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Tensor networks capture large classes of ground states of phases of quantum matter faithfully and efficiently.
Their manipulation and contraction has remained a challenge over the years, however. For most of the history,
ground state simulations of two-dimensional quantum lattice systems using (infinite) projected entangled pair
states have relied on what is called a time-evolving block decimation. In recent years, multiple proposals for
the variational optimization of the quantum state have been put forward, overcoming accuracy and convergence
problems of previously known methods. The incorporation of automatic differentiation in tensor networks algo-
rithms has ultimately enabled a new, flexible way for variational simulation of ground states and excited states.
In this work we review the state-of-the-art of the variational iPEPS framework, providing a detailed introduction
to automatic differentiation, a description of a general foundation into which various two-dimensional lattices
can be conveniently incorporated, and demonstrative benchmarking results.
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I. INTRODUCTION

Tensor networks are at the basis of a wealth of methods that
are able to efficiently capture systems with many degrees of
freedom, primarily in the context of interacting quantum sys-
tems, but also in a wide range of other fields. They have a long
history: The beginnings can be seen [1] as originating from
work on transfer matrices [2] for two-dimensional classical
Ising models and methods of corner transfer matrices again in
the context of classical spin models [3]. In more recent times,
the rise of tensor networks to describe interacting quantum
many-body systems can be traced back to at least two strands
of research. On the one hand, the now famous density matrix
renormalization group (DMRG) approach [4, 5] can be re-
garded as a variational principle over matrix product states [6–
8], a particularly common class of one-dimensional tensor
network states. What are called finitely-correlated states [9]
have later been understood as a Heisenberg picture variant of
essentially the same family of states. These families of quan-
tum states could further be interpreted as basically parametriz-
ing gapped phases of matter in one spatial dimension. In a
separate development, tensor trains became a useful tool in
numerical mathematics [10]. These strands of research had
been developing independently for quite a while before being
unified in a common language of tensor networks (TN) as it
stands now as a pillar of research on numerical and mathemat-
ical quantum many-body physics [11–15].

Two-dimensional tensor networks, now known as projected
entangled pair states [16], again have a long history. The
intuition why they provide a good ansatz class for describ-
ing ground states of gapped quantum many-body Hamiltoni-
ans [17, 18] – as well as other families of states – is the same
as for matrix product states: Such states are expected to be
part of what is called the “physical corner” of the Hilbert
space. These states feature local entanglement compared to
the degrees of entanglement unstructured states would exhibit.
Ground states of gapped phases of matter are thought to sat-
isfy area laws for the entanglement entropy [15]. Even though
some of the rigorous underpinning of this mindset is less de-
veloped in two spatial dimensions compared to the situation
in one spatial dimension, there is solid evidence that projected
entangled pair states provide an extraordinarily good and pow-
erful ansatz class for meaningful states of two-dimensional
quantum systems.

There is a new challenge arising in such two-dimensional
tensor networks. In contrast to matrix product states, they
cannot be exactly efficiently contracted: On general grounds,
there are complexity theoretic obstructions against the effi-
cient contraction of projected entangled pair states in worst
case [19] – and even in average case [20] – complexity.
The burden can be lessened by acknowledging that projected
entangled pair states can be contracted in quasi-polynomial
time [21]. These more conceptual insights constitute an un-
derpinning of a quite practically minded question: This shows
that to develop ways of efficiently and feasibly approximating
tensor network contractions in two spatial dimensions is at the
heart of the method development in the field.

Consequently, over the years, several numerical methods

of approximately contracting projected entangled pair states
have been developed. In fact, much of the method develop-
ment has been along these lines. In the focus of attention in
this work are projected entangled pair states directly in the
thermodynamic limit, commonly referred to as infinite pro-
jected entangled pair states (iPEPS) [22–24]. The contrac-
tion necessary to compute expectation values of local observ-
ables gives rise to the challenge of approximately calculat-
ing effective environments. Over the years, several methods
have been introduced and pursued, including methods based
on boundary matrix product states [22], corner transfer matrix
methods [24–26] – particularly important for the method de-
velopment presented here – and tensor coarse-graining tech-
niques [27–30].

Variational optimization algorithms for uniform matrix
product states have been developed that combine density ma-
trix renormalization group methods with matrix product state
tangent space concepts to find ground states of one dimen-
sional quantum lattices in the thermodynamic limit [31, 32],
building on earlier steps of devising geometrically motivated
variational principles for tensor network states [33, 34]. The
pursuit of such variational optimization has been particularly
fruitful in the two dimensional case of iPEPS. Initially pro-
posed methods constructed the gradient of the energy explic-
itly using specialized environments [35, 36].

Recently, as an element of major method development,
the programming technique called automatic differentiation,
widely used in the machine learning community, has been uti-
lized for the task of calculating the gradient [37] in tensor net-
work optimization. This step drastically simplifies the pro-
gramming involved and allows one to use variational ground
state search on, e.g., more exotic lattice geometries with little
additional effort. Such variational approaches for iPEPS con-
stitute the basis for this work. Automatic differentiation has
also been employed in further fashions in the tensor network
context in several works recently [38–49], some of which
are accompanied by publicly available code libraries [50–
53]. Notably, even for gapped local Hamiltonians with chiral
topological ground states, for which the numerical applica-
bility of PEPS was unclear due to no-go theorems in related
cases [54], the use of variational optimization has proven suc-
cessful [41, 49, 55]. As a novel programming paradigm, au-
tomatic differentiation composes parameterized algorithmic
components in such a way that the program becomes differ-
entiable and its components can be optimized using gradient
search. It is a sophisticated way to evaluate the derivative of
a function specified by a computer program, specifically by
applying the chain rule to elementary arithmetic operations.
Again, it has only recently been appreciated how extremely
powerful such tools are in the study of interacting quantum
matter by means of tensor networks.

In this review article, we elaborate on these developments
and comprehensively present ideas for a variational iPEPS
method based on automatic differentiation. This includes a
detailed description of the methodology and practical insights
for implementations, complementing and extending the ex-
isting body of literature. We further introduce a versatile
framework, that allows arbitrary unit cells and different two-
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dimensional lattices to be treated on a common footing. At
the same time, this work accompanies the publicly available
numerical library variPEPS – a versatile tensor network li-
brary for variational ground state simulations in two spatial
dimensions – which implements the methods described in this
review [56–58].

The content of this work is organised in three main sec-
tions. In Sec. II, we describe the central methods that are be-
ing used in the variational iPEPS framework as well as prac-
tical remarks regarding implementation. Furthermore, we ex-
plain in detail the basics of automatic differentiation and its
application in state-of-the-art ground-state search. In Sec. III,
we then turn to explaining how to conveniently map generic
lattice structures to a square one, over which the variational
iPEPS methods naturally operate. Following up on this, in
Sec. IV, we present numerical benchmarks obtained with the
methods outlined in the previous sections and implemented in
the variPEPS library, in comparison to other customary meth-
ods like exact diagonalization, iPEPS imaginary-time evolu-
tion and variational Monte Carlo methods.

II. VARIATIONAL iPEPS

We seek to find the the TN representation of the state vector
|ψ⟩TN that best approximates the true ground state vector |ψ0⟩
of an Hamilton operator of the form

H =
∑
j∈Λ

Tj(h) , (1)

where Tj is the translation operator on the lattice Λ, and h
is a generic k-local Hamiltonian, i.e., it includes an arbitrary
number of operators acting on lattice sites at most at a (lattice)
distance k from a reference lattice point. Such a situation is
very common in condensed matter physics, to say the least.
To this aim, we employ the variational principle

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ ≥ E0 ∀ |ψ⟩ , (2)

and use an energy gradient with respect to the tensor coef-
ficients to search for the minimum – the precise optimiza-
tion strategy being discussed later. Such an energy gradient
is accessed by means of tools from automatic differentiation
(AD), a set of techniques to evaluate the derivative of a func-
tion specified by a computer program that will be summarized
below. Since we directly target systems in the thermody-
namic limit, a corner transfer matrix renormalization group
(CTMRG) procedure constitutes the backbone of the algo-
rithm, and also will come in handy for AD purposes. This
is used to compute the approximate contraction of the infinite
lattice, which is crucial in order to compute accurate expecta-
tion values in the first place. Importantly, the CTMRG routine
is always performed on a regular square lattice, for which it
can be conveniently defined. Support for other lattices, also
non-bipartite ones, is possible by different lattice mappings,
as we will demonstrate.

The method we will present in this section gives rise to an
upper bound of the ground state energy in the sense of the
variational principle as stated in Eq. (2). But we wish to point
out at this point that for that to be strictly true it would be
necessary to choose the CTMRG refinement parameter χE ,
introduced in detail in Sec. II B, to be χE → ∞. However,
in practice we increase this refinement parameter χE until all
observables are converged.

A. iPEPS setup

As introduced in the last section, we aim to simulate quan-
tum many-body systems directly in the thermodynamic limit.
To this end, we consider a unit cell of lattice sites that is re-
peated periodically over the infinite two-dimensional lattice.
Reflecting this, the general configurations of the iPEPS ansatz
are defined with an arbitrary unit cell of size (Lx, Ly) on the
square lattice. The lattice setup, denoted by L, can be speci-
fied by a single matrix, which uniquely determines the differ-
ent lattice sites as well as their arrangement. Let us consider a
concrete example of an (Lx, Ly) = (2, 2) state with only two
and all four individual tensors, denoted by

L1 =

(
A B
B A

)
, L2 =

(
A C
B D

)
. (3)

The corresponding iPEPS ansätze are visualized in Fig. 1.
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Figure 1. iPEPS ansätze with a unit cell of size (Lx, Ly) = (2, 2)
and only two (left) and four (right) different tensors as defined in
Eq. (3).

Here, the rows/columns of L correspond to the x/y lattice di-
rections. The unit cell L is repeated periodically to generate
the full two-dimensional system. As usual, the bulk bond di-
mension of the iPEPS tensors, denoted by χB , controls the
accuracy of the ansatz. An iPEPS state with N different ten-
sors in the unit cell consists of Npχ4

B variational parameters,
which we aim to optimize such that the iPEPS wave function
represents an approximation of the ground state of a specific
Hamiltonian. The parameter p denotes the dimension of the
physical Hilbert space, e.g., p = 2 for a system of spin-1/2
particles.

The right choice of the unit cell is crucial in order to capture
the structure of the targeted state. A mismatch of the ansatz
could not only lead to a bad estimate of the ground state, but
also to no convergence in the CTMRG routine at all. Dif-
ferent lattice configurations have to be evaluated for specific
problems to find the correct pattern.

To circumvent the problem of a fixed and a priori chosen
unit cell structure, recently an alternative description to the
periodic structure has been proposed [59]. This approach is



4

χB

. . . . . .

. . . . . .

. . . . . .

