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The quantum many-body problem is an important topic in condensed matter physics. To ef-
ficiently solve the problem, several methods have been developped to improve the representation
ability of wave-functions. For the Fermi-Hubbard model under periodic boundary conditions, current
state-of-the-art methods are neural network backflows and the hidden fermion Slater determinant.
The backflow correction is an efficient way to improve the Slater determinant of free-particles. In
this work we propose a tensor representation of the backflow corrected wave-function, we show
that for the spinless t-V model, the energy precision is competitive or even lower than current
state-of-the-art fermionic tensor network methods. For models with spin, we further improve the
representation ability by considering backflows on fictitious particles with different spins, thus natu-
rally introducing non-zero backflow corrections when the orbital and the particle have opposite spins.
We benchmark our method on molecules under STO-3G basis and the Fermi-Hubbard model with
periodic and cylindrical boudary conditions. We show that the tensor representation of backflow
corrections achieves competitive or even lower energy results than current state-of-the-art neural
network methods.

I. INTRODUCTION

Exotic physical phenomena emerge when a large num-
ber of microscopic particles interact with each other. Un-
derstanding phenomena such as superconductivity, quan-
tum spin-liquid and the quantum Hall effect requires
solving the quantum many-body problem to a high ac-
curacy. However, solving the problem is challenging be-
cause the Hilbert space of the solution grows exponen-
tially with respect to the size of the problem.

Several methods have been developped but there are
still limitations. For example, exact-diagonalization
(ED) has high accuracy but the problem size is limited1.
The density-matrix-renormalization-group (DMRG) can
solve one-dimensional or quasi one-dimensional systems2,
but the accuracy is not satisfactory for two-dimensional
systems. Quantum-Monte-Carlo (QMC) has no limi-
tation on dimensions and has high precision, but the
computational complexity is too high for systems with
the “sign problem”3. The projected-entangled-pair-state
(PEPS) can solve the two-dimensional system under open
boudary condition (OBC) with a high accuracy, however
the computational complexity is high especially for peri-
odic boundary condition (PBC)4–6. Recently, neural net-
works (NN) have shown potential in representing quan-
tum many-body states7–23. For solving Fermi-Hubbard-
type models, one approach is the Jordan-Wigner trans-
formation on the Hamiltonian that treats the problem as
solving a spin model15,16. Another way is improving the
single-particle Slater Determinants(SD) by NN backflow
transformations17–19 or multiplying the SD by a NN Jas-
trow factor20. The state-of-the-art wave-function named
the hidden fermion Slater determinant (HFSD) considers

hidden fermionic particles and calculates the determinant
of an enlarged matrix21.

Solving the ground state of the Fermi-Hubbard model
near 1/8 doping is important for understanding the mech-
anism of superconductiviey, however the ground state
is challenging to solve24–28. In mean-field theory, the
Hamiltonian is in a quadratic form, and the ground state
is the Hartree-Fock (HF) state. The wave-function of
the HF is a Slater determinant, which is an exact rep-
resentation for particles without interactions. For par-
ticles with interactions, the exact representation is very
challenging. One way to improve the representation abil-
ity is adding a Jastrow factor before the Slater determi-
nant, and many-body correlations are contained in the
Jastrow function. The backflow correlation improves the
representation ability by adding positions of other par-
ticles into the single-particle orbital18,29,31,32. Backflow
corrections on wave-functions have been widely used in
quantum chemistry17,19, however for strongly-correlated
many-body systems such as Fermi-Hubbard models, the
precision is not sufficiently high18,21.

