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Abstract

We propose a two-parameter, static and spherically symmetric regular geometry, which, for specific

parameter values represents a regular black hole. The matter required to support such spacetimes

within the framework of General Relativity (GR), is found to violate the energy conditions, though

not in the entire domain of the radial coordinate. A particular choice of the parameters reduces

the regular black hole to a singular, mutated Reissner–Nordström geometry. It also turns out that

our regular black hole is geodesically complete. Fortunately, despite energy condition violation,

we are able to construct a viable source, within the framework of GR coupled to matter, for our

regular geometry. The source term involves a nonlinear magnetic monopole in a chosen version of

nonlinear electrodynamics. We also suggest an alternative approach towards constructing a source,

using the effective Einstein equations which arise in the context of braneworld gravity. Finally, we

obtain the circular shadow profile of our regular black hole and provide a preliminary estimate of

the metric parameters using recent observational results from the EHT collaboration.
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I. INTRODUCTION

In recent years, the detection of gravitational waves from binary black hole mergers, black

hole–neutron star binaries as well as neutron star-neutron star binaries [1–4] have boosted

research in gravitational physics. On another front, imaging observations on shadows due

to the strong gravitational lensing around black holes in different galaxies, have provided

useful information about such supermassive compact objects [5–16]. Since Einstein’s theory

of General Relativity (GR) is, by and large, the most acceptable theory of gravity today, the

known rotating vacuum solution of Einstein’s equation, i.e. the Kerr solution, along with

its properties, must explain phenomena related to such compact objects having horizons. It

is, by now known, that imaging observations have more or less confirmed that the compact

objects have a Kerr-like behaviour within a small uncertainty. However, to describe such

compact objects, other solutions with horizons, predicted by different theories of gravity

cannot be completely ignored. This implies a sort of ‘degeneracy’ in the sense that ‘many

models’ can explain available data successfully. Breaking the ‘degeneracy’ will therefore

require more observations as well as newer theoretical models.

On the other hand, from a theoretical perspective, the Hawking-Penrose singularity theorems

[17] with certain assumptions (energy conditions among them) have indeed proved that

black hole solutions in GR possess a spacetime singularity(geodesic incompleteness). This

is normally projected as a sign of inconsistency of classical GR and one would like to get

rid of or avoid such singularities in some way, classical or quantum. However, one does not

quite have a universally accepted resolution of this ‘singularity problem’.

Thus, from an observational perspective (as mentioned above) as well as the desire for well-

behaved solutions in a theory of gravity, one is motivated to search for non-singular (regular)

solutions in GR as well as in modified gravity theories.

Regular black holes are known potential candidates for such non-singular solutions. They

may violate the Strong Energy Condition (SEC) and, therefore, can circumvent the singular-

ity theorem [18, 19]. As classical GR fails at the singularity, Sakharov [20] and Gliner [21],

invoking quantum aspects, indicated that a de Sitter core could replace the singularity inside

the horizon. Based on this idea, in 1968, Bardeen first proposed a static spherically symmet-

ric regular black hole spacetime [22]. Since then, numerous proposals for regular black holes

[23–43] have come up. The first proposal for the matter source of a regular black hole of
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the Bardeen type was made using a nonlinear electric or magnetic monopole [29, 30, 44–46]

i.e., a nonlinear electromagnetic field Lagrangian (L(F)) coupled with gravity was found to

be capable of generating the matter required to support such a spacetime. Subsequently,

various regular black hole models have emerged wherein a nonlinear electromagnetic field

Lagrangian is employed as a matter source [34, 47–51].

Though popular of late, there are several criticisms of a regular black hole. First, we still do

not understand properly the nature and dynamics of the source Lagrangian (L(F)). In other

words, we have much to learn about the so-called nonlinear Maxwell-like equations. Second,

each of the constructed regular black hole models have a different source Lagrangian (L(F)),

which means we do not have a single, well-defined Lagrangian which can take on different

functional forms when solutions for the input fields (F) are used to describe the required

matter for regular black holes. In addition, the mass inflation instability [52, 53] also appears

to be a serious issue. The mass function increases exponentially under a perturbation at

the inner horizon. Recently, significant efforts have been put forward to resolve the problem

[54, 55], but the issue remains open.

Despite the shortcomings related to any research on regular black holes, we prefer to be

hopeful and look for directions and approaches that might potentially provide novel insights

about their properties. Let us now state our proposal to build novel spacetimes representing

regular black holes. Our work is motivated by the Einstein-Rosen bridge construction [56],

where the line element may be specified as,

ds2 = −
(
1− b20

r2

)
dt2 +

dr2

1− b20
r2

+ r2(dθ2 + sin2 θdϕ2) (1)

Here, b0 is a metric parameter with dimensions of length, r = b0 is the event horizon

and the spacetime singularity is at r = 0. We choose the above singular line element

and regularise the metric functions such that all curvature components and scalars become

regular everywhere. Though our proposed regular black hole does violate the classical energy

conditions in some domain of the radial coordinate, it is different in its geometric structure

from other known regular black holes, all of which reduce to the Schwarzschild black hole

for a zero value of the regularizing parameter. In a sense, we are able to show that it is not

always necessary to ‘regularise around Schwarzschild’. Further, the process of regularisation

about a solution built out of energy-condition violating matter may lead to a situation where

regularisation not only remedies the singular character but also improves the status of the
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energy conditions vis-a-vis their satisfaction/violation. The ensuing sections of this article

provide examples addressing these points.

Our article is organised as follows. In Section II, we propose our line element and provide a

detailed study of its geometry, the energy conditions and check its non-singular character.

In Section III, we construct possible sources for the geometry using (i) nonlinear electrody-

namics and (ii) braneworld gravity. Section IV discusses the circular shadow of our regular

black hole and checks its viability with reference to observational data. Finally, in Section

V, we conclude with some future directions.

