interface is aligned with the crystallographic axis, and
a skewed junction, where the interface is rotated 45◦ compared
with the crystallographic axis, see Fig. 2. Here, and in the
rest of the paper, we employ periodic boundary conditions
along the axis parallel to the interface, and hard wall boundary
conditions along the axis perpendicular to the interface. We
denote the number of lattice sites in the 𝑥 (𝑦) direction by 𝑁𝑥 (𝑦) .
In the straight junction, hopping across the interface happens
exclusively along the 𝑥-axis, while in the skewed junction,
hopping across the interface happens equally along the 𝑥- and
𝑦- axis. The inverse proximity effect in the SC-AM system
can be probed by calculating the critical temperature 𝑇𝑐 in the
SC. The result is depicted in Fig. 2, highlighting a significant
disparity in the behavior between the straight and skewed
junction configurations. We emphasize that the normalization
in this figure is the critical temperature in a superconductor
in contact with a 𝑚 = 0 altermagnet, i.e. a normal metal.
Hence, the critical temperature is never raised compared to the
critical temperature in the bulk superconductor, but it is raised
compared to the critical temperature in a superconductor in
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FIG. 2. (a) The straight junction and (b) the skewed junction geometries.
(c) the hopping term for a spin-up (spin-down) electron (hole). For a
spin-down (spin-up) electron (hole), the signs are reversed. In (d): the
critical temperature for the straight (St) and skewed (Sk) geometries
with 𝑁𝑦 = 20𝑎0, 𝑁𝐴𝑀

𝑥 = 10𝑎0, 𝑁𝑆𝐶
𝑥 = 6𝑎0, and 𝑁Δ = 50.

proximity with a normal metal. In the skewed junction, the
effect of the altermagnetism is to suppress Andreev reflection
[57], which is the underlying mechanism causing the (inverse)
proximity effect. This happens because the altermagnetic
term causes different hopping for electrons and holes involved
in Andreev reflection. Thus, the inverse proximity effect is
suppressed for high values of𝑚, causing the critical temperature
to increase. In the case of the straight junction, an additional
factor comes into play—induced magnetization brought about
by the inverse proximity effect [58]. This phenomenon leads to
a pronounced oscillatory behavior in the critical temperature.
The induced magnetization can be understood by noting that
spin-up electrons favor hopping in the 𝑥-direction, causing
leaking spin-up electrons from the SC into the AM to be
trapped in the AM for large 𝑚. In the skewed junction, this
effect is averaged out, and the induced magnetization in the SC
vanishes.

Parallel (P)

Antiparallel
     (AP)

(a)

0.00 0.25 0.50 0.75 1.00
m/t

0.9

1.0

1.1

1.2
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FIG. 3. In (a): the AM-SC-AM system with P and AP alignment of
the altermagnets. In (b): the critical temperatures in a system where
the length of the SC is 12𝑎0, and 𝑁𝑦 = 20𝑎0. The altermagnets on
either side have a length of 10𝑎0.

C. AM-SC-AM trilayers

An intriguing extension to the discussion above can be
achieved by adding another altermagnet to the AM-SC system
considered above. This system entails two distinct scenarios:
one where the two altermagnets are aligned and one where
the second altermagnet is rotated (in real space) by 90◦. We
refer to these situations as a parallel (P) and antiparallel (AP)
alignment, see Fig. 3. Rotating the second altermagnet is akin
to changing the sign of 𝑚 in this region, or equivalently to a
180◦ rotation in spin space. In Fig. 3b, the critical temperature
of the SC is calculated for different values of 𝑚 in the two
different systems. In the P alignment, the situation is analogous
to the AM-SC system considered above, and we see a similar
𝑇𝑐 modulation pattern. In the AP alignment case, the critical
temperature is lower than in the P alignment for most values
of 𝑚. To understand why this is the case, we note that the su-
perconducting coherence length in our system 𝜉𝑆 = ℏ𝑣𝐹/𝜋Δ0,
where 𝑣𝐹 = ⟨|𝑑𝐸𝑘/𝑑𝒌 |⟩/ℏ is the normal state Fermi velocity,
where ⟨. . .⟩ represents averaging over the Fermi surface, which
can be calculated by introducing periodic boundary conditions
along both axes [59], is comparable to the system length. This
is typically the regime investigated experimentally. In light of
this, we attribute the lower critical temperature to the appear-
ance of crossed Andreev reflection (CAR), sometimes referred
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FIG. 4. Δ𝐶↑ as a function of 𝑚 and 𝑁𝑖 , for impurity strength of (a)
𝑤𝑖 = 1𝑡 and (b) 𝑤 = 3𝑡. (c) Δ𝐶↑ as a function of 𝑚 and 𝜇 in a system
without impurities., The system size is 𝑁𝑥 = 𝑁𝑦 = 20𝑎0.