Despite adding variational parameters can increase
the state representation ability of the variational wave-
function17–19, more variational parameters lead to higher
optimization difficulty, which is not beneficial to achieve
the ground energy13. In this work, we propose an effi-
cient way to increase the parameter number of the back-
flow corrected wave-function by tensor representation.
Namely, each dimension of the tensor is an indepen-
dent degree of freedom in the backflow corrected wave-
function. We show that the tensor representation can
achieve competitive or even lower energy results compar-
ing to state-of-the-art fermionic PEPS (fPEPS) results
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FIG. 1. The matrix in the Slater determinant for the N par-
ticles, with N↑ and N↓ the particle number for spin up and
spin down respectively. The spin on the horizontal (vertical)
axis denotes the spin of particles (orbitals).

for the spinless t-V model5. For models with spin, we
improve the representation ability by considering back-
flow corrections on fictitious particles with different spins,
which leads to non-zero backflow corrections when the
particle and the orbital have different spins. We numer-
ically demonstrate that our method can achieve energy
precision competitive to state-of-the-art RBM results for
molecules under the STO-3G basis15, and energy preci-
sion competitive with or even better than state-of-the-
art NN backflow18 and HFSD21 results for the Fermi-
Hubbard model.

This paper is organized as follows: Sec.II 1 recalls
backflow corrections on wave-functions and introduces
our method of backflow corrections when the particle
and the orbital have different spins. Sec.II 2 introduces
the tensor representation of the backflow corrected wave-
function. Sec.III presents numerical results of our meth-
ods and comparisons with other state-of-the-art meth-
ods. For example the spinless t-V model in Sec.III 2,
molecules in STO-3G basis in Sec.III 3, and the Fermi-
Hubbard model in Sec.III 4. Finally, the paper is con-
cluded in Sec.IV.

II. METHODS

1. Backflow corrections of wave-functions

The backflow correction is defined on the fictitious co-
ordinate rBi which not only depends on the position rα
but also depends on positions of other particles29:

rBα = rα +
∑
β

ηαβ [S](rβ − rα), (1)

where rα are actual particle positions and ηαβ [S] are vari-
ational parameters depending on the many-body state
|S⟩, so to create a return flow of particles.
The backflow corrected single-particle orbital for a spin

ϕB
k,σ is constructed by a linear combination of eigenstates

of the mean-field Hamiltonian ϕk,σ
18,31,32:

ϕB
kσ(ri,σ) = ϕkσ(ri,σ) +

∑
j

cij [S]ϕkσ(rj,σ), (2)

where cij [S] is a variational coefficient depending on the
many-body configuration |S⟩. The orbital is ϕkσ(ri,σ) =
⟨0|ĉi,σ|ϕkσ⟩, where ĉi,σ is the annihilation operator on
the i-th site with spin value σ.
Based on Eq.(2), backflow corrections are performed

on positions with an identical spin to the orbital, mean-
while the wave-function is the product of two Slater de-
terminants31,32:

w1(S) = det[MB,↑] det[MB,↓], (3)

with the element of the Slater matrix:

MB,σ
ik = ϕB

kσ(riσ). (4)

To improve the representation ability for the Hamilto-
nian with couplings of spins, we consider backflow cor-
rections by the fictitious coordinate for one spin rBi,σi

depending on positions of other particles with different
spins:

rBi,σi
= ri,σi +

∑
j

ηij [S]
∑

σj=±1

(rj,σj − ri,σi), (5)

therefore, the backflow correction for one particle at po-
sition ri with the spin σi are performed on fictitious par-
ticles at positions rj with different spins of σj .
Meanwhile, the backflow corrected single-particle or-

bital for a spin is constructed similarly to Eq.(2), except
the summation on particle spins σj :

ϕB
kσk

(ri,σi
) = ϕkσk

(ri,σi
) +

∑
j

cij [S]
∑

σj=±1

ϕkσk
(rj,σj

),

(6)
where cij [S] are variational coefficients depending on the
many-body configuration |S⟩. The total spin is conserved
as (N↑−N↓)/2, where N↑(N↓) is the particle number for
spin up(down), as the orbital ϕkσk