II. THE PROPOSED GEOMETRY AND ITS FEATURES

As stated in the Introduction, we propose a non-singular, two-parameter, static and spher-

ically symmetric spacetime which may represent a regular black hole. Developing on the

idea briefly outlined above, we write down a line element of the following form:

ds2 = −
(
1− b20r

2

(r2 + g2)2

)
dt2 +

(
1− b20r

2

(r2 + g2)2

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (2)

Here, g2 is the regularizing parameter and the choice of the metric functions is largely

inspired by earlier constructions due to Bardeen [22]. Note that our metric is not similar or

related to the well-known regular black hole spacetimes of Bardeen, Hayward, or Simpson-

Visser [22, 25, 36], all of which reduce to the standard Schwarzschild line element when the

regularizing parameter vanishes. Instead, corresponding to the parameter value g2 = 0, our

metric becomes a mutated, singular Reissner–Nordström (RN) solution with an ‘imaginary

charge’ and a vanishing mass parameter. Further, the spacetime metric is asymptotically

Minkowski, i.e.

gtt → −1 and grr → 1 as r → ∞

For small values of r, the metric behaves like de-Sitter space, i.e.

gtt → −(1− c21r
2) and grr → 1− c21r

2 as r → 0

Before proceeding further, let us mention the natural domain of the coordinates:

r ∈ (0,∞); t ∈ (−∞,∞); θ ∈ [0, π]; ϕ ∈ (0, 2π]
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One can write the above metric in terms of the following reparameterization g2 = m2b20,

where m2 is a dimensionless quantity. Such a parameterization helps in calculations. The

line element, with this choice, becomes:

ds2 = −
(
1− b20r

2

(r2 +m2b20)
2

)
dt2 +

(
1− b20r

2

(r2 +m2b20)
2

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(3)

The roots of the equation gtt = 0 are null hypersurfaces and represent the horizons of our

black hole. Below, we discuss the nature of the spacetime and location of the horizons based

on the various ranges of parameter values of m2.

Figure. 1: Plot of the redshift function with r for different values of m2

• Ifm2 = 0, the geometry is a singular, M = 0 RN type solution with −gtt = grr = 1− b20
r2

having a horizon at r = b0. It is not a regular solution. Note that the term involving

the ‘charge’ has a sign opposite to that for standard RN spacetime.

• If 0 < m2 ≤ 0.25, the geometry represents a family of regular black holes. gtt = 0 has

four roots, two positive and two negative. As r ∈ (0,∞), we consider only positive

roots as horizon locations. Hence we have a black hole spacetime with two horizons.

In this specified range of m2, inner horizon(r−) and outer horizon(r+) vary between

0 < r− ≤ 0.5b0 and b0 > r+ ≥ 0.5b0 respectively. At m2 = 0.25, inner and outer

horizons coalesce into a single horizon. This is the analog of the extremal limit, for

which b20 = 4g2. Figure 1 depicts how change in m2 leads to variation in the number

of horizons in our spacetime.
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• If m2 > 0.25, there are no real roots of the equation gtt = 0, i.e. we have a regular

spacetime without a singularity or a horizon.

Hence we may conclude that we have a family of regular black holes with two horizons

when 0 < m2 < 0.25. The solution has an extremal limit similar to RN. One may try to

understand this extremal limit a little better. The original line element, in the extremal

limit takes the form:

ds2 = −
(
1− 4g2r2

(r2 + g2)2

)
dt2 +

(
1− 4g2r2

(r2 + g2)2

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (4)

The geometry is very similar to that of the extremal RN black hole. If we embed a two-

dimensional t = const, θ = π
2
slice in Euclidean space (cylindrical coordinates), the profile

function z(r) takes the form:

z(r) = ±g ln

((
r

g

)2

− 1

)
(5)

which diverges to negative (positive) infinity at r = g for the plus (minus) signs, respectively.

Figure. 2: Embedding diagram of the extremal rbh metric shows a horn-like profile

The profile is like a horn or a trumpet and is similar in structure to that for the extremal

RN spacetime.
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Next, we study the regularity of curvature tensors and scalars as proof of the regularity

of the spacetime. We also examine geodesic completeness in our geometry and check the

energy conditions (assuming General Relativity as the theory of gravity).

A. Curvature tensors and invariants

To investigate the singular/regular nature of our geometry, one may look for the finiteness

of the Riemann and Ricci tensor components in the entire domain of coordinates. Tensor

components will, of course, be frame dependent. However, individual components and their

finiteness usually indicate regularity. The non-zero Riemann curvature components in the

frame basis are:

R01
10 = −(g4 − 8g2r2 + 3r4)b20

(r2 + g2)4

R02
20 = R03

30 = R21
12 = R31

13 =
(r2 − g2)b20
(r2 + g2)3

R32
23 = − b20

(r2 + g2)2

(6)

Assuming g2 ̸= 0, the Riemann tensor components have a finite limit: − b20
g4

at r → 0.

Again, for r → ∞, all components tend to 0, ensuring the asymptotically flat nature of the

spacetime.

The non-zero Ricci tensor components in the frame basis are:

R00 =−R11 = −(3g4 − 8g2r2 + r4)b20
(r2 + g2)4

R22 =R33 =
(3g2 − r2)b20
(r2 + g2)3

(7)

The components of the Ricci tensor also reach a finite value at r → 0 and vanish as

r → ∞. We can, therefore, partially conclude that there is no singularity in the metric,

and it represents a family of regular black holes.

The more important quantities to analyse are the scalar curvature invariants [27, 29]. In

4D spacetime, one can construct seventeen independent curvature invariants from the Rie-

mann curvature tensor components [57]. However, given the symmetries of our spacetime,

finiteness of the three invariants – namely, the Ricci scalar, the Ricci contraction and the

Kretschmann scalar – confirms the finiteness of all other invariants [58]. Therefore, we only

examine these three invariants.
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The Ricci scalar is given as:

R = gµνRµν =
12b20(g

4 − g2r2)

(r2 + g2)4
(8)

The Ricci contraction turns out to be,

RµνR
µν =

4b40(9g
8 − 18g6r2 + 34g4r4 − 10g2r6 + r8)

(r2 + g2)8
(9)

And the Kretschmann scalar is:

K = RµνλδR
µνλδ =

8b40(3g
8 − 6g6r2 + 34g4r4 − 22g2r6 + 7r8)

(r2 + g2)8
(10)

As r → 0, all the curvature scalars reach a finite value and tend to zero at r → ∞, which

confirms the non-singular nature of the above geometry.