to as nonlocal Andreev reflection [60]. It is well known that
for an F-S-F heterostructure, the AP alignment of ferromagnets
gives enhanced CAR compared to the P alignment [61], and
we attribute the results of Fig. 3b to a similar origin. The CAR
process (strictly speaking, inverse CAR) breaks up a Cooper
pair into electrons that become spatially separated in different
leads, thus suppressing the superconducting condensate. As
more Cooper pairs are transmitted out of the SC due to CAR,
the critical temperature drops accordingly. Importantly, switch-
ing between the P and AP alignment can experimentally be
performed by rotating the Néel vector, since this effectively
switches the spin-up and spin-down bands in the altermagnet.
A similar 𝑇𝑐 modulation in conventional antiferromagnets was
very recently reported [62]. Notably, the Néel vector has been
found to be controllable by spin transfer torques [63, 64], spin-
orbit torques [65], and by optical methods [66]. This opens the
possibility of using the suggested device as a stray field–free
memory device operating in the THz regime, enabling the
prospect of ultrafast switching.

D. Impurity scattering

Materials with substantial impurity scattering are highly
relevant for experiments. For this reason, we will concentrate
on the role of impurities in altermagnets, before moving on to the
proximity effect in a system with a dirty altermagnet. Impurities
are accounted for through an on-site potential [67–69] at a
fraction 𝑁𝑖 of all sites, with a fixed strength 𝑤𝑖 , and randomly
chosen sites in the altermagnet, similar to the methodology
in Ref. 69. Observables are calculated by averaging over 100
different impurity configurations. As the impurity scattering is
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Impurity average
Clean system

Impurity average
Clean system

FIG. 5. The impurity average plotted together with the clean system,
which is the same as the straight system in Fig. 2b. In the lower
pane, the temperatures are normalized to the zero-impurity and zero-
magnetism critical temperature 𝑇𝑐,0 (𝑚 = 0), showing that 𝑇𝑐 is
slightly higher in the presence of impurities. In the upper pane, the
temperatures are normalized to unity for 𝑚 = 0, i.e. the two curves
are normalized by a different factor, which illustrates that the variation
in 𝑇𝑐 with 𝑚 is of similar magnitude in both cases.

isotropic, one might expect that the altermagnetic spin-splitting,
which is anisotropic, disappears in the presence of impurities.
To test this, we define the bona fide order parameter Δ𝐶↑,

Δ𝐶↑ =
∑︁
𝑖

[
⟨𝑐†

𝑖↑𝑐𝑖+�̂�↑⟩ − ⟨𝑐†
𝑖↑𝑐𝑖+�̂�↑⟩

]
, (5)