(ri,σi
) is zero when

σk ̸= σi and non-zero when σk = σi.
The wave-function is represented by the Slater deter-

minant of a N ×N matrix,

w2(S) = det[MB ], (7)

where MB
ik = ϕB

kσk
(ri,σi) and N = N↑ + N↓ is the total

particle number.
In this paper, backflow corrections of Eq.(2) and Eq.(6)

are denoted as BW1 and BW2, respectively. In the case
of BW1, it requires the particle spin equals to the or-
bital spin in order to achieve non-zero backflow correc-
tion terms. However in the case of BW2, because of the
summation on σj , there are non-zero backflow correction
terms for arbitrary configurations of the orbital spin σk

and the particle spin σi.
Therefore, the major difference between BW1 and

BW2 is in the matrix in the Slater determinant, and the
matrix is depicted in Fig.(1). In the matrix, the parti-
cle and the orbital have the identical spin in submatrices
(1)(4), meanwhile in submatrices (2)(3) the particle and
the orbital have opposite spins. For BW1, submatrices
(2)(3) are undefined, meanwhile no backflow corrections
are performed. For BW2, there are non-zero backflow
corrections in all submatrices.
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2. Tensor representation of backflow corrections

We evaluate state representation abilities of BW1 and
BW2 by using tensor representations of backflow cor-
rected wave-functions. Each dimension of the tensor is an
independent degree of freedom in the backflow corrected
wave-function denoted by Eq.(2) and Eq.(6).

The tensor has representation ability beyond what is
provided by the linear combination of eigenstates of the
mean-field Hamiltonian, as it includes much more vari-
ational parameters. Comparing to the backflow correc-
tions for specific configurations of s(ri) and s(rj)

31,32,
it includes all possible configurations. Furthermore, it
can represent higher order correlations, such as two-body
correlations in the calculation of self-energy based on the
diagrammatic perturbation expansion32,33.

Here we consider coefficients cij in Eq.(2) and Eq.(6)
depend on local configurations s(ri) and s(rj) instead of
|S⟩ for simplicity31,32. Independent degrees of freedom
in both BW1 and BW2 are the position ri,σ, the orbital
number of ϕkσ, the summation index j, configurations
s(ri) and s(rj). Therefore the total dimension of the
tensor is:

[M,N, d,Q, d], (8)

where the dimension M equals to the site number, and
the dimensionN equals to the total particle number. The
first and the second d are for configurations s(ri) and
s(rk), respectively. Q denotes the index of i as well as
indexes in the summation of j considered in either Eq.(2)
and Eq.(6).

The matrix element in the Slater determinant is as-
signed by indexing the tensor:

MB
ik = g[i, k, s(ri), i, s(rk)] +

∑
⟨q,i⟩

g[i, k, s(ri), q, s(rq)],

(9)
where g is the tensor representation of the wave-function,
with the dimension defined in Eq.(8). The forward cal-
culation generates the wave-function coefficient w(S) de-
fined by Eq.(3) for BW1 and Eq.(7) for BW2.

In the variational Monte-Carlo (VMC), forward and
backward calculations of the wave-function coefficient
w(S) are necessary. The forward is achieved by calcu-
lating the Slater determinant of the N ×N matrix, and
the backward is achieved by inverting the matrix. Details
for backward calculations are in the Appendix VIA.

III. NUMERICAL INVESTIGATIONS

In this section we numerically demonstrate that back-
flow corrections under the tensor representation have
strong representation abilities. We benchmark on three
types of models: (1), the spinless fermionic t-V model on
the square lattice with OBC. (2), several molecules un-
der the STO-3G basis. (3), the spinful Fermi-Hubbard

model on rectangular lattices with PBC and cylindrical
boundary condition (CBC).
For the spinless t-V model, backflow corrections can

achieve state-of-the-art energy results comparing to the
PEPS. For molecules under STO-3G basis, BW2 has bet-
ter precision than BW1, and energies obtained by BW2
are competitive to state-of-the-art results. For the Fermi-
Hubbard model, both BW1 and BW2 achieve compet-
itive or even lower energy results comparing to state-
of-the-art methods like NN backflow or HFSD. Further-
more, energies obtained by BW2 are lower comparing to
BW1, on finite sized lattices.