B. Geodesic completeness

Regularity of curvature tensors and curvature invariants are required but inadequate for

testing the singular nature of a spacetime. According to [17, 59–63], the completeness of all

causal geodesics is a necessary prerequisite for a regular spacetime. In this section, we look

at the null and timelike geodesics in our geometry to analyze geodesic completeness. Let us

start with radial timelike geodesics, which satisfy the following equation,

gttṫ
2 + grrṙ

2 = −1 (11)

where the dot represents the derivative with respect to affine parameter(λ). Since the line

element is static, we have a timelike Killing vector with the corresponding conserved quantity

as E = −gttṫ. Using this, the equation for radial timelike geodesics becomes,

ṙ2 = E2 − 1 +
b20r

2

(r2 + g2)2
(12)

The affine parameter can be defined in the following way,

λ(r) =

∫
dr√
ṙ2

(13)

This may be integrated using eq.(12) to determine how λ varies as a function of r. For small

values of r, our metric acts like de-Sitter space, and if r = 0 is a regular point, the affine

parameter is finite from any arbitrary point to r = 0. As a result, the coordinate system
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may be hypothetically extended beyond r = 0, i.e. towards negative r values. Again, such

an extension is possible because a coordinate system is not a physical quantity. There are

two alternatives for negative values of r: (i) one can locate a pole of ṙ2, say at r = −l,

where ṙ2 diverges and if the affine parameter to reach the point is finite, then one cannot

extend the co-ordinate beyond r = −l (similar to r = 0 in the Schwarzschild case), (ii) ṙ2 is

positive or negative and continuous up to r → −∞ which means for appropriate values of

E2, the trajectories of massive particles can be extended to negative values of r up to −∞.

Thus, any divergence of ṙ2 would indicate geodesic breakdown. Hence, to check geodesic

completeness, our job is to check if there are any singularities in negative values of r or it is

regular up to r → −∞ with an infinite value of the affine parameter.

To perform this exercise, we have followed the prescription mentioned in [60]. First, one

can define the effective radial potential (Veff = E2 − ṙ2) in terms of the parametrization

mentioned earlier. We have

Veff (r) = 1− b20r
2

(r2 +m2b20)
2

(14)

In Figure 3, we plot the effective potential for the extended domain of r, i.e. (−∞,∞). We

Figure. 3: Plot of effective potential as function of r for different values of m2

have a continuous effective potential for 0 < m2 ≤ 0.25. A massive particle with enough

energy can travel up to r → −∞. On the other hand, the singular solution (m2 = 0),

exhibits a discontinuity in the effective potential at r = 0. As a result, in this case, the

massive particle will approach r = 0 within a finite affine parameter, indicating the presence

of a singularity. Figure 4 shows the behaviour of the kinetic energy of massive particles. We
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notice a continuity in the behaviour of kinetic energy for 0 < m2 ≤ 0.25, (Figure 4 (left)).

However, the kinetic energy is negative if E2 < 1. When E2 = 1, kinetic energy reaches

zero at r = 0, and massive particles need a large affine parameter to get there. However, if

E2 > 1 a massive particle will reach r = 0 in a finite affine parameter before moving away

to r → −∞. Figure 4 (right) illustrates the kinetic energy behaviour of massive particles in

the singular geometry (m2 = 0). It demonstrates that the kinetic energy diverges at r = 0,

regardless of the value of the total energy. As a result, within a finite affine parameter,

a massive particle will reach r = 0, where the geodesic will terminate. Next, the same

Figure. 4: (Left) plot of the ṙ2 with r of the regular metric (m2 = 0.20) for different E2.

(Right) variation of ṙ2 of the singular metric (m2 = 0) shows a divergence at r = 0.

procedure is followed for null geodesics. The right-hand side of eq.(11) is now zero. Here

too, there is no pathology in the effective potential or kinetic term, and null geodesics can

be extended to r → −∞. However, a termination of geodesics is evident in the singular

metric (m2 = 0) for massless particles too.

To represent the causal structure of our regular spacetime, we extend the coordinates max-

imally [64]. In Figure 5. r+, r− are the outer and inner horizons, respectively. The interval

from the outer horizon (r+) to asymptotic infinity (r → ∞) is encoded in the region I.

Region II lies between the outer and inner horizons. Unlike the singular RN type metric

(m2 = 0), the core of the regular spacetime (0 < m2 ≤ 0.25) is a de-Sitter space. Region III,

therefore, depicts the range from the inner horizon (r−) to r = 0. Region IV represents an

asymptotically flat space through the regular core at r = 0 to r → −∞. In conclusion, our

regular black hole geometry is geodesically complete for both massive and massless particles.

However, the singular RN-type metric is geodesically incomplete.
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Figure. 5: Plot of maximal extension of our regular metric (0 < m2 ≤ 0.25) showing its

geodesic completeness.

C. Energy momentum tensors and energy conditions

Regular black holes can avoid the Penrose singularity theorem by violating the strong energy

condition [18, 19]. Therefore, analyses of the energy conditions are important while studying

any regular spacetime [65, 66]. In this section, we have looked at different energy conditions,

namely the null energy condition (NEC), the weak energy condition (WEC), the dominant

energy condition (DEC) and the strong energy condition (SEC). We write the diagonal

elements of the required stress-energy tensor, in the frame basis, using the Einstein field
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equations Gab = κTab. This gives us the following expressions for the components of Tab:

ρ = −τ =
(3g2 − r2)b20
κ(r2 + g2)3

= − b20r
2

κ(r2 + g2)3
+ 3g2

b20
κ(r2 + g2)3

(15)

p = −(3g4 − 8g2r2 + r4)b20
κ(r2 + g2)4

= −r2(r2 − 2g2)b20
κ(r2 + g2)4

− 3g2
(g2 − 2r2)b20
κ(r2 + g2)4

(16)

Notice that the decomposition indicated in the extreme right of Eqns (15) and (16) show the

parts of ρ, τ and p which are energy condition violating (first term) and energy condition

satisfying (second term). Also the second terms in the split shown are exclusively dependent

on the regularisation parameter g and reduce to zero when g = 0.

Let us now analyze different classical energy conditions as mentioned above and see whether

the ‘matter required’ to support this spacetime violates/satisfies them.

Figure. 6: Plot of ρ+ p with r for different values of m2. Blue and red lines represent ρ+ p

having m2 value in the range 0 < m2 ≤ 0.25. The black curve is for the singular metric

• Null Energy Condition : For all values of r, g2, and b20, ρ+ p ≥ 0 and ρ+ τ ≥ 0 must

be met in order to satisfy the null energy condition. The first of the criteria in the NEC is

met here since, according to equation (15), ρ+ τ = 0. For the second, we have;

ρ+ p =
(3g2 − r2)b20
κ(r2 + g2)3

− (3g4 − 8g2r2 + r4)b20
κ(r2 + g2)4

=
2(r2/b20)(5m

2 − (r2/b20))

κb20((r
2/b20) +m2)4

(17)

It is clear from the equation above that for all allowed values of m2, ρ+p ≥ 0 in the range of

r2 ≤ 5m2b20. As a result, we know exactly what range of r the NEC is fulfilled in. We show
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how the value of ρ + p varies with r in Figure 6. It should be noted that for the singular

RN metric (m2 = 0) ρ + p ≤ 0 over the whole domain of r. Thus, the regularisation of the

singular RN metric(m2 = 0) does provide a range of r where the NEC is fulfilled.