which is a measure of the anisotropy of the effective hopping
parameter (for spin-up particles) in the system, and depends
on both 𝑡 and 𝑚 in general. For square systems, we expect the
system to be invariant under 𝐶4 rotations for 𝑚 = 0, i.e. Δ𝐶↑ =
0. Thus, we can use Δ𝐶↑ to determine whether the system is
altermagnetic or not. In Fig. 4, we plot the results for different
values of 𝑚 and 𝑁𝑖 , for 𝑤𝑖 = 1.0𝑡 and 𝑤𝑖 = 3.0𝑡, comparable
to other values used in the literature [68]. Evidently, the
altermagnetic order is resilient to the non-magnetic impurities
in the system; the slight suppression of the order parameter
for strong impurity scattering (i.e. the upper parts of the plots
in Fig. 4b and Fig 4a) can be explained by the fact that the
impurities takes the form of local chemical potentials. Hence,
a high concentration of impurities has the effect of an effective
renormalized global chemical potential. To show this, we
calculate the order parameter Δ𝐶↑ for different values of global
chemical potentials, as shown in Fig. 4c. The suppression of the
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order parameter for high absolute values of 𝜇 is similar to the
behavior of the order parameter for high impurity configurations
in Fig. 4a and 4b. The reason for the dependence of the order
parameter magnitude on 𝜇 is that the latter determines the
filling factor and density of states at the Fermi level, which in
turn affects the superconducting pairing.

Finally, we repeat the calculations of the straight junction in
Fig. 2, including impurities in the AM. We set the strength of
the impurities to 𝑤𝑖 = 1.0𝑡 and the fraction of sites occupied by
impurities to 0.2, and perform the calculations for 100 different
impurity configurations, before averaging over the resulting
values of the critical temperature. The results are shown in
Fig. 5, and show that although the critical temperature curve is
different from the clean system, the (inverse) proximity effect
is still present, which is evident from the fact that the critical
temperature varies with a similar magnitude compared with
the clean system.

Thus, we conclude that impurities are not strongly detri-
mental to the altermagnetic modulation of the superconducting
order, which means that the effect should be experimentally
visible even for dirty materials. We have thus found that
the analogy between 𝑑-wave superconductor and altermag-
netism [28] is not useful in impurity considerations: whereas
𝑑-wave superconductivity is highly sensitive to non-magnetic
impurities, the altermagnetic effect on the conduction electrons
survives even in the presence strong impurity potentials. This
is due to the ”𝑑-wave” Fermi surface of altermagnets being

spin-split, prohibiting the scattering between the spin bands in
the absence of spin-flip impurities.

V. CONCLUSION

We have solved the lattice Bogoliubov-de Gennes equations
in heterostructures of superconductors and altermagnets. Our
study indicates that altermagnetic materials have the potential
to be used in cryogenic spintronic devices, for instance as
stray-field-free spin switches showing infinite magnetoresistiv-
ity, using spin-transfer torques, spin-orbit torques, or optical
methods to rotate the Néel vector. Non-magnetic impurities are
not severely detrimental to the altermagnetic proximity effect,
allowing for this effect to be present also in altermagnetic
materials in the diffusive transport regime.

ACKNOWLEDGMENTS

We thank J. A. Ouassou, E. W. Hodt, and B. Brekke for
helpful comments and discussions. This work was supported by
the Research Council of Norway through Grant No. 323766 and
its Centres of Excellence funding scheme Grant No. 262633
“QuSpin.” Support from Sigma2 - the National Infrastructure
for High Performance Computing and Data Storage in Norway,
project NN9577K, is acknowledged.

[1] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Odd triplet
superconductivity and related phenomena in superconductor-
ferromagnet structures, Rev. Mod. Phys. 77, 1321 (2005).

[2] A. I. Buzdin, Proximity effects in superconductor-ferromagnet
heterostructures, Rev. Mod. Phys. 77, 935 (2005).

[3] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä, Col-
loquium: Nonequilibrium effects in superconductors with a
spin-splitting field, Rev. Mod. Phys. 90, 041001 (2018).

[4] B. M. Andersen, I. V. Bobkova, P. J. Hirschfeld, and Y. S. Barash,
0 − 𝜋 transitions in josephson junctions with antiferromagnetic
interlayers, Phys. Rev. Lett. 96, 117005 (2006).