1. Optimization methods

The wave-function is first optimized by the VMC, then
further optimized by a Lanczos step. In VMC, the energy
and the α-th parameter’s gradient are evaluated through
the Markov-Chain-Monte-Carlo (MCMC) process5,6:

E = ⟨Eloc⟩
Gα = 2⟨ElocO

α
loc⟩ − 2⟨Eloc⟩⟨Oα

loc⟩,
(10)

where the local energy is Eloc(S) =
∑

S′
w(S′)
w(S) ⟨S

′|Ĥ|S⟩,
the Oloc(S)

α = 1
w(S)

∂w(S)
∂α , and ⟨· · · ⟩ denotes the average

on MCMC samples.
The variational parameters are updated according to

the gradient descent method. Here we only adopt the
first-order gradient descent due to the low optimization
difficulty of the tensor representation. Because of the lim-
ited MC sample number, we take the sign of the gradient
and apply a constant step size δ: α′ = α−δsgn(Gα). Such
parameter updating scheme has been successfully used in
optimizing high dimensional tensors like the PEPS5,34,35.
A Lanczos step further improves the representation

ability of wave-function |Ψp=0⟩ by considering an addi-
tional wave-function |Ψ⊥

p=0⟩ orthogonal to |Ψp=0⟩13,36:

|Ψp=1⟩ = A|Ψp=0⟩+B|Ψ⊥
p=0⟩, (11)

where A and B are parameters to be determined, and
|Ψp=0⟩ is the wave-function obtained after the VMC.

The orthogonal wave-function is built by |Ψ⊥
p ⟩ = 1

σp
(Ĥ−

Ep)|Ψp⟩, where the energy expectation Ep = ⟨Ψp|Ĥ|Ψp⟩
and the variance σ2

p = ⟨Ψp|(Ĥ − Ep)
2|Ψp⟩.

2. Spinless t-V model

The Hamiltonian of the spinless t-V model reads:

Ĥ = −t
∑
⟨i,j⟩

(ĉ†i ĉj + h.c.) + V
∑
⟨i,j⟩

n̂in̂j , (12)

where t is the hopping strength and V is the interaction

strength between nearest neighbours. ĉ†i (ĉi) creates (de-
stroys) a particle on the i-th site, and the particle number
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TABLE I. Comparisons of energies(per site) for the spinless
t− V model on 10× 10 square lattice under OBC, total par-
ticle number is 50. p=0(p=1) denotes the wave-function be-
fore(after) one Lanczos step. Reference energies are obtained
by the fPEPS method5.

V HF p=0 p=1 fPEPS

0.45 -0.6103 -0.6132 -0.6134 -0.6129

1 -0.4561 -0.4617 -0.4620 -0.4620

2 -0.2961 -0.2997 -0.2999 -0.2999

0 1000 2000 3000 4000 5000 6000
Epochs
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FIG. 2. The energy convergence of the first-order gradient
descent for the spinless t−V model with V/t = 1 on the 10×10
lattice under OBC. The MC sample number 128000, and the
parameter updating step size δ = 5 × 10−4. The converged
energy per site is -0.4617, while the reference energy obtained
by fPEPS is -0.4620.

operator n̂i = ĉ†i ĉi. We set t=1 through our investiga-
tions. The maximal occupation per site is ni = 1 for the
spinless t− V model. We investigate the half-filling case
n = 1/2 so that the particle number is half of the total
site number, on the 10× 10 square lattice.
We benchmark on lattices with OBC to compare with

the state-of-the-art fPEPS method5. The fPEPS is op-
timized by the imaginary-time-evolution method called
the simple-update and then by the gradient descending
method5,6,34,35, thus the fPEPS gives high precision en-
ergy references. For the fPEPS, the bond dimension is 8
and the truncation dimension is 32.

For the spinless model, backflow corrections are per-
formed for one orbital based on Eq.(1). Energy compar-
isons under different interaction strengths V are denoted
in Table.(I). In the table, results of HF are achieved by
representing the spinless HF orbital ϕk(ri) by a tensor
with the dimension of [M,N ], where M is the site num-
ber and N is the total particle number. p=0 is the result
obtained by the tensor representation of backflow correc-
tions, and p=1 is the result of one Lanczos step for the
p=0 wave-function. Backflow corrections are considered
on nearest neighbours of ri, namely the dimension Q de-
fined in Eq.(8) includes the site ri as well as its nearest
neighbours, therefore Q = 5.
Comparing to p=1 results, relative errors of HF are in

the magnitude of 10−3 for V = 0.45 and the magnitude
of 10−2 for V = 1, 2, meanwhile backflow corrections

TABLE II. Comparisons of energies achieved by several meth-
ods for molecules under the STO-3G basis. M is the equiva-
lent site number and N is the particle number. All energy re-
sults achieved by BW1 and BW2 are evaluated by p=0 wave-
functions. Energy results from CCSD(T) and RBM are from
the literature15.