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

C1 T1 C2

T2

C3T3C4

T4

χE

Figure 2. The norm of an iPEPS (here with a single-site unit cell) at a
bulk bond dimension χB is approximated by a set of eight fixed-point
environment tensors. The environment bond dimension χE controls
the approximations in the CTMRG routine.

applicable if the Hamiltonian has a certain global symmetry,
where the additional degree of freedom can be employed to
reduce the description of the state to a subspace, e.g. SU(2)
for spin-1/2 systems. Here the state is described by the small-
est possible unit cell, i.e. a single site for a square lattice, as
well as a product of local unitary operators parameterized by
a wave vector k = (kx, ky). A fixed choice of the wave vector
then corresponds to the specification of a unit cell structure in
the common iPEPS setup. This approach allows for a varia-
tional optimization of the wave vector along with the transla-
tionally invariant iPEPS tensor, removing the need to choose
a fixed unit cell structure altogether.

In this work we restrict the description of the method to
the common iPEPS setup with not only trivial unit cells. This
enables the adaption of the framework to arbitrary, in general
non-symmetric Hamiltonian models.

B. CTMRG backbone

One major drawback of two-dimensional TNs such as
iPEPS is that the contraction of the full lattice can only be
computed approximately. This is due to complexity theo-
retic obstructions [19, 20] and – practically speaking – the
lack of a canonical form, which can only be found in loop-
free tensor networks, for instance in matrix product states [8].
In order to circumvent the unfeasible exact contraction of
the infinite 2d lattice, we employ an approximation scheme,
the directional corner transfer matrix renormalization group
(CTMRG) routine for iPEPS states with arbitrary unit cells of
size (Lx, Ly). The CTMRG method approximates the calcu-
lation of the norm ⟨ψ|ψ⟩ of the quantum state on the infinite
square lattice by a set of effective environment tensors. This is
achieved by an iterative coarse-graining procedure, in which
all (local) iPEPS tensors in the unit cell L are successively
absorbed into the environment tensors towards all lattice di-
rections, until the environment converges to a fixed-point. We
will present a summary of the directional CTMRG methods
for an arbitrary unit cell, following the state-of-the-art pro-
cedure [60–62]. The effective environment is displayed in
Fig. 2, here for simplicity for a square lattice with a single-
site unit cell L =

(
A
)
. It consists of a set of eight fixed-

point tensors, four corner tensors {C1, C2, C3, C4} as well
as four transfer tensors {T1, T2, T3, T4}, the latter sometimes
also called edge tensors. In case of a larger unit cell, such a
set of eight environment tensors is computed for each individ-

ually specified iPEPS tensor in the unit cell. The unavoidable
approximations in the environment calculations are controlled
by a second refinement parameter, the environment bond di-
mension χE .

In one full CTMRG step, the complete iPEPS unit cell is
absorbed into the four lattice directions, such that the eight
CTMRG tensors are updated for every iPEPS tensor. This
is done column-by-column or row-by-row, depending on the
direction. In each absorption step the environment bond di-
mension χE grows by a factor of χ2

B . To avoid an exponential
increase in memory consumption and computation time, we
need a method to truncate the bond dimension back to χE . In
order to do this, we calculate renormalization projectors for
each row or column. Projectors are computed from a suitable
patch of the iPEPS state including the effective environments,
to find a best-possible truncation of the bond dimension. Dif-
ferent approaches for their calculations have been proposed
in the literature, which we will discuss in detail below, espe-
cially in the context of AD. In the following description of
the CTMRG procedure we focus on a left absorption move,
which grows all left environment tensors {C4, T4, C1}. The
main steps of insertion, absorption and renormalization are
shown in Fig. 3. In Sec. II B 1, we will explain the full ab-
sorption procedure including renormalization, as it is done in
practise. Although projectors need to be calculated before the
absorption, their motivation and the calculation of different
projects is discussed later in Sec. II B 2.

1. Absorption of iPEPS tensors

In order to generate the CTMRG environment tensors, such
that they converge to a fixed-point eventually, the iPEPS ten-
sors are absorbed into them. To this end, we start with the
network of one iPEPS tensor in the unit cell and its accompa-
nying environment tensors. This is depicted in Fig. 3 in the top
left. As shown on the top right of this figure, the network is
extended by inserting one column, consisting of an iPEPS ten-
sor and the top and bottom transfer tensors. While we depict
the case of a single-site unit cell in Fig. 3, we note that the
column of tensors to be inserted is generally dictated by the

C1 T1 C2

T2

C3T3C4

T4

C1 T1 T1 C2

T2

C3T3T3C4

T4insertion

ab
so
rp
ti
on

renorm
alization

C̃1 T1 C2

T2

C3T3C̃4

T̃4

Figure 3. Main steps of a left CTMRG move. One column of tensors
is inserted into the network. Upon absorption of these tensors, the
environment bond dimension grows rapidly, requiring a renormalisa-
tion step.
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unit cell structure of the iPEPS ansatz, i.e., the left neighbor
with the corresponding environment tensors for a left move.
This crucial positional information for multi-site unit cells is
specified by the coordinate superscripts in the descriptions be-
low. As indicated by the dashed line in Fig. 3, we absorb the
inserted column into the left environment tensors by contract-
ing all left pointing edges. This yields new environment ten-
sors whose bond dimensions have grown by a factor χ2

B due
to the virtual iPEPS indices, thus we need a way to truncate
the dimension back to the CTMRG refinement parameter χE .
This is done using the projectors we will discuss and compute
in the next section. For now we introduce them as abstract
objects labeled P that implement the dimensional reduction
(i.e., the renormalization step) in an approximate but numeri-
cally feasible way. The updated tensor C ′

1 is then given by the
contraction in Fig. 4. As discussed before, the correct tensors

C ′1
[x,y+1]

=

P
[x−1,y]
LB

C
[x,y]
1 T

[x,y]
1

Figure 4. Update of the corner tensor C1 in a left CTMRG step.

and projectors have to be used in accordance with the period-
icity of the unit cell. The iPEPS tensor is now absorbed into
the left transfer matrix T ′

4, where two projectors are needed
to truncate the enlarged environment bond dimension. This
is visualized in Fig. 5. Finally, the lower corner tensor C ′

4 is

T ′4
[x,y+1] =

P
[x−1,y]
LT

P
[x,y]
LB

T
[x,y]
4

Figure 5. Update of the transfer matrix T4 in a left CTMRG step.
Here the projectors generally belong to different subspaces, unless
the system is one-site translational invariant.

updated, by absorbing a transfer matrix T3 and using another
projector. The three absorption steps in Figs. 4, 5 and 6 are
performed for all rows x at a fixed column y, before moving
to the next column y + 1. The process of computing projec-
tors and growing the environment tensors is repeated for each
column of the iPEPS unit cell, until the complete unit cell of
Lx × Ly tensors has been absorbed into the left environment.
This yields updated tensors C ′

1, T ′
4 and C ′

4 for all [x, y].
The absorption of a full unit cell is then performed for the

other three directions. In a top move the tensors C1, T1 and
C2 are grown, in a right move the tensors C2, T2 and C3 and
in a bottom move the tensors C3, T3 and C4. This completes
a single CTMRG step, which is then repeated in the direc-
tional procedure until convergence is reached. In Sec. II B 3
we discuss appropriate convergence measures.

C ′4
[x,y+1]

=

P
[x,y]
LT

C
[x,y]
4 T

[x,y]
3

Figure 6. Update of the corner tensor C4 in a left CTM step.

2. Calculation of projectors

In order to avoid an exponential increase of the bond di-
mension while growing the environment tensors, projectors
are introduced to keep the bond dimension at a maximal value
of χE . Here, we will describe a common scheme to com-
pute those projectors [61] and discuss some properties of their
use in combination with AD [42]. The task of finding good
projectors essentially comes down to finding a basis for the
virtual space, whose bond dimension we aim to reduce, that
can be used to distinguish between “more and less important”
sub-spaces. This way, we can ideally reduce the dimension
while keeping the most important sub-space. In what follows,
we consider the lattice environment of the virtual space that
we aim to truncate using the CTMRG environment tensors.
To this end, we use a singular value decomposition (SVD) to
identify the basis, in which the bond is optimally truncated
such that we keep the most relevant information of this lat-
tice environment. The lattice environment that we consider is
shown in Fig. 7, where the red dotted line identifies the bonds
that we aim to optimally truncate, illustrated for the example
of a left absorption step. The arrangement of the tensors in
the network of Fig. 7 follows the unit cell definition L. For
the trivial, single-site unit cell L =

(
A
)
, all four iPEPS ten-

sors are the same. We note that for a larger unit cell, cf. Fig. 1,
the iPEPS tensors and their adjacent environments have to be
chosen according to its periodicity. This setup for the arrange-
ment is favorable, since it incorporates the (approximated) ef-
fect of the infinite environment by including all CTM tensors
for the different lattice directions.

The projectors are used to renormalize the three left open
tensor indices with combined bond dimension χEχ

2
B back to

the environment bond dimension χE in a left absorption step.

ρT

ρB

Figure 7. Network of 2 × 2 iPEPS tensors and the corresponding
CTMRG tensors, used as a starting point to compute the trunca-
tion projectors. For a left CTMRG step the top and bottom part is
contracted into the matrices ρT and ρB with dimension (χEχ

2
B) ×

(χEχ
2
B). The red dashed line indicates the bonds that are renormal-

ized back to a bond dimension χE .
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In order to compute them, we start by defining the matrix

M = ρB · ρT (4)

that represents the lattice environment of the virtual bond that
we would like to truncate, as visualized in Fig. 8.

M =

ρT

ρB

Figure 8. Matrix M as defined by Eq. (4) in graphical TN notation.
The red dashed line indicates the bonds that are renormalized back
to a bond dimension χE .

The procedure outlined here aims to find projectors PLT

and PLB , such that the truncated matrix

Mtrunc = ρB · PLT · PLB · ρT, (5)

is an optimal approximation to M. To achieve this, we per-
form a singular value decomposition onM, i.e.,

M = ULSLV
†
L . (6)

This factorization introduces a basis which allows for a sepa-
ration of more relevant and less relevant sub-spaces. To this
end, we choose the largest χE singular values and their cor-
responding singular vectors for the construction of the projec-
tors. Furthermore, we define

S+
L = inv

(√
SL

)
, (7)

where a pseudo-inverse with a certain tolerance is used. To
increase the numerical stability, a threshold of typically 10−6

(corresponding to a threshold of 10−12 for the singular values)
is used. Smaller singular values are set to zero. The use of a
pseudo-inverse in the generation of the projectors is equiva-
lent to the construction of a projector with lower environment
bond dimension. Finally, the projectors to renormalize the left
absorption step are construced as

PLT = ρT · VL · S+
L ,

PLB = S+
L · U†

L · ρB .
(8)

Here ρT and ρB again denote the top and bottom part ofM
as introduced in Fig. 7. We would like to point out the fact
that without a truncation in the SVD above, the product of the
projectors we create in this way assembles the identity

PLT · PLB = ρT · VL · S−1
L · U†

L · ρB
= ρT · (ρB · ρT)

−1 · ρB = 1.
(9)

We stress again, that the choice of truncation in the calcula-
tions of the projectors is optimal in order to approximate the
lattice environment M. A graphical representation of these
projectors is given in Fig. 9.

P
[x,y]
LT =

S+
L

VL

ρT

P
[x,y]
LB

=

ρB

U†
L

S+
L

Figure 9. Calculation of top and bottom projectors for a left CTMRG
absorption step. The red dashed line indicates the bonds that are
renormalized back to a bond dimension χE .