[5] B. M. Andersen, I. V. Bobkova, P. J. Hirschfeld, and Y. S.
Barash, Bound states at the interface between antiferromagnets
and superconductors, Phys. Rev. B 72, 184510 (2005).

[6] C. Bell, E. J. Tarte, G. Burnell, C. W. Leung, D.-J. Kang, and
M. G. Blamire, Proximity and Josephson effects in supercon-
ductor/antiferromagnetic Nb / 𝛾 - Fe 50 Mn 50 heterostructures,
Phys. Rev. B 68, 144517 (2003).

[7] M. Hübener, D. Tikhonov, I. A. Garifullin, K. Westerholt, and
H. Zabel, The antiferromagnet/superconductor proximity effect
in Cr/V/Cr trilayers, J. Phys.: Condens. Matter 14, 8687 (2002).

[8] B. L. Wu, Y. M. Yang, Z. B. Guo, Y. H. Wu, and J. J. Qiu,
Suppression of superconductivity in Nb by IrMn in IrMn/Nb
bilayers, Appl. Phys. Lett.. 103, 152602 (2013).

[9] H. Enoksen, J. Linder, and A. Sudbø, Pressure-induced 0-𝜋
transitions and supercurrent crossover in antiferromagnetic weak
links, Phys. Rev. B 88, 214512 (2013).

[10] L. G. Johnsen, S. H. Jacobsen, and J. Linder, Magnetic control
of superconducting heterostructures using compensated antifer-
romagnets, Phys. Rev. B 103, L060505 (2021).

[11] G. A. Bobkov, I. V. Bobkova, A. M. Bobkov, and A. Kamra, Néel
proximity effect at antiferromagnet/superconductor interfaces,
Phys. Rev. B 106, 144512 (2022).

[12] D. S. Rabinovich, I. V. Bobkova, and A. M. Bobkov, Anomalous
phase shift in a josephson junction via an antiferromagnetic
interlayer, Phys. Rev. Res. 1, 033095 (2019).

[13] V. Falch and J. Linder, Giant magnetoanisotropy in the josephson
effect and switching of staggered order in antiferromagnets, Phys.
Rev. B 106, 214511 (2022).

[14] M. F. Jakobsen, K. B. Naess, P. Dutta, A. Brataas,
and A. Qaiumzadeh, Electrical and thermal transport in
antiferromagnet-superconductor junctions, Phys. Rev. B 102,
140504 (2020).

[15] J. L. Lado and M. Sigrist, Two-dimensional topological super-
conductivity with antiferromagnetic insulators, Phys. Rev. Lett.
121, 037002 (2018).

[16] E. H. Fyhn, A. Brataas, A. Qaiumzadeh, and J. Linder, Quasi-
classical theory for antiferromagnetic metals, Phys. Rev. B 107,
174503 (2023).

[17] E. H. Fyhn, A. Brataas, A. Qaiumzadeh, and J. Linder, Super-
conducting Proximity Effect and Long-Ranged Triplets in Dirty
Metallic Antiferromagnets, Phys. Rev. Lett. 131, 076001 (2023).

[18] G. A. Bobkov, I. V. Bobkova, and A. M. Bobkov, Proximity effect
in superconductor/antiferromagnet hybrids: Néel triplets and
impurity suppression of superconductivity, Phys. Rev. B 108,
054510 (2023).