Molecule M N BW1 BW2 CCSD(T) RBM

H2O 14 10 -75.0201 -75.0221 -75.0231 -75.0232

NH3 16 10 -55.5181 -55.5274 -55.5281 -55.5277

C2 20 12 -74.6808 -74.6865 -74.6876 -74.6892

N2 20 14 -107.6585 -107.6742 -107.6738 -107.6767

decrease relative errors to the magnitude of 10−4 for all
cases. From the table, both p=0 and p=1 have energy
precision competitive to the fPEPS.
The energy convergence of VMC for the spinless t−V

model with V/t = 1 is depicted by Fig.2. The initial en-
ergy -0.4561 is from the HF state. After HF is converged,
we continue the optimization by adding backflow correc-
tions, within the initial energy from the HF. The energy
converges smoothly after backflow corrections are added.
The parameter updating step size is δ = 5 × 10−4 and
the MC sample number for each step is 128000. The in-
terval between two MC samples is the total site number.
The converged energy per site is -0.4617, meanwhile the
reference energy obtained by the fPEPS is -0.4620.

3. Molecules on STO-3G basis

The Hamiltonian for molecules in the second quanti-
zation form is:

Ĥ =
∑
ij

tij ĉ
†
i ĉj +

∑
ijkm

uijkmĉ†i ĉ
†
k ĉj ĉm, (13)

here label i denotes the fermionic mode, with tij the one-

body interaction and uijkm the two-body interaction. ĉ†i
(ĉi) creates (destroys) a particle on the i-th fermionic
mode. The structure of a molecule under STO-3G is
obtained from the literature15, and we use the software
package PySCF37 to generate coefficents of tij and uijkm,
with the maximal iteration number of 500. We first op-
timize a HF state for each molecule without two-body
interactions, then continue the optimization by adding
backflow corrections from the HF.
A HF orbital with spin ϕkσ(ri,σ) is represented by a

tensor with the dimension of [M,N, d], where M is the
equivalent site number and N is the total particle num-
ber. The equivalent site number is twice as the total
orbital number because of the spin on-site. Configura-
tions on each equivalent site are occupation and non-
occupation, thus d = 2. For backflow corrections, we
consider backflow terms from all equivalent sites, thus
the dimension of the tensor is defined by Eq.(8) with
Q = M .
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FIG. 3. Comparisons of energies(per site) between the orig-
inal backflow and the single tensor representation for the
Fermi-Hubbard model of n = 0.875, on the 4×L lattice with
PBC. Each energy is evaluated by the p = 0 wave-function.

A challenge for solving molecules is the locality of the
ground state in the total Hilbert space, as the ground
state is nearly classical. Therefore, the optimization is
easily to get stuck on local minima especially when using
a large MC sample number in initial optimization steps.

To avoid local optimizations, we stop the optimization
after hundreds of optimziation steps, then continue the
optimization by enforcing the MCMC starting from the
configuration based on the Pauli exclusion principle. For
each case, we start from 44800 MC samples in initial
optimization steps. After one thousand optimizations,
we use roughly 70000 MC samples for each optimization
step, with the interval between two MC samples equal to
the number of equivalent sites.

Energy comparisons are denoted by Tab.(II). Each en-
ergy of both BW1 and BW2 is obtained by the average of
the last 20 optimization steps. From the table, energies
precision achieved by BW1 is lower than that achieved
by BW2, and energy results obtained by BW2 are com-
petitive to state-of-the-art results obtained by CCSD(T)
and RBM15. From the table, RBM achieve better energy
precision than BW. RBM is efficient for molecules under
the STO-3G basis because the wave-function is easy to
be represented and do not demand the full expressibility
of BW.

