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Abstract. The study of elastic surface waves under impedance boundary conditions has become
an intensive field of research due to their potential to model a wide range of problems. However,
even when the secular equation, which provides the speed of the surface wave, can be explicitly
derived, the analysis is limited to specific cases due to its cumbersome final expression. In this work,
we present an alternative method based on linear algebra tools, to deal with the secular equation
for surface waves in an isotropic elastic half-space subjected to non-standard boundary conditions
of impedance type. They are defined by proportional relationships between both the stress and
velocity components at the surface, with complex proportional ratios. Our analysis shows that the
associated secular equation does not vanish in the upper complex half-plane including the real axis.
Interestingly, the full impedance boundary conditions proposed by Godoy et al. [Wave Motion 49
(2012), 585-594] arise as a particular limit case. An approximation technique is introduced, in order
to extend the analysis from the original problem to Godoy’s impedance boundary conditions. As a
result, it is shows that the secular equation with full Godoy’s impedance boundary condition does
not vanish outside the real axis. This is a crucial property for the well-posedness of the boundary
value problem of partial differential equations, and thus crucial for the model to explain surface
wave propagation. Due to the cumbersome secular equation, this property has been verified only for
particular cases of the impedance boundary condition, namely the stress-free boundary condition
(zero impedance) and when either one of the impedance parameter is set to zero (normal and
tangential impedance cases).
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(Mexico).

E-mail address: fabioval@ciencias.unam.mx.
2020 Mathematics Subject Classification. 35Q74, 74B05, 74J20, 74J40, 35L05.
Key words and phrases. Rayleigh waves, impedance boundary conditions, secular equation, hyperbolic systems.

1

ar
X

iv
:2

30
8.

12
40

7v
2 

 [
m

at
h-

ph
] 

 2
7 

M
ar

 2
02

4



1. Introduction

Surface waves and their applications have been a central topic in a wide range of scientific fields,
such as acoustics, the telecommunications industry, material science, and notably in seismology,
due to their potential to explain most of the damage and destruction during an earthquake. The
best known surface waves are Rayleigh waves, which propagates along the free surface of an elastic
medium, with an amplitude that decreases exponentially with the depth. The simplest Rayleigh
wave occurs along the surface of a homogeneous isotropic half-space subjected to the classical
stress-free boundary condition and it was first described by Lord Rayleigh in his seminal work [40]
from 1885. This work was the beginning of a lot of investigations on Rayleigh wave propagation on
general anisotropic elastic half-space, where the stres-free boundary condition constitutes the main
paradigm (see, e.g., [40, 1, 33, 6, 53, 48]).

Recently, there has been an increasing interest in surface wave propagation along elastic solids
subjected to non-standard boundary condition of impedance type, which are defined by linear re-
lations between the unknown function and its derivatives. Although they are commonly used in
electromagnetism [42, 46, 12] and acoustics [4, 58, 57, 37], they also have proven to be effective in
modeling specific problems in linear elasticity. For instance, in the study of surface wave propa-
gation on a half-space coated by a tiny layer on the surface, the impedance boundary conditions
can be used to simulate the effects of the tiny layer without directly considering the layer itself
(see [47, 9, 51, 52, 10]). In seismology, Malischewsky showed the potential of impedance boundary
condition to model seismic wave propagation along discontinuities [27, 29]. They can also be used
to describe interfaces between solids under certain conditions (e.g. [32, 13, 14]). In the mathe-
matical framework of hyperbolic partial differential equations defined on the half-space, impedance
boundary conditions are interesting because, in contrast to the usual stress-free boundary condi-
tion, they might lead a wide range of boundary value problems of hyperbolic partial differential
equations (PDEs), ranging from well-posed problems, for which the existence of a unique solution
is guaranteed, to PDE problems with Hadamard inestabilities, where the existence or uniqueness
of a solution fail to hold. See, for instance, [7, 44, 8, 43] for the linear case and [35, 36, 15] for
application to non-linear problems, and the references therein. In this context, problems involving
surface wave propagation emerge as transition problems. Surface waves propagating in presence of
impedance boundary conditions are clearly of practical as well as theoretical interest.

The central problem in the study of surface waves under non-standard boundary conditions is
determining their existence and uniqueness, better known as the surface wave analysis. For general
anisotropy elastic half-spaces subjected to the standard stress-free boundary condition, the sur-
face wave analysis can be performed by means of several methods such as the polarization vector
method, matrix impedance and the so-called Stroh formalism (see [25, 26, 49, 6] and in the refer-
ences therein). However, as noted by Giang and Vinh [34], some of these methods cannot be directly
extended to the case of impedance boundary conditions. In such cases, the classical approach is em-
ployed in which the existence of a surface wave is guaranteed by the existence of a unique real zero
(in the subsonic range) of the secular equation. This is a non-linear algebraic equation that results
impractical to solve analytically, even for the simplest configuration, namely isotropic solid with
stress-free boundary condition (for an abridged list of references, see [16, 17, 38, 28, 30, 54, 39, 24]).
This real root of the secular equation is precisely the speed of the surface wave.

When general impedance boundary conditions are considered, the analysis of the associated sec-
ular equation may be quite challenging. Malischewsky [27] provided a reduced form of the secular
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equation for Tiersten’s impedance boundary conditions, in terms of impedance parameters depend-
ing on the frequency and the material constants. In order to obtain general results about the
existence of surface waves, Godoy et al. [16] assumed that the impedance parameters are propor-
tional to the frequency (see Equation (3.2)). Under this assumption, the secular equation becomes
independent of the frequency. In other words, the impedance boundary conditions proposed by
Godoy et al. generalize the stress-free boundary condition in the non-dispersive regime. However,
due to the cumbersome secular equation, Godoy et al. [16] restrict themselves to the case of tan-
gential impedance boundary condition (see Equation (3.2) with Z1 ∈ R, Z2 = 0) and prove that
a surface wave is always possible for arbitrary values of the tangential impedance parameter (Z1).
In a further work, via ingenious algebro-analytical manipulations based on Cauchy integrals from
complex analysis, Vinh and Nguyen [55] were able to derive an exact analytical formula for the
phase velocity of the surface wave described by Godoy et al. [16]. These waves are often termed
“Rayleigh waves with impedance boundary conditions”. Recently, Giang and Vinh [34] followed
the same approach to study the case of normal impedance boundary condition (see Equation (3.2)
with Z1 = 0, Z2 ∈ R). The authors found that, in contrast to the tangential case [16], there
exist values of the parameters (Lamé constants and Z2) for which surface waves are not possible.
Conversely, for all parameter values for which the existence and uniqueness of the surface wave is
guaranteed, an exact formula for its velocity was provided. However, as pointed out in [34], the
case of normal impedance boundary condition demanded more technical details compared to its
tangential counterpart when applying the complex function method. This suggest that this method
might be hard to apply to the general case with both tangential and normal impedance parameters
non-zero (Z1, Z2 ∈ R). As far as we know, the existence of surface waves in the general case is
still an open problem. Alternative methods are therefore highly desirable to analyze the secular
equation in more intricate scenarios.