Figure. 7: Plot of ρ with r for different values of m2. Blue and red lines represent ρ having

m2 value in the range 0 < m2 ≤ 0.25. The black curve is for the singular metric

• Weak Energy Condition: The three conditions in the WEC are ρ ≥ 0, ρ + τ ≥ 0,

and ρ+ p ≥ 0. According to the analysis for the NEC stated above, the matter required to

support our geometry satisfies the second inequality since we have ρ+ τ = 0. Further, for a

given range of r, ρ+p ≥ 0 also holds, though not everywhere. To analyse the first condition

(i.e. ρ ≥ 0), let us examine eq.(15). It may be stated as follows:

ρ =
(3g2 − r2)b20
κ(r2 + g2)3

=
(3m2 − (r2/b20))

κb20((r
2/b20) +m2)3

(18)

The equation above demonstrates that ρ ≥ 0 for r2 ≤ 3m2b20. Figure 7 illustrates how

ρ varies with r. From this, it can be inferred that the regularisation of the singular RN

geometry provides us with a range of r where ρ ≥ 0 holds.

The end result for WEC reads: ρ ≥ 0 for r2 ≤ 3m2b20, ρ + τ = 0 for all values of r, and

ρ+p ≥ 0 in the range of r2 ≤ 5m2b20. Therefore, it is possible to state that our regular black

holes satisfies the WEC for an adjustable finite range of r, while the singular RN metric

(m2 = 0) violates WEC over the whole domain of r.

• Strong Energy Condition: SEC may be verified by additionally looking at ρ+τ+2p ≥ 0.
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Since we have ρ+ τ = 0, studying the behaviour of p, one can check SEC. We may express

eq.(16) as follows:

p = −(3g4 − 8g2r2 + r4)b20
κ(r2 + g2)4

= −(3m4 − 8m2(r2/b20) + (r2/b20)
2)

κb20((r
2/b20) +m2)4

(19)

Figure. 8: Plot of p vs. r for different values of m2. Blue and red lines represent p having

m2 value in the range 0 < m2 ≤ 0.25. The black curve is for the singular metric.

It is evident from the equation above and by looking at the Figure 8 that SEC is met in

the range (4m2 −
√
13m2)b20 ≤ r2 ≤ (4m2 +

√
13m2)b20. In contrast, the singular RN metric

(m2 = 0) violates the SEC for every r. Thus, though not globally, our regular black hole

satisfies the SEC at least over a specific range of r.

•Dominant Energy Condition: The DEC comprises of the inequalities ρ ≥ 0, ρ−|τ | ≥ 0,

and ρ − |p| ≥ 0. In the above discussion, we showed that ρ ≥ 0 for r2 ≤ 3m2b20. From

eq.(15-16) one can write,

ρ− |τ | =

0, if r2 ≤ 3m2b20

−2(r2−3g2)b20
κ(r2+g2)3

, if r2 > 3m2b20

(20)

Hence, ρ−|τ | ≥ 0 is satisfied in the range r2 ≤ 3m2b20, which is also shown in Figure 9(left).

To check the third inequality in DEC, we directly use Figure 9(right). It is easy to see that

ρ− |p| =

+ve, if r2 ≤ m2b20

−ve, if r2 > m2b20

(21)
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Therefore, we have ρ ≥ 0, ρ−|τ | ≥ 0 for r2 ≤ 3m2b20 and ρ−|p| ≥ 0 in the range r2 ≤ m2b20.

Hence, the matter for our regular black hole satisfies the DEC in the range r2 ≤ m2b20.

Following the above description of energy conditions, the characteristics of the matter needed

to maintain our regular black hole may be summed up as follows:

Energy condition Range of validation

NEC r2 ≤ 5m2b20

WEC r2 ≤ 3m2b20

SEC (4−
√
13)m2b20 ≤ r2 ≤ (4 +

√
13)m2b20

DEC r2 ≤ m2b20

As a result, we may infer that our regular black hole solution fulfils all the energy conditions

known in classical GR, in the range (4−
√
13)m2b20 ≤ r2 ≤ m2b20. However, the singular RN

type metric (m2 = 0) violates each and every energy condition across the whole range of r.

Figure. 9: Plot of ρ− |τ | with r for different values of m2(left). Variation of ρ− |p| with r

for different values of m2(right)

III. MATTER SOURCES FOR OUR GEOMETRIES

We now turn to the question of constructing sources that may be used to model the matter

stress-energy required to support the spacetimes mentioned above. Sources for regular black

hole spacetimes have been constructed using nonlinear electrodynamics, scalar fields, and

phantom scalar fields [29, 30, 44–46, 67–69]. Though some of the sources may be physically

questionable, they do provide some decent examples of Lagrangian-based matter sources

for regular geometries. Let us now try and see what could be the possible sources for the
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spacetimes proposed in this article. The necessity of ‘exotic matter fields’ is evident from

the analysis of energy conditions studied in the earlier section. The well-known Bardeen

and Hayward regular black holes have been interpreted as gravitational fields generated

by a nonlinear magnetic monopole, as constructed in [45, 47]. However, the Lagrangian

describing the dynamics of the fields (F) are different in the above two cases, i.e. we don’t

have a single well-defined Lagrangian for both. A more general matter Lagrangian for

Bardeen and Hayward spacetimes (as well as others) is presented in [50]. It is given as

L(F) =
4µ

δ

(δF)
ν+3
4

(1 + (δF)
ν
4 )

µ+ν
ν

(22)

where µ > 0, ν > 0 are dimensionless constants and δ > 0 has the dimension of length

squared. One obtains a source for the Bardeen metric for µ = 3, ν = 2 and for the Hayward

metric for µ = ν = 3. The matter sources arising from the above Lagrangian satisfy the

null energy condition and violate the strong energy condition. Though, in our case, we

have a violation of the null energy condition, our spacetime geometry, as well as the well–

known regular black holes satisfy a common relation for the required stress energy, namely

ρ + τ = 0. In addition, we also have the equality of tangential pressures arising out of

spherical symmetry. Below we have depicted two probable sources for our geometries: a

non-linear electrodynamic field and another using ideas from braneworld gravity.