4. Fermi-Hubbard model

The Hamiltonian of the Fermi-Hubbard model is:

Ĥ = −t
∑
⟨ij⟩,σ

(ĉ†iσ ĉjσ + h.c.) + U
∑
i

n̂i↑n̂j↓, (14)

where t is the hopping strength and U is the strength of

on-site interactions. ĉ†iσ(ĉiσ) creates(destroys) a particle
of spin σ on i-th site, and the particle number operator

n̂iσ = ĉ†iσ ĉiσ. For the Hubbard model with spin, double
occupations are allowed. We set t=1 through our inves-
tigations. In each optimization step, there are roughly

TABLE III. Comparisons of energies(per site) for the Fermi-
Hubbard model on rectangular lattices with PBC. Reference
energies for n = 1 are from the AFQMC27. For n = 0.875,
the Ref.1 are from NN backflow18 and the Ref.2 are from
HFSD21. All energy results of BW1 and BW2 are evaluated
by p=1 wave-functions.

n Lattice Size BW1 BW2 Ref.1 Ref.2

1
6× 6 -0.5186 -0.5257 -0.5278 –

8× 8 -0.5188 -0.5241 -0.5263 –

10× 10 -0.5181 -0.5230 -0.5254 –

0.875

4× 8 -0.7591 -0.7633 -0.755 -0.7633

4× 12 -0.7608 -0.7636 -0.746 –

4× 16 -0.7597 -0.7618 -0.746 -0.753

4× 20 -0.7566 -0.7591 – –

4× 24 -0.7577 -0.7595 – –

44800 MC samples for calculating gradients, and the in-
terval between two samples is the lattice size.
We first demonstrate the advantage of our single ten-

sor representation by comparing to the original backflow.
In this work, we represent the original form of the wave-
function defined in either BW1 or BW2 by two separate
tensors. The first tensor represents coefficients cij with
the dimension of [M,Q, d, d], where M is the site num-
ber, Q = 5 denotes the position ri as well as its nearest
neighbours, d = 4 denotes degrees of freedom per site.
The second tensor represents the HF orbital ϕk(ri,σ) with
the dimension of [M,N, 2], where N is the total particle
number and the dimension of 2 denotes the spin.
For representing the backflow corrected wave-function

by a single tensor, the dimension of the tensor is
[M,N, 2, d/2, Q, d], where d = 4 denotes degrees of free-
dom per site. In the tensor, the dimension of 2 is for σi,
and the dimension of d/2 denotes whether there is double
occupation on ri. Comparing to the dimension defined
in Eq.(8), we divide the first d in order to distinguish the
double occupation. Q = 5 denotes the position ri as well
as its nearest neighbours.
Fig.(3) denotes energy comparisons between the origi-

nal backflow and the single tensor representation on the
4×L lattice with PBC, the filling of the Hubbard model
is n = 0.875. Each energy result is evaluated by the
p = 0 wave-function. From the figure, for either BW1 or
BW2, the original backflow has much worse energy pre-
cision than the single tensor representation. For either
the original backflow or the single tensor representation,
BW2 has better energy precision than BW1. The HF
wave-function is represented by the tensor with the di-
mension of [M,N, 2], and it achieves -0.5330 for L = 8,
-0.5398 for L = 12 and -0.5658 for L = 16. Thus backflow
corrections achieve better energy precision than HF.

Tab.(III) denotes energy comparisons of BW1, BW2
and other state-of-the-art methods on square lattices un-
der the PBC. For results obtained by BW1 and BW2
in the table, we first optimize a HF state under U=0,
and then adding backflow corrections and continuing op-
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FIG. 4. Energy comparisons for Fermi-Hubbard model on
4 × L lattices under PBC. The filling is n = 0.875. Red
upper triangles denote NN backflow, Green’s lower triangles
denote HDFS. BW1 energy results of p=0(p = 1) are denoted
by left(right) triangles. BW2 energy results of p=0(p=1) are
denoted by squares(circles).

timizations, each energy value is evaluated by the p = 1
wave-function using 48000 MC samples, and the interval
between two MC samples is the lattice size.