Although in this work the existence of surface waves of Rayleigh type is not stablished, we con-
centrate in another essential feature: the behavior of the secular equation off the real axis in the
complex plane. In the mathematical theory of hyperbolic PDEs, to investigate the well-posedness
property, the linear equations of elastodynamics are frequently written as a first order hyperbolic
system of PDEs, where the boundary conditions of impedance type take the form of linear rela-
tions among the components of the unknown vector. In this framework, it is known that roots
of the secular equation along the upper complex half-plane lead to Hadamard instabilities of the
associated boundary value problem of PDEs (see [7, 44, 43]). This means that the existence and
/or uniqueness of a solution for the PDE problem fail to hold, making the surface wave analysis
meaningless [7]. This fact it is not completely unknown in the context of linear elasticity theory.
Hayes and Rivlin [17] showed that complex roots of the stress-free secular equation (if they exist)
are associated with physically inadmissible displacement fields. Achenbach [1], via the principle
argument from complex analysis, proved that for appropriate Lamé constants (see Equation (2.2)),
the secular equation for the strees-free case (see Equation (3.15) with γ1 = γ2 = 0) does not vanish
outside the real axis. Obviously, the use of the argument principle to deal with the secular equa-
tion with full impedance boundary conditions investigated in [16, 55, 34] is impractical due to its
cumbersome final expression. For the particular cases of tangential and normal impedance bound-
ary conditions, the absence of complex roots off the real axis trivially follows from the analysis
performed in the aforementioned works [55, 34].

The main purpouse of this paper is to prove that the secular equation with full impedance
boundary conditions (proposed by Godoy et al.) does not have complex roots off the real axis for
arbitrary real impedance parameters (Z1, Z2 ∈ R). To do this, we present an alternative approach
based on linear algebraic tools that proves to be useful for studying the secular equation off the real
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axis and even along the entire complex plane in certain cases. This approach takes advantage of
the fact that through a suitable change of variables, the elastodynamic equations for a compressible
isotropic half-space can be written as a first-order symmetric linear hyperbolic system of PDEs.
Section §2 is devoted to this purpose. In section §3, we introduce a perturbed boundary condition
which prescribes both the stress and velocity components at the surface to be proportional (see
Equation (3.1)), where the proportional ratios are complex-valued constants. The term ”perturbed”
attached to the boundary condition refers to the fact that when the real part of the complex valued
ratios vanish, the full impedance boundary condition proposed by Godoy et al. [16], is retrieved. In
this section, we also compute the associated secular equation. In section §4 we apply the alternative
method based on quadratic forms and use a result from the well-posedness theory of hyperbolic
PDEs to show that the secular equation associated with the perturbed problem does not vanish
neither the real axis nor along the upper complex half-plane (indicating the absence of Hadamard
instabilities). In section §5, we take advantage of this result to demonstrate the non-vanishing
property off the real axis for the secular equation with full impedance boundary condition. That
is, the property that Achenbach [1] proved for the stress-free boundary condition, remains valid for
the general impedance boundary conditions proposed by Godoy et al. [16].

Notation. In this paper, lowercase bold letters denote column vectors and uppercase bold letters

denote matrices. Given a matrixM (or a vector v), its conjugate transpose is denoted byM∗ = M
⊤
.

We equip Cn with the Hermitian scalar product

v∗w =
n∑

j=1

vjwj ,

where vj is the j-th component of v. This scalar product leads to the norm:

∥v∥ =
√
v∗v.

The d-dimensional indentity matrix is written Id .

2. Equations of motion

Let us consider an isotropic elastic half-space with constant mass density ρ occupying the domain
{x2 ≥ 0}. We shall study planar motion in the (x1, x2)-plane, the displacement being independent
of x3. The components of the displacement satisfy

uj = uj(x1, x2, t), for j = 1, 2, and u3 ≡ 0.

Thus, the constitutive isotropic equations characterized by the symmetric stress tensor σ has
four relevant components related to the displacement gradients by

σ11 = (λ+ 2µ)u1,1 + λu2,2,

σ12 = σ21 = µ
(
u1,2 + u2,1

)
,

σ22 = (λ+ 2µ)u2,2 + λu1,1,

(2.1)

where commas denotes differentiation with respect to spatial variables xi and µ, λ are the standard
Lamé constants satisfying

µ > 0, λ+ µ > 0. (2.2)

In terms of the Young’s modulus E and the Poisson’s ratio ν, (2.2) is equivalent to E > 0 and
−1 < ν < 0.5 (see [1]). In absence of source terms, the equations of motion are of the form:

σ11,1 + σ12,2 = ρü1,

σ12,1 + σ22,2 = ρü2.
(2.3)
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Adopting the velocity components v1 = u̇1, v2 = u̇2 and the stress components σ11, σ12, σ22 as
the dependent variables, the equations of motion (2.1)-(2.3) can be written as a first order linear
system of PDE which is known as the velocity-stress formulation (see [56]). Indeed, by taking the
time derivative of the stress components in (2.1) and applying the Clairaut’s theorem for mixed
second order time and spatial derivatives, we can write the equation of motion (2.1)-(2.3) in the
form ([56]): 

ρ
∂v1
∂t

=
∂σ11
∂x1

+
∂σ12
∂x2

,

ρ
∂v2
∂t

=
∂σ12
∂x1

+
∂σ22
∂x2

,

∂σ11
∂t

= (λ+ 2µ)
∂v1
∂x1

+ λ
∂v2
∂x2

,

∂σ12
∂t

= µ
(∂v1
∂x2

+
∂v2
∂x1

)
,

∂σ22
∂t

= λ
∂v1
∂x1

+ (λ+ 2µ)
∂v2
∂x2

.

(2.4)

In terms of the vector variable y = (v1, v2, σ11, σ12, σ22)
⊤, (2.4) can be written in a compact form

as

∂y

∂t
= A1

∂y

∂x1
+A2

∂y

∂x2
(2.5)

where A1, A2 are the constant matrices

A1 =


0 0 1/ρ 0 0
0 0 0 1/ρ 0

λ+ 2µ 0 0 0 0
0 µ 0 0 0
λ 0 0 0 0

 , A2 =


0 0 0 1/ρ 0
0 0 0 0 1/ρ
0 λ 0 0 0
µ 0 0 0 0
0 λ+ 2µ 0 0 0

 .

This form of the isotropic elastodynamic equations is known as the velocity stress formulation
and is frequently used in seismology to implement numerical methods (see, for instance, [20, 56]).
Our main results are based on the fact that the system (2.5) admits a symmetric respresentation
after a suitable change of variables (see [31, 7]). Indeed, change the variable y by the variable
w = (w1, w2, w3, w4, w5)

⊤ that is related to the former by y = Cw, where C is the constant
invertible matrix

C =


0 0 0 1

c1
0

0 0 0 0 1
c1

2ρc2
√

c21−c22
c21

0 ρ
(
1− 2c22

c21

)
0 0

0 c2ρ
c1

0 0 0

0 0 ρ 0 0


and c1 :=

√
(λ+ 2µ)/ρ, c2 :=

√
µ/ρ are the speed of bulk waves (preassure and shear, respectively).