A. Nonlinear electrodynamics

Motivated by the above discussion, we consider a non-linear electromagnetic field Lagrangian

as a source for our regular black hole metric. We show in eq.(15-16) how one can decompose

the diagonal elements of the stress-energy tensor in two parts – one satisfying the NEC,

WEC, and the other violating them. Interestingly, both parts of the decomposition sat-

isfy ρ + τ = 0 separately. One may therefore propose a non-linear electromagnetic field

Lagrangian L = L1(F) + L2(F) minimally coupled to gravity by the following action,

S =

∫
d4x

√
−g

(
R

κ
− L1(F)− L2(F)

)
, (23)

where R is the Ricci scalar. L1(F) is the non-linear electromagnetic Lagrangian which

generates an energy–momentum tensor violating the NEC, WEC. L2(F), in contrast, leads

to a Tµν which satisfies the WEC, NEC. Here, Fµν is electromagnetic strength tensor and

F ≡ F µνFµν .
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The covariant equations of motion (field variation and metric variation) which emerge from

the above Lagrangian are given as,

∇µ

(
∂L(i)

∂F
F µν

)
= 0; i = 1, 2 (24)

Rµν −
1

2
gµνR = κTµν = κ

2∑
i=1

T (i)
µν (25)

where Rµν is the Ricci tensor. T
(1)
µν and T

(2)
µν are energy-momentum tensors corresponding

to L1(F) and L2(F), respectively. One can write the two energy-momentum tensors in the

following fashion,

T (i)
µν = 2

(
∂L(i)

∂F
FµαFν

α − 1

4
gµνL(i)(F)

)
; i = 1, 2 (26)

From eq.(15-16), it is clear that we need a matter source that has isotropic tangential

pressures and satisfies ρ + τ = 0. As a result, we only have non-zero components of the

electromagnetic strength tensor Ftr and Fθϕ to serve this purpose.

Hence, in the frame basis, the diagonal elements of the total energy-momentum tensor take

the following form:

T00 =−T11 =
2∑

i=1

(
1

2
L(i)(F)− 2

∂L(i)

∂F
FtrF

tr

)
; (27)

T22 =T33 =
2∑

i=1

(
−1

2
L(i)(F) + 2

∂L(i)

∂F
FθϕF

θϕ

)
(28)

It is evident from the above that for any L(F), one does have ρ + τ = 0 and isotropic

tangential pressures. From the Einstein tensor components evaluated earlier in the frame

basis and noticing the split as shown in eq.(15-16), one can write

1

2
L1(F0)− 2FtrF

tr

(
∂L1

∂F

)
F=F0

=− b20r
2

κ(r2 + g2)3
; (29)

−1

2
L1(F0) + 2FθϕF

θϕ

(
∂L1

∂F

)
F=F0

=− b20r
2(r2 − 2g2)

κ(r2 + g2)4
; (30)

1

2
L2(F0)− 2FtrF

tr

(
∂L2

∂F

)
F=F0

=+
3g2b20

κ(r2 + g2)3
; (31)

−1

2
L2(F0) + 2FθϕF

θϕ

(
∂L2

∂F

)
F=F0

=− 3g2
b20(g

2 − 2r2)

κ(r2 + g2)4
; (32)

where the LHS in the above equations are evaluated on-shell, i.e. for a specific solution

F = F0, which, of course, has to satisfy the field equations.
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Let us assume that for specific values of parameters, a combination of the following two

non-linear electrodynamic field Lagrangian densities may support our regular black holes;

L1(F) = − γF(
1 + η

√
F
)3 ; L2(F) =

3γηF3/2(
1 + η

√
F
)3 (33)

where γ and η are two separate constants. Therefore, one might have distinct field dynamics

based on the different γ and η options. For our purposes, we select just a magnetic solution

with F0 = 2FθϕF
θϕ = 2q2m

r4
, γ = b20/κq

2
m, and η = g2/

√
2q2m, which satisfy eq.(29-32), where

q2m is an arbitrarily chosen constant. The metric parameters b0 and g are both related to

the ‘magnetic charge qm’, as is apparent from the expressions above.

Therefore, the total non-linear electrodynamic field Lagrangian density can be written as a

combination of the above two in the following way;

L(F) = −γF(1− 3η
√
F)(

1 + η
√
F
)3 (34)

Note that for g2 = 0 or η = 0, i.e. singular RN type solution, the matter source becomes;

L(F) = −γF (35)

Thus, the singular RN-type solution with ‘imaginary’ charge is sourced by a linear magnetic

Lagrangian density. The source Lagrangian of equation (34) has the limitation that it cannot

allow negative F values since it contains fractional powers of F. Therefore, we are limited

to working with positive F values. Hence, we can have configurations with both electric

and magnetic fields or only a magnetic field. But any scenario with only an electric field is

excluded. However, it must be noted that the total Lagrangian, when expanded in η has

‘corrections’ (beyond the Maxwell term) involving F
√
F and F2 at orders η and η2. Since

η is proportional to g2, it is only in the gravitational field of the regular black hole do these

terms acquire a meaning. The absence of a purely electric configuration (as implied through

the presence of a square root of F) is a feature (deficiency?) not specific to our solution

alone, but is generically found in some form or the other in all source models for regular

black holes using nonlinear electrodynamics.[29, 30, 44–46]

As stated earlier, our regular black holes are made up of the two parameters b20 and g2.

However, the NED source Lagrangian depends on an additional free parameter, q2m. Thus,

to understand what q2m is and the behaviour of the source current that creates this type of

magnetic field, we must investigate the dynamics of the source Lagrangian.
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The functional value of F0 makes it clear that Fθϕ = −qm sin θ. Further, in curved spacetime,

the non-linear Maxwell-like equations which follow from the Lagrangians mentioned above,

with source current, may also be expressed as,

∇µF
µν +

(
∂2L(i)

∂F2

/
∂L(i)

∂F

)
(∂µF)F

µν = Jν
e (i) (36)

∇µF̃
µν = Jν

m (37)

where F̃ µν ≡ 1
2
ϵµνρσFρσ (ϵµνρσ is the Levi-Civita tensor), the dual of field strength tensor.