For cases of half filling n = 1, the reference energies
are from AFQMC27. On the 6 × 6 lattice, the relative
error is 1.7 × 10−2 for BW1 and 4.0 × 10−3 for BW2.
On the 8 × 8 lattice, the relative error is 1.4 × 10−2 for
BW1 and 4.2×10−3 for BW2. On the 10×10 lattice, the
relative error is 1.4 × 10−2 for BW1 and 4.5 × 10−3 for
BW2. From the table, BW2 has better energy precisioin
than BW1.

For the more challenging case of 1/8 doping n = 0.875,
Ref.1 and Ref.2 in Tab.(III) are from NN backflow18 and
HFSD21, respectively. To clearly compare energies, en-
ergies for the filling n = 0.875 on 4 × L lattices with
PBC are depicted in Fig.(4). For p=0 results, BW1
achieves satisfactory energies comparing to NN back-
flow, however the energy precision is not competitive to
HFSD on the 4 × 8 lattice. However on the 4 × 16 lat-
tice, BW1 achieves lower energy than HFSD. For all lat-
tice sizes, BW2 achieve better precision than BW1, and
BW2 achieve lower energies than those from NN back-
flow. Lanczos can significantly improve the energy pre-
cision for all cases. For p=1 cases, both BW1 and BW2
achieve better energy precision than NN backflow, and
BW2 achieve better energy precision than HFSD.

Comparing to the DMRG energy -0.7659 for system
size 4 × ∞(open, PBC)18, our energy -0.7595 or 4 × 24
is still higher. Because only nearest neighbours of ri are
considered in our backflow corrections, our energy pre-
cision can be improved by considering further backflow
corrections.

Besides comparisons on energies, detailed differences
between BW1 and BW2 are depicted in Fig.(5). In the
figure, the spin density is defined as the average spin
value each site: ⟨Si⟩. Because of the PBC, the spin den-
sity is ideally uniform, and the spin density is ideally zero
due to the total spin of the ground state is zero.

0 2 4 6

0

2

(a)

0.2

0.1

0.0

0.1

0.2

0 2 4 6

0

2

(b)

0.2

0.1

0.0

0.1

0.2

0 5 10 15 20

0

2

(c)

0.2

0.0

0.2

0 5 10 15 20

0

2

(d)

0.2

0.0

0.2

FIG. 5. The spin density of the Fermi-Hubbard model of
filling n = 0.875 and U=8 with PBC, evaluated on the p=1
wave-function. On the 4×8 lattice, the spin density obtained
by BW1 and BW2 are denoted by (a) and (b), respectively.
The spin density on the 4× 24 lattice obtained by BW1 and
BW2 are denoted by (c) and (d), respectively.

On the 4 × 8 lattice, from Fig.(5)(a)(b), the ground
state obtained by BW2 has a more uniform spin den-
sity than that obtained by BW1. On the 4 × 24 lat-
tice, Fig.(5)(c)(d) depict the spin density for BW1 and
BW2, respectively. From the figure, the ground state
achieved by BW2 has a more uniform spin density than
that achieved by BW1. It is notable that the ground en-
ergy achieved by BW2 is only 2.4×10−3 lower than that
achieved by BW1, thus the BW2 has more representation
ability than BW1.

Based on the results on PBC, we investigate BW2 on
cases that ground states are supposed to have stripe or-
ders, such as rectangular lattices under CBC in previ-
ous literatures26,28. The boundary conditions are open
along the shorter boundary(x) and periodic along the
longer boundary(y). To break degeneracy from trans-
lational symmetry, a pinning field is applied on both
shorter boundaries: vi↑ = −vi↓ = (−1)ix+iyv0 for iy = 1
and iy = Ly.

Fig.(6)(a)(b)(c)(d) depict the spin density and the hole
density on CBC, evaluated on the p=1 wave-function.
Fig.(6)(a)(b) depict the 4 × 16 lattice and filling n =
0.875, U = 8 with the pinning field strength v0 = 0.25.
The reference energy by DMRG is -0.7713, and the BW2
achieves energy -0.7640 for p=0 and -0.7678 for p=1. The
relative energy error is 9.4×10−3 for p=0 and 4.5×10−3