Substituting y = Cw into (2.5) and simplifying gives

∂w

∂t
= S1

∂w

∂x1
+ S2

∂w

∂x2
, (2.6)
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where S1 = C−1A1C and S2 = C−1A2C are the symmetric matrices given by

S1 =


0 0 0

2c2
√

c21−c22
c1

0

0 0 0 0 c2

0 0 0
c21−2c22

c1
0

2c2
√

c21−c22
c1

0
c21−2c22

c1
0 0

0 c2 0 0 0

 , S2 =


0 0 0 0 0
0 0 0 c2 0
0 0 0 0 c1
0 c2 0 0 0
0 0 c1 0 0

 . (2.7)

Equation (2.6) is refered as the symmetric first order version of the isotropic elastodynamic equa-
tions (2.3).

3. Boundary conditions of impedance type and the secular equation

3.1. Perturbed impedance boundary condition. We assume that the surface {x2 = 0} is
subjected to a boundary condition of the form:

σ12 + γ1u̇1 = 0,

σ22 + γ2u̇2 = 0,
for x2 = 0, (3.1)

where γ1, γ2 are complex constants given by

γ1 = ε1 + iZ1, γ2 = ε2 + iZ2.

Z1, Z2 ∈ R are the impedance parameters whose dimension is of stress/velocity [16, 27] and ε1, ε2
are assumed to be negative reals (or Re γj < 0, j = 1, 2). We claim (3.1) is a perturbed version
of the full impedance boundary condition proposed by Godoy et al. [16]. Indeed, assume that
ε1, ε2 go to zero and that the displacement vector in (3.1) depends harmonically on time through
e−iωt, that is uj = e−iωtû(x1, x2), j = 1, 2 (cf. [16]). Substituting at (3.1) gives the full impedance
boundary condition (see, Equation (9) from [34]){

σ̂12 + ωZ1û1 = 0,
σ̂22 + ωZ2û2 = 0,

x2 = 0. (3.2)

These impedance boundary conditions are tantamount to the Malischewsky ones if the impedance
parameters defined by him (see Equation 2 in [29]) are taken as: ξ1 = ωZ1, ξ2 = ωZ2. It is clear
that setting Z1 = Z2 = 0 leads to the classical stress-free boundary condition. When Z2 = 0, we
retrieve the tangential boundary condition investigated in [16, 55] and when Z1 = 0 we obtain the
normal impedance boundary condition studied in [34].

We are going to derive the secular equation for surface waves associated to the perturbed bound-
ary condition (PBC) (3.1) and analyze it in detail by a linear algebra approach. Then, we let
ε1, ε2 tend to zero to obtain the secular equation with impedance boundary conditions. Finally, we
analyze it in light of the behavior of its counterpart with PBD.

For the analysis to come, the symmetric first order version of the elastodynamic equation shall
be fundamental, so we express the boundary condition (3.1) in terms of the components of the
vector w. That is:

ρc2w2 + γ1w4 = 0,

ρc1w3 + γ2w5 = 0,
for x2 = 0, (3.3)

which, by defining the column vector w′ := (w2, w3, w4, w5)
⊤ ∈ C4, can be written in matrix form

as: (
c2ρ 0 γ1 0
0 c1ρ 0 γ2

)
w′ =

(
0
0

)
, x2 = 0. (3.4)
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3.2. Secular equation. We derive in this section the secular equation for surface waves with PBC
by using the first order symmetric version (2.6) of the elastodynamic equations and the matrix form
of the boundary condition (3.4). The procedure is the same as in [1], a surface wave of Rayleigh
type propagating in the x1-direction with velocity c, and wave number k > 0 has displacement
vector given by

w = e−kbx2eki(x1−ct)ŵ (3.5)

where the constant vector ŵ ∈ C5, the velocity c and the unknown b have to be chosen such that
(3.5) satisfies both the differential equation (2.6) and the boundary condition (3.3). Moreover, the
unknown b must be chosen with positive real part in order to fulfill the decaying condition:

w = 0 as x2 → +∞. (3.6)

We now start to susbtitute (3.5) into (2.6). After some algebraic simplifications, we find that
the vector w must solve the following linear homogeneous system in matrix form(

ckiI5 + kiS1 − kbS2

)
ŵ = 0. (3.7)

Non-trivial solutions of the system above are necessary to have non-trivial solutions of the form
(3.5), so the determinant of the system (3.7) must vanish, that is

det
(
ckiI5 + kiS1 − kbS2

)
= 0. (3.8)

After algebraic manipulations, we find that this happens when c = 0 (which is discarded), b = ±b1
and b = ±b2, where

b1 =

√
1− c2

c21
, b2 =

√
1− c2

c22
. (3.9)

Observe that the square roots hereabove take complex values when c > cj , j = 1, 2, so an exact
meaning as a complex functions is needed. For this, we assume that the square root in (3.9) is the
principal branch, which ensures Re b1 > 0 and Re b2 > 0 as c varies on the whole complex plane.
Thus, in order to fulfill the decaying condition outlined in (3.6), we select the solutions of (3.8)
with positive sign, namely b = bj , j = 1, 2. Now, solving the system (3.7) for each value b = b1,
b = b2 (separately) shows that the infinite set of solutions, for each value, are respectively spanned
by the vectors

ŵ1 =
(−2c2k

√
c21 − c22

c1
,−2ic2b1k,

c22k(1 + b22)

c1
, ck, b1cki

)⊤
,

ŵ2 =
(−2c2k

√
c21 − c22

c1
,−c2ki

( 1

b2
+ b2

)
,
2c22k

c1
, ck,

cki

b2

)⊤
.

(3.10)

Replacing in (3.5), we obtain two linear independent solutions w1, w2 to (2.6) given by

w1 = e−kb1x2eki(x1−ct)ŵ1, w2 = e−kb2x2eki(x1−ct)ŵ2. (3.11)

If we consider just one of these solutions, then there are values of the parameters γ1, γ2 for which
the boundary condition does not hold. Indeed, if we take, for instance, any scalar multiple of the
first mode w1 in (3.11) and substitute it into the boundary condition (3.3), we obtain the following
algebraic system of equations {

−2c22ρikb1 + γ1ck = 0,
ρc22k(1 + b22) + γ2b1cki = 0.

(3.12)

Note that for any pair γ1, γ2 ∈ C such that γ1 = 0, the first equation in (3.12) is not satisfied,
provided that c ̸= c1. Similarly, there are values of the parameters for which the second mode in
(3.11) does not satisfy the boundary condition. Hence, for the sake of generality, we assume that a
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general surface wave solution of Rayleigh type to the system of PDEs (2.6) is a linear combination
of w1 and w2 in (3.11). That is

w =
(
A1e−kb1x2ŵ1 +A2e−kb2x2ŵ2

)
eki(x1−ct). (3.13)

Now, we have to find A1, A2 and c such that (3.13) satisfies the boundary condition. As before,
substitute (3.13) into (3.3) to conclude that the scalars A1 and A2 must solve the homogeneous
linear system 

−2ic22ρb1k + ckγ1 −ic22ρk
(
b2 +

1
b2

)
+ ckγ1

c22ρk(1 + b22) + ckγ2ib1 2c22ρk +
kcγ2i

b2

(A1

A2

)
=

(
0
0

)
. (3.14)

If we make ε1 = ε2 = 0 (namely, γ1 = Z1i, γ2 = Z2i) and multiply the first equation by i, we
retrieve equation (11) from [34], inasmuch as ω = ck and c22ρ(1 + b22) = (λ+ 2µ)b21 − λ.