[19] S. Chourasia, L. J. Kamra, I. V. Bobkova, and A. Kamra, Gener-
ation of spin-triplet Cooper pairs via a canted antiferromagnet,
Phys. Rev. B 108, 064515 (2023).

https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.90.041001
https://doi.org/10.1103/PhysRevLett.96.117005
https://doi.org/10.1103/PhysRevB.72.184510
https://doi.org/10.1103/PhysRevB.68.144517
https://doi.org/10.1088/0953-8984/14/37/305
https://doi.org/10.1063/1.4824891
https://doi.org/10.1103/PhysRevB.88.214512
https://doi.org/10.1103/PhysRevB.103.L060505
https://doi.org/10.1103/PhysRevB.106.144512
https://doi.org/10.1103/PhysRevResearch.1.033095
https://doi.org/10.1103/PhysRevB.106.214511
https://doi.org/10.1103/PhysRevB.106.214511
https://doi.org/10.1103/PhysRevB.102.140504
https://doi.org/10.1103/PhysRevB.102.140504
https://doi.org/10.1103/PhysRevLett.121.037002
https://doi.org/10.1103/PhysRevLett.121.037002
https://doi.org/10.1103/PhysRevB.107.174503
https://doi.org/10.1103/PhysRevB.107.174503
https://doi.org/10.1103/PhysRevLett.131.076001
https://doi.org/10.1103/PhysRevB.108.054510
https://doi.org/10.1103/PhysRevB.108.054510
https://doi.org/10.1103/PhysRevB.108.064515


7

[20] E. Erlandsen and A. Sudbø, Schwinger boson study of supercon-
ductivity mediated by antiferromagnetic spin fluctuations, Phys.
Rev. B 102, 214502 (2020).

[21] E. Thingstad, E. Erlandsen, and A. Sudbø, Eliashberg study of
superconductivity induced by interfacial coupling to antiferro-
magnets, Phys. Rev. B 104, 014508 (2021).

[22] K. Mæland, B. Brekke, and A. Sudbø, Many-body effects on
superconductivity mediated by double-magnon processes in
altermagnets (2024), arxiv:2402.14061 [cond-mat].

[23] S. Hayami, Y. Yanagi, and H. Kusunose, Momentum-Dependent
Spin Splitting by Collinear Antiferromagnetic Ordering, J. Phys.
Soc. Jpn. 88, 123702 (2019).

[24] K.-H. Ahn, A. Hariki, K.-W. Lee, and J. Kuneš, Antiferromag-
netism in RuO2 as d -wave Pomeranchuk instability, Phys. Rev.
B 99, 184432 (2019).

[25] S. López-Moreno, A. H. Romero, J. Mejía-López, and A. Muñoz,
First-principles study of pressure-induced structural phase tran-
sitions in MnF2, Phys. Chem. Chem. Phys. 18, 33250 (2016),
publisher: The Royal Society of Chemistry.

[26] L. Šmejkal, R. González-Hernández, T. Jungwirth, and J. Sinova,
Crystal time-reversal symmetry breaking and spontaneous Hall
effect in collinear antiferromagnets, Sci. Adv. 6, eaaz8809 (2020).

[27] H. Reichlová, R. L. Seeger, R. González-Hernández, I. Kounta,
R. Schlitz, D. Kriegner, P. Ritzinger, M. Lammel, M. Leiviskä,
V. Petříček, P. Doležal, E. Schmoranzerová, A. Bad’ura,
A. Thomas, V. Baltz, L. Michez, J. Sinova, S. T. B. Goennen-
wein, T. Jungwirth, and L. Šmejkal, Macroscopic time reversal
symmetry breaking by staggered spin-momentum interaction
(2021), arxiv:2012.15651 [cond-mat].

[28] L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond Conventional
Ferromagnetism and Antiferromagnetism: A Phase with Nonrel-
ativistic Spin and Crystal Rotation Symmetry, Phys. Rev.X 12,
031042 (2022).

[29] A. I. Buzdin, A. V. Vedyayev, and N. V. Ryzhanova, Spin-
orientation–dependent superconductivity in F/S/F structures,
Europhys. Lett. 48, 686 (1999).

[30] L. R. Tagirov, Low-Field Superconducting Spin Switch Based
on a Superconductor / Ferromagnet Multilayer, Phys. Rev. Lett.
83, 2058 (1999).

[31] B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin,
D. Heiman, M. Münzenberg, and J. S. Moodera, Superconducting
spin switch with infinite magnetoresistance induced by an internal
exchange field, Phys. Rev. Lett. 110, 097001 (2013).