During a left-move, described in the previous section, we
absorb the iPEPS tensors in the unit cell column-by-column
into the left environments. A renormalization step is required
for each of those moves, resulting in projectors that are spe-
cific to every bond. We therefore label them by the positions
in the unit cell, i.e., P [x,y]

LT and P [x,y]
LB .

The process to generate the projectors described above uses
the full lattice environmentM, and thus we call them full pro-
jectors. It should be noted that Fishman et al. have proposed
a scheme to calculate equivalent projectors in a fashion that is
numerically more stable, at the cost of being computationally
more expensive [62]. Their method is particularly useful in
the case of a singular value spectrum ofM that decays very
fast.

ρT

ρB

Figure 10. Network of 2 × 1 iPEPS tensor and the corresponding
CTMRG tensors, which is used as a reduced network to calculate the
half projectors for a left CTMRG step. The red dashed line indicates
the bonds that are renormalized back to a bond dimension χE .

Finally, different lattice environments of the virtual bond in
question can be used to generate projectors. A very practical
version are the so called half projectors. For those we choose
a lattice environment as illustrated in Fig. 10. These projectors
are computationally less costly, as they require a smaller net-
work to be contracted. They only take into account correlation
within one half of the network, however this proves to be suf-
ficient in many different applications. Lately, there have been
proposals for even cheaper alternatives of lattice environments
and projector calculations [63], which yet have to be tested in
the context of automatic differentiation and variational iPEPS
optimization.

3. Convergence and CTMRG fixed-points

The CTMRG routine as described above is a power-method
that eventually converges to a fixed-point. At this fixed-point,
the set of environment tensors describes the contraction of the
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infinite lattice with an approximation controlled by the envi-
ronment bond dimension χE . Convergence of the CTMRG
tensors to the fixed-point can be monitored in different ways.
In regular applications (those that do not involve automatic
differentiation and gradients) the singular value spectrum of
the corner tensors is typically a good quantity. Once the norm
difference of the spectrum between two successive CTM steps
converges below a certain threshold, the environment tensors
are assumed to be converged.

One peculiarity that is however not incorporated in this con-
vergence check is sign or phase fluctuation for real or com-
plex tensor entries, respectively. This means that, while pro-
jectors and hence the CTMRG tensors converge in absolute
value, their entries can have different signs/phases in consec-
utive CTM steps. For reasons that become clear in Sec. II E
it is however required to reach element-wise convergence in
the environment tensors for them to represent an actual fixed-
point [42]. Those fluctuations originate from the gauge free-
dom in the SVD performed in Eq. (6). This is reflected in the
freedom of introducing a unitary (block-)diagonal matrix Γ in
an SVD,

M = USV † = (UΓ)S
(
Γ†V †) , (10)

which leaves the expression invariant. The gauge freedom
from the SVD directly affects the calculation of the projec-
tors, such that we aim to fix the phases while computing these
projectors. By eliminating this gauge freedom, at the true
fixed-point, both projectors and environment tensors should
be converged element-wise.

To fix the gauge, we introduce a diagonal unitary matrix Γ
that redefines the phase of the largest entry (in absolute value)
of every left singular vector to place it on the positive real
axis [42]. To avoid instabilities of this gauge-fixing proce-
dure due to numerical quasi-degeneracies, we always pick the
first of such largest elements in basis order. Other choices,
like addressing the first element with magnitude above a fixed
threshold, are also possible. We further note that an alternative
scheme to archive a fixed point in the CTMRG has recently
been proposed [64].

C. Energy expectation values

Computing the energy expectation value required for the
energy minimization is straightforward using the CTMRG
environment tensors. Assuming a Hamiltonian with only
nearest-neighbour interaction terms, individual bond energies
can be computed as shown in Fig. 11. The full energy expec-
tation value, ⟨ψ|H|ψ⟩ / ⟨ψ|ψ⟩, is obtained by collecting all
different energy contributions, i.e., all different terms in the
Hamiltonian. Longer-range interaction can be treated as well,
by simply enlarging the diagrams of Fig. 11 and performing
more expensive contractions, which however occur only once
per optimization step. In order to formulate a variational op-
timization of the tensor coefficients parametrizing the wave
function, a gradient for the energy expectation value – includ-
ing the foregone fixed-point CTMRG routine – is required.

This is achieved by the concept of automatic differentiation,
as we will describe next.
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Figure 11. Expectation values of a (horizontal) nearest-neighbour
Hamiltonian term ⟨ψ|hi,j |ψ⟩ / ⟨ψ|ψ⟩ in tensor network notation, us-
ing the fixed-point CTMRG environments.

D. Automatic differentiation

Automatic differentiation (AD), sometimes also referred to
as algorithmic differentiation or automated differentiation, is
a method for taking the derivative of a complicated function
which is evaluated by some computer algorithm. It has been
an important tool for optimization tasks in machine learn-
ing for many years. An introduction can be found in e.g.
Ref. [65]. After its initial introduction in a foundational
work [37], AD has found increasing applications in numerical
TN algorithms in recent years [38, 39, 41, 42, 44, 45]. For the
sake of simplicity, let us consider a function E : Rn −→ Rm

for which we would like to evaluate the derivative. No-
ticeably, extensions to complex numbers are possible, and
we provide some additional comments in Appendix B. We
have the particular use-case of the energy expectation value
E(|ψ⟩) = ⟨ψ|H|ψ⟩ / ⟨ψ|ψ⟩ of an iPEPS in mind, in which
case the co-domain of the function E is R. As we explain
below, this has some important consequences for the use of
AD.

Automatic differentiation makes use of the fact that many
functions and algorithms are fundamentally built by con-
catenating elementary operations and functions like addition,
multiplication, projection, exponentiation and taking powers,
whose derivatives are known. The central insight is now that
we can build up the gradient of a more complicated func-
tion from the derivatives of its elementary constituents by the
chain rule of differentiation. In principle this even allows for a
computation of the gradient to machine precision. It should be
noted however, that it is neither necessary nor useful to decon-
struct every function into its most elementary parts. Rather
it is advantageous to deconstruct the function at hand only
into a minimal amount of constituent-functions for which a
derivative can be determined. These functions are often re-

x⃗1 x⃗2 x⃗3 x⃗4
f1 f2 f3

E

Figure 12. Example of a computational graph for the function de-
composition in Eq. (11).
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ferred to as the primitives of the function of interest E. Primi-
tives might themselves be a composition of many constituents
but the derivative of the primitives themselves is known as a
whole. An illustrative example for a primitive is a function
that takes two matrices as an input and outputs the multipli-
cation of them. On an elementary level this function is com-
posed out of many multiplications and additions, but one can
write down the derivative w.r.t. its inputs immediately. The
choice of primitives describes the level of coarseness on which
the AD process needs to know the details of the function E to
compute the desired gradient. Defining large primitives of a
function can reduce memory consumption, as well as increase
performance and numerical stability of the AD process, e.g.,
by avoiding spurious divergences. Once the high-level func-
tionE has been decomposed into its minimal number of prim-
itives, we can represent this decomposition with a so called
computational graph. The computational graph is a directed,
a-cyclic graph whose vertices represent the data generated as
intermediate results by the primitives and the edges represent
the primitives themselves, that transform the data from input
to output.

As an example let us suppose we are able to decompose
the function E into three primitives f1, f2 and f3, such that
E = f3 ◦ f2 ◦ f1. The primitives are maps between interme-
diate spaces

E : Rn1
f17−→ Rn2

f27−→ Rn3
f37−→ Rn4 (11)

and we refer to the variables in theses spaces as x⃗i ∈ Rni .
The computation graph illustrating this situation is shown in
Fig. 12. AD can be performed in two distinct schemes, of-
ten called forward- and backward-mode AD. In the following
we will demonstrate the two AD modes with the example of
our previously introduced function E and its primitives. This
will also serve to illustrate the computational cost of these AD
schemes for the iPEPS use-case. Since f1, f2 and f3 are said
to be primitives, their Jacobians

J i : Rni −→ Rni+1 × Rni ,

J i(x⃗0i ) =

(
∂fi
∂x⃗i

) ∣∣∣∣
x⃗i=x⃗0

i

(12)

are known. An AD evaluation of the gradient ofE at a specific
point x⃗01 is then given by the chain rule, the concatenation of
the Jacobians of the primitives

∇E(x⃗01) = J3(x⃗03) · J2(x⃗02) · J1(x⃗01), (13)

with fi(x⃗0i ) = x⃗0i+1. The difference between the forward- and
backward-mode AD essentially comes down to the question
from which side we perform the multiplication of the Jaco-
bians above.

In the forward-mode AD scheme, the gradient is built up
simultaneously with the evaluation of the primitives f1, f2 and
f3, according to the following prescription for the i-th step:

fi(x⃗
0
i ) = x⃗0i+1

Gi = J i(x⃗0i ) ·Gi−1

(14)

x⃗1 x⃗2 x⃗3 x⃗4

J1(x⃗01) J2(x⃗02) J3(x⃗03)

G1 G2 ∇E1

f1 f2 f3

E

J1 J2 J3

building up
the gradient

Figure 13. Illustration of forward-mode AD as described in Eq. (14)
for the function decomposition in Eq. (11).

with the starting condition G0 := 1n1×n1 and the final re-
sult G3 = ∇E(x⃗01) ∈ Rn4×n1 . We see that in this case we
build up Eq. (13) from right to left or “along the computational
graph” as illustrated in Fig. 13. At first sight, such a procedure
offers the potential advantage of not requiring to store inter-
mediate results of the primitives in memory. However, if the
dimension of the input (domain of E) is much larger than the
dimension of the output (co-domain of E) – as it is the case
in our use-case of iPEPS – this procedure becomes computa-
tionally very heavy. Indeed, saving and multiplying the large
Jacobians in Eqs. (14) is often impractical. Thus, it is com-
mon to split up the starting condition G0 := 1n1×n1

into the
n1 canonical basis vectors {e⃗i}i=1,...,n1

. The procedure to
generate the gradient from Eq. (14) is then repeated n1 times,
each iteration generating a single component i. In this case,
each step of the process of generating a component of the gra-
dient is done by calculating a Jacobian-vector product (JVP),
so that only the resulting vector has to be stored. In order to
create the full gradient in this way we need to repeat the pro-
cedure n1 times, and the cost of calculating the full gradient
scales asO(n1)×O(E), whereO(E) is the cost of evaluating
E.