Again, we need the system (3.14) to support more solutions than the trivial one, A1 = A2 = 0,
so the determinant of the system must vanish. This leads to the secular equation

R(c; γ1, γ2) :=

(
2− c2

c22

)2

− 4

√
1− c2

c22

√
1− c2

c21
− c3i

µc22

(
γ1

√
1− c2

c22
+ γ2

√
1− c2

c21

)

+ c2
γ1γ2
µ2

(
1−

√
1− c2

c22

√
1− c2

c21

)
= 0.

(3.15)

As expected, letting ε1, ε2 go to zero in (3.15) leads to the secular equation with full impedance
boundary condition as a function of the speed c

R(c;Z1i, Z2i) =

(
2− c2

c22

)2

− 4

√
1− c2

c22

√
1− c2

c21
+

c3

µc22

(
Z1

√
1− c2

c22
+ Z2

√
1− c2

c21

)

+ c2
Z1Z2

µ2

(√
1− c2

c22

√
1− c2

c21
− 1

)
= 0.

(3.16)

Note that the secular equation hereabove is independent of the frequency, so Godoy’s impedance
boundary conditions generalizes the stress-free boundary condition in the non-dispersive regime. It
is not hard to verify that in the variables δj = Zj/

√
µρ, x = c2/c22, τ = c22/c

2
1, the secular equation

above becomes Equation 12 in [34].
In this fashion, the PDE boundary problem (2.6)-(3.1) supports a surface wave if there exists a

unique real root of (5.1) in the interval (0, c2) (subsonic range), corresponding to the speed of the
wave (see, [55, 16, 34]). In this work, however, we concentrate on another property regarding well-
posedness of the PDE boundary problem (2.6)-(3.4): the absence of roots of the secular equation
in the upper complex half-plane {Im c > 0}. Why are these roots forbidden? Observe that a
root c with Im c > 0 of the secular equation leads to an associated solution of the form (3.5) that
diverges (in norm) as t → +∞ (this is a wave of infinite energy). One may argue that, in case they
appear, these solutions should simply be omitted, given their lack of physical meaning. However
the situation is not that easy. It is well-known, in the theory of hyperbolic PDEs, that these
solutions of infinity energy cause the ill-posedness of the associated boundary value problem (2.6)-
(3.4). That is, the existence or uniqueness of the solution fail to hold once the data of the problem
(Láme constants, source term, initial data) are prescribed. This is the case, for instance, when
γ1 = γ2 = 0 (stress-free boundary condition) and the Lamé constants are chosen inappropriately as
µ > 0, −µ < λ + µ ≤ 0. The secular equation (3.15) has two positive roots that are meaningless,
as the presence of an additional root within the region {Im c > 0} implies the existence of a wave
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of infinite energy. Consequently, the problem is ill-posed under this range of parameters (refer to
Theorem 6.2 in [44] for details). The same situation arises when γ1 = γ2 = γ > 0 (in (3.3)) and
the Láme parameters are set as in (2.2). As in the previous example, the secular equation (3.15)
has at least one root with Im c > 0 for each positive value of the impedance parameter γ, implying
the ill-posedness of the PDE problem (refer to Proposition 5.1 in [8] for details).

Remark 3.1. In the literature of linear hyperbolic PDEs, the absence of roots of the secular
equation within the region {Im c > 0} is strongly related to the Kreiss Lopatinskĭı condition (cf.
[43, 7]). This is a necessary condition for the well-posedness of general first-order hyperbolic systems
with constant matrix coefficients endowed with a boundary condition in form of linear relations, like
(3.3). The problem under consideration (2.6)-(3.4) falls into this general class. Several hyperbolic
problems in electromagnetism, fluids and gas dynamics are often written into systems of first-
order equations to investigate the well-posedness property in the light of Kreiss’ theory. A detailed
account of this theory and their numerous implications can be found in the monograph by Benzoni-
Gavage and Serre [7].

Since the well-posedness property must be satisfied for the model under consideration to appro-
priately simulate wave propagation, we can state the following

Remark 3.2. A necessary condition for the problem (2.6)-(3.4) to support a surface wave of
Rayleigh type is the absence of roots of the secular equation along the upper complex half-plane
{Im c > 0}. Observe that the functionR that defines the secular equation with impedance boundary
conditions (3.16) satisfies the following symmetry property:

R(−c;Z1i, Z2i) = R(c;−Z1i,−Z2i). (3.17)

This property extends the symmetric property with respect to the origin (in the complex plane) of
the stress-free secular equation (Z1 = Z2 = 0). Thus, the absence of roots of the secular equation
in {Im c > 0} for all Z1, Z2 ∈ R equals the non existence of complex roots outside the real axis for
all Z1, Z2.

For the case of stress free boundary condition Z1 = Z2 = 0, Achenbach [1] verified, via the
argument principle from complex analysis, that the associated secular equation does not have roots
outside the real axis. This, in turn, implies the uniqueness of the Rayleigh wave. For the case
of tangential (Z2 = 0) and normal (Z1 = 0) impedance boundary conditions, Vinh and Nguyen
[55] and Giang and Vinh [34], respectively, analyzed the secular equation (3.16) across the entire
complex plane by means of the complex function method based on Cauchy integrals. For the
tangential case, it was found that, in the variable x = c2/c22, the secular equation has a unique real
root on (0, 1) for each value of the impedance parameter Z1 ∈ R which in particular implies the
existence and uniqueness of a surface wave of Rayleigh type. For the normal case, this property
holds true iff the impedance Z2 ∈ R remains above a critical value depending on the material
parameters. In both particular cases, the absence of roots for the corresponding secular equations
off the real axis is a trivial consequence of the results in those works. In Section 5, we extend this
property to the general case with full impedance Z1, Z2 ∈ R. To do that, we first establish the
property for the secular equation with PBC (3.15) and then extend it to the case of impedance
boundary conditions by letting ε1, ε2 → 0.

Remark 3.3. It is worth mentioning that in contrast to the isotropic case, complex roots of the
secular equation associated for instance to some linear models for a viscoelastic material are not
necessarily physically inadmissible [45, 41]. The reason is that, when written as a first order PDE
like (2.5), the matrix coefficients of the resulting system depends upon the spatial variables and an
additional non-homogeneous term appears, which accounts for the integral part in the constitutive
relation that describes the viscoelastic behavior (see, for instance, [11]). This kind of system ranges
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into the class of hyperbolic systems with relaxation, and therefore the cited theory of well-posedness
for the symmetric first order version of the isotropic equations with constant matrix coefficients, is
not yet valid for the viscoelastic case.