[32] A. Singh, S. Voltan, K. Lahabi, and J. Aarts, Colossal proximity
effect in a superconducting triplet spin valve based on the half-
metallic ferromagnet cro2, Phys. Rev. X 5, 021019 (2015).

[33] C. Sun, A. Brataas, and J. Linder, Andreev reflection in alter-
magnets, Phys. Rev. B 108, 054511 (2023).

[34] M. Papaj, Andreev reflection at the altermagnet-superconductor
interface, Phys. Rev. B 108, L060508 (2023).

[35] S. A. A. Ghorashi, T. L. Hughes, and J. Cano, Altermagnetic
Routes to Majorana Modes in Zero Net Magnetization (2023),
arxiv:2306.09413 [cond-mat].

[36] J. A. Ouassou, A. Brataas, and J. Linder, Dc Josephson Effect in
Altermagnets, Phys. Rev. Lett. 131, 076003 (2023).

[37] S.-B. Zhang, L.-H. Hu, and T. Neupert, Finite-momentum Cooper
pairing in proximitized altermagnets, Nat Commun 15, 1801
(2024).

[38] C. W. J. Beenakker and T. Vakhtel, Phase-shifted Andreev levels
in an altermagnet Josephson junction, Phys. Rev. B 108, 075425
(2023).

[39] M. Wei, L. Xiang, F. Xu, L. Zhang, G. Tang, and J. Wang,
Gapless superconducting state and mirage gap in altermagnets
(2023), arxiv:2308.00248 [cond-mat].

[40] A. M. Clogston, Upper Limit for the Critical Field in Hard
Superconductors, Phys. Rev. Lett. 9, 266 (1962).

[41] J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications,
Lecture Notes in Physics, Vol. 924 (Springer International Pub-
lishing, Cham, 2016).

[42] P. G. de Gennes, Superconductivity of metals and alloys (W.A.
Benjamin, 1966).

[43] L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging Research
Landscape of Altermagnetism, Phys. Rev. X 12, 040501 (2022).

[44] L. Šmejkal, A. B. Hellenes, R. González-Hernández, J. Sinova,
and T. Jungwirth, Giant and Tunneling Magnetoresistance in
Unconventional Collinear Antiferromagnets with Nonrelativistic
Spin-Momentum Coupling, Phys. Rev. X 12, 011028 (2022).

[45] P. Das, V. Leeb, J. Knolle, and M. Knap, Realizing Altermag-
netism in Fermi-Hubbard Models with Ultracold Atoms (2023),
arxiv:2312.10151 [cond-mat, physics:quant-ph].

[46] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome, and
H. Seo, Spin current generation in organic antiferromagnets, Nat
Commun 10, 4305 (2019).

[47] B. Brekke, A. Brataas, and A. Sudbø, Two-dimensional alter-
magnets: Superconductivity in a minimal microscopic model,
Phys. Rev. B 108, 224421 (2023).

[48] S. Kolenda, M. J. Wolf, and D. Beckmann, Observation of Ther-
moelectric Currents in High-Field Superconductor-Ferromagnet
Tunnel Junctions, Phys. Rev. Lett. 116, 097001 (2016).

[49] M. Rouco, S. Chakraborty, F. Aikebaier, V. N. Golovach,
E. Strambini, J. S. Moodera, F. Giazotto, T. T. Heikkilä, and
F. S. Bergeret, Charge transport through spin-polarized tunnel
junction between two spin-split superconductors, Phys. Rev. B
100, 184501 (2019).

[50] D. Zhu, Z.-Y. Zhuang, Z. Wu, and Z. Yan, Topological supercon-
ductivity in two-dimensional altermagnetic metals (2023).

[51] L. G. Johnsen, K. Svalland, and J. Linder, Controlling the Su-
perconducting Transition by Rotation of an Inversion Symmetry-
Breaking Axis, Phys. Rev. Lett. 125, 107002 (2020).