For the derived field strength tensor Fθϕ, we find that Jν
e = {0, 0, 0, 0} and Jν

m = {ρm, 0, 0, 0}

(where, ρm = qmδ
3(r)) independent of the form of source Lagrangian. Therefore, it is also

valid for the total electrodynamic field Lagrangian (L(F)). Thus, a non-linear magnetic

monopole at r = 0 supports our regular black hole, with qm being the total magnetic charge.

B. Braneworld gravity

As stated earlier, we may also consider our regular black hole geometry in the context of

brane-world gravity [70]. To facilitate this, let us introduce a new kind of decomposition of

the energy-momentum tensor components in eq.(15-16).

ρ = −τ = − b20r
2

κ(r2 + g2)3
+

3g2b20
κ(r2 + g2)3

= ρt + ρe (38)

p = − b20r
2

κ(r2 + g2)3
− 3g2b20

(g2 − 3r2)

κ(r2 + g2)4
= pt + pe (39)

One may note that we have chosen a decomposition such that a part of the energy-momentum

tensor is traceless. The rest of the energy-momentum is non-zero only when g ̸= 0 and it

satisfies the NEC, WEC, as is evident from the Figure 10. We can exploit this decomposition

as follows. Recall the well-known effective Einstein equations on the four-dimensional 3-

brane embedded in an ambient, curved five dimensional spacetime. They are written as,

Gµν = −Λgµν + κTµν + 6
κ

λ
Sµν − Eµν (40)

where Λ is a four dimensional cosmological constant on the 3-brane, Tµν is the on-brane

matter, Sµν is the so-called quadratic stress energy on the brane. The traceless Eµν is a

geometric quantity controlled by the extra dimension and related to the Weyl tensor of the

bulk five-dimensional spacetime. If we assume a large brane tension λ and a zero Λ, the
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terms involving Sµν drop out, and we are left with only the Eµν , which can be used to model

the traceless part in the expressions in (38), (39). Note that the negativity of ρt and pt

is already accounted for through the negative sign in front of the Eµν term in the effective

Einstein equations in (40). The remaining part, i.e. the ρe and pe can be adjusted into the

‘on-brane matter’ described through Tµν .

As is known, the RN spacetime with negative Q2 (here b20) was used as one of the first

solutions of the effective Einstein equations on the brane (see [70] and references therein).

The b20 in this context is related to a ‘tidal charge parameter’ induced on the brane from

the bulk through Eµν . Regularisation of this geometry seems to add extra on-brane matter,

which is well-behaved insofar as energy conditions are concerned.

Figure. 10: (Left) Plot of ρe with r shows a positive definite energy density of the extra

matter part. (Right) Plot of ρe + pe with r, which is also positive for all values of r.

IV. SHADOW RADIUS AND OBSERVATIONAL BOUNDS

Finally, we ask the question–does the above family of solutions have any relevance w.r.t.

observations? One could calculate various quantities–such as light deflection, orbits, time

delay etc, while looking for possible signatures. We choose to work out the shadow profiles

since the recent EHT results may then be used to provide bounds on the metric parameters.

The strong gravitational field around a black hole causes photons to be deflected or absorbed,

which results in a silhouette which is also termed as the black hole shadow. Each black hole

has a unique shape and size for its shadow, which is controlled by parameters appearing in its

geometry (i.e. metric parameters such as mass, charge, angular momentum etc.). Originally,
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Bardeen [71] introduced (assuming the observer very far away) celestial coordinates in the

observer’s sky to describe and quantify the shadow. More recently, there have been attempts

wherein shadows have been calculated using ray tracing methods for observers (moving or

static) at a finite distance or in asymptotically non-flat scenarios [72].

The shadow of a black hole may be seen as a dark region surrounded by photon rings.

Photons with less angular momentum scatter from the black hole and may be seen from

infinity; photons with higher angular momentum enter the black hole and leave a dark

circle. As mentioned above, two celestial coordinates, α and β, were introduced by Bardeen

which are,

α = lim
r0→ ∞

(
− r20 sin θ0

dϕ

dr

)
; β = lim

r0→ ∞
r20
dθ

dr
(41)

where r0 is the distance between the black hole and the observer, θ0 is the inclination angle

between the black hole rotation axis and the line of sight between the source and observer.

The derivatives dθ
dr

and dϕ
dr

have to be evaluated in the asymptotic region using the first

integrals of the geodesic equations. The radius of the static spherically symmetric black hole

shadow, rsh, as viewed by a static observer at radial coordinate r0, may be approximated as

[72]:

r2sh = α2 + β2 =
r2ph

w(rph)
(42)

where rph is the radius of photon sphere and w(r) = −gtt(r). For a static spherically sym-

metric black hole, the photon sphere is the orbit at which light moves in an unstable circular

null geodesic [73]. The equations of motion for photons around a static and spherically sym-

metric black hole environment can be obtained using the Hamilton-Jacobi or Hamiltonian

formulations, as described in [74], which then enables one to determine the effective potential

defining the system. The radius of the photon sphere rph can be calculated from the critical

point conditions of this effective potential by solving the expression

rphw
′
(rph)

w(rph)
= 2 (43)

where a prime denotes a derivative with respect to the radial coordinate.

A. Shadow radius of our regular black hole

Based on the description above, we first need to know the radius of the photon sphere in

order to calculate the shadow radius of our black hole. The equation for the radius of the
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photon sphere can be obtained by substituting w(r) = 1 − b20r
2

(r2+g2)2
in equation (43), which

gives,

(r2ph +m2b20)
3 − 2r4phb

2
0 = 0 (44)

where we use our special parametrization g2 = m2b20. When m = 0, i.e. g = 0 and b0 ̸= 0

(the singular geometry) the photon sphere is at rph =
√
2b0. Form ̸= 0, the above expression

represents a cubic algebraic equation in the variable r2ph. To analyse the characteristics of

the roots, it is convenient to express the cubic equation in r2ph in the depressed cubic form

and examine its discriminant. We have checked (not shown here) through plots that the

discriminant of the cubic equation turns out to be positive or equal to zero for values of

m2 within the range of 0 to 0.296. This observation provides confirmation that there are

three distinct real roots for r2ph within the specified range of m2. Hence, within the specified

interval ofm2, it is possible to obtain two positive real roots, two negative real roots, and two

imaginary roots for rph. We take into consideration the two real positive roots as potential

candidates for the photon sphere since they lie inside the domain of coordinates. An unstable

circular orbit may now be found at one of these two roots by performing a stability analysis

on the effective potential, which is defined as,

Veff (r) =
(
1− b20r

2

(r2 +m2b20)
2

)L2

r2
(45)