4. The secular equation associated to the perturbed boundary condition (PBC)

In this section, we shall prove that the secular equation with PBC (3.15) does not vanish, neither
on the upper complex plane Im c > 0 nor along the real axis, for all boundary parameters such that
Re γj = εj < 0, j = 1, 2. Note that c = 0 is a trivial root of the secular equation which, however,
results spurious as we are interested in surface waves with a non-zero speed. Thus, we focus on the
set

{Im c ≥ 0}∗ = {c ∈ C : Im c ≥ 0, c ̸= 0}.
We do not deal directly with the secular equation, given its intricacy expression. Our alternative
approach is based on the widely known fact from linear algebra that a square homogeneous linear
system has a unique solution (the trivial one) if and only if the determinant of the matrix of the
system does not vanish. Since the secular equation is precisely the determinant of the homogeneous
square system (3.14) set to zero, then the non-vanishing property along {Im c ≥ 0}∗ is equivalent to
demonstrating that A1 = A2 = 0 is the unique solution of the system (3.14) for all c ∈ {Im c ≥ 0}∗.
We shall further develop this idea by relying on the fact that (3.14) can be rewritten as

k

(
c2ρ 0 γ1 0
0 c1ρ 0 γ2

)(
A1ŵ

′
1 +A2ŵ

′
2

)
=

(
0
0

)
, (4.1)

where ŵ′
1, ŵ

′
2 ∈ C4 denotes the vectors obtained from ŵ1, ŵ2 in (3.10) by eliminating their first

components, respectively. Straightforward matrix multiplication on (4.1) produces the matrix
form of the linear system (3.14). This alternative form of the system arises when one substitute
the surface wave (3.13) into the boundary condition (3.4). Vectors ŵ′

1, ŵ
′
2 satisfy the following

fundamental property:

Lemma 4.1. The vectors ŵ′
1, ŵ

′
2 are linear independent for all c ̸= 0.

Proof. Indeed, if we assume that the column vectors ŵ′
1 and ŵ′

2 are parallel (linear dependent).
That is, ŵ′

1 = α0ŵ
′
2, α0 ̸= 0; then from the last component of this equation we have α0 = b1b2;

susbtituting into the second one produces c = 0 which is a contradiction. □

According to the lemma above, if we define

Bγ :=

(
c2ρ 0 γ1 0
0 c1ρ 0 γ2

)
, (4.2)

Equation (4.1) is clearly equivalent to looking for vectors r in the linear space span{ŵ′
1, ŵ

′
2} (the

set of linear combinations) that solve the equation Bγr = 0. Observe that, if the unique solution is
the trivial vector r = 0 for all c ∈ {Im c ≥ 0}∗, then, the linear independence of ŵ′

1, ŵ
′
2 implies that

A1 = A2 = 0 is the unique solution of the system (3.14), which gives the non-vanishing property of
the secular equation. The following lemma provides an alternative way to prove this fact.

Lemma 4.2. Suppose that for all c ∈ {Im c ≥ 0}∗, there exists a constant ϵ0 > 0 independent of c
such that

∥Bγr∥2 ≥ ϵ0∥r∥4, for all r ∈ span{ŵ′
1, ŵ

′
2}, (4.3)

where ∥.∥n denotes the usual norm in Cn. Then, A1 = A2 = 0 is the unique solution of the system
(3.14) for each c ∈ {Im c ≥ 0}∗.

Proof. Clearly, if r ∈ span{ŵ′
1, ŵ

′
2} solves Bγr = 0, then (4.3) implies ∥r∥ ≤ 0. By properties of

the norm, the unique vector with this property is r = 0. But since ŵ′
1, ŵ

′
2 are linearly independent,

(4.1) implies that A1 = A2 = 0 is the unique solution. □
10



Thus, the main purpose here is to derive the inequality (4.3). The idea is to obtain a positive
definite quadratic form, from which (4.3) follows directly. The assumption Re γj = εj < 0, j = 1, 2
plays an essential role in the construction. Another crucial point shall be the sign of the quadratic
form

r → r∗S ′
2r

restricted to span{ŵ′
1, ŵ

′
2}, where S ′

2 is the symmetric 4× 4 matrix obtained by eliminating both
the first row and column from matrix S2 in (2.6). For the sake of simplicity, we drop the subscript
in the Cn norms.

Theorem 4.3. If γ1, γ2 are complex constants such that Re γj < 0, j = 1, 2, then there exist a
positive constant, ϵ > 0 (depending on γj and cj, j = 1, 2) such that

β0∥Bγr∥2 > ϵ∥r∥2 − r∗S ′
2r, (4.4)

for all vectors r ∈ C4 \ {0}, where

β0 := − 1

2ρRe γ1
− 1

2ρRe γ2
> 0.

Proof. Let β and ϵ be positive constants. What we must prove amounts to show that the function

G(r) := β
∥∥Bγr

∥∥2 − ϵ∥r∥2 + r∗S ′
2r, (4.5)

is positive for β = β0 and some ε > 0. Since ∥Bγr∥2 = r∗B∗
γBγr and ∥r∥2 = r∗I4r, G is actually a

hermitian quadratic form G(r) = r∗Mr, where M is the hermitian matrix given by

M := βB∗
γBγ − ϵI4 + S ′

2.

In this fashion, we just have to prove that M is positive definite for some ϵ > 0, that is, all of its
eigenvalues are positive. Observe first that the eigenvalues of M have the form λ − ϵ , where λ is
an eigenvalue of the matrix

βB∗
γBγ + S ′

2 =


βc22ρ

2 0 c2(1 + βγ1ρ) 0
0 βc21ρ

2 0 c1(1 + βγ2ρ)
c2(1 + βγ1ρ) 0 β|γ1|2 0

0 c1(1 + βγ2ρ) 0 β|γ2|2

 . (4.6)

This matrix has four eigenvalues given by

λ±
1 =

1

2

(
β(c21ρ

2 + |γ2|2)±
√
d1

)
,

λ±
2 =

1

2

(
β(c22ρ

2 + |γ1|2)±
√
d2

)
,

(4.7)

where
d1 =β2

(
c21ρ

2 + |γ2|2
)2

+ 4c21
(
1 + 2βρRe γ2

)
,

d2 =β2
(
c22ρ

2 + |γ1|2
)2

+ 4c22
(
1 + 2βρRe γ1

)
.

(4.8)

It is clear that λ+
1 , λ

+
2 are positive for all β > 0. For the remaining eigenvalues, we make

β = β0 = − 1

2ρRe γ1
− 1

2ρRe γ2
.

Then a straighforward calculation shows that

1 + 2ρβ0Re γ2 = −Re γ2
Re γ1

< 0.

Therefore, d1 < β2
0

(
c21ρ

2 + |γ2|2
)2
, which implies

2λ−
1 = β0(c

2
1ρ

2 + |γ2|2)−
√
d1 > 0,

11



that is, λ−
1 > 0. Analogously, we conclude λ−

2 > 0. If we choose

ϵ = min{λ−
1 , λ

−
2 } > 0,

then all the eigenvalues of matrix M, namely λ±
1 −ϵ, λ±

2 −ϵ are positive, so M is positive definite. □

Observe that the inequality (4.3) easily follows from (4.4) if r∗S ′
2r ≤ 0. That is, the quadratic

form r → r∗S ′
2r restricted to the linear space span{ŵ′

1, ŵ
′
2} is non-positive for all c ∈ {Im c ≥ 0}∗.