[52] J. A. Ouassou, Manipulating Superconductivity in Magnetic
Nanostructures in and out of Equilibrium, Ph.D. thesis, Norwe-
gian University of Science and Technology, Trondheim (2019).

[53] A. M. Black-Schaffer and J. Linder, Strongly anharmonic current-
phase relation in ballistic graphene josephson junctions, Phys.
Rev. B 82, 184522 (2010).

[54] C. D. English, D. R. Hamilton, C. Chialvo, I. C. Moraru, N. Ma-
son, and D. J. Van Harlingen, Observation of nonsinusoidal
current-phase relation in graphene josephson junctions, Phys.
Rev. B 94, 115435 (2016).

[55] B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
[56] J. A. Ouassou, T. D. Vethaak, and J. Linder, Voltage-induced

thin-film superconductivity in high magnetic fields, Phys. Rev.
B 98, 144509 (2018).

[57] A. F. Andreev, Thermal conductivity of the intermediate state of
superconductors, Sov. Phys. JETP. 19 (1964).

[58] J. Linder and J. W. A. Robinson, Superconducting spintronics,
Nature Phys 11, 307 (2015).

[59] L. G. Johnsen, K. Svalland, and J. Linder, Controlling the Su-
perconducting Transition by Rotation of an Inversion Symmetry-
Breaking Axis, Phys. Rev. Lett. 125, 107002 (2020).

[60] G. Falci, D. Feinberg, and F. W. J. Hekking, Correlated tunneling
into a superconductor in a multiprobe hybrid structure, Europhys.
Lett. 54, 255 (2001).

[61] G. Deutscher and D. Feinberg, Coupling superconducting-
ferromagnetic point contacts by Andreev reflections, Appl. Phys.
Lett. 76, 487 (2000).

[62] L. J. Kamra, S. Chourasia, G. A. Bobkov, V. M. Gordeeva, I. V.
Bobkova, and A. Kamra, Complete Tc suppression and Néel

https://doi.org/10.1103/PhysRevB.102.214502
https://doi.org/10.1103/PhysRevB.102.214502
https://doi.org/10.1103/PhysRevB.104.014508
https://arxiv.org/abs/2402.14061
https://doi.org/10.7566/JPSJ.88.123702
https://doi.org/10.7566/JPSJ.88.123702
https://doi.org/10.1103/PhysRevB.99.184432
https://doi.org/10.1103/PhysRevB.99.184432
https://doi.org/10.1039/C6CP05467F
https://doi.org/10.1126/sciadv.aaz8809
https://arxiv.org/abs/2012.15651
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1209/epl/i1999-00539-0
https://doi.org/10.1103/PhysRevLett.83.2058
https://doi.org/10.1103/PhysRevLett.83.2058
https://doi.org/10.1103/PhysRevLett.110.097001
https://doi.org/10.1103/PhysRevX.5.021019
https://doi.org/10.1103/PhysRevB.108.054511
https://doi.org/10.1103/PhysRevB.108.L060508
https://arxiv.org/abs/2306.09413
https://doi.org/10.1103/PhysRevLett.131.076003
https://doi.org/10.1038/s41467-024-45951-3
https://doi.org/10.1038/s41467-024-45951-3
https://doi.org/10.1103/PhysRevB.108.075425
https://doi.org/10.1103/PhysRevB.108.075425
https://arxiv.org/abs/2308.00248
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1007/978-3-319-31314-6
https://www.osti.gov/biblio/7263035
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.011028
https://arxiv.org/abs/2312.10151
https://doi.org/10.1038/s41467-019-12229-y
https://doi.org/10.1038/s41467-019-12229-y
https://doi.org/10.1103/PhysRevB.108.224421
https://doi.org/10.1103/PhysRevLett.116.097001
https://doi.org/10.1103/PhysRevB.100.184501
https://doi.org/10.1103/PhysRevB.100.184501
https://doi.org/10.1103/PhysRevB.108.184505
https://doi.org/10.1103/PhysRevB.108.184505
https://doi.org/10.1103/PhysRevLett.125.107002
https://doi.org/10.1103/PhysRevB.82.184522
https://doi.org/10.1103/PhysRevB.82.184522
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1103/PhysRevB.98.144509
https://doi.org/10.1103/PhysRevB.98.144509
https://doi.org/10.1038/nphys3242
https://doi.org/10.1103/PhysRevLett.125.107002
https://doi.org/10.1209/epl/i2001-00303-0
https://doi.org/10.1209/epl/i2001-00303-0
https://doi.org/10.1063/1.125796
https://doi.org/10.1063/1.125796