The backward-mode AD scheme works instead by first
evaluating the function E and storing all intermediate results
of the primitives along the way, and by then applying the iter-
ative prescription

Ḡi = Ḡi+1 · J i(x⃗0i ) (15)

with the starting condition Ḡ4 = 1n4×n4 and the final result
Ḡ1 = ∇E(x⃗01) ∈ Rn4×n1 . In the AD literature the objects Ḡi

are called adjoint variables and the functions that map the ad-
joint variable on to each other, defined by Eq. (15), are called
adjoint functions. We refer to Appendix A for more details on
the adjoint functions and adjoint variables. In some parts of
the literature the adjoint functions are also called pullbacks,
which can be understood by looking at AD in language of dif-
ferential geometry, cf. Appendix D. We see that in this case
we build up Eq. (13) from left to right or as graphically il-
lustrated in Fig. 14. This scheme has the advantage of being
computationally much cheaper if the output (co-domain) di-
mension is smaller than the input (domain) dimension – pre-
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x⃗1 x⃗2 x⃗3 x⃗4

J1(x⃗01) J2(x⃗02) J3(x⃗03)

Ḡ2 Ḡ3 1∇E

f1 f2 f3

E

J1 J2 J3

building up
the gradient

Figure 14. Illustration of backward-mode AD as described in
Eq. (15) for the function decomposition in Eq. (11).

cisely the situation of our iPEPS setup, with n1 = Npχ4
B and

n4 = 1. We indeed only need to compute vector-Jacobian
products (VJP) when evaluating the gradient, and, moreover,
the full gradient is computed at once, instead of just a single
element at a time as in the forward-mode AD scheme. This
is why the cost of calculating the gradient of the energy ex-
pectation value with backwards-mode AD is O(1) × O(E),
which is superior to the cost of forward-mode AD. However,
since we need to save all intermediate results of the primitives
along the way in order to compute the gradient, the memory
requirement for this scheme is in principle unbounded. Fortu-
nately, the fixed-point condition for the iPEPS environments
can be used to guarantee that the memory remains bounded in
our calculations, as we illustrate in the following section.

E. Calculation of the gradient at the CTMRG fixed-point

Computationally, the CTMRG routine represents the bot-
tleneck of the full iPEPS energy function. It involves many
expensive contractions and SVDs. Moreover, it requires an a
priori unknown number of CTMRG iterations to reach con-
vergence of the environment tensors. This would be es-
pecially disadvantageous for the gradient evaluation using
plain-vanilla backward-mode AD, since this would require
unrolling all the performed CTMRG iterations and paying a
memory consumption linear in their number. However, this
can be avoided by leveraging that fact that the CTMRG iter-
ation eventually converges to a fixed point, and this is pre-
cisely the condition under which the energy evaluation is then
performed. As soon this fixed point is reached, all CTMRG
iterations are identical, i.e., reproducing the converged envi-
ronment tensors. We can, in this situation, get away with only
saving intermediate results from such a converged CTMRG
iteration. This reduces the memory requirements by a fac-
tor of the number of CTMRG iterations that we perform [37].
We stress here that, for this approach to work, we must make
sure that the CTMRG procedure reaches an actual fixed point,
meaning that all CTMRG environment tensors are converged
element wise as discussed in Sec. II B 3. The fixed-point equa-

⟨H⟩

A

A

A

He∗

e∗

e∗

...
...

c

c

c

E

Figure 15. Computational graph of the CTMRG procedure for cal-
culating the energy density at fixed point.

tion can be written as

e∗(A) = c(A, e∗(A)), (16)

where the function c is one full CTMRG iteration, A are the
iPEPS tensors which are constant during the CTMRG proce-
dure and e∗(A) represents the CTMRG environment tensors
at the fixed-point. E is the function that maps the iPEPS ten-
sors with the fixed point environment tensors and the Hamil-
tonian operators to the energy expectation value. The com-
putational graph for the ground state energy is illustrated in
Fig. 15. From it we can construct the form of the gradient of
the energy expectation value with respect to the parameters of
the iPEPS tensors A,

∂⟨H⟩
∂A

=
∂E
∂A

+
∂E
∂e∗

∞∑
n=0

(
∂c

∂e∗

)n
∂c

∂A
. (17)

In practice this infinite sum is evaluated to finite order until
the resulting gradient is converged to finite accuracy. An al-
ternative viewpoint on the gradient at the fixed-point of the
CTMRG procedure is presented in the Appendix C. It has re-
cently been noted in Ref. [64] that the stability and accuracy
of the SVD derivative can be improved by including a previ-
ously neglected gradient contribution from the truncated part
of the singular value spectrum.

F. Optimization

As discussed in the introduction of Sec. II we seek to find
the iPEPS approximation |ψ⟩TN of the ground state vector
|ψ0⟩. Employing the methods discussed in the last sections
we can describe this energy calculation as function E(|ψ⟩TN),
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consisting of the CTMRG power-method and the expectation
value approximation using the resulting CTMRG environment
tensors. Since we can calculate the gradient ∇E(|ψ⟩TN) of
this real scalar function it is straightforward to use well-known
optimization methods to find the energy minimum. We would
like to stress that the state vector |ψ⟩TN, and thus the en-
ergy function, only depends on the tensors defining the iPEPS
ansatz and not the environment tensors since they are implic-
itly calculated from the ansatz. In this discussion we focus
on two types of methods based on the gradient: The (nonlin-
ear) conjugate gradient (CG) [66–70] and the quasi-Newton
methods [71–76].

A naive approach to find the minimum of a function
E(|ψi⟩), of which the gradient∇E(|ψi⟩) is known, is to shift
the input parameters |ψi⟩ sufficiently along the negative gra-
dient so that we find a new position |ψi+1⟩ where the function
value is reduced. At the end of this section we discuss what
a sufficient step size means in this context. Iterating this pro-
cedure to a point where the gradient of the function vanishes
(within a pre-defined tolerance) yields a solution to the opti-
misation problem. Thus either a saddle point or a (local) min-
imum is reached then. This method is called steepest gradient
descent. Although it resembles one of the simplest methods to
find a descent direction, it is known to have a very slow con-
vergence for difficult problems, e.g., for functions with narrow
valleys [77]. Therefore, we use in practice more sophisticated
methods to determine the descent direction.

The family of nonlinear conjugate gradient as generaliza-
tion of the linear conjugate gradient method modifies this ap-
proach. Instead of using the negative gradient as a direction
in each iteration step it uses a descent direction which is con-
jugated to the previous ones. For the linear conjugate gradi-
ent method there is a known factor βi to calculate the new
descent direction di = gi + βidi−1 from the gradient gi of
the current step and the descent direction di−1 of last step.
In the generalization for nonlinear functions this parameter is
not uniquely determined anymore, however there are different
approaches to estimate this parameter in the literature [67–
69]. In our implementation we chose the nonlinear conjugate
gradient method in the formulation as has been suggested by
Hager and Zhang [70],

β̃HZ
i =

1

dTi−1yi

(
yi − 2di−1

∥yi∥2
dTi−1yi

)T

gi,

ηi =
−1

∥di−1∥min(η, ∥gi−1∥)
,

βHZ
i = max(β̃HZ

i , ηi),

(18)

with ∥·∥ the Euclidian norm, yi = gi − gi−1 and η > 0 a
numerical control parameter which has been set to η = 0.01
in the work by Hager and Zhang. In our tests and benchmarks
this choice for βi has been proven to be numerically stable.

The other family of optimization methods we use in our
implementation are the quasi-Newton methods, concretely the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [73–
76] and its low-memory (L-BFGS) variant [72, 78]. These
methods are based on the Newton method where the descent

direction is calculated using not only the gradient, but also the
second derivative (the Hessian matrix). Unfortunately, it is
computationally expensive to calculate the Hessian for large
sets of input parameter, which makes this method only feasi-
ble for small parameter sets (i.e., iPEPS ansätze with a small
number of variational parameters). Quasi-Newton methods
solve this problem by not calculating the full Hessian, but
an approximation of it. To this end, the gradient information
from successive iteration steps is used to update the approxi-
mation in each step. The BFGS algorithm stores the full ap-
proximated Hessian matrix, including the information from all
previous steps. In contrast, the L-BFGS method calculates the
effective descent direction in an iterative manner from the last
N optimization steps. This way not the full (approximated)
Hessian has to be stored in memory but only the gradients
of the last N steps. This reduces the memory consumption
by an order of magnitude. The disadvantage is that not the
full information of all previous steps is considered, but only a
fraction of it. Nevertheless, due to the memory requirements
to store the full approximated Hessian in the standard BFGS
method for larger iPEPS bond dimensions we use L-BFGS as
the default quasi-Newton method.

As noted before, we would like to shift the variational pa-
rameters xi along the descent direction di determined by the
different algorithms discussed above. With this shift we aim
to find a new ansatz xi+1 = xi + αidi with αi the step size
along the descent direction. Ideally, we would like to find the
optimal step size αi = minαE(xi + αdi) minimizing the
function value along the descent direction. However, deter-
mining this optimal value is computationally expensive and
thus in practice, we stick to a sufficient step size fulfilling
some conditions. The procedure to find this step size is called
line search [79–82]. In our implementation we use the Wolfe
conditions [80–82], since they guarantee properties which are
feasible particularly for the (L-)BFGS method and its iterative
update of the effect of the approximate Hessian.

G. Pitfalls and practical hints

1. Iterative SVD algorithm

We also advertise the use of iterative algorithms for the cal-
culation of the SVD in the CTMRG procedure. This can be
quite advantageous computationally, since only χE singular
values are needed for a matrix of size (χEχ

2
B) × (χEχ

2
B)

during the CTMRG. To this end we use the use the Golub-
Kahan-Lanczos (GKL) bidiagonalization algorithm with ad-
ditional orthogonalization for the Krylov vectors. This algo-
rithm is available, e.g., in packages like KRYLOVKIT.JL [83]
or ITERATIVESOLVERS.JL [84] in the JULIA programming
language. We highlight the utility of this type of algorithm for
the calculation of the SVD with the comparison of the compu-
tational time of the different algorithms in the iPEPS use case
in Fig. 16.
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Figure 16. Comparison of the computational time for the calcula-
tion of the first χE singular values/vectors of a matrix of dimension
(χEχ

2
B)× (χEχ

2
B) obtained in a CTMRG procedure with bond di-

mension χB = 6. The conventional SVD (blue), which is truncated
only after calculating the full SVD spectrum is substantially slower
than the iterative GKL methods. The GKL algorithm in the CTMRG
use case was showed comparable performance when constructing the
χEχ

2
B matrix explicitly (orange) or by just implementing its action

of a vector (green). While the GKL algorithm for the case at moder-
ate d and χE constructing the matrix usually is faster, at larger χB

and χE it can become advantages to only implement the action of
the matrix.

2. Stability of the CTMRG routine

One of the basic prerequisite for a stable variational iPEPS
optimization is a robust CTMRG routine fulfilling the conver-
gence requirements discussed in Sec. II B 3. Obviously, there
is the environment bond dimension χE to control the accuracy
of the approximation of the environment. If the environment
bond dimension is chosen too low, the approximation is in-
valid and the CTMRG routine can yield an inaccurate result
for the expectation value. This could further lead to an un-
stable variational update. To check heuristically whether the
refinement parameter χE is chosen sufficiently high, one can
check the singular value spectrum obtained during the projec-
tor calculation as described in Sec. II B 2. As a reliable criteria
for the amount of information loss, we compute the truncation
error εT given by the norm of the discarded singular values of
the normalized spectrum [85]. If the truncation error is larger
than some threshold (e.g., εT > 10−5), one can assume that
the environment bond dimension is chosen too low and has
to be increased. Employing this procedure, the bond dimen-
sion can automatically be increased during the variational op-
timization if necessary. A sufficiently large χE is crutial as
the AD optimization can otherwise exploit the inaccuracies
of the CTMRG procedure, leading to false ground states with
artificially low energy.