To prove that, we can try to compute the associated matrix of the restricted quadratic form and
show the non-positiveness by elementary tools. To do this, note that any vector r ∈ span{ŵ′

1, ŵ
′
2}

has the form A1ŵ
′
1 + ŵ′

2A2 with A1, A2 ∈ C, that in matricial form can be written as

A1ŵ
′
1 + ŵ′

2A2 = A
(
A1

A2

)
= Aa,

where A denote the 4 × 2 complex matrix whose columns are ŵ′
1, ŵ

′
2 and a = (A1, A2)

⊤ ∈ C2

(column vector). Therefore, for all r ∈ span{ŵ′
1, ŵ

′
2} we have

r∗S ′
2r = (A1ŵ

′
1 + ŵ′

2A2)
∗S ′

2(A1ŵ
′
1 + ŵ′

2A2)

= a∗
(
A∗S ′

2A
)
a.

(4.9)

That is, the quadratic form r∗S ′
2r restricted to the two dimensional linear space span{ŵ′

1, ŵ
′
2}

is equivalent to a non restricted quadratic form defined on C2 with associated hermitian matrix
A∗S ′

2A. A straighforward calculation gives

A∗S ′
2A =2k2c22i

 cb1 − b1c
(
b1 +

1

2b2

)
(c− c)(

b1 +
1

2b2

)
(c− c)

c

b2
− c

b2



+ k2c22i

b1c(1 + b2
2
)− b1c(1 + b22)

1

b2

(
cb

2
2 − cb22

)
1

b2

(
cb

2
2 − cb22

)
c
(
b2 +

1

b2

)
− c
(
b2 +

1

b2

)
 .

(4.10)

Note that each component of the matrices above have the form z − z, z ∈ C; if z ∈ R, z − z = 0.
This is precisely the situation if we assume c ∈ (−c2, c2) \ {0} because this implies b1, b2 ∈ R, so
all components of the matrix above are reals and therefore zero, that is A∗S ′

2A = 02×2. In view of
(4.9), we have proved that

r∗S ′
2r = 0, ∀r ∈ span{ŵ′

1, ŵ
′
2}.

Substituting the expression hereabove into (4.4) yields the desired inequality (4.3) for all c ∈
(−c2, c2) \ {0}. To extend the latter conclusion to the whole complex half-plane {Im c ≥ 0}∗,
we need to show that matrix A∗S ′

2A is non-positive definite for all c with Im c > 0. However,
the usual criteria to prove it, such as the negative sign of the eigenvalues or the negative sign of
the principal minors are impossible to perform, or at least hardly realizable in practice, given the
intricate expression of matrix A∗S ′

2A. An alternative method is needed to prove the positivity or
non-negativity of that matrix. It is based on the following lemma due to Serre [43], where the
symmetric system (2.6) is fundamental.

Lemma 4.4. All solution w = w(x1, x2, t) of (2.6) satisfies

∂|w|2

∂t
=

∂

∂x1
(w∗S1w) +

∂

∂x2
(w∗S2w). (4.11)
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Proof. Multiplying (2.6) to the left by 2w∗ and taking the real part yield

2Re
(
w∗∂w

∂t

)
= 2Re

(
w∗S1

∂w

∂x1

)
+ 2Re

(
w∗S2

∂w

∂x2

)
. (4.12)

Since Sj , j = 1, 2 are real symmetric constant matrices, trivially we have (Sj)
∗ = Sj . Therefore,

by the usage of the properties v∗w = w∗ v, where v,w ∈ Cn and 2Re z = z + z, where z ∈ C, we
obtain

2Re
(
w∗Sj

∂w

∂xj

)
= w∗Sj

∂w

∂xj
+w∗Sj

∂w

∂xj

=

(
Sj

∂w

∂xj

)∗
w +w∗Sj

∂w

∂xj

=
∂w∗

∂xj
Sjw +w∗ ∂

∂xj
Sjw.

(4.13)

Finally, the product rule for the derivatives gives us

2Re
(
w∗Sj

∂w

∂xj

)
=

∂

∂xj
(w∗Sjw), j = 1, 2.

The above procedure is valid if we replace Sj by I5 and consider the temporal derivative. Hence,
we also have

2Re
(
w∗∂w

∂t

)
=

∂

∂t
(w∗w) =

∂|w|2

∂t
.

Susbtituting back the latter two expression into (4.12) yields the result. □

Now, we can prove the principal result of this section.

Theorem 4.5. Let γ1, γ2 be complex constants with negative real part. Then the secular equation
(3.15) (associated to the PBC) does not have roots in the upper complex half-plane {Im c ≥ 0}∗.

Proof. According Lemma 4.2, the result follows from inequality (4.3). This can be obtained from
(4.4) if we prove that for each c ∈ {Im c ≥ 0}∗, r∗S ′

2r ≤ 0 for all r ∈ span{ŵ′
1, ŵ

′
2}. This shall

follow from the straighforward application of the identity (4.11) to the surface wave solution (3.13).
Indeed, let us define first

p(x2) := A1e−kb1x2ŵ1 +A2e−kb2x2ŵ2.

Thus, the surface wave solution (3.13) takes the form w = p(x2)eki(x1−ct). A straightforward
computation gives

|w|2 = e2ktIm c|p|2, w∗Sjw = e2ktIm cp∗Sjp, j = 1, 2.

Note that w∗S1w does not depend on x1, so substituting the expressions obtained hereabove into
(4.11) and simplifying yield

∂

∂x2
(p∗S2p) = 2k|p|2Im c, (4.14)

which is non negative as k > 0 and c lies on the upper complex half-plane ({Im c ≥ 0}∗). Thus,
p∗S2p is a non-decreasing function of x2 ∈ (0,+∞). So, in particular

p∗(x2)S2p(x2) ≥ p∗(0)S2p(0), for all x2 ≥ 0.

Now, suppose by the way of contradiction that p∗(0)S2p(0) > 0. Then, the Cauchy-Schwarz
inequality applied to p∗S2p and the non-decreasing property on [0,+∞) yield

∥S2∥∥p∥2 ≥ p∗(x2)S2p(x2) ≥ p∗(0)S2p(0) > 0, for all x2 ≥ 0,
13



which means that ∥p∥ does not decrease to zero when x2 → ∞, provided that ∥S2∥ is a constant.
This contradicts the decay condition (3.6), which characterizes a surface wave solution of Rayleigh
type. Thus, it is necessary that

p∗(0)S2p(0) ≤ 0. (4.15)

Note that p(0) is any linear combination of the vectors ŵ1, ŵ2 and since the first column and row
of S2 are full of zeros, the inner product in (4.15) coincides with r∗S ′

2r for all r ∈ span{ŵ′
1, ŵ

′
2}.