for p=1. Fig.(6)(c)(d) denote the lattice size 4× 20 and
filling n = 0.9, U = 6 with the pinning field strength
v0 = 0.5. BW2 achieves the ground energy of -0.8485
for p=0 and -0.8516 for p=1. Comparing to the energy
reported by DMRG -0.8352, BW2 is 1.6× 10−2 lower for
p=0 and 1.9 × 10−2 lower for p=1. The stripe patterns
depicted in Fig.(6)(a)(c) match those from both AFQMC
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FIG. 6. The spin density and the hole density achieved by BW2 on rectangular lattices under CBC(a)(b)(c)(d) and PBC(e)(f),
with a pinning field applied on both short edges. (a)(b) depict the 4× 16 lattice, with the filling n = 0.875. (c)(d) depict the
4× 20 lattice, with the filling n = 0.9. (e)(f) depict the 8× 16 lattice, with the filling n = 0.875.

and DMRG26,28.
Furthermore, we benchmark BW2 on lattice as large as

8×16, with PBC on both directions, with filling n=0.875
and U=8. To break degeneracy from translational sym-
metry, a pinning field is applied on both shorter bound-
aries with field strength v0 = 0.25. With the interval be-
tween two MC samples the lattice size, it takes roughly
2 minutes for one optimization step with a total of 44800
MC samples on 128 AMD EPYC 7742 CPU cores. The
converged energies are -0.7748 for p = 0 and -0.7784 for
p = 1. Fig.(6)(e)(f) denote the spin density evaluated
on the p = 1 wave-function and the hole density, respec-
tively. The spin density pattern matches that on the
4× 16 lattice, which demonstrates the valid state repre-
sentation ability of BW2 on large lattices.

IV. CONCLUSIONS

We show that tensor representations of backflow cor-
rections after a Lanczos optimization have sufficient rep-
resentation abilities for achieving state-of-the-art ground
energies. Because the tensor representation is easy to
optimize, first-order gradient descent is feasible.

For systems with spins, the representation ability can
be further improved by considering backflow correc-
tions on different spins, and natually introduce non-zero
backflow corrections where the particle and the orbital
have opposite spins. By numerical demonstrations on

molecules on STO-3G basis and the finite sized Fermi-
Hubbard model, we show that BW2 has a better repre-
sentation ability than BW1. Furthermore, we show that
BW2 is capable to solve systems on large lattice sizes.

For the Fermi-Hubbard model, comparing to the NN
backflow18, the input of the NN is the total many-body
configuration |S⟩. In either BW1 or BW2, backflow
terms are limited as nearest neighbours of the position
ri, and the energy precision can be improved by consid-
ering backflow terms with further distances. Comparing
to HFSD21, the HFSD considers a matrix larger than
N × N in the Slater determinant by introducing addi-
tional hidden particles. Here in either BW1 or BW2, the
size of the matrix is kept as N × N , and the enhanced
representation ability is achieved by additional degrees of
freedom introduced by backflow correction terms in the
N ×N matrix.

In our tensor representations, backflow corrections are
performed between two sites, however the representation
ability can be in principle improved by considering higher
order correlations, thus considering backflow corrections
in the perspective of Green’s function is feasible. The
representation ability can be improved by increasing vari-
ational parameters, thus the application of neural net-
works based on the tensor representation is feasible. We
hope our work will give some insights on developping
numerical methods for solving quantum many-body sys-
tems.
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VI. APPENDIX

A. Backward calculations of wave-function
coefficients

For the backward calculation of w(S), the gradient
with respective to one matrix element MB

ij is:

∂ detMB

∂MB
ij

= Cij , (15)

where the cofactor Cij is an element of a N × N ma-
trix, defined as the determinant of a matrix obtained by
eliminating row i and column j from the original matrix.
Expanding the matrix MB along one column or one row
with Laplace expansion, we have,

detMB · δij =
N∑

k=1

CikM
B
jk

detMB · δij =
N∑

k=1

CkiM
B
kj ,

(16)

namely,

CMB = MBC = detMB · I. (17)

Therefore, the backward of parameter g is given by,

∂w(S)

∂g[i, k, s(ri), q, s(rq)]
= inv(MB)ik · w(S), (18)

the complexity of calculating determinant and inverse of
MB matrix is O(N3).
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