8

triplets mediated exchange in antiferromagnet-superconductor-
antiferromagnet trilayers, Phys. Rev. B 108, 144506 (2023).

[63] R. Cheng, M. W. Daniels, J.-G. Zhu, and D. Xiao, Ultrafast
switching of antiferromagnets via spin-transfer torque, Phys.
Rev.B 91, 064423 (2015).

[64] S. Urazhdin and N. Anthony, Effect of Polarized Current on
the Magnetic State of an Antiferromagnet, Phys. Rev. Lett. 99,
046602 (2007).

[65] Z. Xu, J. Ren, Z. Yuan, Y. Xin, X. Zhang, S. Shi, Y. Yang,
and Z. Zhu, Field-free spin–orbit torque switching of an anti-
ferromagnet with perpendicular Néel vector, J. Appl. Phys. 133,
153904 (2023).

[66] V. Grigorev, M. Filianina, Y. Lytvynenko, S. Sobolev, A. R.
Pokharel, A. P. Lanz, A. Sapozhnik, A. Kleibert, S. Bodnar,
P. Grigorev, Y. Skourski, M. Kläui, H.-J. Elmers, M. Jourdan,
and J. Demsar, Optically Triggered Néel Vector Manipulation of
a Metallic Antiferromagnet Mn2Au under Strain, ACS Nano 16,
20589 (2022).

[67] Y. Asano, Y. Sawa, Y. Tanaka, and A. A. Golubov, Odd-frequency
pairs and Josephson current through a strong ferromagnet, Phys.
Rev.B 76, 224525 (2007).

[68] Y. Asano, Y. Tanaka, and A. A. Golubov, Josephson Effect due
to Odd-Frequency Pairs in Diffusive Half Metals, Phys. Rev. Lett.
98, 107002 (2007).

[69] Z.-X. Li, S. A. Kivelson, and D.-H. Lee, Superconductor-to-
metal transition in overdoped cuprates, npj Quantum Mater. 6,
36 (2021).

https://doi.org/10.1103/PhysRevB.108.144506
https://doi.org/10.1103/PhysRevB.91.064423
https://doi.org/10.1103/PhysRevB.91.064423
https://doi.org/10.1103/PhysRevLett.99.046602
https://doi.org/10.1103/PhysRevLett.99.046602
https://doi.org/10.1063/5.0138869
https://doi.org/10.1063/5.0138869
https://doi.org/10.1021/acsnano.2c07453
https://doi.org/10.1021/acsnano.2c07453
https://doi.org/10.1103/PhysRevB.76.224525
https://doi.org/10.1103/PhysRevB.76.224525
https://doi.org/10.1103/PhysRevLett.98.107002
https://doi.org/10.1103/PhysRevLett.98.107002
https://doi.org/10.1038/s41535-021-00335-4
https://doi.org/10.1038/s41535-021-00335-4

	Superconductor-altermagnet memory functionality without stray fields
	Abstract
	Introduction
	Theory
	Methodology
	Results and discussion
	Altermagnetic destruction of the superconducting order
	Junction geometries
	AM-SC-AM trilayers
	Impurity scattering

	Conclusion
	Acknowledgments
	References