Therefore we have demonstrated that once Im c ≥ 0, c ̸= 0 then

r∗S ′
2r ≤ 0, ∀r ∈ span{ŵ′

1, ŵ
′
2}. (4.16)

Combining (4.4) with the inequality here above yields

β0∥Bγr∥2 > ϵ∥r∥2 − r∗S ′
2r

≥ ϵ∥r∥2.
which is the key inequality (4.3). Lemma 4.2 implies that the unique solution of the linear system
(4.1) (or (3.14)) is the trivial one A1 = A2 = 0. That is, the secular equation does not vanish along
{Im c ≥ 0}∗. □

Remark 4.6. Notice that the last theorem does not hold for εj = Re γj = 0, j = 1, 2, because
Inequality (4.4), which was crucial for the proof, ceases to be valid as β0 becomes undefined when
Re γ1 = Re γ2 = 0. In other words, Theorem 4.5 does not hold for the impedance boundary
condition; whence the need of considering the PBC (3.1) first. Within the framework of the
elasticity theory, a suface wave of Rayleigh type is often associated to real solution of the secular
equation. Hence, according to Theorem 4.5, one might infer in particular that surface waves of
Rayleigh type are impossible under the PBC. However, there might be roots with Im c < 0 that
could be associated with surface waves, which, strangely enough would present exponential decay
over time due to the negative sign of the imaginary part of the root. Although scarce, some atypical
theoretical findings regarding Rayleigh waves can be found in the material science literature. For
instance, Kuznetsov [23, 22] showed that it is theoretically possible for some anisotropic elastic
materials to exhibit properties of non-existence of the genuine Rayleigh waves or surface waves of
non-Rayleigh type. Nevertheless, the author points out that the question whether there actually
exist that kind of waves remains open. In the hyperbolic PDEs literature, Theorem 4.5 is related to
the uniform Kreiss-Lopatinskĭı condition which implies the well-possedness of the boundary value
problem (2.6)-(3.3) (see [31, 7]).

To observe the behavior of the secular equation for some particular values of the parameters
γ1, γ2, consider an elastic half-space with density ρ = 1, Young’s modulus E = 1.86 and Poisson’s
ratio ν = 0.16 (that is, µ = 0.8 and λ = 0.4). Figure 1 shows some plots of the norm of the
Rayleigh function R(c, γ1, γ2) as a function of c on the positive real axis. Observe that as the
negative parameters γ1, γ2 get closer to zero, a root of |R| on the interval (0, c2) start to appear.
This corresponds to the velocity of the well-known Rayleigh wave (when γ1 = γ2 = 0). Moreover,
Figure 2 shows plots of the same function with the same parameter values, but with c lying in the
upper complex half-plane Im c > 0. It is easy to verify that there are no roots in that region.

14



Figure 1. Plots of |R(c; γ1, γ2)| as a function of c ∈ [0,∞) for ρ = 1, E = 1.86,
ν = 0.16 and some negative values of the boundary parameters γ1, γ2. (Color online)

5. The secular equation for impedance boundary conditions

In this section we let ε1, ε2 go to zero in (3.15) and investigate if the non-vanishing property
demonstrated in Theorem 4.5 remains valid in the limit. That is, the secular equation for surface
waves with impedance boundary conditions (3.16). We proceed in a classical way, approximating
(3.16) by a sequence of secular equations with PBC for which Theorem (4.5) guarantees the non-
vanishing property along {Im c ≥ 0}∗. When taking the limit in the sequence, we shall see that the
non-vanishing property remains valid only on the open complex half-plane {Im c > 0}, not along
the real axis. Let us define

f(c) : = R(c;Z1i, Z2i)

=

(
2− c2

c22

)2

− 4

√
1− c2

c22

√
1− c2

c21
+

c3

µc22

(
Z1

√
1− c2

c22
+ Z2

√
1− c2

c21

)

+ c2
Z1Z2

µ2

(√
1− c2

c22

√
1− c2

c21
− 1

)
.

(5.1)

We can write (5.1) as the limit of a sequence of functions of the form R in (3.15) (associated to
the PBC) by setting the boundary parameters γj(n) := − 1

n + Zj i, j = 1, 2 (that is, εj(n) := − 1
n)

for each n ∈ Z+. That is,

f(c) = R
(
c;Z1i, Z2i

)
= lim

n→∞
R
(
c; γ1(n), γ2(n)

)
. (5.2)

Since we trivially have
Re
(
γj(n)

)
= − 1

n < 0, j = 1, 2,

Theorem 4.5 implies that each element of the sequence

fn(c) := R
(
c; γ1(n), γ2(n)

)
, n ∈ Z+ (5.3)

does not vanish on {Im c ≥ 0}∗ for each n ∈ Z+. One would infer that this non-vanishing property
remains valid as n goes to infinity, but it is widely known that properties such as continuity or
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(a) γ1 = −0.35, γ2 = −0.7
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0 16. ∞
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Figure 2. Complex plot (in 3D, left, and contour, right) of the norm of Rayleigh
wave function (3.15) as function of c ∈ {Im c ≥ 0}, with elastic parameters values,
E = 1.86, ν = 0.16 and boundary parameter values γ1 = −0.35, γ2 = −0.7 (panel
(a)) and γ1 = −0.04, γ2 = −0.06 (panel (b)). The color mapping legend shows the
modulus |R| ∈ (0,∞) from dark to light tones of color and the phase from light blue
(arg(c) = −π) to green (arg(c) = π). (Color online)

integrability of a given sequence of functions may be lost at infinity (see, e.g., [50]). However,
there is a classical result from complex analysis that guarantees the non-vanishing property of the
limit function f = R, but only on the upper complex half-plane, not along the real axis. This is
Hurwitz’s theorem (see [2]).

Theorem 5.1 (Hurwitz’s theorem). Let Ω ∈ C an open connected set and suppose the sequence of
analytic functions fn : Ω → C, n ∈ Z+ converges to f uniformly on every compact subset of Ω. If
each fn never vanishes on Ω, then either f is identically zero or f never vanishes on Ω.

A compact set in C (or R2) is a bounded set containing its boundary points. This theorem
has been applied for instance to count zeros of holomorphic (or analytic) functions inside of open
connected sets, see for instance [5]. We shall apply Hurwitz’s theorem to the sequence of functions
fn, n ∈ Z+ defined in (5.3). Since the theorem requires that the sequence be defined on an open
connected set, we assume that each fn in (5.3) is defined on Ω = {c ∈ C : Im c > 0}, which meets
the condition. Recall that it was assumed that each of the square roots in (5.1) is the principal
branch, hence they are holomorphic on the entire complex plane except for the branch cut located
along the real axis. As a result, fn is in particular holomorphic on Ω = {c ∈ C : Im > 0}. It

16



remains to verify the uniform convergence of the sequence {fn} on any compact set contained in
Ω. This is accomplished in the following lemma.

Lemma 5.2. For all fixed pair Z1, Z2 ∈ R, the sequence of functions fn defined in (5.3) converges
uniformly to f(c) = R

(
c;Z1i, Z2i

)
on any compact set K ⊂ Ω.

Proof. Let K be an arbitrary compact subset of Ω. To prove the uniform convergence of fn to f
on K, we have to show that (see [18], section §2.1, Chapter 1):

lim
n→∞

sup
c∈K

|fn(c)− f(c)| = 0. (5.4)

To show this, let us define the functions

g1(c) := − c3i

µc22

√
1− c2

c22
, g2(τ) := − c3i

µc22

√
1− c2

c21
, g3(c) :=

c2

µ2

(
1−

√
1− c2

c22

√
1− c2

c21

)
.