3. Prevention of local minima

An ideal iPEPS optimization finds the global energy mini-
mum of the input Hamiltonian within the iPEPS ansatz class
of fixed unit cell and bond dimension. In practice, however,
it is possible – and likely – that the algorithm gets stuck in
local minima. In order to avoid local minima and reach the
global optimum, there are a number of possible tricks. The
naive way is to start several simulations with different random
initial states. This is typically a practicable solution, although
it is not well controllable and requires large computational re-
sources.

An optimization of a system with a tendency for local
minima might still be successful, if a suitable initial state
is provided. One possibility are initial states obtained by
imaginary-time evolution methods (simple update, full up-
date [22, 23, 86]). While this is typically a convenient so-
lution, it is sometimes necessary to perturb the input tensors
with a small amount of noise (e.g., 10−2 in relative amplitude)
to actually avoid local minima. As an alternative, one can in-
put a converged state obtained from energy minimization of a
different TN ansatz, provided there is a suitable mapping be-
tween the different structures. Examples for this technique are
provided for benchmarks on different lattices in Sec. IV.

Finally, the method of perturbing a suitable initial state with
small amount of random noise of course could also be applied
to the result of one optimization run. As suggested in the lit-
erature [87], this could help to escape possible local minima.
Therefore, one could retry this method a few times and keep
the best result of all runs.

4. Recycling of environments

The calculation of the environment tensors with the
CTMRG routine is expensive and time consuming. During
an optimization process one can reuse the environment ten-
sors of the previous optimization step as input for the next.
This is advisable in the advanced stages of the optimization,
in which the gradient is already small. In this scenario the
iPEPS tensors usually only change minutely, such that starting
the CTMRG routine from the environments of the last PEPS
tensor can reduce the number of CTMRG steps required for
convergence substantially.

5. Analysing iPEPS data at finite bond dimensions

Data generated with the variational iPEPS setup inevitably
carries finite iPEPS bond dimension χB (or even finite envi-
ronment bond dimension χE) effects. Several schemes are
available to utilize the correlation length of the optimal ten-
sors at a certain value of χB to extrapolate the values of ob-
servables [88–90]. Additionally, a extrapolation scheme using
data of an optimized iPEPS state at finite χB and finite but
suboptimal χE has been proposed and shown useful [91].
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6. Degenerate singular values

Although very rare, a degenerate singular value spectrum in
the calculation of the projectors can be an obstacle. The gradi-
ent of the SVD becomes ill-defined in this case, due to terms
Fi,j = 1/(s2j − s2i ) in the derivative [45], where si are the sin-
gular values. Naturally, it would be desirable to remove the
degeneracy by constraining the system to the correct physical
symmetry, thereby grouping the degenerate singular values to
common multiplets of the underlying symmetry group. If this
is not possible or the degeneracies appear independently of
a symmetry (“accidental” degeneracy), workarounds have to
be used. One possibility is to add a small amount of noise
in the form of a diagonal matrix XX−1 on the CTMRG en-
vironment links, with the elements of X drawn from a tiny
interval [1 − ε, 1 + ε]. This can space out the singular value
spectrum and stabilize the SVD derivative [92]. Recently an
alternative procedure to eliminate divergences in the deriva-
tive of the SVD with degenerate spectrum has been proposed
in Ref. [64]. Here, for the case of a rotationally invariant
CTMRG, the divergent term is canceled out by a particular
gauge fixing of the environment tensors.

III. EXTENSION TO OTHER LATTICES

The directional CTMRG routine on the square lattice is
very convenient for its orthogonal lattice vectors and defini-
tion of the effective environments. It is therefore natural to
exploit the implemented routines for different kind of lattices
that can be mapped back to the square lattice. This can typi-
cally be achieved by a suitable coarse-graining, in which a col-
lection of lattice sites on the original lattice is mapped into an
effective site on the square lattice. Energy expectation values
can then be directly evaluated in the coarse-grained picture as
well. This is even advantageous for the AD optimization pro-
cedure, since the energy can often be computed with a smaller
number of individual terms. In this section we will present
the mapping for four types of lattices frequently found in con-
densed matter systems – the honeycomb, Kagome, square-
Kagome and triangular lattice. Naturally, the framework can
be extended by other suitable two-dimensional lattices, such
as dice, square-octagon, maple-leaf and others. As an alter-
native to the coarse-graining approach, CTMRG methods that
directly operate on the original lattice structures can also be
defined [46, 93].

A. Honeycomb lattice

The honeycomb, hexagonal or brick-wall lattice is of broad
interest in material science and often appears in the context
of quantum many-body systems. For instance, the Kitaev
honeycomb model is a paradigmatic example hosting differ-
ent kinds of phases supporting different types of anyons, both
Abelian and non-Abelian [94]. We will now describe the gen-
eral technical framework to simulate honeycomb lattices with
the backbone CTMRG procedure described in Sec. II B. To

Figure 17. Honeycomb and topologically equivalent brick-wall lat-
tice.

this end we consider an elementary unit cell of the honey-
comb lattice. Here we choose to define it along so-called x-
links for reasons that become clear soon. Alternatively and
equivalently, it could as well be defined along y- or z-links.
As an example with eight different tensors on the honeycomb
lattice, corresponding to four elementary unit cells is shown
in Fig. 18. Coarse-graining the two lattice sites along x-links
of the honeycomb lattice directly results in a square lattice,
as shown in Fig. 19. Here, the (mapped) unit cell has size
(Lx, Ly) = (2, 2) with an arrangement as in Eq. (3) and
Fig. 1. The green color is used to highlight the coarse-graining
along x-links. In contrast to the regular square lattice, each
coarse-grained tensor has two physical indices that can be re-
shaped to a single, combined index before feeding it into the
CTMRG procedure. A trivial unit cell on the square lattice,
consisting of only a single-site tensor, results in two different
tensors on the honeycomb lattice.

The CTMRG routine can then be run as described above,
just with a larger physical dimension. This does not change
anything in the contractions, it is just computationally more
expensive. Expectation values can now be evaluated accu-
rately using the CTMRG environment tensors. Assuming
nearest-neighbour terms again, expectation values along x-
links can be computed by a single-site TN, while y- and z-
bonds remain two-site TNs similarly to Fig. 11.

B. Kagome lattice

Another important and often encountered lattice in con-
densed matter physics is the Kagome lattice. It is of special
interest due to its corner-sharing triangles, which lead a strong
geometric frustration for anti-ferromagnetic models. Using a
simple mapping of the Kagome lattice to a square lattice, we
can directly incorporate it into our variational PEPS library.

AL CLCR AR CR

BL DL BLBR DR

x-link

y-link

z-link

Figure 18. iPEPS ansatz on the honeycomb lattice with four el-
ementary unit cells, resulting in eight different lattice sites. x-,
y- and z-links denote the three types of inequivalent links in the
lattice. Coarse-graining this state to a square lattice results in a
(Lx, Ly) = (2, 2) configuration, with an arrangement as in Eq. (3) /
Fig. 1.
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Figure 19. Using a mapping the brick-wall lattice is transformed to
the square lattice. The green color of the tensors is just to highlight
the coarse-graining along x-links, while y- and z- links remain in the
network.

The Kagome lattice is shown in Fig. 20. Naturally, we can
define a unit cell of tensors that is repeated periodically over
the whole two-dimensional lattice. In our setting we consider
an upward triangle on the Kagome lattice as an elementary
unit cell, highlighted by the gray dotted area in Fig. 20. By
choosing a coarse-graining, we can represent the three lattice
sites in the unit cell by a single iPEPS tensor, which con-
nects to its neighbours by four virtual indices. This direct
mapping is shown in Fig. 21. Nearest-neighbour links in the
Kagome lattice get mapped to nearest-neighbour or second-
nearest-neighbour links in the square lattice. Every iPEPS site
on the square lattice has a physical dimension of p3. As an
alternative mapping, which results in the same coarse-grained
TN structure, we move from the Kagome lattice to its dual, the
honeycomb lattice. Here the spins live on the links instead of
the vertices. The honeycomb mapping presented in Sec. III A
is therefore not directly applicable and additional simplex ten-
sors are necessary to connect the lattices sites. This TN struc-
ture is shown in Fig. 22, which is commonly known as the in-
finite projected entangled simplex state (iPESS) [95]. Due to
this particular mapping, three Kagome lattice sites (along with
two simplex tensors) are coarse-grained into a single iPEPS

Figure 20. Regular Kagome lattice with corner-sharing triangles and
an elementary unit cell consisting of three lattice sites.

x

y

Figure 21. Regular Kagome lattice mapped to a square lattice by
coarse-graining of the three spins in each unit cell.

x

y

Figure 22. Honeycomb lattice (dual to the Kagome lattice) with
spins residing on the lattice links and additional simplex tensors on
the lattice sites. Unit cells are highlighted by the gray dotted areas.
Upon coarse-graining of the unit cells, the dual honeycomb lattice is
mapped to the regular square lattice. Physical indices of the corre-
sponding TN states are not shown.

site on the square lattice. While the mappings in Fig. 21 and
Fig. 22 result in the same square lattice TN, they differ in
the number of variational parameters in the ansatz. In the di-
rect iPEPS ansatz, every unit cell tensor has p3χ4

B parameters,
while there are only (3pχ2

B + 2χ3
B) parameters for the iPESS

ansatz. Moreover, quantum correlations between lattice sites
are exactly captured within the coarse-grained cluster for the
iPEPS, whereas they are limited by the bulk bond dimension
for the iPESS. In the ladder case, however, there is no bias
between lattice sites within one cluster and sites belonging to
different clusters. The nearest neighbor interactions on the
Kagome lattice are mapped to on-site, nearest neighbor and
next-nearest neighbor interactions on the square lattice. As
a concrete mapping example which has particular use in the
study of the regular Heisenberg model in a magnetic field, we
consider the iPEPS configuration

L =

A B C
B C A
C A B

 (19)

on the square lattice. This configuration results in the Kagome
lattice structure shown in Fig. 23.

x

y

Figure 23. Kagome lattice structure corresponding to a square lattice
unit cell according to Eq. (19).
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Figure 24. Square-Kagome lattice. Similarly to the regular Kagome
lattice, it features corner-sharing triangles. The elementary unit cell
consists of six sites, as shown in Fig. 25.

x

y

Figure 25. Regular square-Kagome lattice mapped to a square lattice
by coarse-graining the six spins in each elementary unit cell.

C. Square-Kagome lattice

As a third lattice that has gained a lot of interest in re-
cent time is the square-Kagome lattice. Similar to the reg-
ular Kagome lattice it features corner-sharing triangles and
it is expected to host exotic quantum phases due to the ge-
ometric frustration for antiferromagnetic spin models. The
square-Kagome lattice structure is shown in Fig. 24. Natu-
rally, a coarse-graining of the six spins in the elementary unit
cell can be used, which directly maps the square-Kagome lat-
tice to a square lattice as depicted in Fig. 25. Following the
same construction as for the regular Kagome lattice, we can
generalize the iPESS ansatz to the dual of the square-Kagome
lattice, the so-called (4, 82) Archimedean lattice. This results
in an ansatz with four simplex tensors and six lattice site ten-
sors per elementary unit cell, as illustrated in Fig. 26. Count-
ing the number of variational parameters in both TN ansätze,
we find a drastic reduction in the iPESS ansatz, again. Here
the iPEPS has p6χ4

B parameters, while the iPESS only has
(6pχ2

B + 4χ3
B) parameters for each tensor in the unit cell.