Here L is the angular momentum of the photon. Let us say r̄ph is the location of the unstable

circular orbit. Hence, the shadow radius from eq.(42) becomes;

r2sh =
r̄2ph(r̄

2
ph +m2b20)

2

(r̄2ph +m2b20)
2 − r̄2phb

2
0

(46)

If m = 0 (i.e. g = 0, b0 ̸= 0), the shadow radius turns out to be given as rsh = 2b0 (on using

the photon sphere radius r̄ph =
√
2b0). Recall that in section II, it has been demonstrated

that a horizon exists for values ofm2 such that 0 < m2 ≤ 0.25. In this specified interval ofm2,

we find that r̄ph can vary between 1.141b0 > r̄ph ≥ 1.029b0. However, for 0.25 < m2 ≤ 0.296,

there is no horizon but a photon sphere exists, i.e. we have a regular spacetime having a

photon sphere which may be used to model a compact object. In addition, the asymptotic

observer can estimate the angular diameter of the shadow as: 2αD = 2rsh/r0 [72].
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B. Constraints from the observed shadow of M87* and Sgr A*

Even though astrophysical black holes rotate and the shape of the shadow is also controlled

by the rotation parameter, one can still use the simple circular shadow of a static and spher-

ically symmetric black hole (without rotation) to make a preliminary, qualitative estimate of

the black hole parameters. In addition, one recalls that the observed shadows for M87∗ and

Sgr A∗ are reported to be quite close to being circular, with any deviation from circularity

being small. This motivates us to identify and check possible observational traces of our

regular black hole in the supermassive compact objects in M87∗ and Sgr A∗. We will use

freely available EHT results in order to arrive at our estimates.

In this section, we have estimated the metric parameter b0 for different m2 values using the

shadows observed by EHT. It is important to keep in mind that the theoretically obtained

angular diameter depends on the black hole parameters b0, m
2, and the black hole to ob-

server’s distance, r0. Thus, to estimate the parameter b0 from the observed angular diameter

data, one requires an independent measurement of the distance (r0) and a hand-picked value

of m2.

In the 2019 EHT reports, the observed angular diameter of black hole M87∗ at the centre

of the galaxy M87 is Φ = (42 ± 3)µas [5–10]. Recently, the original EHT data was more

thoroughly analysed in [75], and they obtained Φ = 41.5± 0.6µas. We estimate our metric

parameters using both results. According to stellar population measurement, M87∗ is located

at a distance of r0 = (16.8 ± 0.8)Mpc [76–78]. However, the error bar of the distance

measurements has been disregarded for our purposes. Using earlier formulae, the following

expression provides the theoretical angular diameter of the shadow of M87∗ provided it is

modeled by our regular spacetime geometry:

2αD = 8189.26× 10−16

√
r̄2ph(r̄

2
ph +m2b20)

2

(r̄2ph +m2b20)
2 − r̄2phb

2
0

µas (47)

where we have substituted r0 = 16.8Mpc. Now, one may calculate r̄ph for a given value of m2

using the photon sphere equation (44) and by the stability analysis of the effective potential.

Substituting r̄ph in equation (47), we have the theoretical angular diameter of the shadow

as a function of b0. Thus, one may estimate b0 by comparing this theoretical prediction

with observed data. In Figure [11], we have shown a 2D plot of (m2, b0) values. The shaded

region contains permissible values of (m2, b0) based on the observed angular diameter of

23



the shadow of M87∗ with its associated uncertainty, as per the observed data reported in

[5–10, 75]. As mentioned above, we have shown two plots corresponding to the two data

Figure. 11: The above figures demonstrate the variation of b0 with m2 for the observed

angular diameter of M87∗, considering both analyses of shadow diameter reported as

42± 3µas (left) and 41.5± 0.6µas (right)

analyses of the same EHT data of M87∗. The central black lines represent the set of values

of (m2, b0) corresponding to the shadow angular diameter value of 42µas (Fig. 11(left)) and

41.5µas (Fig. 11(right)), respectively. The error in the measurement of the angular diameter

is also considered and has been shown with orange and blue shaded regions in the parameter

space. For the angular diameter (42 ± 3)µas, in Figure 11(left), the orange-shaded region

corresponds to the regular black hole (0 < m2 ≤ 0.25) having the value of metric parameter

b0 between 16.05 × 109M⊙ < b0 ≤ 22.22 × 109M⊙ and the blue shaded region depicts the

values of (m2, b0) which could represent a horizonless compact object (0.25 < m2 ≤ 0.296).

Assuming instead, the angular diameter value as 41.5±0.6µas, in Figure 11(right), the value

of b0 for the regular black hole varies between 16.83 × 109M⊙ < b0 < 20.78 × 109M⊙. The

horizonless compact object can also model the same data, as represented in the blue shaded

region of Figure 11(right).

One can perform a similar exercise with the observed shadow of Sgr A∗. According to EHT

collaboration the angular diameter of the shadow for Sgr A∗ is (48.7 ± 7)µas and emission

ring of Sgr A∗ has angular diameter 51.8 ± 2.3µas [11–16]. There are several works on the

shadow of Sgr A∗ using either shadow diameter (48.7 ± 7µas ) or emission ring diameter

(51.8±2.3µas). Therefore, we estimate the metric parameter b0 by analyzing both data sets,

for completeness. There are also reports on the distance of Sgr A∗. Keeping the redshift
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Figure. 12: Above figures illustrate the variation of b0 with m2 for angular diameter of Sgr

A∗, considering both shadow diameter 48.7± 7µas (top left and bottom left) and emission

ring diameter 51.8± 2.3µas (top right and bottom right), while distances are taken to be

those reported by the Gravity collaboration (top panel) and Keck team (bottom panel).

parameter-free, the Keck team reported the distance of Sgr A∗ to be (7959± 59± 32)pc [79].

Considering the redshift parameter unity, the same group reported the distance as (7935±

50)pc [79]. According to the Gravity collaboration, the distance is (8246.7± 9.3)pc [80, 81].

By accounting for optical aberrations, the Gravity Collaboration significantly reduced the

BH distance to (8277± 9± 33)pc. Figures 12 (top panel) and 12 (bottom panel) represent

the parameter space (m2, b0) corresponding to the observer to Sgr A∗ distance as reported

by Gravity collaboration and Keck team, respectively. Each panel of Figure 12(top, bottom)

contains separate analyses of the parameter space by assuming both shadow diameter and

emission ring diameter of Sgr A∗. Thus plots of Figure 12 demonstrate how both horizonless

compact objects and regular black holes may model the shadow of Sgr A∗.