The Rayleigh function in (3.15) can be written as

R(c; γ1, γ2) =

(
2− c2

c22

)2

− 4

√
1− c2

c22

√
1− c2

c21
+ γ1g1(c) + γ2g2(c) + γ1γ2g3(c).

Thus, as fn and f are defined in terms of the function R (see, (5.3) and (5.1)), straighforward
calculation gives

|fn(c)− f(c)| =
∣∣− 1

ng1(c)−
1
ng2(c) +

(
(− 1

n + Z1i)(− 1
n + Z2i)− (Z1i)(Z2i)

)
g3(c)

∣∣
≤ 1

n |g1(c)|+
1
n |g2(c)|+

∣∣(− 1
n + Z1i)(− 1

n + Z2i)− (Z1i)(Z2i)
∣∣|g3(c)|. (5.5)

Note that g1, g2, g3 are holomorphic in Ω. Hence taking the complex norm |g1|, |g2|, |g3|, produces
real valued continuous functions defined on the compact set K ⊂ Ω. Each continuous real valued
function on a compact set of C = R2 attains a maximum on that set. Thus, there are positive
constants m1,m2,m3 such that

|g1(c)| ≤ m1, |g2(c)| ≤ m2, |g3(c)| ≤ m3,

for all c ∈ K. Using this fact into (5.5) gives

|fn(c)− f(c)| ≤ 1
nm1 +

1
nm2 +

∣∣(− 1
n + Z1i)(− 1

n + Z2i)− (Z1i)(Z2i)
∣∣m3, (5.6)

for all c ∈ K. Note that the right hand side from the above, namely,

rn := 1
nm1 +

1
nm2 +

∣∣(− 1
n + Z1i)(− 1

n + Z2i)− (Z1i)(Z2i)
∣∣m3,

is an upper bound (independent of c) for the values of |fn(c)−f(c)| onK. Thus, since the supremum
is the least upper bound, we trivially have from (5.6) that

0 ≤ sup
c∈K

|fn(c)− f(c)| ≤ rn.

Given that rn tends to zero as n goes to ∞, we obtain (5.4) from the inequality hereabove by
applying the squeeze theorem for sequences. That is, the convergence fn → f is uniform on K.
Since K is an arbitrary compact set in Ω, we have proof that the convergence is uniform on any
compact set of Ω. □

Now we can proof the principal result

Theorem 5.3. Let λ, µ as in (2.2) and Z1, Z2 be real constants. The secular equation with
impedance boundary condition (see (5.1))

f(c) = R(c;Z1i, Z2i) = 0, (5.7)

has no roots outside of the real axis.
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Proof. According to Lemma 5.2, the sequence (5.3) converges uniformly on any compact set of the
open connected set Ω = {c ∈ C : Im c > 0}. Since the perturbed parameters γj(n) = − 1

n + iZj ,
j = 1, 2 have negative real parts, Theorem (4.5) ensures that each holomorphic function fn never
vanishes on Ω so Hurwitz’s theorem applies and then the limit function f(c) = R(c;Z1i, Z2i) never
vanishes on Ω provided it is not identically zero for all Zj ∈ R, j = 1, 2. Moreover, the symmetric
property (3.17) implies that the secular equation neither has roots along the open lower complex
half-plane {Im c < 0}. □

Remark 5.4. Theorem 5.3 is consistent with the results obtained in the literature for particular
cases of the full impedance boundary conditions under consideration. In the stress-free case (Z1 =
Z2 = 0) and the tangential case (Z1 ∈ R, Z2 = 0), the associated secular equation does not
have roots off the real axis, and there is always a unique real root on the interval (0, c2). The
case of normal impedance boundary conditions (Z1 ∈ R, Z2 = 0) is quite interesting since it was
demonstrated (see Theorems 1 and 3 in [34]) that the existence of a surface wave of Rayleigh type
is lost when the impedance parameter Z2 decreases beyond of a critical value. This suggest that
the non-existence of surface waves or even the existence of solutions of infinite energy could occur
when considering the general case with both non-zero impedance parameters. Theorem 5.3 at least
rules out the second scenario. In the context of initial boundary value problems of first order
hyperbolic systems of PDEs defined on the half-space, this non-vanishing property of the secular
equation in the upper complex half-plane is equivalent to the (weak) Kreiss-Lopatinskĭı condition
[7, 8, 21, 19, 43], a necessary condition for the well-posedness of boundary value problems of the
form (2.6)-(3.4).

6. Discussion

In this paper, we have presented an alternative method for addressing the secular equation of
surface waves propagating in an elastic isotropic half-space subjected to boundary conditions of
impedance type. We first consider a boundary condition (PBC) that can be viewed as a perturbed
version of the impedance boundary condition proposed by Godoy et al. [16]. The method consist in
studying the associated secular equation indirectly through the algebraic homogeneous linear sys-
tem, whose determinant gives rise the secular equation itself. This alternative approach becomes
feasible thanks to both, the symmetric first order version of the isotropic equations and the repre-
sentation of the algebraic homogeneous linear system (whose determinant is the secular equation)
as a constant matrix (related to the boundary condition) acting over a linear space spanned by
two vectors associated to the surface normal modes. In this fashion, Inequality (4.4) reduces the
analysis to determine the sign of a quadratic form to conclude that the secular equation (associated
to the PBC) does not vanish neither along the upper complex half-plane nor the real axis (except
for the trivial root c = 0). By the use of a classic approximation technique, we aim to extend this
non-vanishing property to the secular equation with full impedance boundary condition, finally
proving that it does not have complex root outside the real axis for arbitrary impedance param-
eters. This is a necessary condition for the well-posedness of the boundary value problem, and
thus crucial for the model to explain surface wave propagation. Since the behavior of the secular
equation off the real axis has been established, simpler techniques can be used to analyze it along
the real axis in order to demonstrate the existence and uniqueness of a surface wave. An appeal-
ing example in this direction is the approach implemented by Godoy et al. [16], which, though
intricate, relies on elements of basic calculus. Moreover, the fact that the secular equation with
full impedance boundary condition can only have real roots might indicate further simplifications
when applying the complex function method to derive an exact formula for the surface wave speed,
in cases where it exists. It is worth noting that our approach seems to be extendable to the study
of impedance boundary conditions for some anisotropic elastic solids. The reason is that one of
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the key ingredients, namely a symmetric first order versions of the equation of motion, is possible
due to the quadratic form of the strain-energy function (see, [31, 3]). Conversely, another crucial
element, namely Inequality (4.4) might be challenging to derive for the anisotropic case in the same
way as in the proof of Theorem (4.3). However, its existence might follow by certain results within
the theory of hyperbolic systems of PDEs or advanced linear algebra, provided that it is essentially
a quadratic form.

Acknowledgements

The author is warmly grateful to Ramón G. Plaza for many stimulating conversations. I also
thank Federico J. Sabina, whose comments and suggestions improve the manuscript. This work
was supported by the National Science and Technology Council (CONAHCyT) of México under
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