In Table I, we reinforce the difference for usual iPEPS bond
dimensions, which has a strong influence on the expressiv-
ity and optimization of the different TN structures. As in the
case of the Kagome lattice, the first coarse-graining captures
quantum correlations within the cluster exactly. While this
is not the case for the iPESS mapping, it does not introduce
a bias for the different lattice sites within and across clus-

x

y

Figure 26. Square-octagon lattice (dual to the square-Kagome lat-
tice) with spins residing on the lattice links and additional simplex
tensors on the lattice sites. Unit cells are highlighted by the gray dot-
ted areas. Upon coarse-graining of the unit cells, the square-octagon
lattice is mapped to the regular square lattice. Physical indices of the
corresponding TN states are not shown.

ters. Both mappings result in a large physical bond dimen-

χB p6χ4
B (6pχ2

B + 4χ3
B) ratio

2 1024 80 12.8
3 5184 216 25.0
4 16384 448 36.6
5 40000 800 50.0
6 82944 1296 64.0
7 153664 1960 78.4
8 262144 2816 93.1

Table I. Number of variational parameters (per elementary unit cell)
in the iPEPS and iPESS TN ansatz of the square-Kagome lattice for
p = 2, assuming real tensor elements.

sion of p6, with p the Hilbert space dimension of the orig-
inal degrees of freedom (e.g., p = 2 for a spin-1/2). This
makes especially the CTMRG routine computationally expen-
sive. As an example we consider a two-site checkerboard pat-
tern ((Lx, Ly) = (2, 2) with only two different tensors) on the
square lattice, given by

L =

(
A B
B A

)
. (20)

This results in a square-Kagome state with twelve different
lattice sites, as shown in Fig. 27.

Assuming nearest-neighbour interactions in the Hamilto-
nian, the ground state energy can be computed by single-site
as well as horizontal and vertical two-site expectation values.

D. Triangular lattice

The triangular lattice, shown in Fig. 28 is another two-
dimensional lattice variant that appears frequently in con-
densed matter systems. Due to its large connectivity to six
nearest neighbours, it is a typical playground for frustrated
systems, hosting a variety of different quantum phases. As
a consequence of this, the large connectivity makes it more
challenging for numerical simulations. The triangular lattice
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x

y

Figure 27. Square-Kagome lattice structure for a square lattice unit
cell according to Eq. (20). The ansatz has twelve different lattice
sites with two-site translation invariance in both x- and y-direction.

Figure 28. Regular triangular lattice with a connectivity of six, i.e.,
every lattice site is connected to six nearest neighbours.

can be directly interpreted as a square lattice with additional
diagonal interactions. The entanglement between diagonal
sites is then mediated by the regular virtual links in the square
lattice tensor network. Nearest-neighbour interactions on the
triangular lattice are again mapped to nearest-neighbour and
next-to-nearest-neighbour interaction on the coarse-grained
square lattice.

x

y

Figure 29. iPESS ansatz for the triangular lattice consisting of only
two tensors per triangular lattice site. When one lattice site and one
simplex tensor are combined, the triangular lattice is directly mapped
onto a regular square lattice.

An alternative TN representation of the triangular lattice
can be constructed using again the iPESS ansatz. In contrast
to the iPESS for Kagome and square-Kagome lattices, here
the lattice sites have three virtual indices, too. The mapping
is visualized in Fig. 29 with the iPESS ansatz being a honey-
comb lattice. Similarly to the first interpretation, this iPESS
honeycomb ansatz can be mapped to a regular square lattice
with additional next-to-nearest-neighbour interactions. While

the first approach as pχ4
B parameters per unit cell tensor, the

iPESS mapping only has (pχ3
B+χ

3
B) coefficients. Finally, and

as an alternative to the previous mappings, a reverse transfor-
mation could be used, which involves a fine-graining of the
lattice sites [96].

E. Comments about different structures

In general there is no unique way to map a given lat-
tice structure to the square lattice. The different approaches
mainly differ in the number of variational parameters. While
the energy for an ansatz with fewer parameters can be opti-
mized with fewer resources, an ansatz with a higher varia-
tional freedom might be able to capture the physical system
more accurately. At the same time the optimization becomes
more complex due to the need to calculate bigger gradients.
In practice, choosing the right ansatz depends on the spatial
structures of the quantum state, the amount of entanglement
present in the system and the required accuracy. One strat-
egy that works well is a step-wise optimization. In the first
step one can choose, e.g., an iPESS ansatz with fewer varia-
tional parameters. Once an optimized wave function has been
found, the iPESS ansatz is coarse-grained into a TN with a
higher number of variational parameters, e.g., a direct iPEPS
ansatz. A second optimization of this more expressive ansatz
might then result in lower ground state energies. In the fol-
lowing sections we will present benchmarks, where several of
the lowest data points have been obtained with such a two-step
procedure.

IV. BENCHMARKS AND DISCUSSIONS

In this section, we will present benchmarks for a chal-
lenging and paradigmatic models on the different currently
supported lattices. Due to its prominence and availability
of benchmarks to different numerical techniques, we gener-
ally focus on the spin-1/2 Heisenberg anti-ferromagnet. The
Heisenberg Hamiltonian is given by

H = J
∑
⟨i,j⟩

S⃗i · S⃗j , (21)

where ⟨i, j⟩ denotes nearest neighbours and S⃗i are the
spin-1/2 operators on the lattice sites. We consider isotropic
anti-ferromagnetic interactions at J = 1.0 throughout the
benchmark section. Variational energies obtained with our
implementation are denoted by “variational update” (VU).
Where applicable, we include different TN variants (e.g.,
iPESS and iPEPS) in the numerical benchmarks, to high-
light the effect of different numbers of variational parame-
ters. Imaginary time-evolution in the form of a “simple up-
date” (SU) on the different lattice structures can provide ini-
tial states for the variational update as discussed in Sec. II G 3.
Whenever we use initial tensors from the SU, we add a small
amount of random noise to the input tensors prior to the varia-
tional update, in order to circumvent possible local minima in
the imaginary time evolution.
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In the plots of this section we include the energies calcu-
lated by the mean-field environment (MF) used in the simple
update. Using this approximation much larger iPEPS bond
dimensions are computationally feasable but we would like to
point out that this method is not guaranteed to be variational
in the sense that the energy is an upper bound to the ground
state energy. Thus, it is only sensible to rigorously compare
results for which energy expectation values are computed by
CTMRG. We include the non-variational MF energies for
higher iPEPS bond dimensions for a rough comparison.

We add for each benchmark a table with the comparison
of the results obtained by the simple update simulations and
the best result throughout all variational updates for a fixed
iPEPS bond dimension χB . Both expecation values have been
calculated by CTMRG.

A. Comments on lower bounds in variational principles

As a further conceptual point, it is important to stress that
variational principles can be benchmarked as well by resorting
to lower bounds to ground state energies. Such lower bounds
can be efficiently computed and hold in the thermodynamic
limit up to a small constant error in the energy density [97]. If
the Hamiltonian H is seen as being written as a sum of terms

H =
∑
j

hj (22)

where each hj is a patch that contains as many unit cells that
can be accommodated in an exact diagonalization, then

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ ≥ E0 ∀ |ψ⟩ , E0 ≥ λmin(hj), (23)

where λmin(hj) denotes the smallest eigenvalue of the patch
hj with open boundary conditions. In this way, the quality
of the variational principle giving rise to upper bounds to the
ground state energy can be certified by lower bounds.

B. Honeycomb lattice

For the simulations of the Heisenberg on the honeycomb
lattice we choose a single-site unit cell, consisting of only
two different tensors on the honeycomb lattice. A mapping to
the square lattice yields a fully translationally invariant iPEPS
with a local Hilbert space dimension of p2 = 4. We opti-
mize the ground states on both TN structures with 2pχ3

B and
p2χ4

B numbers of variational parameters, respectively (assum-
ing real tensor coefficients). The model is known to be in a
gapless Néel ordered phase [100–102]. Therefore, high en-
vironment bond dimensions χE are required to capture the
large correlation lengths of the critical state. Ground state en-
ergies are reported in Fig. 30. The critical property of the
ground state is already nice reflected in the significant dif-
ference between simple update MF and CTMRG expectation
values. The CTMRG environments treat quantum correlations
much more carefully, which leads to improved energies for the
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SU CTMRG energies
VU Honeycomb-PEPS energies
VU coarse-grained PEPS energies
Variational iPEPS value from [98]
Coupled cluster value from [99]

χB E0 (SU) E0 (VU)
2 -0.53533 -0.537600
3 -0.53969 -0.541145
4 -0.54346 -0.544159
5 -0.54398 -0.544474
6 -0.54409 -0.544536
7 -0.54412 -0.544543

Figure 30. Benchmarking results for the isotropic spin-1/2 Heisen-
berg model on the honeycomb lattice. For comparison we include the
variational result obtained by an iPEPS study in Ref. [98]. Addition-
ally, the result calculated by the coupled cluster method in Ref. [99]
is shown, which is due to extrapolation not variational either.

infinite TN state. The VU provides lower energies than the SU
with CTMRG and our results using the VU are compatible
with previous results using variational iPEPS with a different
CTMRG procedure [98] as well as extrapolated and thus non-
variational results from the coupled cluster method [99].

C. Kagome lattice

The Heisenberg model on the Kagome lattice can be con-
sidered one of the most enigmatic and well studied models
in the field of frustrated magnetism [104]. While a spin liq-
uid ground state is well established, the actual type of ground
state is still under debate with different methods supporting
different states (e.g., Z2 gapped spin liquid [105, 106], U(1)
gapless spin liquid [103, 107]).

Since the ground state is known to be a spin liquid state,
that does not form any magnetic ordering down to zero tem-
perature while preserving lattice translation and rotation sym-
metry, we use the smallest unit cells of only three sites
in our simulations. The SU then works on the three-site
iPESS ansatz. The VU is performed both on the honeycomb
iPESS and on a coarse-grained, fully translationally invariant
iPEPS state. The number of variational parameters are hence
(3pχ2

B +2χ3
B) for the iPESS and p3χ4

B for the iPEPS. Again,
the iPEPS state is more expressive and produces lower varia-
tional energies, that follow a smoother convergence with bond
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χB E0 (SU) E0 (VU)
2 -0.38620 -0.40454
3 -0.41786 -0.42688
4 -0.42323 -0.43038
5 -0.42866 -0.43286
6 -0.43188 -0.43451
7 -0.43313 -0.43527
8 -0.43391 -0.43552

Figure 31. Benchmarking results for the isotropic spin-1/2 Heisen-
berg model on the Kagome lattice. For comparision, we show the
outcome obtained by extrapolated iPESS results in Ref. [103], which,
to be strict, is not variational as the authors noted. Additionally, we
include the result computed by exact diagionalization in Ref. [104].

dimension χB , see Fig. 31. The ED energy provides a lower-
bound for the energy, as argued in Sec. IV A. Our energies are
compatible with other state-of-the-art numerical methods as
the extrapolated iPESS result from Ref. [103], but we would
like to point out that the authors noted that their results are not
variational and hence the comparison is slightly tainted. Our
result showcases the purpose of variational iPEPS optimiza-
tion for highly frustrated systems to obtain a real upper bound
to the ground state energy.