As a result, we obtain a collection of points (m2, b0) that can be used to simulate the angular

diameter of the shadows of M87∗ and Sgr A∗. These points represent either a regular black
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hole or a horizonless compact object. In Table I, we have summarized the limits on b0

imposed by the shadows of M87∗ and Sgr A∗.

Massive

Object

Distance from

the observer

Angular

Diameter(µas)

Constraint on b0 for

regular BH

Constraint on b0 for

compact object

Unit of

b0

M87∗
16.8 Mpc

(Stel. popula.

measure.)

42± 3 16.05 < b0 ≤ 22.22 19.26 < b0 ≤ 24.01
109M⊙

41.5± 0.6 16.83 < b0 ≤ 20.78 20.19 < b0 ≤ 22.46

Sgr A∗

8277 pc

(Gravity

Collab.)

48.7± 7 8.46 < b0 ≤ 13.55 10.14 < b0 ≤ 14.64

106M⊙51.8± 2.3 10.03 < b0 ≤ 13.16 12.04 < b0 ≤ 14.22

7935 pc (Keck

team)

48.7± 7 8.11 < b0 ≤ 12.99 9.72 < b0 ≤ 14.03

51.8± 2.3 9.62 < b0 ≤ 12.61 11.54 < b0 ≤ 13.63

TABLE I: Limit on b0 from the angular diameter of shadows of M87∗ and Sgr A∗

It must be mentioned here, that in the absence of a known rotating version of our regular

black hole line element, we are forced to make comparisons of EHT results with the ‘the-

oretically obtained purely circular shadow’. This, surely, may not be fully accurate since

observed deviations from circularity (though small) (see eg. [83]) as well as dependence on

the angle of incidence [84] are left out in our considerations. However, it is also true that

the rather ancient (1966) Synge formula [85] for the shadow of a simple Schwarzschild black

hole does give fairly good estimates for the average shadow radius in M87* and Sgr A*. In

the same vein, we may be tempted to believe that our parameter estimates presented here,

will not really vary drastically if we consider working with a possible rotating generalisation

of our spacetime. For a rotating line element, the extra rotation parameter will have to be

estimated from observations on ‘deviations from circularity’.

V. CONCLUSION

We will now review our findings and make a few remarks to wrap up our work.

1. We discuss the GR singularity problem and propose a novel spacetime model which,
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based on the metric parameters, corresponds to singular, regular black holes or horizon-

less compact objects. The line element we work with is restated here:

ds2 = −
(
1− b20r

2

(r2 + g2)2

)
dt2 +

(
1− b20r

2

(r2 + g2)2

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
.

Throughout our discussion, we used a specific parametrization, namely m2 = g2/b20.

Depending on the values of m2, different classes of geometries can be constructed from

the model mentioned above. For m2 = 0, we have a mutated Reissner–Nordström

geometry with an imaginary charge and a vanishing mass parameter. A family of

regular black holes having two horizons can be presented when 0 < m2 ≤ 0.25. When

0.25 < m2 ≤ 0.296 we have spacetimes representing horizon-less compact objects

having photon spheres.

2. The singular RN-type metric (m2 = 0) violates all the classical energy conditions.

However, after regularization, the family of regular black holes (0 < m2 ≤ 0.25) seem

to satisfy all the energy conditions in a specific range of r, though not everywhere.

Further, for the regular black hole family, we have shown that components of the

curvature tensor and different curvature scalars are indeed finite everywhere. Following

a different path [60], we have also confirmed that the regular black hole family is

geodesically complete for massive and massless test particles.

3. We found that the family of regular black holes and the horizonless compact objects

can be interpreted as the gravitational field sourced by a minimally coupled nonlin-

ear magnetic monopole. The total stress energy can be divided into two parts; one

satisfying NEC and WEC and the other violating them. The source of the singu-

lar RN-type metric (m2 = 0) may be chosen as a linear magnetic monopole. As we

mentioned in the Introduction, it remains a concern that the source of each regular

black hole requires modelling using a different nonlinear electrodynamics Lagrangian.

This deficiency needs to be remedied through further explorations in future. We have

also shown how the matter required for our geometry may also be modelled using

braneworld gravity.

4. Finally, we obtain the circular shadow radius of our regular black hole. Comparing

with the observed EHT collaboration results on the average shadow radius, we find

that both M 87∗ and Sgr A∗ can possibly be modelled by our regular black hole
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corresponding to particular values for the set (b20,m
2). Interestingly, one can also

model the data by a horizon-less compact object (0.25 < m2 ≤ 0.296). It is a fact

that a large number of astrophysical objects (including hypothetical ones) seem to be

possible candidates for modeling the shadow images observed till date. One can break

this ‘degeneracy’ only if we have more observations and we are able to decide which

of the models have a statistically significant match with available data. In this paper,

we have, however, not tried any such comparisons–our purpose is to just demonstrate

the feasibility of our model spacetime as a possible candidate.

In conclusion, we have found regular spacetimes with and without horizons, sourced by

a nonlinear magnetic monopole, which may be used to model the supermassive compact

objects as well as ordinary compact objects, known to be abundant in different galaxies in

the universe.

It may be possible to extend our work along two directions. One may consider line elements

where a Bardeen–like regularising term is added in the metric functions −gtt or (grr)
−1.

The consequences of such an addition may be explored. We can also see if the ultrastatic

spacetimes (gtt = −1), which arise assuming the same grr have nonsingular wormhole fea-

tures. The status of energy conditions and, more importantly, the question of viable matter

sources need to be addressed in such scenarios in order to facilitate a proper understanding.

Numerous suggestions on validating the existence of wormholes through observations have

appeared in the literature recently [82, 86–88] and any study on newer wormhole geometries

may therefore have some relevance. The other direction, as stated before, is about obtaining

a rotating version of our spacetime, possibly using the Newman-Janis algorithm [89]. Such a

rotating spacetime will enable us to make more accurate estimates of the metric parameters

using observational data.

Lastly, an important issue about ours, as well as any spacetime, is its stability under fluctua-

tions. Our preliminary investigations (not discussed here) indicate that linear perturbations

(quasinormal modes) appear to be finite and linear stabilty holds. However, the more in-

volved question on nonlinear stability needs to be addressed and analysed. We hope to

return to some of these issues in future work.
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