D. Square-Kagome lattice

As a third benchmark model, we simulate the Heisenberg
model on the square-Kagome lattice, a lattice that has gained
attention as a class of promising quantum spin liquid materi-
als [110]. It consists of corner-sharing triangles, that generate
a high geometric frustration similar to the Kagome lattice. Its
ground state has been found to be non-magnetic, however the
existing subtle competition between different types of valence
bond crystal (VBC) states has only been resolved recently
in a TN study [109], in favor of a VBC with loop-six reso-
nances. Simulations of the model are performed for a twelve-
site checkerboard unit cell, as shown in Fig. 27. Results for the
ground state energy are presented in Fig. 32. Due to the VBC
ground state with a small correlation length and an energy gap
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χB E0 (SU) E0 (VU)
2 -0.42802 -0.43364
3 -0.43511 -0.43738
4 -0.43924 -0.43988
5 -0.43967 -0.44017
6 -0.44006 -0.44039
7 -0.44038 -0.44060

Figure 32. Benchmarking results for the isotropic spin-1/2 Heisen-
berg model on the square-Kagome lattice. For comparison, we in-
clude the variational Monte-Carlo results presented in Ref. [108].
Additionally, we show the extrapolated iPEPS result obtained in
Ref. [109], which, to be strict, is not variational. We stress that the
mean-field energies also are not variational as discussed in Sec. IV.

in the model, the simple update MF and CTMRG energies
are nearly identical. The variational update is performed on a
so-called semi-PEPS structure as described in Ref. [109] and
also on a coarse-grained iPEPS TN as introduced in Fig. 25,
a structure that is unfeasible for SU simulations due to the
large imaginary time evolution operators. Although the VU
cannot significantly improve the ground state energy for the
semi-PEPS ansatz, the VU on the full coarse-grained iPEPS
structure improves the energies at the same bond dimension
χB . This is connected to the larger expressivity of the coarse-
grained structure.

Our results outperform variational Monte-Carlo simula-
tions in Ref. [108] and are comparable to state-of-the-art
iPEPS results in Ref. [109]. We emphasize that the latter re-
sult is in the extrapolation, strictly speaking, not variational so
that a comparison is slightly tainted.

E. Triangular lattice

As a last benchmark model we consider the Heisenberg
model on the triangular lattice. Due to its connectivity of six,
the triangular lattice exhibits a large amount of geometric frus-
tration. The ground state is believed to be a three-sublattice
120◦ magnetically ordered state [112, 113]. The ground state
of the Heisenberg model on the triangular lattice is computed
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5 -0.54756 -0.54990
6 -0.54957 -0.55147

Figure 33. Benchmarking results for the isotropic spin-1/2 Heisen-
berg model on the triangular lattice with an ABC − BCA− CAB
3 × 3 unit cell structure. For comparision, we include the ex-
trapolated, thus non-variational coupled cluster results presented in
Ref. [99]. Additionally, we show the extrapolated iPESS result ob-
tained in Ref. [111], which, to be strict, is not variational.

using a three-sublattice unit cell arranged in an ABC-BCA-
CAB structure. The simple update data has been produced by
an iPESS ansatz with the simplices sitting in the upward tri-
angles (see Fig. 29). The VU is performed in two steps, using
the converged iPESS state as input for second coarse-grained
optimization run.

The results of our benchmark are shown in Fig. 33. In the
case of the triangular lattice it generally helps to add some
noise on the SU input state to reach better ground states and
energies. We compare against a recent iPESS study based on
the simple update [111], that predicts a zero-temperature mag-
netisation consistent with previous Monte Carlo studies [114]
and additionally against a result obtained by the extrapolated,
thus non-variational coupled cluster method [99]. We would
like to point out that the iPESS result was extrapolated and is,
strictly speaking, not variational.

F. Comments on excited states

In this work, we have primarily focused on providing a
comprehensive discussion of the use of AD for the study of
ground state properties of interacting quantum lattice models.
It should go without saying, however, that excited states can
be included in a straightforward manner. The study of excited
states has first been initiated in the realm of matrix product
states [115], but has later been generalized to iPEPS [116–

118], allowing for constructing variational ansatzes for ele-
mentary excitations on PEPS ground states that facilitate com-
puting gaps, dispersion relations, and spectral weights in the
thermodynamic limit.

More recently, automatic differentiation has also found its
way into the optimisation of excited states [42]. The cen-
tral idea is to construct the excited state with momentum
k⃗ = (kx, ky) as a superposition of the ground state vector, per-
turbed by a single tensor B at position x⃗ = (x, y) and appro-
priate phase factors according to

|ϕ(B)k⃗⟩ =
∑
x⃗

eik⃗x⃗ |ϕ(B)x⃗⟩ . (24)

The coefficients of tensor B are then determined by energy
minimisation of the excited state, for which AD can again be
used [42, 119]. In contrast to the regular ground state opti-
misation, here the CTMRG routine must be extended to in-
clude the appropriate phase factors in the directional absorp-
tion. Moreover, instead of only eight environment tensors per
iPEPS tensor in the unit cell, the action ofB,B† and the prod-
uct of B and B† has to be tracked in three additional sets of
eight tensors.

The excited state approach can be directly extended to dif-
ferent lattice geometries. To this end, we have to generalize
the absorption of iPEPS tensors (growing the CTMRG trans-
fer tensors T1, T2, T3 and T4) to include the basis of the lattice,
respecting relative phase factors of the basis vectors. Depend-
ing on the actual structure of the basis, a separate tensor Bn is
chosen as a perturbation for each of the basis site. Our imple-
mentation already contains the main building blocks of a ro-
bust and flexible CTMRG routine, calculation of gradients us-
ing AD at the fixed-point and minimisation of an energy cost
function. The extension of the framework to include excited
states is therefore natural. It is planned as a future feature.

G. Comments on fermionic systems

As a final comment we stress that for clarity and to be con-
cise, we have focused in our presentation on quantum spin
models. It should be clear, however, that the machinery de-
veloped here readily carries over to the study of interact-
ing fermionic systems, with little modifications. Naively, one
might think that the simulation of two-dimensional fermionic
models is marred by substantial overheads that emerge when
invoking a spin-to-fermion mapping. This is, however, not
the case, and the respective book-keeping of the signs can
be done with negligible overhead [120, 121]. On the for-
mal level, such tensor networks involve a particular choice of
what is called a spin structure [122, 123]. Practically speak-
ing, one can modify much of the bosonic code for PEPS to
the fermionic setting, readily incorporating the relevant signs
to capture interacting fermions, in what is called fermionic
PEPS [120, 124, 125]. This insight is important as some of
the most compelling test cases of interacting quantum many-
body systems are of a fermionic nature.
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V. CONCLUSION AND PROSPECTS

In this review we present a comprehensive introduction into
automatic differentiation in the context of two-dimensional
tensor networks, leading to the recently emerging variational
iPEPS framework for ground state optimization. We pro-
vide implementation details and discuss obstacles that arise
in practice, as well as techniques to mitigate these. At the
same time, we coherently present ideas that have to date only
been mentioned in a fragmented fashion in the literature. We
hope that the present work can serve as a useful reference and
review in the variational study of 2d tensor networks.

This work accompanies the variational iPEPS library
variPEPS, a comprehensive and versatile code base for op-
timizing iPEPS in a general setting. We expect this library
to be a helpful tool for performing state-of-the-art tensor net-
work analyses for a wide range of physical models, featuring
multiple two-dimensional lattices. The library is designed to
be extended with additional simulation techniques based on
automatic differentiation, such as excited states and structure
factors.

The variPEPS library is publicly available in both a Julia
and a Python version on GitHub [56], with stable references
in the corresponding Zenodo repositories [57, 58].

A. CO2-emissions table

For the sake of completeness and for promoting carbon
footprint awareness, we display an estimated lower bound of
the carbon emissions generated during the course of this work
in Table II.

Numerical simulations
Total Kernel Hours [h] ≥ 255276
Thermal Design Power Per Kernel [W] 12
Total Energy Consumption Simulations [kWh] ≥ 3063
Average Emission Of CO2 In Germany [kg/kWh] 0.441
Total CO2-Emission For Numerical Simulations [kg] ≥ 1351
Were The Emissions Offset? Yes
Air Travel
Total CO2-Emission For Air Travel [kg] 924
Were The Emissions Offset? Yes
Total CO2-Emission [kg] ≥ 2275

Table II. Summary of the estimated lower bound of the carbon cost
generated during the development of this work. The estimations
have been calculated using the examples of the Scientific CO2nduct
project [126] and include the costs of the numerical calculations and
air travel for collaborations.
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APPENDIX: BACKGROUND ON AUTOMATIC
DIFFERENTIATION

Appendix A: Adjoint functions and variables

In the literature it is common to use so called adjoint func-
tions and adjoint variables when using backwards-mode AD.
These adjoint functions map the adjoint variables onto each
other, as in Eq. (15) when building up the gradient. In this
section, we will briefly introduce the basic notation of ad-
joint functions and variables following Ref. [133]. Explicit
constructions of adjoint functions, which are vector-Jacobian-
products in the practical implementation, for a large number
of useful operations including those for the iPEPS use-case
can be found in Refs. [133–135].

As an example throughout this section, we consider the
function h, composed out of two primitive functions h1 and
h2 which are concatenated as

h = h2 ◦ h1,
h1 :Mn×n ×Mn×n −→Mn×n,

h2 :Mn×n −→ R,
(A1)

with variables (A,B) ∈ Mn×n × Mn×n, C ∈ Mn×n and
x ∈ R. We start by examining the differential of the output
variable x

dx =
∂h2
∂C

dC =:
∑
i,j

C̄i,jdCi,j = Tr(C̄TdC). (A2)

In the first equation, we have suppressed the sum over the
indices ofC. Eq. (A2) defines the adjoint variable C̄ ofC. We
see that the adjoint variable C̄ is the derivative of the scalar
output of the function h2 w.r.t. C. Thus, for the case of a
scalar output the variable C and the adjoint variable C̄ have
the same dimension. Now, in order to get the gradient ∇h
we are interested in the derivative of the output w.r.t. the input
variables (A,B). To this end we consider the differential of
the intermediate variable

dC =
∂h1
∂A

dA+
∂h1
∂B

dB. (A3)

Inserting this into Eq. (A2), we obtain

dx = Tr

(
C̄T ∂h1

∂A︸ ︷︷ ︸
ĀT

dA

)
+Tr

(
C̄T ∂h1

∂B︸ ︷︷ ︸
B̄T

dB

)
. (A4)

Here we have already implicitly used the adjoint function h̄1
that maps the adjoint variable C̄ to the adjoint variables Ā and
B̄ according to

h̄1 : C̄T 7−→ (ĀT, B̄T)T =

(
C̄T ∂h1

∂A
, C̄T ∂h1

∂B

)T

. (A5)

Given the fact that we are dealing with a scalar output variable
x, we recall that C̄ can be considered a vector, such that the
adjoint function is a vector-Jacobian-product (vJP). We can

see that the this maping of the adjoint variables with adjoint
functions eventually produces the gradient

∇h =
(
Ā, B̄

)
=

(
∂h1
∂A

C̄,
∂h1
∂B

C̄

)
=

(
∂h1
∂A

∂h2
∂C

,
∂h1
∂B

∂h2
∂C

)
.

(A6)

Appendix B: Automatic differentiation for complex variables

Some extra attention has to be given to the case in which
the primitive functions are complex valued. This is because
not all functions one might want to consider are complex-
differentiable (holomorphic) and as such the derivative de-
pends on the direction we move in the complex plane when
taking the limit for the derivative. In such a case one needs
to resort to the calculus of two sets of independent real vari-
ables. For a generic function f : C −→ C this can be done by
treating x and y in z = x+ iy as independent variables or al-
ternatively, by choosing z and z∗ and making use of Wirtinger
calculus. However we should also note that in the iPEPS use
case we deal with a function E : Cn −→ R, which removes the
necessity to think about holomorphism.

Appendix C: The implicit function theorem and its use at the
CTMRG fixed-point

In this section, we are going to present an alternative ap-
proach to taking the derivative of the energy function by uti-
lizing the fixed point of the CTMRG procedure. To this end,
we can make use of the implicit function theorem [136] to cal-
culate the derivative of the full fixed-point routine. Our dis-
cussion will follow the description of Refs. [137, 138]. Dif-
ferentiating Eq. (16) on both sides we end up with

∂Ae
∗(A) = ∂Ac(A, e

∗) + ∂e∗c(A, e
∗)∂Ae

∗(A). (C1)

Introducing the shorthand writing for the Jacobians
L = ∂Ac(A, e

∗(A)) and K = ∂e∗c(A, e
∗(A)) and re-

arranging the equation we find

∂Ae
∗(A) =(L+K∂Ae

∗(A))

=

( ∞∑
n=0

K

)
L = (1−K)−1L.

(C2)

As discussed in Appendix A, we aim at finding the adjoint
function of the CTMRG iteration at the fixed point, which
is a vector-Jacobian product (vJP) vT∂Ae

∗(A). Inserting
Eq. (C2) yields

vT∂e∗(A) = vT(1−K)−1L = wTL, (C3)

where we have introduced wT := vT(1−K)−1. The second
equality in the equation above can be rearranged into another
fixed-point equation

wT = vT +wTK. (C4)
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Here wTK is another vJP but this time only dependent of the
derivative of a single absorption step evaluated at the fixed-
point of the CTMRG routine. Solving Eq. (C4) we can find
wT to calculate the vJP of the CTMRG routine from Eq. (C3).
In the end we reduced the naive effort of unrolling the fixed-
point iterations to just calculate the derivative of a single
CTMRG iteration and another fixed-point iteration which both
are much less memory intensive.

Appendix D: Automatic differentiation in the language of
differential geometry

In order to unify the different frameworks for thinking
about forward- and backwards-mode AD, we will briefly in-
troduce a mathematical notation for AD. It also serves to
give some more precise meaning to the terms “push-forward”
and “pullback”, that are sometimes used in forward- and
backwards-mode AD discussions, respectively. For this we
first recall the general concept of a push-forward and a pull-
back for the simple case of functions and distributions. Imag-
ine two functions f : M −→ N and g : N −→ R. The pullback
of g along f allows us to construct a function f∗g : M −→ R
for which the domain of the function g is “pulled back” to the
domain of the function f . This is done by a simple concate-
nation of f and g

f∗g( m︸︷︷︸
∈M

) = (g ◦ f)(m) = g(f(m)). (D1)

This construction can now be used to define a push-forward on
the dual objects of the functions under integration. These dual
objects are distributions. With a distribution, we can integrate
a function ∫

M

• µ : F(M) −→ R,

f 7−→
∫
M

fµ,

(D2)

where F(M) are just the functions on M and µ is the distri-
bution. Given such a distribution on M we can now integrate
functions onM . The push-forward f∗µ of µ allows us to inte-
grate functions onN by defining a distribution that is “pushed
forward” to N . This works as∫

N

h(f∗µ) =:

∫
M

(f∗h)µ, (D3)

where h is a function on N .
This type of construction for the pullback and push-forward

generalizes to many mathematical objects that have a pair-
ing dual. The relevant mathematical objects for AD are the
derivative ∂/∂xi and its pairing dual, the differential dxi.

It might be useful, beyond the conceptual clarity of this
notation, to look at AD in this way because one can easily
imagine situations where the intermediate data of a function
is restricted by constraints such that the “data-space” becomes
geometrically non-trivial. An example could be vectors in Rn

restricted to unit length or matrices in Mn,m restricted to be

unitary. We note that an optimisation in these situations re-
quires some additional concepts, like finding a path on the
given space from a tangent vector. This requires some extra
care and is not discussed here.

We now introduce the mathematical notation that we need
in order to talk about AD in this language. We will not be
particularly rigorous in this endeavour and leave out all details
that are not explicitly needed. We start with a manifold M on
which we can consider points p ∈ M , as well as functions
f : M −→ R. For each point p ∈ M we can define a vector
space TpM (call it the tangent-space at p) of tangent-vectors
at that point. The elements in TpM act like derivatives on
functions on M

e.g.:
∂

∂xi
= ei ∈ TpM,

∂

∂xi
(f) =

∂f

∂xi
.

Here we have assumed that we have equipped the manifoldM
with coordinates via a chart ϕ :M −→ Rm around the point p,
where m = dim(M). Our tangent-space TpM has dimension
m and we can choose a canonical basis{

∂

∂xi
, . . . ,

∂

∂xm

}
= {e1, . . . , em}.

One further defines the dual vector space T ∗
pM of the tan-

gent vector space, called cotangent-space. This cotangent-
space contains the dual vectors to the derivatives ∂

∂xi
. These

cotangent vectors from the cotangent-space are the differen-
tials dxi. The cotangent-space also has dimension m and we
can choose the canonical basis

{dx1, . . . , dxm}.

Obviously, given the canonical basis for the tangent-space
and cotangent-space we can expand arbitrary vectors in these
spaces in the basis. Take v ∈ TpM and df ∈ T ∗

pM we can
expand as

v =
∑
i

vi
∂

∂xi
=
∑
i

viei, (D4)

df =
∑
i

∂f

∂xi
dxi. (D5)

We have a pairing between the derivatives that live in the
tangent-space TpM and the differentials that live in T ∗

pM as

dxj

(
∂

∂xi

)
:=

∂xj
∂xi

= δi,j . (D6)

Note that by this pairing relation we see that tangent and
cotangent vectors are “pairing duals” and we can use an anal-
ogous construction for pullbacks and push-forwards as we did
for functions and distribution above. Since TpM and T ∗

pM
are isomorphic, we can introduce a correspondence transfor-
mation between the canonical basis of the two spaces

•♭ : TpM −→ T ∗
pM, ei 7−→ dxi = e♭i , (D7)

•♯ : T ∗
pM −→ TpM, dxi 7−→ ei = dx♯i . (D8)
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We now have assembled all nessessary tools to formulate what
a “gradient” is in this language. It is given by

∇f := (df)♯, (D9)

which matches the common formula

∇f =

(∑
i

∂f

∂xi
dxi

)♯

=
∑
i

∂f

∂xi
ei

=

(
∂f

∂x1
, . . . ,

∂f

∂xm

)
,

(D10)

where we have taken ei just as the i-th unit vector of TpM .
Now it is easy to construct the pullbacks and push-forwards

in this context analogous to our treatment of functions and
distributions. For this we start from manifolds M and N
with points p ∈ M and q ∈ N , and with the two functions
f :M −→ N and g : N −→ R. We can consider a differential
dg ∈ T ∗

qN which we want to “pull back” along the func-
tion f and associate it with and element of T ∗

f−1(q)M , where
f−1(q) ∈M . We do this with the familiar definition

f∗dg︸ ︷︷ ︸
∈T∗

f−1(q)
M

:= d(g ◦ f) (D11)

which uses a concatenation of f and g just as in the first exam-
ple. For a tangible example consider g = xi to be a coordinate
function. We then get f∗dxi = d(xi ◦ f) = d(fi). As before
the push-forward can be defined via the pullback just as we
had done for functions and distributions. In this case, we start
with a tangent vector ∂

∂xi
in TpM and want to “push it for-

ward” along f into Tf(p)N . This works as

(f∗

(∈TpM︷︸︸︷
∂

∂xi

)
︸ ︷︷ ︸

∈Tf(p)N

)(g) :=
∂

∂xi
(f∗g) =

∂

∂xi
(g ◦ f). (D12)

Now that we are equipped with the pullback and push-forward
of differentials and derivatives we see how the gradient is cal-
culated in the forward- and backward-mode AD. For this we
will go back to our neat example from Sec. II D and slightly
generalize. Say, we would like to take the gradient ∇E
of a function that is composed of three primitive functions

E = f3 ◦ f2 ◦ f1. We say these primitive functions map be-
tween manifolds

E :M1
f17−→M2

f27−→M3
f37−→ R. (D13)

Lets first look at what happens when we build the gradient us-
ing backwards-mode AD. In this case we start with the differ-
ential df3 of the last primary function of E. This differential
lives in T ∗

kM3, where k ∈ M3 is a point in M3. We can now
use the pullback along the functions f2 and then f1 to pull
back this differential to M1

f∗1 (f
∗
2 (df3))

pullback←−−−− f∗2 (df3)
pullback←−−−− df3. (D14)

With the definitions above we see that in this way we construct
the gradient

f∗1 (f
∗
2 (df3)) = f∗1 ((d(f3 ◦ f2))) = d(f3 ◦ f2 ◦ f1) = dE.

(D15)
With our identification between tangent and cotangent vectors
we finalize to∇E = (dE)

♯. If we express the differential that
we start from df3 in coordinates, we straightforwardly obtain
the product of Jacobians as a result for the gradient. This also
establishes the connection to the adjoint functions we talked
about in the previous section and the vector-Jacobian product
as discussed in Sec. II D.

In the case of forward-mode AD we start from a tangent
vector ∂

∂xi
, which lives in TlM1, where l ∈ M1 is a point

in M1. We can now push this tangent vector forward into a
tangent space of M3 with successive push-forwards along f1
followed by f2

∂

∂xi

push-forward−−−−−−−→ f1∗

(
∂

∂xi

)
push-forward−−−−−−−→ f2∗

(
f1∗

(
∂

∂xi

))
.

(D16)
With the definitions for the push-forward we see that the gra-
dient we obtain in this way is given by∑
i

f2∗

(
f1∗

(
∂

∂xi

))
(f3) ei =

∑
i

f1∗

(
∂

∂xi

)
(f3 ◦ f2) ei

=
∑
i

∂

∂xi
(f3 ◦ f2 ◦ f1︸ ︷︷ ︸

=E

) ei

= ∇E.
(D17)
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